Science.gov

Sample records for acid cycle cac

  1. TRIIODOTHYRONINE INCREASES MYOCARDIAL FUNCTION AND PYRUVATE ENTRY INTO THE CITRIC ACID CYCLE AFTER REPERFUSION IN A MODEL OF INFANT CARDIOPULMONARY BYPASS

    SciTech Connect

    Olson, Aaron; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2012-03-01

    We utilized a translational model of infant CPB to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC) thereby providing the energy support for improved cardiac function after ischemia-reperfusion. Methods and Results: Neonatal piglets received intracoronary [2-13Carbon(13C)]-pyruvate for 40 minutes (8 mM) during control aerobic conditions (Cont) or immediately after reperfusion (IR) from global hypothermic ischemia. A third group (IR-Tr) received T3 (1.2 ug/kg) during reperfusion. We assessed absolute CAC intermediate levels (aCAC) and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC ) and anaplerotic carboxylation (PC; ) using 13C-labeled pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C NMR. Neither IR nor IR-Tr modified aCAC. However, compared to IR, T3 (group IR-Tr) increased cardiac power and oxygen consumption after CPB while elevating both PDC and PC (~ four-fold). T3 inhibited IR induced reductions in CAC intermediate molar percent enrichment (MPE) and oxaloacetate(citrate)/malate MPE ratio; an index of aspartate entry into the CAC. Conclusions: T3 markedly enhances PC and PDC thereby providing substrate for elevated cardiac function and work after reperfusion. The increases in pyruvate flux occur with preservation of the CAC intermediate pool. Additionally, T3 inhibition of reductions in CAC intermediate MPEs indicates that T3 reduces the reliance on amino acids (AA) for anaplerosis after reperfusion. Thus, AA should be more available for other functions such as protein synthesis.

  2. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data.

    PubMed

    Mangiapia, Mary; Scott, Kathleen

    2016-04-01

    The factors driving the dominance of the Calvin-Benson-Bassham cycle (CBB) or reductive citric acid cycle (rCAC) in autotrophic microorganisms in different habitats are debated. Based on costs for synthesizing a few metabolic intermediates, it has been suggested that the CBB poses a disadvantage due to higher metabolic cost. The purpose of this study was to extend this estimate of cost from metabolite synthesis to biomass synthesis. For 12 gammaproteobacteria (CBB) and five epsilonproteobacteria (rCAC), the amount of ATP to synthesize a gram of biomass from CO2 was calculated from genome sequences via metabolic maps. The eleven central carbon metabolites needed to synthesize biomass were all less expensive to synthesize via the rCAC (66%-89% of the ATP needed to synthesize them via CBB). Differences in cell compositions did result in differing demands for metabolites among the organisms, but the differences in cost to synthesize biomass were small among organisms that used a particular pathway (e.g. rCAC), compared to the difference between pathways (rCAC versus CBB). The rCAC autotrophs averaged 0.195 moles ATP per g biomass, while their CBB counterparts averaged 0.238. This is the first in silico estimate of the relative expense of both pathways to generate biomass. PMID:26940292

  3. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation

    PubMed Central

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-01

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with 14C-glucose and 3H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD+] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation. PMID:15550462

  4. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    EPA Science Inventory

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  5. Pressure-induced structural transformation of CaC2.

    PubMed

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-21

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2. PMID:27208957

  6. Pressure-induced structural transformation of CaC2

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-01

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2.

  7. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  8. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  9. The many phases of CaC2

    NASA Astrophysics Data System (ADS)

    Konar, Sumit; Nylén, Johanna; Svensson, Gunnar; Bernin, Diana; Edén, Mattias; Ruschewitz, Uwe; Häussermann, Ulrich

    2016-07-01

    Polymorphic CaC2 was prepared by reacting mixtures of CaH2 and graphite with molar ratios between 1:1.8 and 1:2.2 at temperatures between 700 and 1400 °C under dynamic vacuum. These conditions provided a well controlled, homogeneous, chemical environment and afforded products with high purity. The products, which were characterized by powder X-ray diffraction, solid state NMR and Raman spectroscopy, represented mixtures of the three known polymorphs, tetragonal CaC2-I and monoclinic CaC2-II and -III. Their proportion is dependent on the nominal C/CaH2 ratio of the reaction mixture and temperature. Reactions with excess carbon produced a mixture virtually free from CaC2-I, whereas high temperatures (above 1100 °C) and C-deficiency favored the formation of CaC2-I. From first principles calculations it is shown that CaC2-I is dynamically unstable within the harmonic approximation. This indicates that existing CaC2-I is structurally/dynamically disordered and may possibly even occur as slightly carbon-deficient phase CaC2-δ. It is proposed that monoclinic II is the ground state of CaC2 and polymorph III is stable at temperatures above 200 °C. Tetragonal I represents a metastable, heterogeneous, phase of CaC2. It is argued that a complete understanding of the occurrence of three room temperature modifications of CaC2 will require a detailed characterization of compositional and structural heterogeneities within the high temperature form CaC2-IV, which is stable above 450 °C. The effect of high pressure on the stability of the monoclinic forms of CaC2 was studied in a diamond anvil cell using Raman spectroscopy. CaC2-II and -III transform into tetragonal CaC2-I at about 4 and 1GPa, respectively.

  10. The Pyruvate-Tricarboxylic Acid Cycle Node

    PubMed Central

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-01-01

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [13C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia. PMID:25164818

  11. Microwave losses of bulk CaC 6

    NASA Astrophysics Data System (ADS)

    Cifariello, G.; Di Gennaro, E.; Lamura, G.; Andreone, A.; Emery, N.; Hérold, C.; Marêché, J. F.; Lagrange, P.

    2007-09-01

    We report a study of the temperature dependence of the surface resistance RS in the graphite intercalated compound (GIC) CaC6, where superconductivity at 11.5 K was recently discovered. Experiments are carried out using a copper dielectrically loaded cavity operating at 7 GHz in a "hot finger" configuration. Bulk CaC6 samples have been synthesized from highly oriented pyrolytic graphite. Microwave data allow to extract unique information on the quasiparticle density and on the nature of pairing in superconductors. The analysis of RS(T) confirms our recent experimental findings that CaC6 behaves as a weakly-coupled, fully gapped, superconductor.

  12. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    PubMed Central

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  13. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    PubMed

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  14. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  15. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  16. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  17. Menaquinone-7 Supplementation to Reduce Vascular Calcification in Patients with Coronary Artery Disease: Rationale and Study Protocol (VitaK-CAC Trial)

    PubMed Central

    Vossen, Liv M.; Schurgers, Leon J.; van Varik, Bernard J.; Kietselaer, Bas L. J. H.; Vermeer, Cees; Meeder, Johannes G.; Rahel, Braim M.; van Cauteren, Yvonne J. M.; Hoffland, Ge A.; Rennenberg, Roger J. M. W.; Reesink, Koen D.; de Leeuw, Peter W.; Kroon, Abraham A.

    2015-01-01

    Coronary artery calcification (CAC) develops early in the pathogenesis of atherosclerosis and is a strong and independent predictor of cardiovascular disease (CVD). Arterial calcification is caused by an imbalance in calcification regulatory mechanisms. An important inhibitor of calcification is vitamin K-dependent matrix Gla protein (MGP). Both preclinical and clinical studies have shown that inhibition of the vitamin K-cycle by vitamin K antagonists (VKA) results in elevated uncarboxylated MGP (ucMGP) and subsequently in extensive arterial calcification. This led us to hypothesize that vitamin K supplementation may slow down the progression of calcification. To test this, we designed the VitaK-CAC trial which analyses effects of menaquinone-7 (MK-7) supplementation on progression of CAC. The trial is a double-blind, randomized, placebo-controlled trial including patients with coronary artery disease (CAD). Patients with a baseline Agatston CAC-score between 50 and 400 will be randomized to an intervention-group (360 microgram MK-7) or a placebo group. Treatment duration will be 24 months. The primary endpoint is the difference in CAC-score progression between both groups. Secondary endpoints include changes in arterial structure and function, and associations with biomarkers. We hypothesize that treatment with MK-7 will slow down or arrest the progression of CAC and that this trial may lead to a treatment option for vascular calcification and subsequent CVD. PMID:26516910

  18. Effects of Continuous Triiodothyronine Infusion on Citric Acid Cycle in the Normal Immature Swine Heart under Extracorporeal Membrane Oxygenation in vivo

    SciTech Connect

    Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2014-02-13

    Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age 25-38 days) with ECMO were received [2-13C]lactate, [2,4,6,8-13C]octanoate (medium chain fatty acid) and [U-13C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 minutes of each protocol. Nuclear magnetic resonance (NMR) analysis of left ventricular tissue determined the fractional contribution (Fc) of these substrates to the citric acid cycle (CAC). Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg/kg/hour) during ECMO. Under both substrate loading conditions T3 significantly increased lactate-Fc with a marginal increase in octanoate-Fc. Both T3 and high substrate provision increased myocardial energy status indexed by [Phosphocreatine]/[ATP]. In conclusion, T3 supplementation promoted lactate metabolism to the CAC during ECMO suggesting that T3 releases inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve resting energy state and facilitate weaning.

  19. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder

    PubMed Central

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M.; Sellgren, Carl M.; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-01-01

    Background Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. Methods We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). Results After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. Conclusions The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. General significance The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD. PMID:27114925

  20. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  1. Superfluid density of bulk CaC 6

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Aurino, M.; Cifariello, G.; Di Gennaro, E.; Andreone, A.; Emery, N.; Hérold, C.; Marêché, J.-F.; Lagrange, P.

    2007-09-01

    The recent discovery of superconductivity at 11.5 K in the graphite intercalation compound (GIC) CaC6 has opened new perspectives in the physics of graphite. One of the main open questions for superconducting GICs is related to the nature of the pairing mechanism, since the possibility of an unconventional, excitonic or plasmonic, origin of superconductivity has also been invoked as an alternative to a simple electron-phonon interaction. To better understand the origin of pairing mechanism in these compounds, a first step is to determine the symmetry of the superconducting gap function and the nature of the elementary excitations. To this aim, we have performed the first high-resolution measurement of the in-plane magnetic penetration depth, λab(T), in a c-axis oriented polycrystalline CaC6 bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of λab(T) has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields λab(0) = (720 ± 80) Å and Δ(0) = (1.79 ± 0.08) meV. The ratio 2Δ(0)/kBTC = (3.6 ± 0.2) gives therefore indication for a conventional weakly coupled superconductor. By using these results as fixed parameters, a BCS calculation on the superfluid density in the overall temperature range shows that the sample under test lies in the local dirty limit.

  2. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  3. Phosphorus constrains accelerated nitrogen cycling in limed acidic forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Shaw, A. N.; Kluber, L. A.; Burke, D. J.; Carrino-Kyker, S. R.; Smemo, K. A.

    2011-12-01

    Anthropogenic deposition can increase phosphorus (P) limitation by abiotic and biotic means. Soil acidification can remove P from available pools and nitrogen (N) deposition can increase the demand for P. We reason that chronic acidic deposition is promoting P limitation in acidic hardwood forests and thereby altering N cycling. The objectives of this study were to investigate the interactive influence of P availability and soil pH on N and P cycling and availability to determine if the response varies between two physiographic regions experiencing similar chronic acidic deposition. We addressed these objectives by experimentally manipulating soil pH, P, or both in strongly acidic glaciated and unglaciated hardwood forests in eastern Ohio, USA. Our results suggest complex interactions between P, soil pH, and the N cycle. Glaciated soils were found to be more N-saturated with nitrification rates 18 times greater than in unglaciated soils. Elevating pH, with or without added P, doubled nitrification rates in glaciated soils. For unglaciated soils, raising pH increased nitrification 10-fold, but increased nitrification only 5-fold in combination with P. This result suggests raising soil pH lowered the demand of soil N, or directly stimulated nitrifying activity, and that increasing P availability could limit N availability. To various degrees, readily available P was geochemically or biologically immobilized in all treatments, suggesting chronic P deficiency in these ecosystems. Phosphorus immobilization decreased as soil pH was elevated, but elevated P either had no effect (glaciated) or doubled P immobilization rates (unglaciated). These results suggest that raising soil pH reduces microbial P limitation for phosphate, whereas adding P appears to make phosphate scarcer. We suggest that P plays an important role in N transformations and cycling, but appears more important in unglaciated soils than in glaciated soils. Chronic soil acidification may have a greater

  4. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  5. 32 CFR 156.6 - Common access card (CAC) investigation and adjudication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Common access card (CAC) investigation and adjudication. 156.6 Section 156.6 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE SECURITY DEPARTMENT OF DEFENSE PERSONNEL SECURITY PROGRAM (PSP) § 156.6 Common access card (CAC) investigation and adjudication. (a)...

  6. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  7. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  8. Acid wash of second cycle solvent in the recovery of uranium from phosphate rock

    SciTech Connect

    York, W.R.

    1984-02-07

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle-uranium recovery process, by washing the organic solvent stream containing entrained H/sub 3/PO/sub 4/ from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper.

  9. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  10. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  11. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  12. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  13. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  14. Anamorelin hydrochloride for the treatment of cancer-anorexia-cachexia (CACS) in nonsmall cell lung cancer

    PubMed Central

    Zhang, Hongjie; Garcia, Jose M

    2015-01-01

    Introduction Cancer anorexia-cachexia syndrome (CACS) is associated with increased morbidity and mortality. Anamorelin is a novel, orally active ghrelin receptor agonist in clinical development for the treatment of CACS in non-small cell lung cancer (NSCLC). The aim of this review is to summarize preclinical and clinical studies evaluating anamorelin as a potential promising treatment for CACS in NSCLC. Area covered Pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety, and tolerability of anamorelin for the treatment of CACS in NSCLC were reviewed. Anamorelin administration may lead to increases in food intake, body weight and lean body mass, and a stimulatory effect on GH secretion in NSCLC patients. Anamorelin is well tolerated with no dose-limiting toxicities identified to date. Expert opinion Targeting ghrelin receptors presents the advantage of potentially addressing multiple mechanisms of CACS simultaneously including appetite, muscle protein balance, adipose tissue metabolism, energy expenditure and inflammation. Clinical data suggest that anamorelin is well tolerated and it effectively increases appetite, body weight and lean mass in patients with advanced NSCLC. Long-term safety remains unknown at this time. The potential synergistic effects of anamorelin with nutritional support or exercise as well as its efficacy/safety in other tumor types are also unknown. PMID:25945893

  15. Influence of cycling current and power profiles on the cycle life of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Papazov, G.; Pavlov, D.

    Batteries are assembled with positive plates of the novel strap grid tubular (SGTP) design described in a previous paper [1]. These batteries are subjected to four tests: (i) Peukert dependence determinations; (ii) classical galvanostatic cycling (5 h charge and 1 h discharge); (iii) EV-SFUDS, and (iv) EV-ECE-15 cycling tests. It has been established that the Peukert dependence curve of SGTP batteries is very close in profile to that for SLI batteries. This guarantees SGTP's batteries high power performance. These batteries endure over 950 cycles on galvanostatic cycling. When cycled according to the SFUDS power profile under a current load of 320 A/kg positive active mass during the 15th SFUDS step, SGTP batteries exhibit a cycle life of 350-450 cycles. If the current density during the 15th step is 190 A/kg PAM, the batteries endure over 600 charge/discharge cycles. The life of positive SGT plates is limited by power loss, but not by capacity. Similar results have also been obtained from ECE-15 cycle-life tests. On cycling SGTP batteries with a current load of 210 A/kg PAM during the 23rd ECE-15 step (the step during which maximum power output is demanded from the battery), they endure between 550 and 650 charge/discharge cycles. A summary of the test results obtained for two batches of experimental batteries indicates that there is a direct dependence between the SGTP battery cycle life and the maximum current density on discharge. Increasing the discharge current density decreases the battery life. It has also been established that the capacity on SFUDS (ECE-15) discharge declines gradually on cycling in favour of the residual galvanostatic capacity at 5 h rate of discharge (100% depth-of-discharge) which increases. This implies that two types of structures are formed in the positive plates on cycling: the first type ensuring high power output and the second type yielding low power but long cycle life. The higher the power delivered by the positive plate, the

  16. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  17. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass. PMID:25342454

  18. Energy conservation case studies for model commercial buildings covered by the CACS program

    SciTech Connect

    Kedl, R.J.; Bircher, T.L.

    1985-03-01

    Case studies of four small commercial buildings are presented that show the potential conservation of electrical and gas enegy and the potential reduction in peak electrical demand that result from the retrofit of most Commercial and Apartment Conservation Service (CACS) Program Measures and Procedures. Four prototypical buildings are representative of the great majority of CACS-covered businesses were used. Energy consrvation calculations were conducted on the buildings in six cities representing six different climates in the contiguous United States. Calculations were performed using DOE-2.1, a computer program that computes energy flow in buildings on an hour-by-hour basis.

  19. Linear and nonlinear electrodynamic responses of bulk CaC6 in the microwave regime

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Emery, N.; Hérold, C.; Marêché, J. F.; Lagrange, P.

    2007-08-01

    The linear and nonlinear responses to a microwave electromagnetic field of two c-axis oriented polycrystalline samples of the recently discovered superconductor CaC6 (TC≈11.5K ) is studied in the superconducting state down to 2K. The surface resistance RS and the third order intermodulation distortion, arising from a two-tone excitation, have been measured as a function of temperature and microwave circulating power. Experiments are carried out using a dielectrically loaded copper cavity operating at 7GHz in a "hot finger" configuration. The results confirm recent experimental findings that CaC6 behaves as a weakly coupled, fully gapped, superconductor.

  20. A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress

    PubMed Central

    Chittezham Thomas, Vinai; Kinkead, Lauren C.; Janssen, Ashley; Schaeffer, Carolyn R.; Woods, Keith M.; Lindgren, Jill K.; Peaster, Jonathan M.; Chaudhari, Sujata S.; Sadykov, Marat; Jones, Joselyn; Mohamadi AbdelGhani, Sameh M.; Zimmerman, Matthew C.; Bayles, Kenneth W.; Somerville, Greg A.; Fey, Paul D.

    2013-01-01

    ABSTRACT A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. PMID:23963176

  1. A new electrolyte formulation for low cost cycling lead acid batteries

    NASA Astrophysics Data System (ADS)

    Torcheux, L.; Lailler, P.

    This paper is devoted to the development of a new lead acid battery electrolyte formulation for cycling applications, especially for renewable energy markets in developing countries. These emerging markets, such as solar home systems, require lead acid batteries at very low prices and improved performances compared to automotive batteries produced locally. The new acid formulation developed is a mixture of sulphuric acid, liquid colloidal silica and other additives including phosphoric acid. The colloidal silica is used at a low concentration in order to decrease the acid stratification process during cycling at high depth of discharge. Phosphoric acid is used for the improvement of the textural evolution of the positive active material during cycling. After a description of the markets and of the additives used in the new acid formulation, this paper presents the results obtained with normalised photovoltaic cycle testing on low cost automotive batteries modified by the new electrolyte formulation. It is shown that the cycling life of such batteries is much increased in the presence of the new formulation. These results are explained by the improved evolution of positive active mass softening parameters (specific surface and β-PbO 2 crystallite size) and also by a more homogeneous sulphating process on both plates.

  2. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  3. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  4. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium.

    PubMed Central

    Nuutinen, E M; Peuhkurinen, K J; Pietiläinen, E P; Hiltunen, J K; Hassinen, I E

    1981-01-01

    1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA). PMID:6796067

  5. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    PubMed Central

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  6. Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle.

    PubMed

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  7. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended.

  8. Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.

    2015-01-01

    There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…

  9. Identification of Gene Expression Changes from Colitis to CRC in the Mouse CAC Model

    PubMed Central

    Li, Xin; Gao, Yuyan; Yang, Ming; Zhao, Qi; Wang, Guangyu; Yang, Yan mei; Yang, Yue; Liu, Hui; Zhang, Yanqiao

    2014-01-01

    A connection between colorectal carcinogenesis and inflammation is well known, but the underlying molecular mechanisms have not been elucidated. Chemically induced colitis-associated cancer (CAC) is an outstanding mouse model for studying the link between inflammation and cancer. Additionally, the CAC model is used for examining novel diagnostic, prognostic, and predictive markers for use in clinical practice. Here, a CAC model was established in less than 100 days using azoxymethane (AOM) with dextran sulfate sodium salt (DSS) in BALB/c mice. We examined the mRNA expression profiles of three groups: control untreated mice (K), DSS-induced chronic colitis mice (D), and AOM/DSS-induced CAC (AD) mice. We identified 6301 differentially expressed genes (DEGs) among the three groups, including 93 persistently upregulated genes and 139 persistently downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the most persistent DEGs were significantly enriched in metabolic or inflammatory components in the tumor microenvironment. Furthermore, several associated DEGs were identified as potential DEGs by protein-protein interaction (PPI) network analysis. We selected 14 key genes from the DEGs and potential DEGs for further quantitative real-time PCR (qPCR) verification. Six persistently upregulated, 3 persistently downregulated DEGs, and the other 3 genes showed results consistent with the microarray data. We demonstrated the regulation of 12 key genes specifically involved in Wnt signaling, cytokine and cytokine receptor interactions, homeostasis, and tumor-associated metabolism during colitis-associated CRC. Our results suggest that a close relationship between metabolic and inflammatory mediators of the tumor microenvironment is present in CAC. PMID:24743346

  10. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  11. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  12. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    PubMed

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  13. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R.B.; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  14. An alternative mechanism for guanidinoacetic acid to affect methylation cycle.

    PubMed

    Ostojic, Sergej M

    2014-12-01

    Guanidinoacetic acid (also known as glycocyamine; GAA) is an endogenous substance which occurs in humans and plays a central role in the biosynthesis of creatine. The formation of creatine from GAA consumes methyl groups, and increases production of homocysteine. GAA may have the potential to stimulate insulin secretion. Insulin reduces plasma homocysteine and raises methyl group supply. It is possible that the ability of GAA to trigger the insulin secretion modulates methyl group metabolism, and comparatively counterbalance for the direct effect of GAA on increased methylation demand. Possible insulinotropic effect of GAA may contribute to total in vivo methylation demand during biotransformation. PMID:25468046

  15. Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans.

    PubMed

    Greenfield, S; Claus, G W

    1972-12-01

    Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated. PMID:4640504

  16. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  17. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  18. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect

    Kinoshita, Hajime; Swift, Paul; Utton, Claire; Carro-Mateo, Beatriz; Collier, Nick; Milestone, Neil

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  19. NHI-Acid Concentration Membranes -- Membrane Recommendations for the S-I Cycle

    SciTech Connect

    Frederick F Stewart

    2007-03-01

    Scope: The purpose of this draft report is to make recommendations concerning the applicability of specific membrane materials for acid concentration processes to the Sulfur-Iodine (S-I) thermochemical cycle integrated laboratory scale (ILS) demonstration. Introduction Acid concentration membrane processes have been studied for possible inclusion in the Sulfur-Iodine integrated laboratory scale (S-I ILS) demonstration. The need for this technology is driven by the chemical processes required for economical water splitting using the S-I cycle. Of the chemical processes inherent to the S-I cycle that have been identified as targets for deployment of membrane technology, three have been studied during the past three fiscal years as a part of the DOE Nuclear Hydrogen Initiative. First, the ability to concentrate hydriodic acid (HI) and iodine mixtures was sought as a method for aiding in the isolation of HI away from water and iodine. Isolated HI would then be delivered to the HI decomposition process for liberation of product hydrogen. Second, an extension of this technology to sulfuric acid was proposed to benefit sulfuric acid decomposition recycle. Third, decomposition of HI to form hydrogen is equilibrium limited. Removal of hydrogen, utilizing Le Chatelier’s principle, will increase to overall conversion and thus increasing the efficiency of the S-I cycle.

  20. SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING

    PubMed Central

    Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople

    2008-01-01

    This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257

  1. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2015-03-01

    We consider the much discussed hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach that quantifies the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for the investigations of the origin of the common metabolic core should be significantly extended. This work was supported by a grant from the Simons Foundation (SCOL 291937, Dmitry Zubarev).

  2. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  3. Chopper-controlled discharge life cycling studies on lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Kraml, J. J.; Ames, E. P.

    1982-01-01

    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.

  4. Microbial Dissimilatory Sulfur Cycle in Acid Mine Water

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Macmillan, Carol B.; Randles, Chester I.

    1969-01-01

    Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5. PMID:5773013

  5. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2015-02-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  6. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2014-09-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  7. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  8. Acetaminophen Toxicity and 5-Oxoproline (Pyroglutamic Acid): A Tale of Two Cycles, One an ATP-Depleting Futile Cycle and the Other a Useful Cycle

    PubMed Central

    2014-01-01

    Summary The acquired form of 5-oxoproline (pyroglutamic acid) metabolic acidosis was first described in 1989 and its relationship to chronic acetaminophen ingestion was proposed the next year. Since then, this cause of chronic anion gap metabolic acidosis has been increasingly recognized. Many cases go unrecognized because an assay for 5-oxoproline is not widely available. Most cases occur in malnourished, chronically ill women with a history of chronic acetaminophen ingestion. Acetaminophen levels are very rarely in the toxic range; rather, they are usually therapeutic or low. The disorder generally resolves with cessation of acetaminophen and administration of intravenous fluids. Methionine or N-acetyl cysteine may accelerate resolution and methionine is protective in a rodent model. The disorder has been attributed to glutathione depletion and activation of a key enzyme in the γ-glutamyl cycle. However, the specific metabolic derangements that cause the 5-oxoproline accumulation remain unclear. An ATP-depleting futile 5-oxoproline cycle can explain the accumulation of 5-oxoproline after chronic acetaminophen ingestion. This cycle is activated by the depletion of both glutathione and cysteine. This explanation contributes to our understanding of acetaminophen-induced 5-oxoproline metabolic acidosis and the beneficial role of N-acetyl cysteine therapy. The ATP-depleting futile 5-oxoproline cycle may also play a role in the energy depletions that occur in other acetaminophen-related toxic syndromes. PMID:24235282

  9. Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    NASA Technical Reports Server (NTRS)

    Duan, Yaqian; Moldovan, Leni; Miller, Rehae C.; Beli, Eleni; Salazar, Tatiana; Hazra, Sugata; Al-Sabah, Jude; Chalam, KV; Raghunandan, Sneha; Vyas, Ruchi; Parsons-Wingerter, Patricia; Oudit, Gavin Y.; Grant, Maria B.

    2016-01-01

    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential

  10. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  11. Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2009-11-01

    A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as bio chemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the α-ketocarboxylic acids pyruvate and α-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, α-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of α-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15°C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to α-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that α-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.

  12. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  13. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  14. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  15. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis

    PubMed Central

    Cavalcanti, João Henrique Frota; Esteves-Ferreira, Alberto A.; Quinhones, Carla G.S.; Pereira-Lima, Italo A.; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Araújo, Wagner L.

    2014-01-01

    The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations. PMID:25274566

  16. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  17. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  18. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  19. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Shurubor, Yevgeniya I; Cooper, Arthur J L; Isakova, Elena P; Deryabina, Yulia I; Beal, M Flint; Krasnikov, Boris F

    2016-06-15

    Here we describe a simple high-performance liquid chromatography (HPLC) procedure for the simultaneous detection and quantitation in standard solutions of 13 important metabolites of cellular energy metabolism, including 9 tricarboxylic acid (TCA) cycle components and 4 additional metabolites. The metabolites are detected by their absorbance at 210 nm. The procedure does not require prior derivatization, and an analysis can be carried out at ambient temperature within 15 min. The significance of the current work is that the current HPLC procedure should motivate the development of simplified TCA cycle enzyme assays, isotopomer analysis, and determination of selected TCA metabolite levels in plasma/tissues. PMID:27001310

  20. Experimental Evidence of s-Wave Superconductivity in Bulk CaC6

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Aurino, M.; Cifariello, G.; di Gennaro, E.; Andreone, A.; Emery, N.; Hérold, C.; Marêché, J.-F.; Lagrange, P.

    2006-03-01

    The temperature dependence of the in-plane magnetic penetration depth, λab(T), has been measured in a c-axis oriented polycrystalline CaC6 bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of λab(T) has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields λab(0)=(720±80)Å and Δ(0)=(1.79±0.08)meV. The ratio 2Δ(0)/kBTc=(3.6±0.2) gives indication for a weakly coupled superconductor.

  1. Suppression of tricarboxylic acid cycle in Escherichia coli exposed to sub-MICs of aminoglycosides.

    PubMed Central

    Cavallero, A; Eftimiadi, C; Radin, L; Schito, G C

    1990-01-01

    The metabolic activity of Escherichia coli ATCC 25922 challenged with sub-MICs of aminoglycosides was analyzed with a batch calorimeter. High-performance and gas-liquid chromatographic techniques were utilized to evaluate the concentrations of metabolic reactants, intermediates, and end products. The data reported indicate that aminoglycosides inhibit or delay bacterial catabolism of carboxylic acids, with the following relative degrees of activity: amikacin greater than gentamicin greater than sisomicin greater than netilmicin greater than kanamycin. The decrease in total biomass production was proportional to the degree of tricarboxylic acid cycle inhibition. PMID:2183717

  2. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  3. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  4. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.

    PubMed

    Singh, Ranji; Lemire, Joseph; Mailloux, Ryan J; Chénier, Daniel; Hamel, Robert; Appanna, Vasu D

    2009-01-01

    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2)-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2)-limited conditions. PMID:19809498

  5. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  6. Role of alkalis of aggregate origin in the deterioration of CAC concrete

    SciTech Connect

    Blanco-Varela, M.T.

    2005-09-01

    Both hexagonal and cubic calcium aluminate cement (CAC) hydrates react with atmospheric CO{sub 2}, bringing about mineralogical changes in concrete, which may, on occasion, lead to loss of mechanical strength. Alkaline hydrolysis or carbonation in the presence of alkalis is a highly destructive process. The purpose of the study was to determine what caused CAC concrete deterioration in a prestressed beam that had suffered intense external damage and showed signs of alkaline hydrolysis or a reaction between the aggregate and the cement. Samples of the internal (sound) and external (damaged) parts of the concrete were studied using XRF, XRD, FTIR, OM, SEM/EDX, and BSE techniques, and mechanical strength was measured on microspecimens extracted from both zones. The conclusion drawn from these analyses was that alkaline hydrolysis took place on or near the surface of the concrete. The white deposits observed around the alkali-containing aggregate were found to consist primarily of bayerite whose very loose consistency undermined the aggregate-matrix bond, greatly weakening the material.

  7. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    SciTech Connect

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  8. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  9. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  10. Regulation of leukocyte tricarboxylic acid cycle in drug-naïve Bipolar Disorder.

    PubMed

    de Sousa, Rafael T; Streck, Emilio L; Forlenza, Orestes V; Brunoni, Andre R; Zanetti, Marcus V; Ferreira, Gabriela K; Diniz, Breno S; Portela, Luis V; Carvalho, André F; Zarate, Carlos A; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-09-25

    Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naïve BD patients in a major depressive episode (n=18) and compared to 24 age-matched healthy controls. Drug-naïve BD patients did not show differences in activities of citrate synthase (p=0.79), malate dehydrogenase (p=0.17), and succinate dehydrogenase (p=0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD. PMID:26297865

  11. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.

    PubMed

    Meyer, Frederik M; Gerwig, Jan; Hammer, Elke; Herzberg, Christina; Commichau, Fabian M; Völker, Uwe; Stülke, Jörg

    2011-01-01

    The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions. PMID:20933603

  12. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    PubMed Central

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  13. Modulation of fatty acid metabolism and tricarboxylic acid cycle to enhance the lipstatin production through medium engineering in Streptomyces toxytricini.

    PubMed

    Kumar, Punit; Dubey, Kashyap Kumar

    2016-08-01

    This work investigated the potential of medium engineering to obtain maximum biomass, non-conventional carbon sources for lipstatin production and modulation of tricarboxylic acid (TCA) cycle to promote lipstatin synthesis. It was found that 2:3 carbon and nitrogen ratio, produced maximum biomass of 7.9g/L in growth medium and 6.6g/L in pre-seed medium. Among the studied non-conventional carbon sources i.e., soya flour 40g/L and sesame oil 30mL/L were found producing 1109.37mg/L (1.24-fold of control) and 1196.75mg/L (1.34-fold of control) lipstatin respectively. Supplementation of TCA cycle intermediates revealed that NADH and succinic acid showed lipstatin production to 1132.99mg/L and 1171.10mg/L respectively. Experimental outcome was validated in 7L bioreactor and produced 2242.63mg/L lipstatin which was ∼14% higher than shake flask. PMID:26897471

  14. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  15. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  16. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    PubMed

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226-1236, 2016. © 2015 Wiley Periodicals, Inc. PMID:26480024

  17. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  18. Factors Affecting the Pathways of Glucose Catabolism and the Tricarboxylic Acid Cycle in Pseudomonas natriegens

    PubMed Central

    Cho, H. W.; Eagon, R. G.

    1967-01-01

    Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-14C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH2) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH2 and to repressed levels of key enzymes. PMID:4381634

  19. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.

    PubMed

    Hallows, William C; Yu, Wei; Smith, Brian C; Devries, Mark K; Devires, Mark K; Ellinger, James J; Someya, Shinichi; Shortreed, Michael R; Prolla, Tomas; Markley, John L; Smith, Lloyd M; Zhao, Shimin; Guan, Kun-Liang; Denu, John M

    2011-01-21

    Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation. PMID:21255725

  20. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    PubMed

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. PMID:25042691

  1. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  2. Shotcrete -- Understanding of the hydration process of mixes containing CAC and Portland cement and proposal for a simple rheological characterization

    SciTech Connect

    Bayoux, J.P.; Testud, M.; Guinot, D.; Willocq, J.; Capmas, A.

    1995-12-31

    In order to better understand the performances of CAC-slag cement and CAC--PC cement the hydration study of these mixes was undertaken. The hydrates which are responsible for the early stiffening/strengthening are identical in both mixes; it is only the time of appearance and amount which varies. Ettringite always forms first followed by the precipitation of C{sub 4}AH{sub 13}. They will both form faster then the temperature rises. As a complement, a simple laboratory equipment is proposed to characterize the stiffening behavior of the mixes straight after gauging.

  3. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  4. Ecophysiology of Fe-Cycling Bacteria in Acidic Sediments ▿ †

    PubMed Central

    Lu, Shipeng; Gischkat, Stefan; Reiche, Marco; Akob, Denise M.; Hallberg, Kevin B.; Küsel, Kirsten

    2010-01-01

    Using a combination of cultivation-dependent and -independent methods, this study aimed to elucidate the diversity of microorganisms involved in iron cycling and to resolve their in situ functional links in sediments of an acidic lignite mine lake. Using six different media with pH values ranging from 2.5 to 4.3, 117 isolates were obtained that grouped into 38 different strains, including 27 putative new species with respect to the closest characterized strains. Among the isolated strains, 22 strains were able to oxidize Fe(II), 34 were able to reduce Fe(III) in schwertmannite, the dominant iron oxide in this lake, and 21 could do both. All isolates falling into the Gammaproteobacteria (an unknown Dyella-like genus and Acidithiobacillus-related strains) were obtained from the top acidic sediment zones (pH 2.8). Firmicutes strains (related to Bacillus and Alicyclobacillus) were only isolated from deep, moderately acidic sediment zones (pH 4 to 5). Of the Alphaproteobacteria, Acidocella-related strains were only isolated from acidic zones, whereas Acidiphilium-related strains were isolated from all sediment depths. Bacterial clone libraries generally supported and complemented these patterns. Geobacter-related clone sequences were only obtained from deep sediment zones, and Geobacter-specific quantitative PCR yielded 8 × 105 gene copy numbers. Isolates related to the Acidobacterium, Acidocella, and Alicyclobacillus genera and to the unknown Dyella-like genus showed a broad pH tolerance, ranging from 2.5 to 5.0, and preferred schwertmannite to goethite for Fe(III) reduction. This study highlighted the variety of acidophilic microorganisms that are responsible for iron cycling in acidic environments, extending the results of recent laboratory-based studies that showed this trait to be widespread among acidophiles. PMID:20971876

  5. Deciphering Carbamoylpolyoxamic Acid Biosynthesis Reveals Unusual Acetylation Cycle Associated with Tandem Reduction and Sequential Hydroxylation.

    PubMed

    Qi, Jianzhao; Wan, Dan; Ma, Hongmin; Liu, Yuanzhen; Gong, Rong; Qu, Xudong; Sun, Yuhui; Deng, Zixin; Chen, Wenqing

    2016-08-18

    Polyoxin, produced by Streptomcyes cacaoi var. asoensis and Streptomyces aureochromogenes, contains two non-proteinogenic amino acids, carbamoylpolyoxamic acid (CPOAA) and polyoximic acid. Although the CPOAA moiety is highly unusual, its biosynthetic logic has remained enigmatic for decades. Here, we address CPOAA biosynthesis by reconstitution of its pathway. We demonstrated that its biosynthesis is initiated by a versatile N-acetyltransferase, PolN, catalyzing L-glutamate (1) to N-acetyl glutamate (2). Remarkably, we verified that PolM, a previously annotated dehydrogenase, catalyzes an unprecedented tandem reduction of acyl-phosphate to aldehyde, and subsequently to alcohol. We also unveiled a distinctive acetylation cycle catalyzed by PolN to synthesize α-amino-δ-hydroxyvaleric acid (6). Finally, we report that PolL is capable of converting a rare sequential hydroxylation of α-amino-δ-carbamoylhydroxyvaleric acid (7) to CPOAA. PolL represents an intriguing family of Fe(II)-dependent α-ketoglutarate dioxygenase with a cupin fold. These data illustrate several novel enzymatic reactions, and also set a foundation for rational pathway engineering for polyoxin production. PMID:27541195

  6. The partial state-of-charge cycle performance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Takeuchi, Taisuke; Sawai, Ken; Tsuboi, Yuichi; Shiota, Masashi; Ishimoto, Shinji; Hirai, Nobumitsu; Osumi, Shigeharu

    Negative plate lugs of flooded lead-acid battery were corroded during partial state-of-charge (PSoC) pattern cycle life tests simulated from stop and go vehicle driving. Potential step was applied to Pb-Ca-Sn alloy electrode at various potential and time regimes, and the electrode surface was observed by in situ electrochemical atomic force microscope (EC-AFM) to investigate the corrosion mechanisms during the potential step cycles. It was found out that the severe corrosion occurs when the oxidation of Pb to PbSO 4 and partial reduction of passive layer of PbSO 4 take turns many times. It was also found out that the periodic full charge, the optimization of the alloy composition, addition of the material that may make the reaction mechanism change to electrolyte were effective to suppress the corrosion rate.

  7. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  8. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  9. A MRSDCI characterization of the ground state of CaC

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Pelegrini, Marina; Roberto-Neto, Orlando; Machado, Francisco B. C.

    2002-09-01

    Accurate potential energy curves, dipole moment functions, dissociation energies and spectroscopic constants for six electronic states ( 3Σ-, 3Π, 5Σ-, 1Δ, 1Π, 1Σ+) of the CaC molecule are reported with the multireference singles and doubles configuration interaction methodology. The ground state has symmetry 3Σ -, with a dissociation energy ( D0) equal to 1.94 eV. The 5Σ - state is the first excited state lying 695 cm-1 above the 3Σ - ground state. The 1Δ and 3Π states are the second and third excited states separated, respectively, by 10 763 and 12 167 cm-1 from the 3Σ - ground state.

  10. SVM-Based CAC System for B-Mode Kidney Ultrasound Images.

    PubMed

    Subramanya, M B; Kumar, Vinod; Mukherjee, Shaktidev; Saini, Manju

    2015-08-01

    The present study proposes a computer-aided classification (CAC) system for three kidney classes, viz. normal, medical renal disease (MRD) and cyst using B-mode ultrasound images. Thirty-five B-mode kidney ultrasound images consisting of 11 normal images, 8 MRD images and 16 cyst images have been used. Regions of interest (ROIs) have been marked by the radiologist from the parenchyma region of the kidney in case of normal and MRD cases and from regions inside lesions for cyst cases. To evaluate the contribution of texture features extracted from de-speckled images for the classification task, original images have been pre-processed by eight de-speckling methods. Six categories of texture features are extracted. One-against-one multi-class support vector machine (SVM) classifier has been used for the present work. Based on overall classification accuracy (OCA), features from ROIs of original images are concatenated with the features from ROIs of pre-processed images. On the basis of OCA, few feature sets are considered for feature selection. Differential evolution feature selection (DEFS) has been used to select optimal features for the classification task. DEFS process is repeated 30 times to obtain 30 subsets. Run-length matrix features from ROIs of images pre-processed by Lee's sigma concatenated with that of enhanced Lee method have resulted in an average accuracy (in %) and standard deviation of 86.3 ± 1.6. The results obtained in the study indicate that the performance of the proposed CAC system is promising, and it can be used by the radiologists in routine clinical practice for the classification of renal diseases. PMID:25537457

  11. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  12. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  13. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  14. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  15. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  16. Seasonal and diurnal cycles of ammonia, nitrous acid and nitric acid at a forest site in Finland

    NASA Astrophysics Data System (ADS)

    Virkkula, A.; Makkonen, U.; Mäntykenttä, J.; Hakola, H.

    2012-04-01

    Background In July - August 2010 a large campaign "Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission Concentration 2010 (HUMPPA - COPEC-10)", was conducted in a boreal forest at the SMEAR II station in Hyytiälä, southwestern central Finland. The general goal was to study links between gas phase oxidation chemistry and particle properties and processes. The Finnish Meteorological Institute contributed to the campaign with an on-line analyzer MARGA 2S (Ten Brink et al., 2007) for semi-continuous (1-hr time resolution) measurement of water-soluble gases and ions. Concentrations of gases (HCl, HNO3, HNO2, NH3, SO2) and major ions in particles (Cl, NO3, SO4, NH4, Na, K, Mg, Ca) were measured in two size fractions: PM2.5 and PM10. The MARGA was kept running at SMEAR II also after the campaign. Here we discuss data collected until 30 April, 2011, and restrict the analysis to the nitrogen-containing gases. Ammonia plays a key role in neutralizing acidic atmospheric compounds and in aerosol formation. The concentration of semi-volatile aerosol species such as ammonium nitrate and ammonium chloride is strongly dependent on the gas phase precursors, NH3, HNO3 and HCl. HONO is of atmospheric importance due to its expected significant contribution to the production of OH radicals. Results and discussion The median concentrations of ammonia (NH3), nitrous acid (HONO) and nitric acid (HNO3) during whole period of 21 June 2010 - 30 April 2011 were 85, 54, and 57 ppt, respectively. The seasonal cycle was such that in summer the concentrations of all of these gases were the highest, the respective medians were 356, 70, and 81 ppt in June 21 - August 12, and lowest in winter (December - February), the respective medians were 38, 54, and 52 ppt. A very clear diurnal cycle of all these gases was observed, especially in July. In December there were no cyclic diurnal variation of these but in spring, especially in April the

  17. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  18. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.

    PubMed

    Bohn, Andreas; Hinderlich, Sven; Hütt, Marc-Thorsten; Kaiser, Friedemann; Lüttge, Ulrich

    2003-05-01

    Leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie show overt circadian rhythms in net CO2 uptake, leaf conductance to water and intercellular CO2 concentration, which are entrained by periodic temperature cycles. To probe their sensitivity to thermoperiodic perturbations, intact leaves were exposed to continuous light intensity and temperature cycles with a period of 16 h, applying a set of different baseline temperatures and thermodriver amplitudes. All three overt rhythms were analyzed with respect to their frequency spectra and their phase relations with the thermodriver. For most stimulation protocols, stomatal conductance and net CO2 change were fully or partially entrained by the temperature pulses, while the internal CO2 concentration remained dominated by oscillations in the circadian range. Prolonged time series recorded for up to 22 d in continuous light underline the robustness of these circadian oscillations. This suggests that the overt circadian rhythm of net CO2 uptake in CAM results from the interaction of two coupled original systems: (i) an endogenous cycle of CO2 fixation in the mesophyll, showing very robust periodic activity, and (ii) stomatal movements that respond to environmental stimuli independently of rhythmic processes in the mesophyll, and thus modulate the gas exchange amplitude. PMID:12817468

  19. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea; Feng, Sheng; Zhou, Jizhong

    2010-01-01

    Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the g-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other g-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis.

  20. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea B.; Feng, Sheng; Zhou, Jizhong

    2010-10-26

    It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. In this study, we showed that a fur deletion mutant of the γ-proteobacterium S. oneidensis could utilize TCA compounds. In addition, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and demonstrated its expression experimentally. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. This work delineates an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other γ-proteobacteria.

  1. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy.

    PubMed

    Hadera, Mussie G; Smeland, Olav B; McDonald, Tanya S; Tan, Kah Ni; Sonnewald, Ursula; Borges, Karin

    2014-04-01

    Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re-filling the tricarboxylic acid (TCA) cycle with C4-intermediates (anaplerosis). Here, we injected mice with [1,2-(13) C]glucose 3.5-4 weeks after pilocarpine-induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of (13) C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two (13) C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control-fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin-fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin-fed SE mice showed few changes in most other metabolite levels and their (13) C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3-(13) C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C-4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl-CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoin's effects on neuroglial metabolism and interaction. PMID:24236946

  2. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle

    PubMed Central

    Schenk, Gerhard; Elliott, Tristan W; Leung, Eleanor; Carrington, Lyle E; Mitić, Nataša; Gahan, Lawrence R; Guddat, Luke W

    2008-01-01

    Background Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. Results Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 Å) and fluoride (2.2 Å) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this μ-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. Conclusion In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. PMID:18234116

  3. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. PMID:26776822

  4. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    PubMed

    Coelho, Carla R V; Pernollet, Franck; van der Werf, Hayo M G

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  5. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  6. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  7. A Study of Krebs Citric Acid Cycle Enzymes in Rice Larvae (Corcyrace phalonica St) During Mycotoxicosis

    PubMed Central

    Hegde, Umashashi C.; Shanmugasundaram, E. R. B.

    1967-01-01

    Krebs citric acid cycle enzymes have been studied in rice moth larvae (Corcyra cephalonica St) reared in groundnut meal control and contaminated with A. flavus, wheat bran control and wheat bran contaminated with A. flavus and also wheat bran containing aflatoxin. It was observed that the activity of enzymes other than succinic oxidase, succinic dehydrogenase and isocitric dehydrogenase were reduced significantly in larvae reared in contaminated groundnut meal when compared with the control. In the case of larvae reared in contaminated wheat bran all the enzymes except succinic oxidase were inhibited when compared to the control larvae. It was also observed that the inhibition of these enzymes is greater in the case of larvae reared in contaminated wheat bran than in contaminated groundnut meal. The higher toxicity of wheat bran has been discussed. PMID:4229935

  8. Prediction of positional isotopomers of the citric acid cycle: the syntactic approach.

    PubMed

    Cohen, D M; Bergman, R N

    1994-03-01

    We propose a syntactic approach to modeling of biochemical fluxes that combines a rule-based description of atomic transfer in chemical reactions with a structurally oriented, stochastic model of chemical reaction kinetics. This approach avoids the use of differential equations to describe the production and disappearance of each molecule. The computer simulation predicts the changes over time in the abundance of each positional isotopomer of every metabolic intermediate in the citric acid cycle of heart cells, subsequent to administration of [2-13C]acetate (including natural abundance of 13C). (Positional isotopomers are isomers that differ in the positions of isotopes within the molecule.) The 32 positional isotopomers of glutamate fell into four groups with similar intragroup dynamics but with very different amplitudes. From the relative abundance of each isotopomer of glutamate, we calculate the relative area of multiplets of the nuclear magnetic resonance spectrum. PMID:7909408

  9. Genetic Evidence for Bacterial Chemolithoautotrophy Based on the Reductive Tricarboxylic Acid Cycle in Groundwater Systems

    PubMed Central

    Alfreider, Albin; Vogt, Carsten

    2012-01-01

    Geologically and chemically distinct aquifers were screened for the presence of two genes coding for key enzymes of the reverse tricarboxylic acid (rTCA) cycle in autotrophic bacteria, 2-oxoglutarate : ferredoxin oxidoreductase (oorA) and the beta subunit of ATP citrate lyase enzymes (aclB). From 42 samples investigated, aclB genes were detected in two and oorA genes in six samples retrieved from polluted and sulfidic aquifers. aclB genes were represented by a single phylotype of almost identical sequences closely affiliated with chemolithoautotrophic Sulfurimonas species. In contrast, sequences analysis of oorA genes revealed diverse phylotypes mainly related to sequences from cultivation-independent studies. PMID:22791056

  10. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  11. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    SciTech Connect

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  12. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions

    PubMed Central

    Yang, S.-L.; Sobota, J. A.; Howard, C. A.; Pickard, C. J.; Hashimoto, M.; Lu, D. H.; Mo, S.-K.; Kirchmann, P. S.; Shen, Z.-X.

    2014-01-01

    There is a great deal of fundamental and practical interest in the possibility of inducing superconductivity in a monolayer of graphene. But while bulk graphite can be made to superconduct when certain metal atoms are intercalated between its graphene sheets, the same has not been achieved in a single layer. Moreover, there is a considerable debate about the precise mechanism of superconductivity in intercalated graphite. Here we report angle-resolved photoelectron spectroscopy measurements of the superconducting graphite intercalation compound CaC6 that distinctly resolve both its intercalant-derived interlayer band and its graphene-derived π* band. Our results indicate the opening of a superconducting gap in the π* band and reveal a substantial contribution to the total electron–phonon-coupling strength from the π*-interlayer interband interaction. Combined with theoretical predictions, these results provide a complete account for the superconducting mechanism in graphite intercalation compounds and lend support to the idea of realizing superconducting graphene by creating an adatom superlattice. PMID:24651261

  13. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  14. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  15. The viability of a nonenzymatic reductive citric acid cycle--kinetics and thermochemistry.

    PubMed

    Ross, David S

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate --> pyruvate --> oxaloacetate --> malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. PMID:17136437

  16. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms.

    PubMed

    Palacín, Manuel; Errasti-Murugarren, Ekaitz; Rosell, Albert

    2016-06-15

    Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle. PMID:27284037

  17. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  18. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  19. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  20. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  1. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  2. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  3. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  4. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  5. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  6. SAURER REGEN, EINE FOLGE DER STOERUNG HYDROGEOCHEMISCHER KREISLAEUFE (ACID RAIN, A CONSEQUENCE OF MAN'S ALTERATION OF HYDROGEOCHEMICAL CYCLES)

    EPA Science Inventory

    The occurrence of acid precipitation in regions of the northern hemisphere results from the anthropogenic disturbance of cycles that couple land, water and atmosphere. The oxidation of C, S and N resulting mostly from fossil fuel burning rivals oxidation processes induced by phot...

  7. DIBROMOACETIC ACID-INDUCED ELEVATIONS IN CIRCULATING ESTRADIOL: EFFECTS IN BOTH CYCLING AND OVARIECTOMIZED/STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    RTD-03-031
    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).

    Abstract

    Oral exposures to high concentrations of th...

  8. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  9. Replication of Simian Virus 40 Deoxyribonucleic Acid: Analysis of the One-Step Growth Cycle

    PubMed Central

    Manteuil, Simone; Pages, Jacqueline; Stehelin, Dominique; Girard, Marc

    1973-01-01

    The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell. PMID:4346282

  10. Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts

    NASA Astrophysics Data System (ADS)

    Rajamanickam, D.; Shanthi, M.

    2014-07-01

    The photocatalytic activity and the promoting effect of titania (TiO2) by commercial activated carbon (CAC) for removing the pollutant in wastewater were investigated. The TiO2/CAC composite photocatalysts with various ratios of CAC to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of TiO2/CAC was investigated for the degradation of Sunset Yellow (SY) in aqueous solution using UV-A light. The TiO2/CAC is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The synergism between TiO2 and CAC may increase the catalytic activity. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable.

  11. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations.

    PubMed

    Saokham, Phennapha; Sá Couto, André; Ryzhakov, Alexey; Loftsson, Thorsteinn

    2016-05-30

    Permeation techniques can be applied to determine the critical aggregation concentration (cac) of natural cyclodextrins (CDs) in aqueous solutions although the method is both laborious and time consuming. In the present study, the permeation technique was modified and the influence of osmotic pressure, sampling time, CD concentration and molecular weight-cut off (MWCO) of the membrane were investigated in two different permeation units, that is Franz diffusion cells and Slide-A-Lyzer™ MINI Dialysis. While both the osmotic pressure and CD concentration affect the steady state flux in both permeation units, effects of sampling time and the MWCO of the mounted membrane were only observed in the Franz diffusion cells. The osmotic effect was negligible in the Slide-A-Lyzer™ MINI Dialysis units. The modified permeation technique using Slide-A-Lyzer™ MINI Dialysis units was then used to determine the cac of natural CDs in water. The cac of αCD, βCD and γCD was 1.19±0.17, 0.69±0.05 and 0.93±0.04% (w/v), respectively. The results indicated that the cac values depended on their intrinsic solubility. Moreover, the cac value of γCD in aqueous hydrocortisone/γCD inclusion complex solution was identical to the γCD cac value determined in pure water. PMID:27021466

  12. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  13. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity.

    PubMed

    Park, Jin Hyoung; Noh, Soo Min; Woo, Ju Rang; Kim, Jong Won; Lee, Gyun Min

    2016-03-01

    To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL-sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb ) in a dose-dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9-fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells. PMID:26663903

  14. Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: Influence of the physiological cycle

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2014-06-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere for several purposes, including in response to metal contamination. Despite this, little is yet known about the exudation of such substances from marsh plants roots in response to metal exposure. This work aimed at assessing the influence of the physiological cycle of marsh plants on the exudation of ALMWOAs in response to Cu contamination. In vitro experiments were carried out with Phragmites australis specimens, collected in different seasons. Plant roots were exposed to freshwater contaminated with two different Cu concentrations (67 μg/L and 6.9 mg/L), being the ALMWOAs released by the roots measured. Significant differences (both qualitative and quantitative) were observed during the Phragmites australis life cycle. At growing stage, Cu stimulated the exudation of oxalic and formic acids but no significant stimulation was observed for citric acid. At developing stage, exposure to Cu caused inhibition of oxalic acid exudation whereas citric acid liberation was stimulated but only in the media spiked with the lowest Cu concentration tested. At the decaying stage, no significant variation on oxalic acid was observed, whereas the citric and formic acids release increased as a consequence of the plant exposure to Cu. The physiological cycle of Phragmites australis, and probably also of other marsh plants, is therefore an important feature conditioning plants response to Cu contamination, in terms of ALMWOAs exudation. Hence this aspect should be considered when conducting studies on rhizodeposition involving marsh plants exposed to metals and in the event of using marsh plants for phytoremediation purposes in contaminated estuarine areas.

  15. Tandem dissolution of UO3 in amide-based acidic ionic liquid and in situ electrodeposition of UO2 with regeneration of the ionic liquid: a closed cycle.

    PubMed

    Wanigasekara, Eranda; Freiderich, John W; Sun, Xiao-Guang; Meisner, Roberta A; Luo, Huimin; Delmau, Lætitia H; Dai, Sheng; Moyer, Bruce A

    2016-06-21

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid [DMAH][NTf2] in [EMIM][NTf2] serving as the diluent. A sequential dissolution, electroreduction, and regeneration cycle is presented. PMID:27255672

  16. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids

    PubMed Central

    Eoh, Hyungjin; Rhee, Kyu Y.

    2014-01-01

    Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb’s ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb’s ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb’s methylcitrate cycle into a “dead end” pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb’s ICLs and survival on fatty acids. PMID:24639517

  17. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  18. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    NASA Astrophysics Data System (ADS)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  19. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity

    DOE PAGESBeta

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun -Hai; Tulk, Christopher A.; Molaison, Jamie J.; et al

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C66– are identified with gas chromatography-mass spectrometry and several other techniques,more » which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  20. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle

    PubMed Central

    Fang, Yong-Hu; Piao, Lin; Hong, Zhigang; Toth, Peter T.; Marsboom, Glenn; Bache-Wiig, Peter; Rehman, Jalees

    2011-01-01

    Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (pFOXi) would indirectly increase GO and improve RV function by exploiting the reciprocal relationship between FAO and GO (Randle’s cycle). RVH was induced in adult Sprague-Dawley rats by pulmonary artery banding (PAB). pFOXi were administered orally to prevent (trimetazidine, 0.7 g/L for 8 weeks) or regress (ranolazine 20 mg/day or trimetazidine for 1 week, beginning 3 weeks post-PAB) RVH. Metabolic, hemodynamic, molecular, electrophysiologic, and functional comparisons with sham rats were performed 4 or 8 weeks post-PAB. Metabolism was quantified in RV working hearts, using a dual-isotope technique, and in isolated RV myocytes, using a Seahorse Analyzer. PAB-induced RVH did not cause death but reduced cardiac output and treadmill walking distance and elevated plasma epinephrine levels. Increased RV FAO in PAB was accompanied by increased carnitine palmitoyl-transferase expression; conversely, GO and pyruvate dehydrogenase (PDH) activity were decreased. pFOXi decreased FAO and restored PDH activity and GO in PAB, thereby increasing ATP levels. pFOXi reduced the elevated RV glycogen levels in RVH. Trimetazidine and ranolazine increased cardiac output and exercise capacity and attenuated exertional lactic acidemia in PAB. RV monophasic action potential duration and QTc interval prolongation in RVH normalized with trimetazidine. pFOXi also decreased the mild RV fibrosis seen in PAB. Maladaptive increases in FAO reduce RV function in PAB-induced RVH. pFOXi inhibit FAO, which

  1. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    concentrations of ferrous iron. Experimental design allowed us to measure biological and abiological rates independently. Results indicate a relatively consistent rate of biological iron oxidation between 20-100 ng Fe2+(gm wet sediment)-1 (second)-1 where oxide accumulations occur. Abiological oxidation rates increase significantly with increasing pH, and greatly limit soluble ferrous iron above a pH of 3.5 at high temperatures. Rates of biological iron reduction are typically comparable to oxidation, and can often double oxidation rates when supplemented with organic carbon. Abiological iron reduction rates are inconsequential when the pH is greater than 2, but increase sharply below this point. Results indicate that comparable rates of microbial oxidation and reduction are common in springs where biogenic iron oxide accumulates. It appears that the interplay of temperature, oxygen availability, and supply of organic carbon determines the extent and history of iron oxide accumulation. Taken together, our results show that complete microbial iron redox cycles are active in acidic hot springs wherever biogenic iron oxides accumulate.

  2. Amphipathic β2,2-Amino Acid Derivatives Suppress Infectivity and Disrupt the Intracellular Replication Cycle of Chlamydia pneumoniae

    PubMed Central

    Tiirola, Terttu M.; Strøm, Morten B.; Vuorela, Pia M.

    2016-01-01

    We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the β2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these β2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic β2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen. PMID:27280777

  3. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  4. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGESBeta

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  5. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs).

    PubMed

    Skulachev, Vladimir P; Antonenko, Yury N; Cherepanov, Dmitry A; Chernyak, Boris V; Izyumov, Denis S; Khailova, Ludmila S; Klishin, Sergey S; Korshunova, Galina A; Lyamzaev, Konstantin G; Pletjushkina, Olga Yu; Roginsky, Vitaly A; Rokitskaya, Tatiana I; Severin, Fedor F; Severina, Inna I; Simonyan, Ruben A; Skulachev, Maxim V; Sumbatyan, Natalia V; Sukhanova, Evgeniya I; Tashlitsky, Vadim N; Trendeleva, Tatyana A; Vyssokikh, Mikhail Yu; Zvyagilskaya, Renata A

    2010-01-01

    The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES

  6. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling.

    PubMed

    Nieman, David C; Shanely, R Andrew; Luo, Beibei; Meaney, Mary Pat; Dew, Dustin A; Pappan, Kirk L

    2014-07-01

    Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate

  7. Maintenance carbon cycle in crassulacean Acid metabolism plant leaves : source and compartmentation of carbon for nocturnal malate synthesis.

    PubMed

    Kenyon, W H; Severson, R F; Black, C C

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  8. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  9. rre37 Overexpression Alters Gene Expression Related to the Tricarboxylic Acid Cycle and Pyruvate Metabolism in Synechocystis sp. PCC 6803

    PubMed Central

    Iijima, Hiroko; Watanabe, Atsuko; Takanobu, Junko; Hirai, Masami Yokota; Osanai, Takashi

    2014-01-01

    The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1, me, and pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression. The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression. The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium. PMID:25614900

  10. Incomplete tricarboxylic acid cycle in a type I methylotroph, Methylococcus capsulatus.

    PubMed Central

    Patel, R; Hoare, L; Hoare, D S; Taylor, B F

    1975-01-01

    Alpha-Ketoglutaratedehydrogenase was undetectable in extracts of Methylococcus capsulatus. Cells incorporated [1-14-C] acetate into only four protein amino acids (glutamate, proline, arginine, and leucine) and the C5, but not C1, of glutamate. PMID:806581

  11. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  12. Factors which influence CaC12 dependent transfection of lambda DNA in Escherichia coli K12 recipients.

    PubMed

    Pefeifer, M; Pöhlmann, C; Betcke, A; Kurth, M; Liebscher, D H

    1980-01-01

    This paper presents further parameters influencing the competence, the process of DNA uptake and the efficiency of plating of CaC12-treated E. coli D12 strains. We have found that the process of DNA uptake depends not only on the treatment of bacteria with a certain CaCl2-concentration but is also influenced considerably by a shift-down of the CaCl2-concentration in the reaction mixture. The pH of the growth media and of the reaction mixture plays an important role in maintaining of optimal transfection. The efficiency of plating is influenced by the thickness of the top layer and the concentration of bacteria on the plate. Without genetic variation of the strains, by only varying the mentioned factors we could improve the efficiency of CaCl2 transfection at about two orders of magnitude to a maximum of 6 X 105 pfu/microgram DNA. PMID:6448519

  13. An indoxyl compound 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, suppresses activation of Fyn kinase in mast cells and IgE-mediated allergic responses in mice

    SciTech Connect

    Lee, Jun Ho; Kim, Tae Hyung; Kim, Hyuk Soon; Kim, A-Ram; Kim, Do-Kyun; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Her, Erk; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; Choi, Wahn Soo

    2015-06-15

    Mast cells, constituents of virtually all organs and tissues, are critical cells in IgE-mediated allergic responses. The aim of this study was to investigate the effect and mechanism of an indoxyl chromogenic compound, 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, on IgE-mediated mast cell activation and allergic responses in mice. CAC-0982 reversibly suppressed antigen-stimulated degranulation in murine mast cells (IC{sub 50}, ~ 3.8 μM) and human mast cells (IC{sub 50}, ~ 3.0 μM). CAC-0982 also inhibited the expression and secretion of IL-4 and TNF-α in mast cells. Furthermore, CAC-0982 suppressed the mast cell-mediated allergic responses in mice in a dose-dependent manner (ED{sub 50} 27.9 mg/kg). As for the mechanism, CAC-0982 largely suppressed the phosphorylation of Syk and its downstream signaling molecules, including LAT, Akt, Erk1/2, p38, and JNK. Notably, the tyrosine kinase assay of antigen-stimulated mast cells showed that CAC-0982 inhibited Fyn kinase, one of the upstream tyrosine kinases for Syk activation in mast cells. Taken together, these results suggest that CAC-0982 may be used as a new treatment for regulating IgE-mediated allergic diseases through the inhibition of the Fyn/Syk pathway in mast cells. - Highlights: • The anti-allergic effect of 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, was measured. • CAC-0982 reversibly suppressed the activation of mast cells by IgE and antigen. • CAC-0982 inhibited passive cutaneous anaphylaxis in mice. • CAC-0982 suppresses mast cells through inhibition of Fyn activation in mast cells.

  14. Recent new additives for electric vehicle lead-acid batteries for extending the cycle life and capacity

    SciTech Connect

    Kozawa, A.; Sato, A.; Fujita, K.; Brodd, D.

    1997-12-01

    An electrochemically prepared colloidal graphite was found to be an excellent additive for lead-acid batteries. The new additive extends the capacity and cycle life of new and old batteries and can regenerate old, almost dead, batteries. The colloidal graphite is stable in aqueous solution and the extremely fine particles are adsorbed mainly on the positive electrode. This additive has been given the name, {alpha}-Pholon. The amount required is very small: only 6% to 10% of volume of the {alpha}-Pholon solution (about 2% colloidal graphite in water solution). The beneficial effect of the new additive was demonstrated with motorcycle batteries and forklift batteries.

  15. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. PMID:26895788

  16. Partial Life-Cycle and Acute Toxicity of Perfluoroalkyl Acids to Freshwater Mussels

    EPA Science Inventory

    Freshwater mussels are among the most sensitive aquatic organisms to many contaminants and have complex life-cycles that include several distinct life stages with unique contaminant exposure pathways. Standard acute (24–96 h) and chronic (28 d) toxicity tests with free larva (glo...

  17. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K. ); Kagamimori, S.; Naruse, Y. ); Watanabe, M. )

    1988-05-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine, etc. increase in urine. It was reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  18. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K.; Kagamimori, S.; Naruse, Y.; Watanabe, M.

    1988-04-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine increased in urine. It has been reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  19. Carglumic acid: a second look. Confirmed progress in a rare urea cycle disorder.

    PubMed

    2008-04-01

    (1) N-acetylglutamate synthase deficiency is a rare congenital disorder that causes hyperammonaemic comas, resulting in severe neurological morbidity and usually leading to death during childhood. (2) Carglumic acid is the first drug to be used for replacement therapy. Data available in 2003 showed beneficial effects on growth and psychomotor development. (3) In 2007, about 20 patients treated with carglumic acid for N-acetyglutamate synthase deficiency, for at least 5 years in half of cases, were all still alive. Their development was normal when treatment was initiated before complications occurred. (4) No serious adverse effects have been observed. (5) In practice, although this treatment has to continue for life, carglumic acid represents a major advance for patients with N-acetylglutamate synthase deficiency. PMID:18516804

  20. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers.

    PubMed

    Raggi, G; Besley, E; Stace, A J

    2016-09-13

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4](+) isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501967

  1. Impact of image normalization and quantization on the performance of sonar computer-aided detection/computer-aided classification (CAD/CAC) algorithms

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William C.

    2007-04-01

    Raytheon has extensively processed high-resolution sonar images with its CAD/CAC algorithms to provide real-time classification of mine-like bottom objects in a wide range of shallow-water environments. The algorithm performance is measured in terms of probability of correct classification (Pcc) as a function of false alarm rate, and is impacted by variables associated with both the physics of the problem and the signal processing design choices. Some examples of prominent variables pertaining to the choices of signal processing parameters are image resolution (i.e., pixel dimensions), image normalization scheme, and pixel intensity quantization level (i.e., number of bits used to represent the intensity of each image pixel). Improvements in image resolution associated with the technology transition from sidescan to synthetic aperture sonars have prompted the use of image decimation algorithms to reduce the number of pixels per image that are processed by the CAD/CAC algorithms, in order to meet real-time processor throughput requirements. Additional improvements in digital signal processing hardware have also facilitated the use of an increased quantization level in converting the image data from analog to digital format. This study evaluates modifications to the normalization algorithm and image pixel quantization level within the image processing prior to CAD/CAC processing, and examines their impact on the resulting CAD/CAC algorithm performance. The study utilizes a set of at-sea data from multiple test exercises in varying shallow water environments.

  2. Relationship between extracellular enzymes and cell growth during the cell cycle of the fission yeast Schizosaccharomyces pombe: acid phosphatase.

    PubMed Central

    Miyata, M; Miyata, H

    1978-01-01

    By using the intact cells of the fission yeast Schizosaccharomyces pombe, the activity of acid phosphatase (EC 3.1.3.2) was compared through the cell cycle with the growth in cell length as a measure of cell growth. The cells of a growing asynchronous culture increased exponentially in number and in total enzyme activity, but remained constant in average length and in specific activity, In a synchronous culture prepared by selection or by induction, the specific activity was periodic in parallel with the increase in average cell length. When hydroxyurea was added to an asynchronous or a synchronous culture by selection, both specific and total activity followed the same continuous pattern as the growth in cell length after the stoppage of cell division. When oversized cells produced by a hydroxyurea pulse treatment to the culture previously syndronized by selection were transferred to a poor medium, they divided synchronously but could hardly grow in the total cell length. In this experimental situation, the total enzyme activity also scarcely increased through three division cycles. These results suggested that the increase in acid phosphatase in dependent on cell elongation. PMID:711673

  3. Concentration of Specific Amino Acids at the Catalytic/Active Centers of Highly-Conserved ``Housekeeping'' Enzymes of Central Metabolism in Archaea, Bacteria and Eukaryota: Is There a Widely Conserved Chemical Signal of Prebiotic Assembly?

    NASA Astrophysics Data System (ADS)

    Pollack, J. Dennis; Pan, Xueliang; Pearl, Dennis K.

    2010-06-01

    In alignments of 1969 protein sequences the amino acid glycine and others were found concentrated at most-conserved sites within ˜15 Å of catalytic/active centers (C/AC) of highly conserved kinases, dehydrogenases or lyases of Archaea, Bacteria and Eukaryota. Lysine and glutamic acid were concentrated at least-conserved sites furthest from their C/ACs. Logistic-regression analyses corroborated the “movement” of glycine towards and lysine away from their C/ACs: the odds of a glycine occupying a site were decreased by 19%, while the odds for a lysine were increased by 53%, for every 10 Å moving away from the C/AC. Average conservation of MSA consensus sites was highest surrounding the C/AC and directly decreased in transition toward model’s peripheries. Findings held with statistical confidence using sequences restricted to individual Domains or enzyme classes or to both. Our data describe variability in the rate of mutation and likelihoods for phylogenetic trees based on protein sequence data and endorse the extension of substitution models by incorporating data on conservation and distance to C/ACs rather than only using cumulative levels. The data support the view that in the most-conserved environment immediately surrounding the C/AC of taxonomically distant and highly conserved essential enzymes of central metabolism there are amino acids whose identity and degree of occupancy is similar to a proposed amino acid set and frequency associated with prebiotic evolution.

  4. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  5. USE OF THE COMPOSITION AND STABLE CARBONIISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (*13C) of individual microbial phospholipid fatty acids (PLFAs) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SOM) cy...

  6. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats.

    PubMed

    Ritter, Luciana; Kleemann, Daniele; Hickmann, Fernanda Hermes; Amaral, Alexandre Umpierrez; Sitta, Ângela; Wajner, Moacir; Ribeiro, César Augusto João

    2015-05-01

    Ethylmalonic acid (EMA) accumulation occurs in various metabolic diseases with neurological manifestation, including short acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy (EE). Since pathophysiological mechanisms responsible for brain damage in these disorders are still poorly understood, we investigated the ex vivo effects of acute intrastriatal administration of EMA on important parameters of energy and redox homeostasis in striatum from young rats. We evaluated CO(2) production from glucose, glucose utilization and lactate production, as well as the activities of the citric acid cycle (CAC) enzymes, the electron transfer chain (ETC) complexes II-IV (oxidative phosphorylation, OXPHOS) and synaptic Na(+),K(+)-ATPase. We also tested the effect of EMA on malondialdehyde (MDA) levels (marker of lipid oxidation) and reduced glutathione (GSH) levels. EMA significantly reduced CO(2) production, increased glucose utilization and lactate production, and reduced the activities of citrate synthase and of complexes II and II-III of the ETC, suggesting an impairment of CAC and OXPHOS. EMA injection also reduced Na(+),K(+)-ATPase activity and GSH concentrations, whereas MDA levels were increased. Furthermore, EMA-induced diminution of Na(+),K(+)-ATPase activity and reduction of GSH levels were prevented, respectively, by the antioxidants melatonin and N-acetylcysteine, indicating that reactive species were involved in these effects. Considering the importance of CAC and ETC for energy production and Na(+),K(+)-ATPase for the maintenance of the cell membrane potential, the present data indicate that EMA compromises mitochondrial homeostasis and neurotransmission in striatum. We presume that these pathomechanisms may be involved to a certain extent in the neurological damage found in patients affected by SCADD and EE. PMID:25583115

  7. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    PubMed

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals. PMID:22673783

  8. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    PubMed

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells. PMID:24792323

  9. Effects of acid rain on mycorrhizal infection and N cycling in forest soils

    SciTech Connect

    Stroo, H.F.

    1986-01-01

    Increasing the acidity of simulated rain from pH 5.6 to 3.0 reduced the number of mycorrhizal roots on white pine seedlings by 20% after 16 weeks of exposure. Mycorrhizal infection of red oaks was 25% less at a rain pH of 3.5 than at pH 5.6. Simulated acid rain also caused increases in the N contents, net photosynthesis, and growth of seedlings, as well as decreases in root:shoot ratios and in the concentration of sucrose in the roots. To measure the effects of acid rain on N mineralization, nitrification, and total inorganic N, columns containing samples from the surface horizons of 12 forest soils were exposed to simulated rain at 3 times ambient deposition rates for 16 weeks. The effects on N mineralization varied between soils, with the greatest inhibitions being observed in soils with low organic matter contents. The apparent protection by organic matter was associated with an increase in short-term buffering capacity. The average amount of N mineralized after exposure was not significantly affected by rain pH. Similarly, nitrification was inhibited during exposure to simulated rain at pH 3.5, but was unaffected after exposure. Enrichments from an acid forest soil failed to show the presence of autotrophic nitrifiers, and the effects of temperature and selective inhibitors indicated that fungi were primarily responsible for nitrification in this soil. A fungus capable of heterotrophic nitrification at pH 4.0 was isolated and identified as Absidia cylindrospora Hagem.

  10. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  11. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  12. [Effect of tricarboxylic acid cycle intermediates on nitric oxide system during acute hypoxia].

    PubMed

    Kurhaliuk, N M

    2002-01-01

    Effects Crebs Cycle of exogenous intermediates sodium succinate (50 mg/kg) and sodium alpha-ketoglutarate (200 mg/kg) on processes of mitochondrial ADP-stimulated respiration (using as substrates of oxidation 0.35 mM succinate, 1 mM alpha-ketoglutarate), production of nitric oxide under NO2-, NO3-, as well as carbamide, putrescyne content and processes of lipid peroxidation in the rats liver under acute hypoxia (7% O2 in N2, 30 min) have been studied. It was shown, that the exogenous sodium alpha-ketoglutarate increases nitric oxide content, aminotransferase activation, inhibition of succinatedehydrogenase simultaneously more than exogenous sodium succinate. It correlates with decreasing of processes lipid peroxidation in liver. PMID:14964867

  13. Substitution of amino acids in helix F of bacteriorhodopsin: Effects on the photochemical cycle

    SciTech Connect

    Ahl, P.L.; Stern, L.J.; Mogi, T.; Khorana, H.G.; Rothschild, K.J. )

    1989-12-26

    The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.

  14. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine‑123 DNA‑binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose‑dependent, as well as time‑dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub‑G1 (apoptotic) phase of the cell cycle, in a dose‑dependent manner. Staining with Annexin V‑fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose‑dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose‑dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  15. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells.

    PubMed

    Yeruva, Laxmi; Pierre, Keon J; Elegbede, Abiodun; Wang, Robert C; Carper, Stephen W

    2007-11-18

    Plant products such as perillyl alcohol have been reported to possess anti-tumor activities against a number of human cancers though the mechanism of action has not yet been elucidated. The effects of perillyl alcohol (POH) and its metabolite perillic acid (PA) on the proliferation of non small cell lung cancer (NSCLC, A549, and H520) cells were investigated. Both POH and PA elicited dose-dependent cytotoxicity, induced cell cycle arrest and apoptosis with increasing expression of bax, p21 and caspase-3 activity in both the cell lines. Combination studies revealed that exposing the cells to an IC50 concentration of POH or PA sensitized the cells to cisplatin and radiation in a dose-dependent manner. These results indicate that POH and PA in combination therapy may have chemotherapeutic value against NSCLC. PMID:17888568

  16. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  17. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    PubMed Central

    Hug, Katrin; Maher, William A.; Stott, Matthew B.; Krikowa, Frank; Foster, Simon; Moreau, John W.

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55–75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18–25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  18. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  19. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  20. Nitrogen cycling in s subarctic Alaskan watershed: the role of lichens and the potential effects of acid deposition

    SciTech Connect

    Gunther, A.J.

    1987-01-01

    It has been hypothesized that the loss of nitrogen-fixing lichens due to stress from air pollution could have adverse effects upon nitrogen availability, and thus primary productivity, in some ecosystems. There is general agreement, however, that the ecological role of these lichens has not been sufficiently well defined to determine whether they are keystone species. The objectives of this study were: (1) to examine the importance of nitrogen-fixing lichens to the nitrogen cycle in the drainage of Brooks Lake, Alaska, a nitrogen-limited nursery lake for the commercially important sockeye salmon (Oncorhychus nerka); and (2) to investigate the sensitivity of nitrogen fixation by lichens in this ecosystem to acid deposition. Biological nitrogen fixation was found to be the major source of new nitrogen to the Brooks Lake drainage. The rate of fixation is approximately 3 kg N/ha-yr, which compares to 0.3 kg N/ha-yr in precipitation and only 0.02 kg N/ha-yr in returning adult salmon. Cyanophillic lichens contribute about 0.21 kg N/ha-yr. The low levels of nitrogen in precipitation, combined with a lack of nitrogen-fixation activity in open lake waters, indicates that nitrogen in tributary streams is the major source of new nitrogen for Brooks Lake. The measurements of nitrogen inputs, along with estimates of other stocks and flows of nitrogen, were used to construct a steady-state box model of the nitrogen cycle in the drainage.

  1. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells

    PubMed Central

    Janzer, Andreas; German, Natalie J.; Gonzalez-Herrera, Karina N.; Asara, John M.; Haigis, Marcia C.; Struhl, Kevin

    2014-01-01

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation. PMID:25002509

  2. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  3. Prolactin messenger ribonucleic acid levels, prolactin synthesis, and radioimmunoassayable prolactin during the estrous cycle in the Golden Syrian hamster

    SciTech Connect

    Massa, J.S. ); Blask, D.E. )

    1990-01-01

    The purpose of this study was to observe the molecular dynamics of pituitary prolactin (PRL) gene expression during the estrous cycle of the Golden Syrian hamster. PRL messenger ribonucleic acid (mRNA) levels, PRL synthesis were measured in the morning on each day of the cycle. We observed that all of these PRL indices declined or did not change from Day 2 to Day 3 of the cycle. From Day 3 to Day 4 however, PRL mRNA levels increased 33-38% and media {sup 3}H-PRL increased 32-42%, while there were no significant changes in pituitary {sup 3}H-PRL, or RIA-PRL in the media or pituitary. From Day 4 to Day 1 (estrus) there was reciprocal change in the levels of {sup 3}H-PRL in the pituitary vs. the media, with the former increasing 37-50% and the latter decreasing 25-32%. Pituitary RIA-PRL did also increased 45-64% from Day 4 to Day 1 while media RIA-PRL did not change. These data are consistent with the following hypothesis: On the morning of proestrus(Day 4) in the hamster, PRL mRNA levels are elevated compared to those on Day 3, signaling an increase in PRL synthesis. This newly synthesized PRL is shunted into a readily releasable pool on the morning of Day 4 (contributing to the afternoon surge of serum PRL), and into a preferentially stored pool by the morning of Day 1.

  4. Analysis of lead/acid battery life cycle factors: their impact on society and the lead industry

    NASA Astrophysics Data System (ADS)

    Robertson, J. G. S.; Wood, J. R.; Ralph, B.; Fenn, R.

    The underlying theme of this paper is that society, globally, is undergoing a fundamental conceptual shift in the way it views the environment and the role of industry within it. There are views in certain quarters that this could result in the virtual elimination of the lead industry's entire product range. Despite these threats, it is argued that the prospects for the lead industry appear to be relatively favourable in a number of respects. The industry's future depends to a significant degree, however, upon its ability to argue its case in a number of key areas. It is contended, therefore, that if appropriate strategies and means are promulgated, the prospects of the industry would appear to be relatively healthy. But, for this to happen with optimal effectiveness, a conceptual change will be necessary within the industry. New strategies and tools will have to be developed. These will require a significantly more integrated, holistically based and 'reflexive' approach than previously. The main elements of such an approach are outlined. With reference to the authors' ongoing research into automotive lead/acid starting lighting ignition (SLI) batteries, the paper shows how the technique of in-depth life cycle assessment (LCA), appropriately adapted to the needs of the industry, will provide a crucial role in this new approach. It also shows how it may be used as an internal design and assessment tool to identify those stages in the battery life cycle that give rise to the greatest environmental burdens, and to assess the effects of changes in the cycle to those burdens. It is argued that the development of this approach requires the serious and urgent attention of the whole of the lead industry. Also to make the LCA tool fully effective, it must be based on a 'live' database that is produced, maintained and continually updated by the industry.

  5. Size dependence of the thermal decomposition kinetics of nano- CaC2O4: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Cui, Zixiang; Xue, Yongqiang

    2015-10-01

    In the processes of preparation and application of nanomaterials, the thermal decomposition of nanoparticles is often involved. An improved general theory of thermal decomposition kinetics of nanoparticles, developed over the past 10 years, was presented in this paper where the relations between reaction kinetic parameters and particle size were derived. Experimentally, the thermal decomposition kinetics of nano-sized calcium oxalate (nano- CaC2O4 with different sizes was studied by means of Thermogravimetry Analysis (TGA) at different heating rates. The values of the apparent activation energy and the logarithm of pre-exponential factor were calculated using the equation of Iterative Kissinger-Akahira-Sunose (IKAS) and its deformations. The influence regularities of particle size on the apparent activation energy and the pre-exponential factor were summarized, which are consistent with the thermal decomposition kinetics theory of nanoparticles. Based on the theory, the method of obtaining the surface thermodynamic properties by the determination of kinetic parameters was presented. Theoretical and experimental results show that the particle size, through the effect on the surface thermodynamic properties, has notable effect on the thermal decomposition kinetics. With the particle size decreasing, the partial molar surface enthalpy and the partial molar surface entropy increases, leading to the decrease of the apparent activation energy and the pre-exponential factor, respectively. Furthermore, the apparent activation energy, the pre-exponential factor, the partial molar surface enthalpy and the partial molar surface entropy are linearly related to the reciprocal of particle diameter, respectively.

  6. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    DOE PAGESBeta

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; Ohm, Robin A.; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; et al

    2016-03-03

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and inmore » the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. Finally, these findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.« less

  7. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage

    PubMed Central

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; Ohm, Robin A.; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Lindquist, Erika A.; Pan, Chongle; Hettich, Robert L.; Grigoriev, Igor V.; Singer, Steven W.; Banfield, Jillian F.

    2016-01-01

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches. PMID:26973616

  8. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage.

    PubMed

    Mosier, Annika C; Miller, Christopher S; Frischkorn, Kyle R; Ohm, Robin A; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Lindquist, Erika A; Pan, Chongle; Hettich, Robert L; Grigoriev, Igor V; Singer, Steven W; Banfield, Jillian F

    2016-01-01

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches. PMID:26973616

  9. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.

    PubMed

    Dickey, C A; Heal, K V; Stidson, R T; Koren, R; Schröder, P; Cape, J N; Heal, M R

    2004-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health. PMID:15158031

  10. Large-scale separation of amino acids by continuous displacement chromatography

    SciTech Connect

    DeCarli, J.P. II; Carta, G.; Byers, C.H.

    1989-10-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. The technology appears, thus, to be very promising for industrial applications.

  11. Glutamate is the major anaplerotic substrate in the tricarboxylic acid cycle of isolated rumen epithelial and duodenal mucosal cells from beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to determine the contribution of substrates to tricarboxylic acid (TCA) cycle fluxes in rumen epithelial (REC) and duodenal mucosal (DMC) cells isolated from bulls (n = 6) fed either a 75% forage (HF) or 75% concentrate (HC) diet. In separate incubations, [13C6]glucose, [13C5]glutam...

  12. The role of the cell cycle in the cellular uptake of folate-modified poly(l-amino acid) micelles in a cell population

    NASA Astrophysics Data System (ADS)

    Tang, Jihui; Liu, Ziwei; Ji, Fenqi; Li, Yao; Liu, Junjie; Song, Jian; Li, Jun; Zhou, Jianping

    2015-12-01

    Nanoparticles are widely recognized as a vehicle for tumor-targeted therapies. There are many factors that can influence the uptake of nanoparticles, such as the size of the nanoparticles, and/or their shape, elasticity, surface charge and even the cell cycle phase. However, the influence of the cell cycle on the active targeting of a drug delivery system has been unknown until now. In this study, we initially investigated the folate receptor α (FR-α) expression in different phases of HeLa cells by flow cytometric and immunocytochemical methods. The results obtained showed that FR-α expression was cell cycle-dependent, i.e. the S cells' folate receptor expression was the highest as the cell progressed through its cycle. Then, we used folate modified poly(l-amino acid) micelles (FA-PM) as an example to investigate the influence of the cell cycle on the active targeting drug delivery system. The results obtained indicated that the uptake of FA-PM by cells was influenced by the cell cycle phase, and the S cells took up the greatest number of folate conjugated nanoparticles. Our findings suggest that future studies on ligand-mediated active targeting preparations should consider the cell cycle, especially when this system is used for a cell cycle-specific drug.

  13. Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression

    PubMed Central

    Belin, Sophie; Kaya, Ferdinand; Duisit, Ghislaine; Giacometti, Sarah; Ciccolini, Joseph; Fontés, Michel

    2009-01-01

    Background Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. Methods and Findings Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. Conclusions AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed. PMID:19197388

  14. Diel cycling of zinc in a stream impacted by acid rock drainage: Initial results from a new in situ Zn analyzer

    USGS Publications Warehouse

    Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.

    2007-01-01

    Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.

  15. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves.

    PubMed

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-10-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, (13)C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA "cycle" does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  16. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  17. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    SciTech Connect

    Okano, Junko . E-mail: okajun@anat1.med.kyoto-u.ac.jp; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.

  18. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  19. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    SciTech Connect

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  20. Reproductive cycle and seasonal variations in lipid content and fatty acid composition in gonad of the cockle Fulvia mutica in relation to temperature and food

    NASA Astrophysics Data System (ADS)

    Liu, Wenguang; Li, Qi; Kong, Lingfeng

    2013-09-01

    From March 2004 to February 2005, seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica (Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions ( e.g., temperature and food availability). Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad. Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn, whereas spawning occurred in summer (20.4-24.6°C). The seasonal variation in lipid content was similar to that of the mean oocyte diameter. In both neutral and polar lipids, the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids, and polyunsaturated fatty acids were abundant, with series n-3 as the predominant component. Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle. The Σ(n-3) and Σ(n-6) values were relatively high during January-May, and the associated unsaturation index was significantly higher than that in other months. The results suggest that fatty acids play an important role in the gametogenesis of F. mutica.

  1. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle.

    PubMed

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J; Krejci, Alena

    2016-02-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  2. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

    PubMed Central

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J.

    2016-01-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  3. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice

    PubMed Central

    Liang, Qianqian; Wang, Baoyu; Pang, Lingxia; Wang, Youpei; Zheng, Meiqin; Wang, Qing; Yan, Jingbin; Xu, Jinzhong

    2016-01-01

    Objective(s): Higher cellular reactive oxygen species (ROS) levels is important in reducing cellular energy charge (EC) by increasing the levels of key metabolic protein, and nitrosative modifications, and have been shown to damage the cardiac tissue of diabetic mice. However, the relation between energy production and heart function is unclear. Materials and Methods: Streptozotocin (STZ, 150 mg/kg body weight) was injected intraperitoneally once to mice that had been fasted overnight for induction of diabetes. After diabetic induction, mice received citrate (5 µg/kg) through intraperitoneal injection every other day for 5 weeks. The caspase-3, plasminogen activator inhibitor 1 (PAI1), protein kinase B (PKB), commonly known as AKT and phosphorylated-AKT (p-AKT) proteins were examined to elucidate inflammation and apoptosis in the heart. For histological analysis, heart samples were fixed with 10% formalin and stained with hematoxylin-eosin (HE) and Sirius red to assess pathological changes and fibrosis. The expression levels[AGA1] of marker proteins, tyrosine nitration, activity of ATP synthase and succinyl-CoA3-ketoacid coenzyme A transferase-1 (SCOT), and EC were measured. Results: Intraperitoneal injection of citrate significantly reduced caspase-3 and PAI-1 protein levels and increased p-AKT level on the 5th week; EC in the heart was found to be increased as well. Further, the expression level, activity, and tyrosine nitration of ATP synthase and SCOT were not affected after induction of diabetes. Conclusion: Results indicate that application of citrate, a tricarboxylic acid (TCA) cycle intermediate, might alleviate cardiac dysfunction by reducing cardiac inflammation, apoptosis, and increasing cardiac EC. PMID:27096063

  4. Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid Cycle of Corynebacterium glutamicum

    PubMed Central

    Molenaar, Douwe; van der Rest, Michel E.; Drysch, André; Yücel, Raif

    2000-01-01

    Like many other bacteria, Corynebacterium glutamicum possesses two types of l-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SDH activities are regulated coordinately in response to the carbon and energy source for growth. Compared to growth on glucose, these activities are increased during growth on lactate, pyruvate, or acetate, substrates which require high citric acid cycle activity to sustain growth. The simultaneous presence of high activities of both malate dehydrogenases is puzzling. MQO is the most important malate dehydrogenase in the physiology of C. glutamicum. A mutant with a site-directed deletion in the mqo gene does not grow on minimal medium. Growth can be partially restored in this mutant by addition of the vitamin nicotinamide. In contrast, a double mutant lacking MQO and MDH does not grow even in the presence of nicotinamide. Apparently, MDH is able to take over the function of MQO in an mqo mutant, but this requires the presence of nicotinamide in the growth medium. It is shown that addition of nicotinamide leads to a higher intracellular pyridine nucleotide concentration, which probably enables MDH to catalyze malate oxidation. Purified MDH from C. glutamicum catalyzes oxaloacetate reduction much more readily than malate oxidation at physiological pH. In a reconstituted system with isolated membranes and purified MDH, MQO and MDH catalyze the cyclic conversion of malate and oxaloacetate, leading to a net oxidation of NADH. Evidence is presented that this cyclic reaction also takes place in vivo. As yet, no phenotype of an mdh deletion alone was observed, which leaves a physiological function for MDH in C. glutamicum obscure. PMID:11092846

  5. A Comparison of the Effect of Temperature on the Passivity Breakdown and Repassivation Potentials of Wrought and Welded Alloy 22 in 5 M CAC12

    SciTech Connect

    Ilevbare, G

    2003-02-14

    The study of the electrochemical behavior of wrought and welded Alloy 22 was carried out in 5 M CaC12 at various temperatures. Comparisons were made between the electrochemical behaviors of the wrought and welded forms of Alloy 22 Multiple Crevice Assembly (MCA) specimens. The susceptibility to corrosion was found to increase with increase in temperature in both the wrought and the welded forms of the alloy: Nevertheless, the measure critical breakdown potential E{sub crit} was found to be Similar for the wrought and welded specimens.

  6. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    SciTech Connect

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  7. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Nikolov, P.

    2013-11-01

    Batteries in hybrid electric vehicles operate in High-Rate Partial-State-of-Charge (HRPSoC) cycling duty. To make lead-acid batteries suitable for this duty, carbon is added to the negative active material. As a result of this technological change, two electrical systems form at the negative plates: (a) a capacitive carbon system comprising high-rate charging and discharging of the electric double layer; low Ah capacity, and (b) a lead electrochemical system, comprising oxidation of Pb to PbSO4 during discharge and vice versa during charge; this system is slow to accept charge, but has high Ah capacity. Through cycling lead-acid cells under HRPSoC conditions with short current pulses of various durations we have established that the processes involved in the capacitive system proceed highly reversibly and complete hundreds of thousands HRPSoC cycles. The number of cycles achieved by the electrochemical system is limited to tens of thousands and lead to progressive sulfation. Carbon added to the negative active material changes the latter's structure. The specific surface of NAM increases and the median pore radius decreases. Some carbon additives may reduce the radius of the pores in NAM to membrane sizes, which may change the chemistry of the electrochemical system.

  8. Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus*

    PubMed Central

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A.; Bischoff, Markus

    2013-01-01

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB. PMID:24194525

  9. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    SciTech Connect

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  10. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid

    PubMed Central

    Pilgrim, Adeiye A.; Nolan, Thomas J.; Wang, Zhu; Kliewer, Steven A.; Mangelsdorf, David J.; Lok, James B.

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24–48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  11. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid.

    PubMed

    Albarqi, Mennatallah M Y; Stoltzfus, Jonathan D; Pilgrim, Adeiye A; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Mangelsdorf, David J; Lok, James B

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  12. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  13. Half-metallic ferromagnetism in zinc-blende CaC , SrC , and BaC from first principles

    NASA Astrophysics Data System (ADS)

    Gao, G. Y.; Yao, K. L.; Şaşıoǧlu, E.; Sandratskii, L. M.; Liu, Z. L.; Jiang, J. L.

    2007-05-01

    Using the first-principles full-potential linearized augmented plane-wave method based on density functional theory, we have investigated the electronic structure and magnetism of hypothetical M C ( M=Mg , Ca, Sr, and Ba) compounds with the zinc-blende (ZB) crystal structure. It is shown that ZB CaC , SrC , and BaC are half-metallic ferromagnets with large half-metallic gaps (up to 0.83eV ). The half metallicity is found to be robust with respect to the lattice compression and is maintained up to the lattice-constant contraction of 14%, 13%, and 9% for CaC , SrC , and BaC , respectively. The exchange interactions in these compounds are studied using the augmented spherical wave method in conjunction with the frozen-magnon approach. The Curie temperature is estimated within both the mean field approximation and the random phase approximation. The predicted Curie temperatures of all three half-metallic compounds considerably exceed the room temperature. The large half-metallic gaps, the robustness of the half metallicity with respect to the lattice contraction, and the high Curie temperatures make these systems interesting candidates for applications in spintronic devices. The absence of the transition-metal atoms makes these compounds important model systems for the study of the origin and properties of the half-metallic ferromagnetism of s-p electron systems.

  14. Selective production of 1,2-propylene glycol from Jerusalem artichoke tuber using Ni-W(2) C/AC catalysts.

    PubMed

    Zhou, Likun; Wang, Aiqin; Li, Changzhi; Zheng, Mingyuan; Zhang, Tao

    2012-05-01

    A series of Ni-promoted W(2) C/activated carbon (AC) catalysts were investigated for the catalytic conversion of Jerusalem artichoke tuber (JAT) under hydrothermal conditions and hydrogen pressure. Even a small amount of Ni could greatly promote the conversion of JAT to 1,2-propylene glycol (1,2-PG), whereas the pure W(2) C/AC catalyst resulted in the selective formation of acetol. The product distribution profiles involving the reaction temperature, time, and H(2) pressure indicated that 1,2-PG formed as a result of acetol hydrogenation, which was catalyzed by Ni. Thus, there was a synergy between W(2) C and Ni, and the best performance yielded 38.5% of 1,2-PG over a 4%Ni-20%W(2) C/AC catalyst at 245°C, 6 MPa H(2) , and 80 min. To understand the reaction process, some important intermediates, such as inulin, fructose, acetol, glyceraldehyde, and 1,3-dihydroxyacetone, were used as the feedstock. Based on the product distributions derived from these intermediates, a reaction pathway was proposed, where JAT was first hydrolyzed into a mixture of fructose and glucose under the catalysis of H(+) , then the sugars underwent a retro-aldol reaction followed by hydrogenation catalyzed by Ni-W(2) C. PMID:22407966

  15. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18.

    PubMed

    Pascoe, Jordan; Hollern, Douglas; Stamateris, Rachel; Abbasi, Munira; Romano, Lia C; Zou, Baobo; O'Donnell, Christopher P; Garcia-Ocana, Adolfo; Alonso, Laura C

    2012-03-01

    Pancreatic β-cell proliferation is infrequent in adult humans and is not increased in type 2 diabetes despite obesity and insulin resistance, suggesting the existence of inhibitory factors. Free fatty acids (FFAs) may influence proliferation. In order to test whether FFAs restrict β-cell proliferation in vivo, mice were intravenously infused with saline, Liposyn II, glucose, or both, continuously for 4 days. Lipid infusion did not alter basal β-cell proliferation, but blocked glucose-stimulated proliferation, without inducing excess β-cell death. In vitro exposure to FFAs inhibited proliferation in both primary mouse β-cells and in rat insulinoma (INS-1) cells, indicating a direct effect on β-cells. Two of the fatty acids present in Liposyn II, linoleic acid and palmitic acid, both reduced proliferation. FFAs did not interfere with cyclin D2 induction or nuclear localization by glucose, but increased expression of inhibitor of cyclin dependent kinase 4 (INK4) family cell cycle inhibitors p16 and p18. Knockdown of either p16 or p18 rescued the antiproliferative effect of FFAs. These data provide evidence for a novel antiproliferative form of β-cell glucolipotoxicity: FFAs restrain glucose-stimulated β-cell proliferation in vivo and in vitro through cell cycle inhibitors p16 and p18. If FFAs reduce proliferation induced by obesity and insulin resistance, targeting this pathway may lead to new treatment approaches to prevent diabetes. PMID:22338094

  16. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  17. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  18. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  19. Soil-based cycling and differential uptake of amino acids by three species of strawberry (Fragaria spp.) plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence is growing that amino acids can be an important source of plant N in nutrient limited natural ecosystems, but relatively little is known about the effect of agricultural management on soil amino acid pools and turnover. In order to determine the relative effects of soil type and management ...

  20. Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress.

    PubMed

    Shan, Changjuan; Zhou, Yan; Liu, Mingjiu

    2015-09-01

    In this paper, we investigated whether nitric oxide (NO) participated in the regulation of the ascorbate-glutathione (AsA-GSH) cycle by exogenous jasmonic acid (JA) in the leaves of wheat seedlings under drought stress. The findings of our study showed that drought stress significantly enhanced the AsA-GSH cycle by upregulating the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR). Drought stress also markedly increased electrolyte leakage (EL), malondialdehyde (MDA) content, NO content, and significantly reduced the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG) compared with control. Exogenous JA significantly increased the above indicators, compared with drought stress alone. All these effects of JA were inhibited by pretreatment with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Meanwhile, exogenous JA markedly decreased MDA content and electrolyte leakage of wheat leaves under drought stress. Pretreatment with cPTIO reversed the above effects of exogenous JA. Our findings indicated that NO induced by exogenous JA upregulated the activity of the AsA-GSH cycle and had important role in drought tolerance. PMID:25577230

  1. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. PMID:27432878

  2. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  3. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  4. Dietary Fatty Acids from Leaves of Clerodendrum Volubile Induce Cell Cycle Arrest, Downregulate Matrix Metalloproteinase-9 Expression, and Modulate Redox Status in Human Breast Cancer.

    PubMed

    Erukainure, Ochuko L; Zaruwa, Moses Z; Choudhary, M Iqbal; Naqvi, S Asma; Ashraf, Nadia; Hafizur, Rahman M; Muhammad, Aliyu; Ebuehi, Osaretin A T; Elemo, Gloria N

    2016-01-01

    The antiproliferative effect of the fatty acid components of Clerodendrum volubile leaves as well as its antioxidant effect on MCF-7 and MDA-MB-231 human breast cancer cell lines were investigated. Fatty acids extracted from C. volubile leaf oil were subjected to gas chromatography mass spectrometry (GCMS) analysis. The cells were cultured and treated with the fatty acids for 48 h, after which the antiproliferation effect was ascertained via MTT assay and cell viability analysis using BD fluorescence activated cells sorting (FACS) Calibur. Cell cycle was analyzed by flow cytometry on FACS Calibur. Western blotting was used in determining expression of proteins in the cell lines. The treated cell lines were assessed for reduced glutathione level, catalase, superoxide dismutase, and lipid peroxidation. The fatty acids significantly inhibited cell proliferation, arrested G0/G1 phase, downregulated the expression of MMP-9, and attenuated oxidative stress in of MCF-7 cell lines but had little or no effect on MDA-MB-231 cell lines. These results indicate the therapeutic potential of the fatty acids components of the leaves of C. volubile on human breast cancer, which may be explored further in drug development. PMID:27043182

  5. Amino acid cycling in the Mississippi River Plume and effects from the passage of Hurricanes Isadore and Lili

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Grace, Bryan L.; Carman, Kevin R.; Maulana, Ivan

    2014-08-01

    We present data on the effects of Hurricanes Isadore and Lili on the spatial and temporal variations in concentrations of amino acids, and other bulk dissolved and particulate constituents in surface waters of the Mississippi River Plume (MRP) collected during 3 survey cruises (March 2002, October 2002, and April 2004). Abiotic factors (e.g., particle sorption and sediment resuspension) had the largest contribution in describing DAA and PAA dynamics in the MRP. The range of dissolved organic carbon (DOC) (88.61 to 699.90 μM) and particulate organic carbon (POC) (0.08 to 32.72 μM) values was slightly higher than the range observed for a broader region of the Louisiana shelf, but in general agreed with peak values at the mid-salinity range of the plume. The positive and negative correlations between acidic (e.g., aspartic acid and glutamic acid) and basic (e.g., histidine and arginine) DAA and salinity, respectively, in the MRP, were largely controlled by differential partitioning of amino acids with suspended sediments. Concentrations of β-alanine, γ-aminobutyric acid, and δ-aminovaleric acid were significantly higher during October 2002 compared to spring sampling events, due to resuspension of shelf sediments caused by the recent passage of Hurricane Isadore and the approach of Hurricane Lili, as it entered the Gulf of Mexico during our sampling.

  6. Evidence for a Relationship Between Equine Abortion (Herpes) Virus Deoxyribonucleic Acid Synthesis and the S Phase of the KB Cell Mitotic Cycle

    PubMed Central

    Lawrence, William C.

    1971-01-01

    Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle. PMID:4254680

  7. A CRADLE TO GATE LIFE CYCLE ANALYSIS OF THE BIOPOLYMER POLYLACTIC ACID: LOOKING BEYOND GLOBAL WARMING AND FOSSIL FUEL USE

    EPA Science Inventory

    Derived from corn, the biopolymer polylactic acid (PLA) has recently emerged in the marketplace and is advertised as a sustainable alternative to petroleum-based polymers. Research into the environmental implications of biobased production has focused primarily on global warming...

  8. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    EPA Science Inventory

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  9. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  10. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes

    PubMed Central

    Hinder, Lucy M.; Vivekanandan-Giri, Anuradha; McLean, Lisa L.; Pennathur, Subramaniam; Feldman, Eva L.

    2013-01-01

    Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted LC/MS/MS to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Leprdb; db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve and DRG from diabetic mice. Utilizing LC/ESI/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids, HODEs) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerve to rely on truncated TCA cycle metabolism in the type 2 diabetes environment. PMID:23086140

  11. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  12. Diel leaf growth cycles in Clusia spp. are related to changes between C3 photosynthesis and crassulacean acid metabolism during development and during water stress.

    PubMed

    Walter, Achim; Christ, Maja M; Rascher, Uwe; Schurr, Ulrich; Osmond, Barry

    2008-04-01

    This study reports evidence that the timing of leaf growth responds to developmental and environmental constraints in Clusia spp. We monitored diel patterns of leaf growth in the facultative C(3)-crassulacean acid metabolism (CAM) species Clusia minor and in the supposedly obligate CAM species Clusia alata using imaging methods and followed diel patterns of CO2 exchange and acidification. Developing leaves of well-watered C. minor showed a C3-like diel pattern of gas exchange and growth, with maximum relative growth rate (RGR) in the early night period. Growth slowed when water was withheld, accompanied by nocturnal CO2 exchange and the diel acid change characteristic of CAM. Maximum leaf RGR shifted from early night to early in the day when water was withheld. In well-watered C. alata, similar changes in the diel pattern of leaf growth occurred with the development of CAM during leaf ontogeny. We hypothesize that the shift in leaf growth cycle that accompanies the switch from C3 photosynthesis to CAM is mainly caused by the primary demand of CAM for substrates for nocturnal CO2 fixation and acid synthesis, thus reducing the availability of carbohydrates for leaf growth at night. Although the shift to leaf growth early in the light is presumably associated with the availability of carbohydrates, source-sink relationships and sustained diurnal acid levels in young leaves of Clusia spp. need further evaluation in relation to growth processes. PMID:18182020

  13. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. PMID:25465758

  14. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    SciTech Connect

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  15. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    PubMed

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals. PMID:25495377

  16. Uniquely Localized Intra-Molecular Amino Acid Concentrations at the Glycolytic Enzyme Catalytic/Active Centers of Archaea, Bacteria and Eukaryota are Associated with Their Proposed Temporal Appearances on Earth

    NASA Astrophysics Data System (ADS)

    Pollack, J. Dennis; Gerard, David; Pearl, Dennis K.

    2013-04-01

    The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈16 % of all the most-conserved sites within a volume of ≈7-8 Å radius from their C/ACs and decreases linearly towards the molecule's peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈25-30 % of all amino acids within an irregular volume bounded by ≈24-28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological "cost", neighbor-sequence preferences or "ordering" and some thermodynamic parameters.

  17. Uniquely localized intra-molecular amino acid concentrations at the glycolytic enzyme catalytic/active centers of Archaea, Bacteria and Eukaryota are associated with their proposed temporal appearances on earth.

    PubMed

    Pollack, J Dennis; Gerard, David; Pearl, Dennis K

    2013-04-01

    The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈ 16 % of all the most-conserved sites within a volume of ≈ 7-8 Å radius from their C/ACs and decreases linearly towards the molecule's peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈ 25-30 % of all amino acids within an irregular volume bounded by ≈ 24-28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological "cost", neighbor-sequence preferences or "ordering" and some thermodynamic parameters. PMID:23715690

  18. USE OF THE COMPOSITION AND STABLE CARBON ISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (Gamma 13C) of individual microbial phospholipid fatty acids (PLFAS) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SO...

  19. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    PubMed Central

    Cui, Yuan; Liu, Wei; Xie, Wenping; Yu, Wenlian; Wang, Cheng; Chen, Huiming

    2015-01-01

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells. PMID:26690195

  20. During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein

    PubMed Central

    2011-01-01

    Introduction Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. Methods In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. Results Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions

  1. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  2. Development of an electrode for lead-acid batteries possessing a high electrochemical utilization factor and invariable cycling characteristics

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Kudyakov, V. Ya.; Zyryanov, V. G.

    Investigations have been carried out on the deposition of compact lead layers on the surfaces of various metallic substrates. It is shown that the lead coatings so obtained are non-uniform in thickness and feature high porosities. The lead-film electrode thus produced on the surface of a fine copper grid can be used as a positive electrode in the lead-acid battery.

  3. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.

    PubMed

    Dold, B; Gonzalez-Toril, E; Aguilera, A; Lopez-Pamo, E; Cisternas, M E; Bucchi, F; Amils, R

    2013-06-18

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater (as Fe(2+)) and as superficial runoff (as Fe(3+)) into the sea, the latter with the formation of schwertmannite in the sea-ice. The formation of ARD in the Antarctic was catalyzed by acid mine drainage microorganisms found in cold climates, including Acidithiobacillus ferrivorans and Thiobacillus plumbophilus. The dissolved iron (DFe) flux from rock weathering (nonmineralized control site) was calculated to be 0.45 × 10(9) g DFe yr(-1) for the nowadays 5468 km of ice-free Antarctic rock coastline which is of the same order of magnitude as glacial or aeolian input to the Southern Ocean. Additionally, the two ARD sites alone liberate 0.026 and 0.057 × 10(9) g DFe yr(-1) as point sources to the sea. The increased iron input correlates with increased phytoplankton production close to the source. This might even be enhanced in the future by a global warming scenario, and could be a process counterbalancing global warming. PMID:23682976

  4. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    PubMed Central

    Malik, Ashish A.; Dannert, Helena; Griffiths, Robert I.; Thomson, Bruce C.; Gleixner, Gerd

    2015-01-01

    Using a pulse chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings. PMID:25914679

  5. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.

    PubMed

    Kobayashi, Yuki; Ando, Hiroyuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2016-05-01

    ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae. PMID:27044672

  6. Subsurface Cycling of Nitrogen and Anaerobic Aromatic Hydrocarbon Biodegradation Revealed by Nucleic Acid and Metabolic Biomarkers▿ †

    PubMed Central

    Yagi, Jane M.; Suflita, Joseph M.; Gieg, Lisa M.; DeRito, Christopher M.; Jeon, Che-Ok; Madsen, Eugene L.

    2010-01-01

    Microbial processes are crucial for ecosystem maintenance, yet documentation of these processes in complex open field sites is challenging. Here we used a multidisciplinary strategy (site geochemistry, laboratory biodegradation assays, and field extraction of molecular biomarkers) to deduce an ongoing linkage between aromatic hydrocarbon biodegradation and nitrogen cycling in a contaminated subsurface site. Three site wells were monitored over a 10-month period, which revealed fluctuating concentrations of nitrate, ammonia, sulfate, sulfide, methane, and other constituents. Biodegradation assays performed under multiple redox conditions indicated that naphthalene metabolism was favored under aerobic conditions. To explore in situ field processes, we measured metabolites of anaerobic naphthalene metabolism and expressed mRNA transcripts selected to document aerobic and anaerobic microbial transformations of ammonia, nitrate, and methylated aromatic contaminants. Gas chromatography-mass spectrometry detection of two carboxylated naphthalene metabolites and transcribed benzylsuccinate synthase, cytochrome c nitrite reductase, and ammonia monooxygenase genes indicated that anaerobic metabolism of aromatic compounds and both dissimilatory nitrate reduction to ammonia (DNRA) and nitrification occurred in situ. These data link formation (via DNRA) and destruction (via nitrification) of ammonia to in situ cycling of nitrogen in this subsurface habitat, where metabolism of aromatic pollutants has led to accumulation of reduced metabolic end products (e.g., ammonia and methane). PMID:20348302

  7. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    PubMed

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  8. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  9. Temporal variation in the distribution of hyaluronic acid, CD44s, and CD44v6 in the human endometrium across the menstrual cycle.

    PubMed

    Afify, Alaa M; Craig, Sarah; Paulino, Augusto F G

    2006-09-01

    Tissues undergoing rapid growth and regeneration contain hyaluronic acid (HA) as a prominent component of the extracellular matrix. The physiologic role of HA is partly mediated by its relationship with CD44, its major cell surface receptor. Given the extensive remodeling of the endometrium during the menstrual cycle, the authors sought to determine whether these changes are related to the levels of HA, CD44s, and CD44v6 in the endometrium. Archival paraffin embedded cell blocks from 10 cases of proliferative endometrium and 20 cases of secretory endometrium were retrieved from the surgical pathology files. Specimens from the secretory phase were subdivided into three categories: early secretory (day 15-18), mid-secretory (day 19-23), and late secretory (day 24-28). All cases were stained for hyaluronic acid, CD44s, and CD44v6. Sections from umbilical cord, tonsil, and squamous cell carcinoma served as positive controls for HA, CD44s, and CD44v6, respectively. Positive staining was defined as droplet to diffuse intracytoplasmic or extracellular staining for HA and uniform membranous staining for CD44. During the proliferative phase, the endometrial glands and the stroma were both negative for CD44s and CD44v6 in all cases. In the secretory phase, the endometrial glands were negative for CD44s in all cases, but CD44v6 was expressed in 12 (60%) of cases. In contrast, the stromal cells expressed CD44s in 18 (90%) cases and were negative for CD44v6 in all cases. HA staining was present in the endometrial stroma throughout the menstrual cycle but was most intense (3+) and diffuse during the midsecretory phase. There was perivascular staining for HA throughout the cycle; it was most intense adjacent to the spiral arterioles in the secretory phase. These data indicate temporal and geographic differences in HA and CD44 staining in the endometrium in concert with the menstrual cycle. The timing of peak staining of HA and CD44s in the stroma and the upregulation of CD44v6 in

  10. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts.

    PubMed

    Chance, E M; Seeholzer, S H; Kobayashi, K; Williamson, J R

    1983-11-25

    Rat hearts have been perfused in vitro with 5 mM glucose and either 5 mM acetate or 1 mM pyruvate to achieve steady state conditions, followed by replacement of the acetate with 90% enriched [2-13C]acetate or pyruvate with 90% enriched [3-13C]pyruvate. The hearts were frozen different times after addition of 13C-substrate and neutralized perchloric acid extracts from three pooled hearts per time point were used to obtain high resolution proton-decoupled 13C NMR spectra at 90.55 MHz. The 13C fractional enrichment of individual carbons of different metabolites was calculated from the area of the resolved resonances after correction for nuclear Overhauser enhancement and saturation effects. A mathematical flux model of the citric acid cycle and ancillary transamination reactions was constructed with the FACSIMILE program, and used to solve unknown flux parameters with constant pool sizes by nonlinear least squares analysis of the approximately 200 simultaneous differential equations required to describe the reactions. With [2-13C] acetate as substrate, resonances and line splittings due to 13C-13C spin coupling of the C-2, C-3, and C-4 carbons of glutamate were well resolved. The half-times to reach maximum 13C enrichment were 2.6 min for glutamate C-4 and 8 min for glutamate C-2 and C-3. From these data, a well determined citric acid cycle flux of 8.3 mumol/g dry weight X min was calculated for an observed oxygen consumption of 31 mumol/g dry weight X min. With [3-13C]pyruvate as substrate, resonances of aspartate C-2 and C-3 and of alanine C-3 were well resolved in addition to those of glutamate C-2, C-3, and C-4. Nonlinear least squares fitting of these data to the model gave nonrandomly distributed residuals for the 13C fractional enrichments of glutamate C-4, suggesting an incomplete model, but a well determined cycle flux of 11.9 mumol/g dry weight X min for an oxygen uptake of 35 mumol/g dry weight X min. Our studies demonstrate the practicality of 13C NMR

  11. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.

    PubMed

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik

    2013-01-01

    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. PMID:22884491

  12. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function.

    PubMed

    Heerdt, B G; Houston, M A; Augenlicht, L H

    1997-05-01

    Butyrate, a short-chain fatty acid produced during microbial fermentation of fiber, induces growth arrest, differentiation, and apoptosis of colonic epithelial cells in vitro, and our prior work has shown that this induction is tightly linked to mitochondrial activity. Here we demonstrate that 12 h following induction, SW620 human colonic carcinoma cells accumulate simultaneously in G0-G1 and G2-M of the cell cycle. Four h later, during this G0-G1 to G2-M arrest, cells begin to undergo apoptosis. Using a series of unrelated agents that modulate mitochondrial functions, we demonstrate that mitochondrial electron transport and membrane potential are critical in initiation of this butyrate-mediated growth arrest and apoptosis. Colonic tumorigenesis is characterized by abnormalities in proliferation, apoptosis, and mitochondrial activities. Thus, butyrate may reduce risk for colon cancer by inducing a pathway that enhances mitochondrial function, ultimately resulting in initiation of growth arrest and apoptosis of colonic epithelial cells. PMID:9149903

  13. Graphite and fiberglass additives for improving high-rate partial-state-of-charge cycle life of valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Valenciano, J.; Sánchez, A.; Trinidad, F.; Hollenkamp, A. F.

    In order to accommodate regenerative braking energy input in hybrid and mild hybrid vehicles while maintaining boosting power at high rates of discharge, valve-regulated lead-acid (VRLA) batteries must operate permanently at partial-state-of-charge (PSoC) conditions. As a consequence, new failure modes appear, e.g., irreversible sulfation in negative plates, that have to be overcome. In this way, work has been done to apply some solutions like improving charge acceptance in this "sulfated medium". Several batches of 6 V 20 Ah AGM VRLA batteries with spiral cell design have been assembled and tested, each batch containing novel additives in the negative active material (NAM). It has been observed that the addition of a sufficient amount of expanded graphite significantly improves cycle life under PSoC conditions. Moreover, life duration is also extended, although to a lesser extent, by using a novel fiberglass which increases surface area of NAM.

  14. The seed's protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors.

    PubMed

    Ayerza, Ricardo

    2009-01-01

    As a botanical source, variability in chia seed composition could be expected between growing locations, and between years within a location, due to genotype and environment effects as well genetic x environment's interactions. The objective of the present study was to determine the location effect on the growing cycle length, and seed's protein content, lipid content, and fatty acid profiles, of a single chia genotype. Seeds of chia genotype Tzotzol grown on eight sites in five different ecosystems were tested. One site was in Argentina, in the Semi-Arid Chaco ecosystem (T(5)); one was in Bolivia, in the Sub-Humid Chaco ecosystem (T(4)); and six in Ecuador, one in the Coastal Desert (T(3)), two on the Tropical Rain Forest (T(2)), and three in the Inter-Andean Dry Valley ecosystem (T(1)). Seeds from plants grown in T(4) and in T(3) contained significantly (P <0.05) more protein percentage than did seeds from the other three ecosystems. No significant (P <0.05) differences in protein content were found between T(3) and T(4), and between T(1), T(2), and T(5). Seeds from T(1) and T(5) ecosystems, with 33.5 and 32.2%, respectively, were the numerically highest oil content producers, but their results were only significantly (P <0.05) higher when compared with the T(2) seeds. Significant (P <0.05) differences in palmitic, stearic, oleic, linoleic and alpha-linolenic fatty acids between oils from seeds grown in different ecosystems were detected, however. Oil of seeds grown in the T(3) ecosystem had the palmitic, stearic and oleic fatty acids' highest contents. Palmitic and oleic fatty acid levels were significantly (P <0.05) higher when were compared to that of seeds grown in the T(1) ecosystem, and stearic when was compared to that of seeds grown in the T(5) ecosystem; omega-6 linoleic fatty acid content was significantly (P <0.05) lower in oils of seeds produced in T(1), and T(2) than in those produced in T(3), T(4), and T(5) ecosystems; omega-3 alpha-linolenic fatty

  15. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid.

    PubMed Central

    Félix, M A; Cohen, P; Karsenti, E

    1990-01-01

    In Xenopus embryos, the cell cycle is abbreviated to a rapid alternation between interphase and mitosis. The onset of each M phase is induced by the periodic activation of the cdc2 kinase which is triggered by a threshold level of cyclins and apparently involves dephosphorylation of p34cdc2. We have prepared post-ribosomal supernatants from eggs sampled during interphase (interphase extracts) and just before the first mitosis of the early embryonic cell cycle (prophase extracts). In 'interphase extracts', the cdc2 kinase never activates spontaneously upon incubation at room temperature whereas in 'prophase extracts' it does. We show here that in 'interphase extracts', specific inhibition of type 2A phosphatase by okadaic acid induces cdc2 kinase activation. This requires a subthreshold level of cyclin and the presence of a particulate factor in the extract. Inhibition of type 1 phosphatases by inhibitor 1 and inhibitor 2 never results in cdc2 kinase activation. These results demonstrate that during the period of cyclin accumulation, cdc2 kinase activation is inhibited by a type 2A phosphatase. In 'prophase extracts', spontaneous activation of the cdc2 kinase is inhibited by beta-glycerophosphate and NaF, but not by okadaic acid, inhibitor 1 and inhibitor 2 or divalent cation chelation. This demonstrates that when enough cyclin has accumulated, cdc2 kinase activation involves a protein phosphatase which must be distinct from the type 1 and 2A phosphatases, and from the calcium-dependent (type 2B) and magnesium-dependent (type 2C) phosphatases. Images Fig. 4. PMID:2155777

  16. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  17. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment.

    PubMed

    Park, Eunmi

    2016-06-01

    Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231. PMID:26958638

  18. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment

    PubMed Central

    Park, Eunmi

    2016-01-01

    Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231. PMID:26958638

  19. Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations

    NASA Astrophysics Data System (ADS)

    Branfireun, Brian A.; Bishop, Kevin; Roulet, Nigel T.; Granberg, Gunnar; Nilsson, Mats

    Sulphate-reducing bacteria have been identified as primary methylators of mercury (Hg) in the laboratory and in field investigations. However, no studies have investigated the effect of long-term deposition of sulphate on methylmercury (MeHg) dynamics in peatlands, which are known to be significant sources of MeHg to downstream waters in the boreal forest zone. As an ancillary experiment to a larger project investigating the effects of acid rain constituents on peatland carbon dynamics, the influence of experimentally elevated Na2SO4 and/or NH4NO3 deposition on peat pore water MeHg concentrations was determined using a simple mesocosm experimental design. After three years, additions of S in amounts equivalent to the 1980s dry and wet deposition in Southern Sweden resulted in peat pore water MeHg concentrations up to six times above background levels. Elevated N loads had no effect on pore water MeHg concentrations.

  20. An efficient proton-coupled electron-transfer process during oxidation of ferulic acid by horseradish peroxidase: coming full cycle.

    PubMed

    Derat, Etienne; Shaik, Sason

    2006-10-25

    Quantum mechanics/molecular mechanics calculations were utilized to study the process of oxidation of a native substrate (ferulic acid) by the active species of horseradish peroxidase (Dunford, H. B. Heme Peroxidases; Wiley-VCH: New York, 1999), Compound I and Compound II, and the manner by which the enzyme returns to its resting state. The results match experimental findings and reveal additional novel features. The calculations demonstrate that both oxidation processes are initiated by a proton-coupled electron-transfer (PCET) step, in which the active species of the enzyme participate only as electron-transfer partners, while the entire proton-transfer event is being relayed from the substrate to and from the His42 residue by a water molecule (W402). The reason for the observed (Henriksen, A; Smith, A. T.; Gajhede, M. J. Biol. Chem. 1999, 274, 35005-35011) similar reactivities of Compound I and Compound II toward ferulic acid is that the reactive isomer of Compound II is the, hitherto unobserved, Por(*)(+)Fe(III)OH isomer that resembles Compound I. The PCET mechanism reveals that His42 and W402 are crucial moieties and they determine the function of the HRP enzyme and account for its ability to perform substrate oxidation (Poulos, T. L. Peroxidases and Cytochrome P450. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 4, pp 189). In view of the results, the possibility of manipulating substrate oxidation by magnetic fields is an intriguing possibility. PMID:17044722

  1. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  2. Non-growing Rhodopseudomonas palustris Increases the Hydrogen Gas Yield from Acetate by Shifting from the Glyoxylate Shunt to the Tricarboxylic Acid Cycle*

    PubMed Central

    McKinlay, James B.; Oda, Yasuhiro; Rühl, Martin; Posto, Amanda L.; Sauer, Uwe; Harwood, Caroline S.

    2014-01-01

    When starved for nitrogen, non-growing cells of the photosynthetic bacterium Rhodopseudomonas palustris continue to metabolize acetate and produce H2, an important industrial chemical and potential biofuel. The enzyme nitrogenase catalyzes H2 formation. The highest H2 yields are obtained when cells are deprived of N2 and thus use available electrons to synthesize H2 as the exclusive product of nitrogenase. To understand how R. palustris responds metabolically to increase H2 yields when it is starved for N2, and thus not growing, we tracked changes in biomass composition and global transcript levels. In addition to a 3.5-fold higher H2 yield by non-growing cells we also observed an accumulation of polyhydroxybutyrate to over 30% of the dry cell weight. The transcriptome of R. palustris showed down-regulation of biosynthetic processes and up-regulation of nitrogen scavenging mechanisms in response to N2 starvation but gene expression changes did not point to metabolic activities that could generate the reductant necessary to explain the high H2 yield. We therefore tracked 13C-labeled acetate through central metabolic pathways. We found that non-growing cells shifted their metabolism to use the tricarboxylic acid cycle to metabolize acetate in contrast to growing cells, which used the glyoxylate cycle exclusively. This shift enabled cells to more fully oxidize acetate, providing the necessary reducing power to explain the high H2 yield. PMID:24302724

  3. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    PubMed

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication. PMID:17400318

  4. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.

    PubMed

    Kiefler, Ines; Bringer, Stephanie; Bott, Michael

    2015-11-01

    The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G. oxydans, we attempted to establish a heterologous Sdh in this species. Expression of Acetobacter pasteurianus sdhCDAB in G. oxydans did not yield an active succinate dehydrogenase. Co-expression of a putative sdhE gene from A. pasteurianus, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)(‒1). The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)(‒1), indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. A. pasteurianus SdhE could be functionally replaced by SdhE from the γ-proteobacterium Serratia sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active A. pasteurianus Sdh in G. oxydans. Studies with the Sdh-positive G. oxydans strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase. PMID:26399411

  5. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  6. Strong enhancement of spin ordering by A -site magnetic ions in the ferrimagnet CaC u3F e2O s2O12

    NASA Astrophysics Data System (ADS)

    Deng, Hongshan; Liu, Min; Dai, Jianhong; Hu, Zhiwei; Kuo, Changyang; Yin, Yunyu; Yang, Junye; Wang, Xiao; Zhao, Qing; Xu, Yuanji; Fu, Zhaoming; Cai, Jianwang; Guo, Haizhong; Jin, Kuijuan; Pi, Tunwen; Soo, Yunliang; Zhou, Guanghui; Cheng, Jinguang; Chen, Kai; Ohresser, Philippe; Yang, Yi-feng; Jin, Changqing; Tjeng, Liu-Hao; Long, Youwen

    2016-07-01

    A B O3 perovskite is a kind of very important functional material with versatile physical properties. Although B -site chemical substitution with various magnetic ions has been widely investigated, the A -site doping with magnetic transition metal is little known. Here we report A A3'B2B2'O12 -type A - and B -site ordered ferrimagnet CaC u3F e2O s2O12 with magnetic transition metals occupying three different atomic sites (A', B , and B' sites). This compound is synthesized by a special high-pressure annealing process. It possesses a much higher Curie temperature TC of 580 K compared with that of the B -site-only ordered C a2FeOs O6 (TC=320 K ) without magnetic ion at the A site. First-principles numerical calculations reveal that this enhancement primarily originates from the additional spin interaction between the A'-site C u2 + and the B'-site O s5 + , generating a strong C u2 +(↑) F e3 +(↑) O s5 +(↓) ferrimagnetic spin coupling. This work opens up an alternative way for enhancing the spin ordering temperature by introducing A -site magnetic ions.

  7. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions.

    PubMed

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W

    2014-10-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes. PMID:25296310

  8. Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions

    PubMed Central

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W.

    2014-01-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes. PMID:25296310

  9. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner

    PubMed Central

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K.; Zuther, Ellen

    2015-01-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. PMID:26208642

  10. The Multiple DSF-family QS Signals are Synthesized from Carbohydrate and Branched-chain Amino Acids via the FAS Elongation Cycle

    PubMed Central

    Zhou, Lian; Yu, Yonghong; Chen, Xiping; Diab, Abdelgader Abdeen; Ruan, Lifang; He, Jin; Wang, Haihong; He, Ya-Wen

    2015-01-01

    Members of the diffusible signal factor (DSF) family are a novel class of quorum sensing (QS) signals in diverse Gram-negative bacteria. Although previous studies have identified RpfF as a key enzyme for the biosynthesis of DSF family signals, many questions in their biosynthesis remain to be addressed. In this study with the phytopathogen Xanthomonas campestris pv. campestris (Xcc), we show that Xcc produces four DSF-family signals (DSF, BDSF, CDSF and IDSF) during cell culture, and that IDSF is a new functional signal characterized as cis-10-methyl-2-dodecenoic acid. Using a range of defined media, we further demonstrate that Xcc mainly produces BDSF in the presence of carbohydrates; leucine and valine are the primary precursor for DSF biosynthesis; isoleucine is the primary precursor for IDSF biosynthesis. Furthermore, our biochemical analyses show that the key DSF synthase RpfF has both thioesterase and dehydratase activities, and uses 3-hydroxydedecanoyl-ACP as a substrate to produce BDSF. Finally, our results show that the classic fatty acid synthesis elongation cycle is required for the biosynthesis of DSF-family signals. Taken all together, these findings establish a general biosynthetic pathway for the DSF-family quorum sensing signals. PMID:26289160

  11. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.

    PubMed

    von Caemmerer, Susanne; Griffiths, Howard

    2009-05-01

    To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species. PMID:19210641

  12. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.

    2016-09-01

    The correlation between chemical weathering fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating weathering fluxes. However, the effect of weathering on pCO2 is not solely determined by the total mass flux. Instead, the effect of weathering on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace weathering reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid weathering as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that weathering in the Andes Mountains is a CO2 source whereas foreland weathering is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate weathering increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced weathering on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.

  13. Observations of Sub-3 nm Particles and Sulfuric acid Concentrations during Aerosol Life Cycle Intensive Observation Period 2011 in Long Island, New York

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kanawade, V. P.; You, Y.; Hallar, A. G.; Mccubbin, I. B.; Chirokova, G.; Sedlacek, A. J.; Springston, S. R.; Wang, J.; Kuang, C.; Lee, Y.; McGraw, R. L.; Mikkila, J.; Lee, S.

    2012-12-01

    Atmospheric new particle formation (NPF) is an important source of aerosol particles. But the NPF processes are not well understood, in part because of our limited understanding of the formation of atmospheric sub-3 nm size aerosols and the limited number of simultaneous observations of particle size distributions and the aerosol nucleation precursors. During Aerosol Life Cycle Intensive Observation Period (July-August 2011) in Long Island, New York, we deployed a particle size magnifier (Airmodus A09) running at different working fluid saturation ratios and a TSI CPC3776 to extract the information of sub-3 nm particles formation. A scanning mobility particle spectrometer (SMPS), a chemical ionization mass spectrometer (CIMS), and a number of atmospheric trace gas analyzers were used to simultaneously measure aerosol size distributions, sulfuric acid, and other possible aerosol precursors, respectively. Our observation results show that sub-3 nm particles existed during both NPF and non-NPF events, indicating the formation of sub-3nm particle didn't always lead to NPF characterized by typical banana shaped aerosol size distributions measured by SMPS. However, sub-3 nm particles were much higher during NPF events. Sub-3 nm particles were well-correlated with sulfuric acid showing the same diurnal variations and noontime peaks, especially for NPF days. These results are consistent with laboratory studies showing that formation of sub-3 nm particles is very sensitive to sulfuric acid (than amines and ammonia) [Yu et al. GRL 2012]. HYSPLIT back trajectory analysis indicates that air masses from Great Lakes, containing more SO2, VOCs and secondary organics, may contribute to growth of sub-3 nm particles and NPF.

  14. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-10-17

    Oxygenated monoterpenes citral and carvacrol are common constituents of many essential oils (EOs) that have been extensively studied as antimicrobial agents but whose mechanisms of microbial inactivation have not been totally elucidated. A recent study described a mechanism of Escherichia coli death for (+)-limonene, a hydrocarbon monoterpene also frequently present in EOs, similar to the common mechanism proposed for bactericidal antibiotics. This mechanism involves the formation of Fenton-mediated hydroxyl radical, a reactive oxygen species (ROS), via tricarboxylic acid (TCA) cycle, which would ultimately inactivate cells. Our objective was to determine whether E. coli MG1655 inactivation by citral and carvacrol follows a similar mechanism of cell death. Challenging experiments with 300μL/L citral and 100μL/L carvacrol inactivated at least 2.5log10cycles of exponentially growing cells in 3h under aerobic conditions. The presence of thiourea (an ROS scavenger) reduced cell inactivation in 2log10cycles, demonstrating the role of ROS in cell death. Decreased resistance of a ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) indicated that citral and carvacrol caused oxidative damage to DNA. Although the mechanism of E. coli inactivation by carvacrol and citral was similarly mediated by ROS, their formation did not follow the same pathways described for (+)-limonene and bactericidal drugs because neither Fenton reaction nor NADH production via the TCA cycle was involved in cell death. Moreover, further experiments demonstrated antimicrobial activity of citral and carvacrol in anaerobic environments without the involvement of ROS. As a consequence, cell death by carvacrol and citral in anaerobiosis follows a different mechanism than that observed under aerobic conditions. These results demonstrated a different mechanism of inactivation by citral and carvacrol with regard to (+)-limonene and bactericidal antibiotics, indicating the

  15. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control. PMID:26254104

  16. Okadaic acid overcomes the blocked cell cycle caused by depleting Cdc2-related kinases in Trypanosoma brucei

    SciTech Connect

    Li Ziyin; Tu Xiaoming; Wang, Ching C. . E-mail: ccwang@cgl.ucsf.edu

    2006-11-01

    Mitosis and cytokinesis are highly coordinated in eukaryotic cells. But procyclic-form Trypanosoma brucei under G1 or mitotic arrest is still capable of dividing, resulting in anucleate daughter cells (zoids). Okadaic acid (OKA), an inhibitor of protein phosphatases PP1 and PP2A, is known to inhibit kinetoplast replication and cell division yielding multinucleate cells with single kinetoplasts. However, when OKA was applied to cells arrested in G1 or G2/M phase via RNAi knockdown of specific cdc2-related kinases (CRKs), DNA synthesis and nuclear division were resumed without kinetoplast replication or cell division, resulting in multinucleate cells as in the wild type. Cells arrested in G2/M via depleting the mitotic cyclin CycB2 or an aurora B kinase homologue TbAUK1 were, however, not released by OKA treatment. The phenomenon is thus similar to the OKA activation of Cdc2 in Xenopus oocyte by inhibiting PP2A [Maton, et al., Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J. Cell Sci. 118 (2005) 2485-2494]. A simultaneous knockdown of the seven PP1s or the PP2A catalytic subunit in T. brucei by RNA interference did not, however, result in multinucleate cells. This could be explained by assuming a negative regulation, either directly or indirectly, of CRK by an OKA-sensitive phosphatase, which could be a PP2A as in the Xenopus oocyte and a positive regulation of kinetoplast replication by an OKA-susceptible protein(s). Test of a PP2A-specific inhibitor, fostriecin, on cells arrested in G2/M via CRK depletion or a knockdown of the PP2A catalytic subunit from the CRK-depleted cells both showed a partial lift of the G2/M block without forming multinucleate cells. These observations support the abovementioned assumption and suggest the presence of a novel OKA-sensitive protein(s) regulating kinetoplast replication that still remains to be identified.

  17. The impact of acid mine drainage on the methylmercury cycling at the sediment-water interface in Aha Reservoir, Guizhou, China.

    PubMed

    He, Tianrong; Zhu, Yuzhen; Yin, Deliang; Luo, Guangjun; An, Yanlin; Yan, HaiYu; Qian, Xiaoli

    2015-04-01

    The methylmercury (MeHg) cycling at water-sediment interface in an acid mine drainage (AMD)-polluted reservoir (Aha Reservoir) and a reference site (Hongfeng Reservoir) were investigated and compared. Both reservoirs are seasonal anoxic and alkaline. The concentrations of sulfate, sulfide, iron, and manganese in Aha Reservoir were enriched compared to the reference levels in Hongfeng reservoir due to the AMD input. It was found that the MeHg accumulation layer in Aha Reservoir transitioned from the top sediment layer in winter to the water-sediment interface in spring and then to the overlying water above sediment in summer. It supported the assumption that spring methylation activity may start in sediments and migrate into the water column with seasonal variation. The weaker methylation in sediment during spring and summer was caused by the excessive sulfide (∼15-20 μM) that reduced the bioavailability of mercury, while sulfate reduction potential was in the optimal range for the methylation in the overlying water. This led to a transport flux of MeHg from water to sediment in spring and summer. In contrast, such inversion of MeHg accumulation layer did not occur in Hongfeng Reservoir. The sulfate reduction potential was in the optimal range for the methylation in top sediment, and dissolved MeHg was positively related to sulfide in pore water of Hongfeng Reservoir (r = 0.67, p < 0.001). This result suggested that accumulation of MeHg in lake water and cycling of MeHg at sediment-water interface associate with some sensitive environmental factors, such as sulfur. PMID:25483970

  18. Combined Sulfur K-edge XANES Spectroscopy and Stable Isotope Analysis of Fulvic Acids and Groundwater Sulfate Identify Sulfur Cycling in a Karstic Catchment Area

    SciTech Connect

    Einsiedl,F.; Schafer, T.; Northrup, P.

    2007-01-01

    Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values compared to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.

  19. Inhibition of phosphotidylinositol-3 kinase pathway by a novel naphthol derivative of betulinic acid induces cell cycle arrest and apoptosis in cancer cells of different origin

    PubMed Central

    Majeed, R; Hamid, A; Sangwan, P L; Chinthakindi, P K; Koul, S; Rayees, S; Singh, G; Mondhe, D M; Mintoo, M J; Singh, S K; Rath, S K; Saxena, A K

    2014-01-01

    Betulinic acid (BA) is a pentacyclic triterpenoid natural product reported to inhibit cell growth in a variety of cancers. However, the further clinical development of BA got hampered because of poor solubility and pharmacological properties. Interestingly, this molecule offer several hotspots for structural modifications in order to address its associated issues. In our endeavor, we selected C-3 position for the desirable chemical modification in order to improve its cytotoxic and pharmacological potential and prepared a library of different triazoline derivatives of BA. Among them, we previously reported the identification of a potential molecule, that is, 3{1N(5-hydroxy-naphth-1yl)-1H-1,2,3-triazol-4yl}methyloxy betulinic acid (HBA) with significant inhibition of cancer cell growth and their properties. In the present study, we have shown for the first time that HBA decreased the expression of phosphotidylinositol-3 kinase (PI3K) p110α and p85α and caused significant downregulation of pAKT and of NFκB using human leukemia and breast cancer cells as in vitro models. Further it was revealed that PI3K inhibition by HBA induced cell cycle arrest via effects on different cell cycle regulatory proteins that include CDKis cyclins and pGSK3β. Also, this target-specific inhibition was associated with mitochondrial apoptosis as was reflected by the increased expression of mitochondrial bax, downregulated bcl2 and decreased mitochondrial levels of cytochrome c, together with reactive oxygen species generation and decline in mitochondrial membrane potential. The apoptotic effectors such as caspase 8, caspase 9 and caspase 3 were found to be upregulated besides DNA repair-associated enzyme, that is, PARP cleavage caused cancer cell death. Pharmacodynamic evaluation revealed that both HBA and BA were safe upto the dose of 2000 mg/kg body weight and with acceptable pharmacodynamic parameters. The in vitro data corroborated with in vivo anticancer activity wherein Ehrlich

  20. Synergistic anticancer properties of docosahexaenoic acid and 5-fluorouracil through interference with energy metabolism and cell cycle arrest in human gastric cancer cell line AGS cells

    PubMed Central

    Gao, Kun; Liang, Qi; Zhao, Zhi-Hao; Li, You-Fen; Wang, Shu-Feng

    2016-01-01

    AIM: To explore the synergistic effect of docosahexaenoic acid (DHA)/5-fluorouracil (5-FU) on the human gastric cancer cell line AGS and examine the underlying mechanism. METHODS: AGS cells were cultured and treated with a series of concentrations of DHA and 5-FU alone or in combination for 24 and 48 h. To investigate the synergistic effect of DHA and 5-FU on AGS cells, the inhibition of cell proliferation was determined by MTT assay and cell morphology. Flow cytometric analysis was also used to assess cell cycle distribution, and the expression of mitochondrial electron transfer chain complexes (METCs) I, II and V in AGS cells was further determined by Western blot analysis. RESULTS: DHA and 5-FU alone or in combination could markedly suppress the proliferation of AGS cells in a significant time and dose-dependent manner. DHA markedly strengthened the antiproliferative effect of 5-FU, decreasing the IC50 by 3.56-2.15-fold in an apparent synergy. The morphological changes of the cells were characterized by shrinkage, cell membrane blebbing and decreased adherence. Cell cycle analysis showed a shift of cells into the G0/G1 phase from the S phase following treatment with DHA or 5-FU (G0/G1 phase: 30.04% ± 1.54% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 56.76% ± 3.14% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). Combination treatment of DHA and 5-FU resulted in a significantly larger shift toward the G0/G1 phase and subsequent reduction in S phase (G0/G1 phase: 69.06% ± 2.63% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 19.80% ± 4.30% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). This synergy was also reflected in the significant downregulation of the expression of METCs in AGS cells. CONCLUSION: Synergistic anticancer properties of DHA and 5-FU may involve interference with energy production of AGS cells via downregulation of METCs and cell cycle arrest. PMID

  1. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink

    PubMed Central

    Wilson, Maxwell Z.; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R.

    2016-01-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal–bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA’s cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  2. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink.

    PubMed

    Wilson, Maxwell Z; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R

    2016-02-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  3. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  4. Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms.

    PubMed

    Kozubal, Mark A; Macur, Richard E; Jay, Zackary J; Beam, Jacob P; Malfatti, Stephanie A; Tringe, Susannah G; Kocar, Benjamin D; Borch, Thomas; Inskeep, William P

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  5. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism.

    PubMed

    Ishii, Yoichi; Imamoto, Yasufumi; Yamamoto, Rie; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2015-04-01

    Achieving high productivity and quality is the final goal of therapeutic antibody development, but the productivity and quality of antibodies are known to be substantially dependent on the nature of the cell lines expressing the antibodies. We characterized two contrasting cell lines that produce trastuzumab, namely cell line A with a high titer and a low aggregate content and cell line B with a low titer and a high aggregate content to identify the causes of the differences. We observed the following differences: cell growth (A > B), proportion of defucosylated oligosaccharides on antibodies (A < B), and proportion of covalent antibody aggregates (A > B). Our results suggest that the high monoclonal antibody (mAb) titers in cell line A is associated with the high proliferation and is not caused by the lactate metabolism shift (switching from lactate production to net lactate consumption). Rather, these differences can be accounted for by the following: levels of tricarboxylic acid cycle intermediates (A > B), ammonium ion levels (A ≤ B), and oxidative stress (A > B). PMID:25449760

  6. [Effect of heavy metals on activity of key enzymes of glyoxylate cycle and content of thiobarbituric acid reactive substances in the germinating soybean Glicine max L.seeds].

    PubMed

    Bezdudnaia, E F; Kaliman, P A

    2008-01-01

    The influence of CoCl2 and CdCl2 on the activity of isocytrate lyase, malate synthase and NAD-malate dehydrogenase in the seed lobes and the composition of malondialdehyde products at early stages of germinating of soybean seeds: after first 24-hours, 72 hours and 96 hours are investigated. It is shown that when germinating in the medium containing no metal salts, isocytrate lyase activity is greatly increased during 96 h and malate synthase is increased after 72 h and is decreased after 96 h of germination period. CoCl2 activated isocytrate lyase activity after 72 hours and decreased malate synthase activity after 96 hours. The lengthening of the primary root under such conditions is noted. CdCl2 inhibited isocytrate lyase activity during first 24 hours and suppressed malate synthase activity after 96 hours. During this process the germ growth is suppressed. CoCl2 increased the composition of malondialdehyde products during each period of germination, and CdCl2 increased malondialdehyde content after 72 and 96 hours. The role of glyoxylate cycle enzymes in transforming fatty acids into carbohydrates and in forming the primary root under the process of germination of seed lobes of soybean is discussed. PMID:18710031

  7. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J.; Németh, Beáta; Starkov, Anatoly A.; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-01-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD+ supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD+ pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD+ derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.—Kiss, G., Konrad, C., Pour-Ghaz, I., Mansour, J. J., Németh, B., Starkov, A. A., Adam-Vizi, V., Chinopoulos, C. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. PMID:24391134

  8. microRNA-34a-Upregulated Retinoic Acid-Inducible Gene-I Promotes Apoptosis and Delays Cell Cycle Transition in Cervical Cancer Cells.

    PubMed

    Wang, Jing-Hua; Zhang, Le; Ma, Yu-Wei; Xiao, Jing; Zhang, Yi; Liu, Min; Tang, Hua

    2016-06-01

    The function of retinoic acid-inducible gene-I (RIG-I) in viral replication is well documented, but its function in carcinogenesis and malignancies as well as relationship with microRNAs (miRNAs) remain poorly understood. miR-34a is an antioncogene in multiple tumors. In our study, RIG-I and miR-34a suppressed cell growth, proliferation, migration, and invasion in cervical cancer cells in vitro. miR-34a was validated as a new regulator of RIG-I by binding to its 3' untranslated region and upregulating its expression level. Furthermore, we revealed that RIG-I and miR-34a enhanced apoptosis, delayed the G1/S/G2 transition of the cell cycle, and inhibited the epithelial-mesenchymal transition process to modulate malignancies in cervical cancer cells. Phenotypic rescue experiments indicated that RIG-I mediates the effects of miR-34a in HeLa and C33A cells. These findings provide new insights into the mechanisms that underlie carcinogenesis and may provide new biomarkers for the diagnosis and therapy of cervical cancer. PMID:26910120

  9. Compound-specific nitrogen isotope analysis of amino acids: a possible new tool for reconstruction of paleo-nitrogen sources and cycling

    NASA Astrophysics Data System (ADS)

    Batista, F. C.; Ravelo, A. C.; McCarthy, M. D.

    2010-12-01

    Compound specific nitrogen isotopes of amino acids (δ 15N-AA) are a unique new geochemical tool, increasingly used in modern ecological and food web studies. For the first time, δ15N-AA allows elucidation of the molecular-level basis of whole sedimentary δ15N values and diagenetic alteration of the primary signal. Thus, this technique has implications for paleoceanographic studies of nitrogen cycling, in particular, understanding whole sediment δ15N reconstructions. Here we analyze δ15N-AA on a suite of samples (plankton tows, sediment traps and multicores) collected in the Santa Barbara Basin to investigate preservation and alteration of individual δ15N-AA signals from primary production, through export of primary production from the surface ocean, and finally during early sedimentary diagenesis. We use this sample suite to compare specific aspects of δ15N-AA with bulk δ15N-AA values to explore the potential of these new measurements to: (1) understand the molecular basis of the bulk δ15N-AA record, and (2) monitor specific AA expected to have unaltered δ15N-AA signatures representative of exported primary production.

  10. Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells

    PubMed Central

    Zhang, Wei; Qiao, Lixing; Wang, Xinchao; Senthilkumar, Ravichandran; Wang, Fei; Chen, Baoan

    2015-01-01

    The purpose of this study was to determine the potential benefits of combination therapy using dimercaptosuccinic acid modified iron oxide (DMSA-Fe3O4) magnetic nanoparticles (MNPs) combined with nontoxic concentration of bortezomib (BTZ) and gambogic acid (GA) on multiple myeloma (MM) RPMI-8226 cells and possible underlying mechanisms. The effects of BTZ-GA-loaded MNP-Fe3O4 (BTZ-GA/MNPs) on cell proliferation were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,4,-diphenyltetrazolium bromide (MTT) method. Cell cycle and apoptosis were detected using the terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM). Furthermore, DMSA-Fe3O4 MNPs were characterized in terms of distribution, apoptotic morphology, and cellular uptake by transmission electron microscopy (TEM) and 4,6-diamidino-2-phenylindole (DAPI) staining. Subsequently, the effect of BTZ-GA/MNPs combination on PI3K/Akt activation and apoptotic-related protein were appraised by Western blotting. MTT assay and hematoxylin and eosin (HE) staining were applied to elevate the functions of BTZ-GA/MNPs combination on the tumor xenograft model and tumor necrosis. The results of this study revealed that the majority of MNPs were quasi-spherical and the MNPs taken up by cells were located in the endosome vesicles of cytoplasm. Nontoxic concentration of BTZ-GA/MNPs increased G2/M phase cell cycle arrest and induced apoptosis in RPMI-8226 cells. Furthermore, the combination of BTZ-GA/MNPs activated phosphorylated Akt levels, Caspase-3, and Bax expression, and down-regulated the PI3K and Bcl-2 levels significantly. Meanwhile, the in vivo tumor xenograft model indicated that the treatment of BTZ-GA/MNPs decreased the tumor growth and volume and induced cell apoptosis and necrosis. These findings suggest that chemotherapeutic agents polymerized MNPs-Fe3O4 with GA could serve as a better alternative for targeted therapeutic approaches to treat multiple

  11. Differential effects of deoxycholic acid versus selenium metabolite methylselenol on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A typical part of the Western diet is a high fat intake that leads to increased levels of fecal bile acids, and these bile acids, primarily deoxycholic acid (DCA) in humans, have been believed to be tumor promoters of colon cancer. The cell growth inhibition induced by bile acid deoxyc...

  12. Investigations on the "Extreme" Microbial Arsenic Cycle within the Sediments of an Acidic Impoundment of the Former Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Blum, J. S.; Hoeft McCann, S. E.; Bennett, S.; Miller, L. G.; Stoneburner, B.; Saltikov, C.; Oremland, R. S.

    2014-12-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between this element's +5 [arsenate; As(V)] and + 3 [arsenite; As(III)] oxidation states has been well established. Most research has focused upon circum-neutral pH environments, such as freshwater lake and aquifer sediments, and extreme environments like hot springs and hypersaline soda lakes have also been well investigated. In contrast, little work has been conducted on acidic environments. The azure-hued, clear waters of the Herman Pit are acidic (pH 2-4), and overlie oxidized sediments that have a distinctive red/orange coloration indicative of the presence of ferrihydrites and other Fe(III) minerals. There is extensive ebullitive release of geothermal gases from the lake bottom in the form of numerous continuous-flow seeps which are composed primarily of mixtures of CO2, CH4, and H2S. We collected near-shore surface sediments with an Eckman grab, and stored the "soupy" material in filled mason jars kept at 4˚C. Initial experiments were conducted using 3:1 mixtures of lake water: sediment so as to generate dilute slurries which were amended with mM levels of electron acceptors (arsenate, nitrate, oxygen), electron donors (arsenite, acetate, lactate, hydrogen), and incubated under N2, air, or H2. Owing to the large adsorptive capacity of the Fe(III)-rich slurries, we were unable to detect As(V) or As(III) in the aqueous phase of either live or autoclaved controls, although the former consumed lactate, acetate, nitrate, or hydrogen, while the latter did not. This prompted us to conduct a series of further diluted slurry experiments using the live materials from the first as a 10 % addition to lakewater. In these experiments we observed reduction of As(V) to As(III) in anoxic slurries and that rates were enhanced by addition of electron donors (H2, acetate, or lactate). We also observed oxidation of As(III) to As(V) in oxic slurries and in anoxic slurries amended with nitrate. These

  13. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer's disease.

    PubMed

    Shaerzadeh, Fatemeh; Motamedi, Fereshteh; Khodagholi, Fariba

    2014-11-01

    3-Methyladenine (3-MA), as a PI3K inhibitor, is widely used for inhibition of autophagy. Inhibition of PI3K class I leads to inhibition of Akt phosphorylation, a central molecule involved in diverse arrays of intracellular cascades in nervous system. Accordingly, in the present study, we aimed to determine the alterations of specific mitochondrial biogenesis markers and mitochondrial function in 3-MA-injected rats following amyloid beta (Aβ) insult. Our data revealed that inhibition of Akt phosphorylation downregulates master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our data also showed that decrease in PGC-1α level presumably is due to decrease in the phosphorylation of cAMP-response element binding and AMP-activated kinase, two upstream activators of PGC-1α. As a consequence, the level of some mitochondrial biogenesis factors including nuclear respiratory factor-1, mitochondrial transcription factor A, and Cytochrome c decreased significantly. Also, activities of tricarboxylic acid cycle (TCA) enzymes such as Aconitase, a-ketoglutarate dehydrogenase, and malate dehydrogenase reduced in the presence of 3-MA with or without Aβ insult. Decrease in mitochondrial biogenesis factors and TCA enzyme activity in the rats receiving 3-MA and Aβ were more compared to the rats that received either alone; indicating the additive destructive effects of these two agents. In agreement with our molecular results, data obtained from behavioral test (using novel objective recognition test) indicated that inhibition of Akt phosphorylation with or without Aβ injection impaired novel recognition (non-spatial) memory. Our results suggest that 3-MA amplified deleterious effects of Aβ by targeting central molecule Akt. PMID:25135709

  14. Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy.

    PubMed

    Sieving, P A; Chaudhry, P; Kondo, M; Provenzano, M; Wu, D; Carlson, T J; Bush, R A; Thompson, D A

    2001-02-13

    Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329-333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534-537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565-1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration. PMID:11172037

  15. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  16. CypD−/− Hearts HaveAltered Levels of Proteins Involved in Krebs Cycle, Branch Chain Amino Acid Degradation and Pyruvate Metabolism

    PubMed Central

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-01-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca2+. The present study aimed to characterize the metabolic changes in CypD−/− hearts. Initially, we used a proteomics approach to examine protein changes in CypD−/− mice. Using pathway analysis we found that CypD−/− hearts have alteration in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine -palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD−/− mice. In summary, CypD−/− hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP. PMID:23262437

  17. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  18. Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation

    PubMed Central

    MAWATARI, TOSHIKI; NINOMIYA, ITASU; INOKUCHI, MASAFUMI; HARADA, SHINICHI; HAYASHI, HIRONORI; OYAMA, KATSUNOBU; MAKINO, ISAMU; NAKAGAWARA, HISATOSHI; MIYASHITA, TOMOHARU; TAJIMA, HIDEHIRO; TAKAMURA, HIROYUKI; FUSHIDA, SACHIO; OHTA, TETSUO

    2015-01-01

    Breast cancer encompasses a heterogeneous group of diseases at the molecular level. It is known that chemo-sensitivity of breast cancer depends on its molecular subtype. We investigated the growth inhibitory effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of this inhibition on four breast cancer cell lines with different molecular subtypes. The growth inhibitory effect of VPA in the four different breast cancer cell lines was investigated. The alteration of levels of p21 WAF1, cleaved caspase-3, acetylated Heat shock protein (Hsp) 90, acetylated Hsp70, and acetylated α-tubulin by VPA was examined in VPA-sensitive, human epidermal receptor 2 (HER2)-overexpressing SKBR3 cells. The cell growth inhibition of breast cancer cell lines was dependent on the dose and exposure time of VPA. The cell growth of HER2-overexpressing SKBR3 cell line was inhibited by VPA to a much greater degree than other cell lines studied. In SKBR3 cell line, VPA upregulated expression of p21 WAF1 and cleaved caspase-3 in the early phase. VPA markedly increased Hsp70 acetylation in a time-dependent manner but did not increase Hsp90 acetylation. Our data demonstrated that VPA inhibited cell proliferation and induced cell cycle arrest and apoptosis of HER2-overexpressing breast cancer cells. This anti-proliferation effect might be the direct function of VPA as an HDAC inhibitor. We propose an alternative mechanism whereby acetylation of Hsp70 disrupts the function of Hsp90 and leads to downregulation of its client proteins, including HER2 that might be the indirect function of VPA, in the sense that non-histone proteins are acetylated. PMID:26497673

  19. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  20. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Tong, Pengyang; Zhao, Ruirui; Zhang, Rongbo; Yi, Fenyun; Shi, Guang; Li, Aiju; Chen, Hongyu

    2015-07-01

    In this work, lead (Ⅱ)-containing activated carbon (Pb@C) is prepared as the additive of negative active mass (NAM), aiming to enhance the electrochemical characteristics of the lead-acid battery. The characters of the Pb@C materials and their electrochemical properties are characterized by XRD, SEM, back-scattering electron image (BESI) and electrochemical methods. The lead (Ⅱ) ions disperse well in the carbon bulk of the obtained Pb@C materials as observed, and these materials exhibit remarkable higher specific capacitance and higher hydrogen evolution over-potential compared with original carbons. Many 2 V lead-acid batteries are assembled manually in our lab, and then the batteries are disassembled after formation and high-rate-partial-state-of-charge (HRPSoC) cycling. Results manifest that the Pb@C additives exhibit high affinity to lead and act as a porous-skeleton in the formation process as well as under HRPSoC cycling conditions, leading to the small and fine formation of PbSO4 particles and accordingly higher active material utilization rate more than 50%, better cycling performance and charging acceptance. Besides, excellent cycle performances of these batteries have great relationship with the dazzling hydrogen evolution performance of Pb@C materials. A possible working mechanism is also proposed based on the testing data in this paper.

  1. Fragile cycles

    NASA Astrophysics Data System (ADS)

    Bonatti, Ch.; Díaz, L. J.

    We study diffeomorphisms f with heterodimensional cycles, that is, heteroclinic cycles associated to saddles p and q with different indices. Such a cycle is called fragile if there is no diffeomorphism close to f with a robust cycle associated to hyperbolic sets containing the continuations of p and q. We construct a codimension one submanifold of Diff(S×S) that consists of diffeomorphisms with fragile heterodimensional cycles. Our construction holds for any manifold of dimension ⩾4.

  2. Evaluation of the environmental implications of the incorporation of feed-use amino acids in the manufacturing of pig and broiler feeds using Life Cycle Assessment.

    PubMed

    Mosnier, E; van der Werf, H M G; Boissy, J; Dourmad, J-Y

    2011-12-01

    The incorporation of feed-use (FU) amino acids (AAs) in diets results in a reduced use of protein-rich ingredients such as soybean meal, recognized to have elevated contributions to environmental impacts. This study investigated whether the incorporation of L-lysine.HCl, L-threonine and FU-methionine reduces the environmental impacts of pig and broiler feeds using Life Cycle Assessment. The following impact categories were considered: climate change, eutrophication, acidification, terrestrial ecotoxicity, cumulative energy demand and land occupation. Several feeds were formulated either to minimize the cost of the formulation (with or without AA utilization), to maximize AA incorporation (i.e. the cost of AA was considered to be similar to that of soybean meal), or to minimize greenhouse gas emissions. For both pig and broiler feeds, calculations were made first using only cereals and soybean meal as main ingredients and then using cereals and several protein-rich ingredients (soybean meal, rapeseed meal and peas). In addition, these calculations were performed using two types of soybean meal (from Brazil, associated with recent deforestation or not). For broiler feeds, two types of maize (from France, irrigated, with mineral fertilization v. not irrigated, with animal manure fertilization) were also tested. Regarding the feeds formulated to minimize cost, incorporation of AA decreased the values for eutrophication, terrestrial ecotoxicity and cumulative energy demand of both pig and broiler feeds, regardless of the base ingredients. Reduction in climate change and acidification due to the incorporation of AA depended on the nature of the feed ingredients, with the effect of AA incorporation being greater when combined with ingredients with high impacts such as soybean meal associated with deforestation. Feeds formulated to maximize AA incorporation generally had a similar composition to those formulated to minimize cost, suggesting that the costs of AA were not

  3. Altered secretion of selected arachidonic acid metabolites during subclinical endometritis relative to estrous cycle stage and grade of fibrosis in mares.

    PubMed

    Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Siemieniuch, Marta J

    2015-08-01

    Mares that fail to become pregnant after repeated breeding, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). Contact with infectious agents results in altered synthesis and secretion of inflammatory mediators, including cytokines and arachidonic acid metabolites, and disturbs endometrial functional balance. To address the hypothesis that SE affects the immune endocrine status of the equine endometrium, spontaneous secretion of prostaglandin E(2) (PGE(2)), prostaglandin F(2α) (PGF(2α)), 6-keto-PGF(1α )(a metabolite of prostacyclin I(2)), leukotriene B(4) (LTB(4)), and leukotriene C(4) (LTC(4)) was examined. In addition, secretion of these factors was examined relative to the grade of inflammation, fibrosis, and estrous cycle stage. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. On the basis of histopathologic assessment, mares were classified as suffering from first-grade SE, second-grade SE, or being healthy. The grade of fibrosis and the infiltration of endometrial tissue with polymorphonuclear leukocytes were examined by routine hematoxylin-eosin staining. In mares suffering from SE, the secretion profiles of PGE(2), 6-keto-PGF(1α), LTB(4), and LTC(4) were changed compared to mares that did not suffer from endometritis. The secretion of PGE(2) and 6-keto-PGF1α was increased, whereas that of LTB(4) and LTC(4) was decreased. Secretion of 6-keto-PGF(1α) was increased in first- and second-grade SE (P < 0.01). The concentration of PGI(2) metabolite was increased only in inflamed endometrium, independently of the inflammation grade, but was not affected by fibrosis. Prostaglandin E(2) secretion was increased in second-grade SE (P < 0.05). The secretion of LTB(4) decreased in both first- and second-grade SE (P < 0.05), whereas secretion of LTC(4) was decreased only in second-grade SE (P < 0.05). Fibrosis did not change the secretion profile of PGE(2), PGF(2α), and 6

  4. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  5. Self-organizing biochemical cycles

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way.

  6. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  7. Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid deoxycholic acid (DCA) is a known tumor promoter in colon tumor development. The cell growth inhibition induced by DCA may cause compensatory hyperproliferation of colonic epithelial cells and provide selection for subpopulations of cells resistant to DCA’s inhibitory effect. These survivi...

  8. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells, and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer ...

  9. Plasma Acylcarnitine Profiles Suggest Incomplete Fatty Acid ß-Oxidation and Altered Tricarboxylic Cycle Activity in Type 2 Diabetic African-American Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inefficient muscle long-chain fatty acid (LCFA) combustion is associated with insulin resistance, but molecular links between mitochondrial fat catabolism and insulin action remain controversial. We hypothesized that plasma acylcarnitine profiling would identify distinct metabolite patterns reflect...

  10. Three-Year Breeding Cycle of Rainbow Trout (Oncorhynchus mykiss) Fed a Plant-Based Diet, Totally Free of Marine Resources: Consequences for Reproduction, Fatty Acid Composition and Progeny Survival

    PubMed Central

    Lazzarotto, Viviana; Corraze, Geneviève; Leprevost, Amandine; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2015-01-01

    Terrestrial plant resources are increasingly used as substitutes for fish meal and fish oil in fish feed in order to reduce the reliance of aquaculture on marine fishery resources. Although many studies have been conducted to assess the effects of such nutritional transition, no whole breeding cycles of fish fed diets free from marine resources has been reported to date. We therefore studied the reproductive performance of trout after a complete cycle of breeding while consuming a diet totally devoid of marine ingredients and thus of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) that play a major role in the formation of ova. Two groups of female rainbow trout were fed from first feeding either a commercial diet (C, marine and plant ingredients), or a 100% plant-based diet (V, blend of plant proteins and vegetable oils). Livers, viscera, carcasses and ova were sampled at spawning and analyzed for lipids and fatty acids. Although the V-diet was devoid of n-3 LC-PUFAs, significant amounts of EPA and DHA were found in livers and ova, demonstrating efficient bioconversion of linolenic acid and selective orientation towards the ova. Some ova were fertilized to assess the reproductive performance and offspring survival. We observed for the first time that trout fed a 100% plant-based diet over a 3-year breeding cycle were able to produce ova and viable alevins, although the ova were smaller. The survival of offspring from V-fed females was lower (-22%) at first spawning, but not at the second. Our study showed that, in addition to being able to grow on a plant-based diet, rainbow trout reared entirely on such a diet can successfully produce ova in which neo-synthesized n-3 LC-PUFAs are accumulated, leading to viable offspring. However, further adjustment of the feed formula is still needed to optimize reproductive performance. PMID:25658483

  11. Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: consequences for reproduction, fatty acid composition and progeny survival.

    PubMed

    Lazzarotto, Viviana; Corraze, Geneviève; Leprevost, Amandine; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2015-01-01

    Terrestrial plant resources are increasingly used as substitutes for fish meal and fish oil in fish feed in order to reduce the reliance of aquaculture on marine fishery resources. Although many studies have been conducted to assess the effects of such nutritional transition, no whole breeding cycles of fish fed diets free from marine resources has been reported to date. We therefore studied the reproductive performance of trout after a complete cycle of breeding while consuming a diet totally devoid of marine ingredients and thus of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) that play a major role in the formation of ova. Two groups of female rainbow trout were fed from first feeding either a commercial diet (C, marine and plant ingredients), or a 100% plant-based diet (V, blend of plant proteins and vegetable oils). Livers, viscera, carcasses and ova were sampled at spawning and analyzed for lipids and fatty acids. Although the V-diet was devoid of n-3 LC-PUFAs, significant amounts of EPA and DHA were found in livers and ova, demonstrating efficient bioconversion of linolenic acid and selective orientation towards the ova. Some ova were fertilized to assess the reproductive performance and offspring survival. We observed for the first time that trout fed a 100% plant-based diet over a 3-year breeding cycle were able to produce ova and viable alevins, although the ova were smaller. The survival of offspring from V-fed females was lower (-22%) at first spawning, but not at the second. Our study showed that, in addition to being able to grow on a plant-based diet, rainbow trout reared entirely on such a diet can successfully produce ova in which neo-synthesized n-3 LC-PUFAs are accumulated, leading to viable offspring. However, further adjustment of the feed formula is still needed to optimize reproductive performance. PMID:25658483

  12. /sup 13/C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    SciTech Connect

    Cohen, S.M.

    1987-01-27

    /sup 13/C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the /sup 13/C enrichments at the individual carbons of glutamate when (3-/sup 13/C)alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of /sup 13/C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by (1-/sup 13/C)acetyl-CoA (from (2-/sup 13/C)pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by (3-/sup 13/C)alanine plus (2-/sup 13/C)ethanol, which are converted to (2-/sup 13/C)acetyl-CoA. Thus, measurement of /sup 13/C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the /sup 13/C-labeled fatty acids produced.

  13. Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Sirajudeen, Kuttulebbai N S; Chandran, Govindasamy

    2009-01-01

    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity. PMID:19793024

  14. Effects of quercetin on the sleep-wake cycle in rats: involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep.

    PubMed

    Kambe, Daiji; Kotani, Makiko; Yoshimoto, Makoto; Kaku, Shinsuke; Chaki, Shigeyuki; Honda, Kazuki

    2010-05-12

    The bioflavonoid quercetin is widely found in plants and exerts a large number of biological activities such as anti-hypertensive and anti-inflammatory properties. However, the effect of quercetin on the sleep-wake cycle has not been investigated. In the present study, we investigated the effect of quercetin on sleep-wake regulation. Intraperitoneal administration of quercetin (200mg/kg) significantly increased non-rapid eye movement (non-REM) sleep during dark period in rats, while it significantly decreased REM sleep. The decrease in REM sleep induced by quercetin was blocked by intracerebroventricular (i.c.v.) injection of bicuculline, a GABA(A) receptor antagonist. In contrast, the increase in non-REM sleep induced by quercetin was not affected by i.c.v. injection of bicuculline. Therefore, the present results suggest that quercetin alters the sleep-wake cycle partly through activation of GABA(A) receptors. PMID:20303338

  15. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  16. A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves1[C][W][OPEN

    PubMed Central

    Cheung, C.Y. Maurice; Poolman, Mark G.; Fell, David. A.; Ratcliffe, R. George; Sweetlove, Lee J.

    2014-01-01

    Although leaves have to accommodate markedly different metabolic flux patterns in the light and the dark, models of leaf metabolism based on flux-balance analysis (FBA) have so far been confined to consideration of the network under continuous light. An FBA framework is presented that solves the two phases of the diel cycle as a single optimization problem and, thus, provides a more representative model of leaf metabolism. The requirement to support continued export of sugar and amino acids from the leaf during the night and to meet overnight cellular maintenance costs forces the model to set aside stores of both carbon and nitrogen during the day. With only minimal constraints, the model successfully captures many of the known features of C3 leaf metabolism, including the recently discovered role of citrate synthesis and accumulation in the night as a precursor for the provision of carbon skeletons for amino acid synthesis during the day. The diel FBA model can be applied to other temporal separations, such as that which occurs in Crassulacean acid metabolism (CAM) photosynthesis, allowing a system-level analysis of the energetics of CAM. The diel model predicts that there is no overall energetic advantage to CAM, despite the potential for suppression of photorespiration through CO2 concentration. Moreover, any savings in enzyme machinery costs through suppression of photorespiration are likely to be offset by the higher flux demand of the CAM cycle. It is concluded that energetic or nitrogen use considerations are unlikely to be evolutionary drivers for CAM photosynthesis. PMID:24596328

  17. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle

    PubMed Central

    Parkash, Jyoti; D'Anglemont De Tassigny, Xavier; Bellefontaine, Nicole; Campagne, Celine; Mazure, Danièle; Buée-Scherrer, Valérie; Prevot, Vincent

    2010-01-01

    Within the preoptic region, nitric oxide (NO) production varies during the ovarian cycle and has the ability to impact hypothalamic reproductive function. One mechanism for the regulation of NO release mediated by estrogens during the estrous cycle includes physical association of the calcium-activated neuronal NO synthase (nNOS) enzyme with the glutamate N-methyl-D-aspartate (NMDA) receptor channels via the postsynaptic density 95 (PSD 95) scaffolding protein. Here, we demonstrate that endogenous variations in estrogens levels during the estrous cycle also coincide with corresponding changes in the state of nNOS Ser1412 phosphorylation, the level of association of this isoform with the NMDA receptor/PSD-95 complex at the plasma membrane and the activity of NOS. Neuronal NOS Ser1412 phosphorylation is maximal on the afternoon of proestrus, when both the levels of estrogens and the physical association of nNOS with NMDA receptors are highest. Estradiol mimicked these effects in ovariectomized (OVX) rats. In addition, the catalytic activity of NOS in membrane protein extracts from the preoptic region, i.e., independent of any functional protein-protein interactions or cell-cell signaling, was significantly increased in estradioltreated OVX rats compared to OVX rats. Finally, λ phosphatase-mediated nNOS dephosphorylation dramatically impaired NOS activity in preoptic region protein extracts, thus demonstrating the important role of phosphorylation in the regulation of NO production in the preoptic region. Taken together, these results yield new insights into the regulation of neuron-derived NO production by gonadal steroids within the preoptic region and raise the possibility that changes in nNOS phosphorylation during fluctuating physiological conditions may be involved in the hypothalamic control of key neuroendocrine functions, such as reproduction. PMID:20371700

  18. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus1[W][OA

    PubMed Central

    Rocha, Marcio; Licausi, Francesco; Araújo, Wagner L.; Nunes-Nesi, Adriano; Sodek, Ladaslav; Fernie, Alisdair R.; van Dongen, Joost T.

    2010-01-01

    The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism. PMID:20089769

  19. Serum Uric Acid Predicts Progression of Subclinical Coronary Atherosclerosis in Individuals Without Renal Disease

    PubMed Central

    Rodrigues, Ticiana C.; Maahs, David M.; Johnson, Richard J.; Jalal, Diana I.; Kinney, Gregory L.; Rivard, Christopher; Rewers, Marian; Snell-Bergeon, Janet K.

    2010-01-01

    OBJECTIVE To examine uric acid (UA) as a possible predictor of the progression of coronary artery calcification (CAC) using data from the prospective Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. RESEARCH DESIGN AND METHODS CAC was measured by electron beam tomography at the baseline and at a follow-up 6.0 ± 0.5 years later. The study population included 443 participants with type 1 diabetes and 526 control subjects who were free of diagnosed coronary artery disease at baseline. The presence of renal disease was defined by the presence of albuminuria and/or low glomerular filtration rate. RESULTS In subjects without renal disease, serum UA predicted CAC progression (odds ratio 1.30 [95% CI 1.07–1.58], P = 0.007) independent of conventional cardiovascular risk factors including diabetes and the presence of metabolic syndrome. CONCLUSIONS Serum UA levels predict the progression of coronary atherosclerosis and may be useful in identifying who is at risk for vascular disease in the absence of significant chronic kidney disease. PMID:20798338

  20. Cycling injuries.

    PubMed Central

    Cohen, G. C.

    1993-01-01

    Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8471908

  1. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  2. Sources, sinks, and mechanisms of hydroxyl radical (•OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle

    NASA Astrophysics Data System (ADS)

    Arakaki, Takemitsu; Faust, Bruce C.

    1998-02-01

    Hydroxyl radical (•OH) photoproduction in 25 authentic acidic (pH = 2.9-4.4) continental cloud waters from Whiteface Mountain, New York was quantified by phenol formed from the •OH-mediated oxidation of benzene (1.2 mM) that was added as an •OH scavenger. Based on the effect of added bisulfite (HSO3-/HOSO2-), an HOOH sink, the •OH photoproduction in these samples was apportioned into two categories: HOOH-dependent sources (dominant), and HOOH-independent sources (minor). On average only a small percentage (median = 9.4%, mean±standard deviation = 16±12%) of the HOOH-dependent •OH source is due to direct photolysis (313 nm) of HOOH. Nearly all of the HOOH-dependent •OH source is accounted for by an iron(II)-HOOH photo-Fenton reaction mechanism (Fe(II) + HOOH → Fe(III) + •OH + OH-) that is initiated by photoreduction of Fe(III) to Fe(II) in the presence of HOOH. A photostationary state is established, involving rapid photolysis of Fe(III) to form Fe(II), and rapid reoxidation of Fe(II) to Fe(III). Consequently, a new term is introduced, Fe(r) (r = II, III), to represent the family of labile Fe(III) and Fe(II) species whose rapid photoredox cycling drives the Fenton production of •OH. The Fe(r) photochemical cycle, which drives the aqueous phase photoformation of •OH, is analogous to the classical NOx photochemical cycle, which drives the gas phase formation of O3 and thus •OH. Based on the cloud waters studied here, the iron(II)-HOOH photo-Fenton reaction is a significant source of •OH to acidic continental cloud waters in comparison to gas-to-drop partitioning processes. Filtering (0.5 μm Teflon) cloud water samples had little effect on the •OH photoformation kinetics. Measured lifetimes of aqueous •OH ranged from 2.4 to 10.6 μs in these cloud waters, and decreased with increasing concentration of dissolved organic carbon. In acidic atmospheric water drops, the principal aqueous sinks for •OH will be reactions with dissolved organic

  3. Kinetic models of conjugated metabolic cycles

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.

    2016-01-01

    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  4. Effects of seawater alkalinity on calcium and acid-base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle.

    PubMed

    Middlemiss, Karen L; Urbina, Mauricio A; Wilson, Rod W

    2016-03-01

    Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000 μeq/L) and low seawater alkalinity (~830 μeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism. PMID:26691956

  5. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  6. Cholesteryl butyrate solid lipid nanoparticles as a butyric acid pro-drug: effects on cell proliferation, cell-cycle distribution and c-myc expression in human leukemic cells.

    PubMed

    Serpe, Loredana; Laurora, Stefano; Pizzimenti, Stefania; Ugazio, Elena; Ponti, Renata; Canaparo, Roberto; Briatore, Federica; Barrera, Giuseppina; Gasco, Maria Rosa; Bernengo, Maria Grazia; Eandi, Mario; Zara, Gian Paolo

    2004-06-01

    Cholesteryl butyrate solid lipid nanoparticles (chol-but SLN) have been proposed as a pro-drug to deliver butyric acid. We compared the effects on cell growth, cell-cycle distribution and c-myc expression of chol-but SLN and sodium butyrate (Na-but) in the human leukemic cell lines Jurkat, U937 and HL-60. In all the cell lines 0.5 and 1.0 mM chol-but SLN provoked a complete block of cell growth. Cell-cycle analysis demonstrated in Jurkat cells that 0.25 mM chol-but SLN caused a pronounced increase of G2/M cells and a decrease of G0/G1 cells, whereas in U937 and HL-60 cells chol-but SLN led to a dose-dependent increase of G0/G1 cells, with a decrease of G2/M cells. In Jurkat and HL-60 cells 0.5 mM chol-but SLN induced a significant increase of sub-G0/G1 apoptotic cells. Cell growth and cell-cycle distribution were unaffected by the same concentrations of Na-but. A concentration of 0.25 mM chol-but SLN was able to cause a rapid and transient down-regulation of c-myc expression in all the cell lines, whereas 1 mM Na-but caused a slight reduction of c-myc expression only in U937 cells. The results show how chol-but SLN affects the proliferation pattern of both myeloid and lymphoid cells to an extent greater than the natural butyrate. PMID:15166628

  7. Increased plasma serotonin metabolite 5-hydroxyindole acetic acid concentrations are associated with impaired systolic and late diastolic forward flows during cardiac cycle and elevated resistive index at popliteal artery and renal insufficiency in type 2 diabetic patients with microalbuminuria.

    PubMed

    Saito, Jun; Suzuki, Eiji; Tajima, Yoshitaka; Takami, Kazuhisa; Horikawa, Yukio; Takeda, Jun

    2016-01-01

    Although lower extremity arterial disease is frequently accompanied by diabetes mellitus, the association of circulating biomarkers with flow components during the cardiac cycle in lower-leg arteries has yet to be fully elucidated. We enrolled 165 type 2 diabetic patients with normal ankle-brachial index (ABI 1.0-1.4), comprising 106 normoalbuminuric and 59 microalbuminuric patients, and 40 age-matched nondiabetic subjects consecutively admitted to our hospital. Serum high sensitivity C-reactive protein (hsCRP) level and plasma von Willebrand factor ristocetin cofactor activity (VWF) and vasoconstrictor serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA) concentrations were measured. An automatic device was used to measure ABI and brachial-ankle pulse wave velocity (baPWV). Flow components during the cardiac cycle, total flow volume, and resistive index at popliteal artery were evaluated using gated magnetic resonance imaging. Although estimated glomerular filtration rate (eGFR), early diastolic flow reversal, heart rate, and ABI were similar between the groups, diabetic patients had higher log hsCRP (p<0.001), VWF (p<0.001), 5-HIAA (p=0.002), resistive index (p<0.001) and baPWV (p<0.001) and lower systolic (p=0.026) and late diastolic (p<0.001) forward flows and total flow volume (p<0.001) than nondiabetic subjects. Multivariate analyses demonstrated that 5-HIAA in microalbuminuric patients showed higher associations with systolic and late diastolic forward flows during the cardiac cycle, total flow volume and resistive index at popliteal artery, and eGFR compared to normoalbuminuric patients. In microalbuminuric patients, 5-HIAA was a significant independent determinant among these factors. Thus, increased plasma 5-HIAA levels are involved in the pathogenesis of impaired blood flow in lower extremities and renal insufficiency in diabetic patients with microalbuminuria. PMID:26567921

  8. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis.

    PubMed

    Wang, Caixia; Chen, Heyu; Zhang, Mingchao; Zhang, Jie; Wei, Xunbin; Ying, Weihai

    2016-08-01

    NADH shuttles, including malate-aspartate shuttle (MAS) and glycerol-3-phosphate shuttle, can shuttle the reducing equivalents of cytosolic NADH into mitochondria. It is widely accepted that the major function of NADH shuttles is to increase mitochondrial energy production. Our study tested the hypothesis that the novel major function of NADH shuttles in cancer cells is to maintain glycolysis by decreasing cytosolic NADH/NAD(+) ratios. We found that AOAA, a widely used MAS inhibitor, led to decreased intracellular ATP levels, altered cell cycle and increased apoptosis and necrosis of C6 glioma cells, without affecting the survival of primary astrocyte cultures. AOAA also decreased the glycolytic rate and the levels of extracellular lactate and pyruvate, without affecting the mitochondrial membrane potential of C6 cells. Moreover, the toxic effects of AOAA were completely prevented by pyruvate treatment. Collectively, our study has suggested that AOAA may be used to selectively decrease glioma cell survival, and the major function of MAS in cancer cells may be profoundly different from its major function in normal cells: The major function of MAS in cancer cells is to maintain glycolysis, instead of increasing mitochondrial energy metabolism. PMID:27157912

  9. Self-organizing biochemical cycles

    PubMed Central

    Orgel, Leslie E.

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way. PMID:11058157

  10. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  11. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  12. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.

    PubMed

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur; Rizvi, M Moshahid Alam; Tabish, Mohammad

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. PMID:26415834

  13. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry.

    PubMed

    Morrish, Fionnuala; Noonan, Jhoanna; Perez-Olsen, Carissa; Gafken, Philip R; Fitzgibbon, Matthew; Kelleher, Joanne; VanGilst, Marc; Hockenbery, David

    2010-11-19

    Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [(13)C(6)]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of (13)C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc(-/-) and myc(+/+) Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of (13)C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in (13)C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals. PMID:20813845

  14. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.

    PubMed

    Griffiths, Howard; Cousins, Asaph B; Badger, Murray R; von Caemmerer, Susanne

    2007-02-01

    A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry. PMID:17142488

  15. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  16. Role of hydrous iron oxide formation in attenuation and diel cycling of dissolved trace metals in a stream affected by acid rock drainage

    USGS Publications Warehouse

    Parker, S.R.; Gammons, C.H.; Jones, C.A.; Nimick, D.A.

    2007-01-01

    Mining-impacted streams have been shown to undergo diel (24-h) fluctuations in concentrations of major and trace elements. Fisher Creek in south-central Montana, USA receives acid rock drainage (ARD) from natural and mining-related sources. A previous diel field study found substantial changes in dissolved metal concentrations at three sites with differing pH regimes during a 24-h period in August 2002. The current work discusses follow-up field sampling of Fisher Creek as well as field and laboratory experiments that examine in greater detail the underlying processes involved in the observed diel concentration changes. The field experiments employed in-stream chambers that were either transparent or opaque to light, filled with stream water and sediment (cobbles coated with hydrous Fe and Al oxides), and placed in the stream to maintain the same temperature. Three sets of laboratory experiments were performed: (1) equilibration of a Cu(II) and Zn(II) containing solution with Fisher Creek stream sediment at pH 6.9 and different temperatures; (2) titration of Fisher Creek water from pH 3.1 to 7 under four different isothermal conditions; and (3) analysis of the effects of temperature on the interaction of an Fe(II) containing solution with Fisher Creek stream sediment under non-oxidizing conditions. Results of these studies are consistent with a model in which Cu, Fe(II), and to a lesser extent Zn, are adsorbed or co-precipitated with hydrous Fe and Al oxides as the pH of Fisher Creek increases from 5.3 to 7.0. The extent of metal attenuation is strongly temperature-dependent, being more pronounced in warm vs. cold water. Furthermore, the sorption/co-precipitation process is shown to be irreversible; once the Cu, Zn, and Fe(II) are removed from solution in warm water, a decrease in temperature does not release the metals back to the water column. ?? 2006 Springer Science+Business Media B.V.

  17. Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution.

    PubMed

    Basha, Riyaz; Connelly, Sarah F; Sankpal, Umesh T; Nagaraju, Ganji Purnachandra; Patel, Hassaan; Vishwanatha, Jamboor K; Shelake, Sagar; Tabor-Simecka, Leslie; Shoji, Mamoru; Simecka, Jerry W; El-Rayes, Bassel

    2016-05-01

    Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines. L3.6pl and MIA PaCa-2 cells were treated with Cur (5-25μM) or TA (25-100μM) or combination of Cur (7.5μM) and TA (50μM). Cell viability was measured at 24-72h posttreatment using CellTiter-Glo kit. While both agents showed a steady/consistent effect, Cur+TA caused higher growth inhibition. Antiproliferative effect was compared with COX inhibitors, Ibuprofen and Celebrex. Cardiotoxicity was assessed using cordiomyocytes (H9C2). The expression of Sp proteins, survivin and apoptotic markers (western blot), caspase 3/7 (caspase-Glo kit), Annexin-V staining (flow cytometry), reactive oxygen species (ROS) and cell cycle phase distribution (flow cytometry) was measured. Cells were treated with TNF-α, and NF-kB translocation from cytoplasm to nucleus was evaluated (immunofluorescence). When compared to individual agents, combination of Cur+TA caused significant increase in apoptotic markers, ROS levels and inhibited NF-kB translocation to nucleus. TA caused cell cycle arrest in G0/G1, and the combination treatment showed mostly DNA synthesis phase arrest. These results suggest that combination of Cur+TA is less toxic and effectively enhance the therapeutic efficacy in PC cells via COX-independent mechanisms. PMID:27133426

  18. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1

    PubMed Central

    Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-01-01

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1. PMID:25788262

  19. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1α pathway.

    PubMed

    Hsieh, Yun-Chieh; Chen, Yi-Min; Li, Chun-Yuan; Chang, Yu-Han; Liang, Suh-Yuen; Lin, Shu-Yu; Lin, Chang-Yi; Chang, Sheng-Hsiung; Wang, Yi-Jan; Khoo, Kay-Hooi; Aoki, Takashi; Wang, Han-Ching

    2015-11-01

    White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD), is a serious and aggressive shrimp viral pathogen with a worldwide distribution. At the genome replication stage (12 hpi), WSSV induces a metabolic rerouting known as the invertebrate Warburg effect, which boosts the availability of energy and biosynthetic building blocks in the host cell. Here we show that unlike the lipogenesis that is seen in cancer cells that are undergoing the Warburg effect, at 12 hpi, all of the long chain fatty acids (LCFAs) were significantly decreased in the stomach cells of WSSV-infected shrimp. By means of this non-selective WSSV-induced lipolysis, the LCFAs were apparently diverted into β-oxidation and used to replenish the TCA cycle. Conversely, at 24 hpi, when the Warburg effect had ceased, most of the LCFAs were significantly up-regulated and the composition was also significantly altered. In crayfish these changes were in a direction that appeared to favor the formation of WSSV virion particles. We also found that, at 24 hpi, but not at 12 hpi, the PI3K-Akt-mTOR-HIF1α pathway induced the expression of fatty acid synthase (FAS), an enzyme which catalyzes the conversion of acetyl-CoA into LCFAs. WSSV virion formation was impaired in the presence of the FAS inhibitor C75, although viral gene and viral DNA levels were unaffected. WSSV therefore appears to use the PI3K-Akt-mTOR pathway to induce lipid biosynthesis at 24 hpi in order to support viral morphogenesis. PMID:26112000

  20. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  1. Your Menstrual Cycle

    MedlinePlus

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how long ...

  2. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part I: Effect of lignosulfonates and BaSO 4 on the processes of charge and discharge of negative plates

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Nikolov, P.; Rogachev, T.

    This study investigates the influence of the organic expander component (Vanisperse A) and of BaSO 4 on the performance of negative lead-acid battery plates on high-rate partial-state-of-charge (HRPSoC) cycling. Batteries operating in the HRPSoC mode should be classified as a separate type of lead-acid batteries. Hence, the additives to the negative plates should differ from the conventional expander composition. It has been established that lignosulfonates are adsorbed onto the lead surface and thus impede the charge processes, which results in impaired reversibility of the charge-discharge processes and hence shorter cycle life on HRPSoC operation, limited by sulfation of the negative plates. BaSO 4 exerts the opposite effect: it improves the reversibility of the processes in the HRPSoC mode and hence prolongs the cycle life of the cells. The most pronounced effect of BaSO 4 has been registered when it is added in concentration of 1.0 wt.% versus the leady oxide (LO) used for paste preparation. It has also been established that BaSO 4 lowers the overpotential of PbSO 4 nucleation. The results of the present investigation indicate that BaSO 4 affects also the crystallization process of Pb during cell charging. Thus, BaSO 4 eventually improves the performance characteristics of lead-acid cells on HRPSoC cycling.

  3. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Becker, Judith; Wittmann, Christoph

    2013-01-01

    In this study, we demonstrate increased lysine production by flux coupling using the industrial work horse bacterium Corynebacterium glutamicum, which was mediated by the targeted interruption of the tricarboxylic acid (TCA) cycle at the level of succinyl-CoA synthetase. The succinylase branch of the lysine production pathway functions as the bridging reaction to convert succinyl-CoA to succinate in this aerobic bacterium. The mutant C. glutamicum ΔsucCD showed a 60% increase in the yield of lysine when compared to the advanced lysine producer which was used as parent strain. This mutant was highly vital and exhibited only a slightly reduced specific growth rate. Metabolic flux analysis with (13)C isotope studies confirmed that the increase in lysine production was mediated by pathway coupling. The novel strain exhibited an exceptional flux profile, which was closer to the optimum performance predicted by in silico pathway analysis than to the large set of lysine-producing strains analyzed thus far. Fluxomics and transcriptomics were applied as further targets for next-level strain engineering to identify the back-up mechanisms that were activated upon deletion of the enzyme in the mutant strain. It seemed likely that the cells partly recruited the glyoxylate shunt as a by-pass route. Additionally, the α-ketoglutarate decarboxylase pathway emerged as the potential compensation mechanism. This novel strategy appears equally promising for Escherichia coli, which is used in the industrial production of lysine, wherein this bacterium synthesizes lysine exclusively by succinyl-CoA activation of pathway intermediates. The channeling of a high flux pathway into a production pathway by pathway coupling is an interesting metabolic engineering strategy that can be explored to optimize bio-production in the future. PMID:22871505

  4. Evolution of the first metabolic cycles.

    PubMed Central

    Wächtershäuser, G

    1990-01-01

    There are two alternatives concerning the origin of life: the origin may be heterotrophic or autotrophic. The central problem within the theory of an autotrophic origin is the first process of carbon fixation. I here propose the hypothesis that this process is an autocatalytic cycle that can be retrodictively constructed from the extant reductive citric acid cycle by replacing thioesters by thioacids and by assuming that the required reducing power is obtained from the oxidative formation of pyrite (FeS2). This archaic cycle is strictly chemoautotrophic: photoautotrophy is not required. The cycle is catalytic for pyrite formation and autocatalytic for its own multiplication. It is a consequence of this hypothesis that the postulated cycle cannot exist as a single isolated cycle but must be a member of a network of concatenated homologous cycles, from which all anabolic pathways appear to have sprung. PMID:2296579

  5. Battery charging in float vs. cycling environments

    SciTech Connect

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  6. A reverse KREBS cycle in photosynthesis: consensus at last

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.; Arnon, D. I.

    1990-01-01

    The Krebs cycle (citric acid or tricarboxylic acid cycle), the final common pathway in aerobic metabolism for the oxidation of carbohydrates, fatty acids and amino acids, is known to be irreversible. It liberates CO2 and generates NADH whose aerobic oxidation yields ATP but it does not operate in reverse as a biosynthetic pathway for CO2 assimilation. In 1966, our laboratory described a cyclic pathway for CO2 assimilation (Evans, Buchanan and Arnon 1966) that was unusual in two respects: (i) it provided the first instance of an obligate photoautotroph that assimilated CO2 by a pathway different from Calvin's reductive pentose phosphate cycle (Calvin 1962) and (ii) in its overall effect the new cycle was a reversal of the Krebs cycle. Named the 'reductive carboxylic acid cycle' (sometimes also called the reductive tricarboxylic acid cycle) the new cycle appeared to be the sole CO2 assimilation pathway in Chlorobium thiosulfatophilum (Evans et al. 1966) (now known as Chlorobium limicola forma thiosulfatophilum). Chlorobium is a photosynthetic green sulfur bacterium that grows anaerobically in an inorganic medium with sulfide and thiosulfate as electron donors and CO2 as an obligatory carbon source. In the ensuing years, the new cycle was viewed with skepticism. Not only was it in conflict with the prevailing doctrine that the 'one important property ... shared by all (our emphasis) autotrophic species is the assimilation of CO2 via the Calvin cycle' (McFadden 1973) but also some of its experimental underpinnings were challenged. It is only now that in the words of one of its early skeptics (Tabita 1988) 'a long and tortuous controversy' has ended with general acceptance of the reductive carboxylic acid cycle as a photosynthetic CO2 assimilation pathway distinct from the pentose cycle. (Henceforth, to minimize repetitiveness, the reductive pentose phosphate cycle will often be referred to as the pentose cycle and the reductive carboxylic acid cycle as the carboxylic

  7. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water. PMID:21537597

  8. Krebs Cycle Wordsearch

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2001-04-01

    This puzzle embeds 46 names, terms, abbreviations, and acronyms about the citric acid (Krebs) cycle in a 14- x 17-letter matrix. A descriptive narrative beside it describes important features of the pathway. All the terms a student needs to find are embedded there with the first letter followed by underlined blanks to be completed. Therefore, the students usually must find the terms to know how to spell them, correctly fill in the blanks in the narrative with the terms, and then find and highlight the terms in the letter matrix. When all are found, the 24 unused letters complete a sentence that describes a major feature of this central pathway. The puzzle may be used as homework, an extra-credit project, or a group project in the classroom in any course where basic metabolism is learned. It disguises as fun the hard work needed to learn the names of the intermediates, enzymes, and cofactors.

  9. Solar Cycle 23: An Anomalous Cycle?

    NASA Astrophysics Data System (ADS)

    de Toma, G.; White, O. R.; Chapman, G. A.; Walton, S. R.; Preminger, D. G.; Cookson, A. M.

    2004-05-01

    We discuss the importance of solar cycle 23 as a magnetically simpler cycle and a variant from recent cycles. We see a significant decrease in sunspot activity in cycle 23 relative to cycle 22, but the strength of the total solar irradiance (TSI) cycle did not change significantly. The latest SOHO/VIRGO TSI time series is analyzed using new solar variability measures obtained from full-disk solar images made at the San Fernando Observatory and the MgII 280nm index. The TSI record for the period 1986 to the present is reproduced within about 130ppm RMS using only two indices representing photospheric and chromospheric sources of variability due to magnetic regions. This is in spite of the difference in magnetic activity between the two cycles. Our results show the continuing improvement in TSI measurements and surrogates containing information necessary to account for irradiance variability.

  10. Solar Cycle 23: An Anomalous Cycle?

    NASA Astrophysics Data System (ADS)

    de Toma, Giuliana; White, Oran R.; Chapman, Gary A.; Walton, Stephen R.; Preminger, Dora G.; Cookson, Angela M.

    2004-07-01

    The latest SOHO VIRGO total solar irradiance (TSI) time series is analyzed using new solar variability measures obtained from full-disk solar images made at the San Fernando Observatory and the Mg II 280 nm index. We discuss the importance of solar cycle 23 as a magnetically simpler cycle and a variant from recent cycles. Our results show the continuing improvement in TSI measurements and surrogates containing information necessary to account for irradiance variability. Use of the best surrogate for irradiance variability due to photospheric features (sunspots and faculae) and chromospheric features (plages and bright network) allows fitting the TSI record to within an rms difference of 130 ppm for the period 1986 to the present. Observations show that the strength of the TSI cycle did not change significantly despite the decrease in sunspot activity in cycle 23 relative to cycle 22. This points to the difficulty of modeling TSI back to times when only sunspot observations were available.

  11. Solar Cycle 25: Another Moderate Cycle?

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Jiang, J.; Schüssler, M.

    2016-06-01

    Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  12. Intakes of long-chain n-3 polyunsaturated fatty acids and fish in relation to measurements of subclinical atherosclerosis

    PubMed Central

    He, Ka; Liu, Kiang; Daviglus, Martha L.; Mayer-Davis, Elisabeth; Jenny, Nancy Swords; Jiang, Rui; Ouyang, Pamela; Steffen, Lyn M.; Siscovick, David; Wu, Colin; Barr, R. Graham; Tsai, Michael; Burke, Gregory L.

    2014-01-01

    Background Data on the relations of different types of fish meals and long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) with measures of atherosclerosis are sparse. Objective We examined intakes of long-chain n-3 PUFAs and fish in relation to clinical measures of subclinical atherosclerosis. Design A cross-sectional study was conducted in 5,488 multiethnic adults aged 45–84 years and free of clinical cardiovascular disease. Diet was assessed using self-administered food frequency questionnaires. Subclinical atherosclerosis was determined by common carotid intima-media thickness (cCIMT, >80th percentile), internal CIMT (iCIMT, >80th percentile), coronary artery calcium score (CAC, >0) or ankle-brachial index (ABI, <0.90), respectively. Results After adjustment for potential confounders, intakes of long-chain n-3 PUFAs and non-fried (broiled, steamed, baked or raw) fish were inversely related to subclinical atherosclerosis determined by cCIMT but not iCIMT, CAC or ABI. The multivariable odds ratio comparing the highest to the lowest quartile of dietary exposures in relation to subclinical atherosclerosis determined by cCIMT was 0.69 (95% CI: 0.55, 0.86; p for trend<0.01) for n-3 PUFA intake, 0.80 (95% CI: 0.64, 1.01; p=0.054) for non-fried fish and 0.90 (95% CI: 0.73, 1.10; p=0.33) for fried fish consumption. Conclusions This study indicates that dietary intake of long-chain n-3 PUFAs or non-fried fish is associated with lower prevalence of subclinical atherosclerosis classified by cCIMT although significant changes in iCIMT, CAC and ABI were not observed. Our findings also suggest that the association of fish and atherosclerosis may vary depending on the type of fish meal consumed and the measures of atherosclerosis. PMID:18842801

  13. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  14. Cycling To Awareness.

    ERIC Educational Resources Information Center

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  15. HIV Life Cycle

    MedlinePlus

    HIV Overview The HIV Life Cycle (Last updated 9/8/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  16. Why the Learning Cycle?

    ERIC Educational Resources Information Center

    Marek, Edmund A.

    2008-01-01

    The learning cycle is a way to structure inquiry in school science and occurs in several sequential phases. A learning cycle moves children through a scientific investigation by having them first explore materials, then construct a concept, and finally apply or extend the concept to other situations. Why the learning cycle? Because it is a…

  17. Rigid separator lead acid batteries

    SciTech Connect

    Cannone, A.G.; Salkind, A.J.; Stempin, J.L.; Wexell, D.R.

    1996-11-01

    Lead acid cells assembled with extruded separators displayed relatively uniform capacity and voltage parameters through 100{sup +} cycles of charge/discharge. This contrasts to failure of control cells with glass mat separators after 60 cycles. The mullite/alumina separators with 50, 60, and 70% porosity separators appear suitable for both flooded and sealed lead acid cell applications. The advantages of the rigid ceramic separators over fiber mat materials are in the uniformity of capacity and voltage, the ease of cell assembly, and the probability that firm stacking pressure on the active material will yield greater cycle life, especially at elevated temperatures.

  18. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  19. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  20. Studies of thermochemical water-splitting cycles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Foh, S. E.

    1980-01-01

    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined.

  1. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  2. [Cycling in Zagreb].

    PubMed

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and

  3. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  4. Nuclear fuel cycle costs

    SciTech Connect

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1982-02-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

  5. Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

    SciTech Connect

    Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  6. Serum uric acid predicts vascular complications in adults with type 1 diabetes: the coronary artery calcification in type 1 diabetes study.

    PubMed

    Bjornstad, Petter; Maahs, David M; Rivard, Christopher J; Pyle, Laura; Rewers, Marian; Johnson, Richard J; Snell-Bergeon, Janet K

    2014-10-01

    Epidemiologic evidence supports a link between serum uric acid (SUA) and vascular complications in diabetes, but it remains unclear whether SUA improves the ability of conventional risk factor to predict complications. We hypothesized that SUA at baseline would independently predict the development of vascular complications over 6 years and that the addition of SUA to American Diabetes Association's ABC risk factors (HbA1c, BP, LDL-C) would improve vascular complication prediction over 6 years in adults with type 1 diabetes. Study participants (N = 652) were 19-56 year old at baseline and re-examined 6 years later. Diabetic nephropathy was defined as incident albuminuria or rapid GFR decline (>3.3 %/year) estimated by the CKD-EPI cystatin C. Diabetic retinopathy (DR) was based on self-reported history, and proliferative diabetic retinopathy (PDR) was defined as laser eye therapy; coronary artery calcium (CAC) was measured using electron-beam computed tomography. Progression of CAC (CACp) was defined as a change in the square-root-transformed CAC volume ≥2.5. Predictors of each complication were examined in stepwise logistic regression with subjects with complications at baseline excluded from analyses. C-statistics, integrated discrimination indices and net-reclassification improvement were utilized for prediction performance analyses. SUA independently predicted development of incident albuminuria (OR 1.8, 95 % CI 1.2-2.7), rapid GFR decline (1.9, 1.1-3.3), DR (1.4, 1.1-1.9), PDR (2.1, 1.4-3.0) and CACp (1.5, 1.1-1.9). SUA improved the discrimination and net-classification risk of vascular complications over 6 years. SUA independently predicted the development of vascular complications in type 1 diabetes and also improved the reclassification of vascular complications. PMID:24929955

  7. Serum Uric Acid Predicts Vascular Complications in Adults with Type 1 Diabetes: the Coronary Artery Calcification in Type 1 Diabetes Study

    PubMed Central

    Bjornstad, Petter; Maahs, David M.; Rivard, Christopher J.; Pyle, Laura; Rewers, Marian; Johnson, Richard J.; Snell-Bergeon, Janet K.

    2015-01-01

    Hypothesis Epidemiologic evidence support a link between serum uric acid (SUA) and vascular complications in diabetes, but it remains unclear whether SUA improves the ability of conventional risk factor to predict complications. We hypothesized that SUA at baseline would independently predict the development of vascular complications over 6 years, and that the addition of SUA to American Diabetes Association’s ABC risk factors (HbA1c, BP, LDL-C) would improve vascular complication prediction over 6-years in adults with type 1 diabetes. Methods Study participants (N=652) were 19–56 year old at baseline and re-examined 6-years later. Diabetic nephropathy (DN) was defined as incident albuminuria or rapid GFR decline (>3.3%/year) estimated by the CKD-EPI cystatin C. Diabetic retinopathy (DR) was based on self-reported history, proliferative diabetic retinopathy (PDR) was defined as laser eye therapy; coronary artery calcium (CAC) was measured using electron-beam computed-tomography. Progression of CAC (CACp) was defined as a change in the square-root transformed CAC-volume ≥ 2.5. Predictors of each complication were examined in stepwise logistic regression with subjects with complications at baseline excluded from analyses. C-statistics, integrated-discrimination indices and net-reclassification improvement were utilized for prediction performance analyses. Results SUA independently predicted development of incident albuminuria (OR: 1.8, 95% CI 1.2–2.7), rapid GFR decline (1.9, 1.1–3.3), DR (1.4, 1.1–1.9), PDR (2.1, 1.4–3.0) and CACp (1.5 (1.1–1.9). SUA improved the discrimination and net-classification risk of vascular complications over 6-years. Conclusion SUA independently predicted the development of vascular complications in type 1 diabetes, and also improved the reclassification of vascular complications. PMID:24929955

  8. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    PubMed

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. PMID:27612817

  9. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    transfer depended on the reactivity of the emitted material. At the lower extreme of reactivity are the noble gases, neon and argon. Most neon and argon emitted during the degassing of the newly formed Earth is still in the atmosphere, and essentially none has been transferred to the hydrosphere or crust. At the other extreme are carbon and sulfur. Over 99% of the carbon and sulfur emitted during degassing are no longer in the atmosphere, but reside in the hydrosphere or the crust. Nitrogen is intermediate. Of the ˜6×106 TgN in the atmosphere, hydrosphere, and crust, ˜2/3 is in the atmosphere as N2 with most of the remainder in the crust. The atmosphere is a large nitrogen reservoir primarily, because the triple bond of the N2 molecule requires a significant amount of energy to break. In the early atmosphere, the only sources of such energy were solar radiation and electrical discharges.At this point we had an earth with mostly N2 and devoid of life. How did we get to an earth with mostly N2 and teeming with life? First, N2 had to be converted into reactive N (Nr). (The term reactive nitrogen (Nr) includes all biologically active, photochemically reactive, and radiatively active nitrogen compounds in the atmosphere and biosphere of the Earth. Thus, Nr includes inorganic reduced forms of nitrogen (e.g., NH3 and NH4+), inorganic oxidized forms (e.g., NOx, HNO3, N2O, and NO3-), and organic compounds (e.g., urea, amines, and proteins).) The early atmosphere was reducing and had limited NH3. However, NH3 was a necessary ingredient in forming early organic matter. One possibility for NH3 generation was the cycling of seawater through volcanics (Holland, 1984). Under such a process, NH3 could then be released to the atmosphere where, when combined with CH4, H2, H2O, and electrical energy, organic molecules including amino acids could be formed (Miller, 1953). In essence, electrical discharges and UV radiation can convert mixtures of reduced gases into mixtures of organic

  10. Reusable thermal cycling clamp

    NASA Technical Reports Server (NTRS)

    Debnam, W. J., Jr.; Fripp, A. L.; Crouch, R. K. (Inventor)

    1985-01-01

    A reusable metal clamp for retaining a fused quartz ampoule during temperature cycling in the range of 20 deg C to 1000 deg C is described. A compressible graphite foil having a high radial coefficient of thermal expansion is interposed between the fused quartz ampoule and metal clamp to maintain a snug fit between these components at all temperature levels in the cycle.

  11. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  12. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  13. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  14. Measuring Cycling Effort.

    ERIC Educational Resources Information Center

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Investigates the basic mechanics of cycling with a simple reckoning of how much effort is needed from the cyclist. The work done by the cyclist is quantified when the ride is on the flat and also when pedaling uphill. Proves that by making use of the available gears on a mountain bike, cycling uphill can be accomplished without pain. (Author/ASK)

  15. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  16. Family Life Cycle: 1980.

    ERIC Educational Resources Information Center

    Norton, Arthur J.

    1983-01-01

    Used data from a 1980 national sample survey to show differences in the timing of major family life-cycle events according to age, social and economic characteristics, and marital history. Results suggest that age generational differences, more than any other factor, influence timing of life-cycle events. (Author/JAC)

  17. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  18. Teaching the Krebs Cycle.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  19. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  20. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  1. The Chlamydomonas Cell Cycle

    PubMed Central

    Cross, Frederick R.; Umen, James G.

    2015-01-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants, and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that have been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades, and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell divisions, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth with the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole/basal body/flagellar cycle. Here we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell cycle control compared to this model. We next review the cytology and cell biology of the multiple fission cell cycle of Chlamydomonas. Lastly we review recent genetic approaches and insights into Chlamydomonas cell cycle regulation that have been enabled by a new generation of genomics-based tools. PMID:25690512

  2. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  3. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  4. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  5. Interfacing primary heat sources and cycles for thermochemical hydrogen production

    SciTech Connect

    Bowman, M.G.

    1980-01-01

    Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

  6. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    transfer depended on the reactivity of the emitted material. At the lower extreme of reactivity are the noble gases, neon and argon. Most neon and argon emitted during the degassing of the newly formed Earth is still in the atmosphere, and essentially none has been transferred to the hydrosphere or crust. At the other extreme are carbon and sulfur. Over 99% of the carbon and sulfur emitted during degassing are no longer in the atmosphere, but reside in the hydrosphere or the crust. Nitrogen is intermediate. Of the ˜6×106 TgN in the atmosphere, hydrosphere, and crust, ˜2/3 is in the atmosphere as N2 with most of the remainder in the crust. The atmosphere is a large nitrogen reservoir primarily, because the triple bond of the N2 molecule requires a significant amount of energy to break. In the early atmosphere, the only sources of such energy were solar radiation and electrical discharges.At this point we had an earth with mostly N2 and devoid of life. How did we get to an earth with mostly N2 and teeming with life? First, N2 had to be converted into reactive N (Nr). (The term reactive nitrogen (Nr) includes all biologically active, photochemically reactive, and radiatively active nitrogen compounds in the atmosphere and biosphere of the Earth. Thus, Nr includes inorganic reduced forms of nitrogen (e.g., NH3 and NH4+), inorganic oxidized forms (e.g., NOx, HNO3, N2O, and NO3-), and organic compounds (e.g., urea, amines, and proteins).) The early atmosphere was reducing and had limited NH3. However, NH3 was a necessary ingredient in forming early organic matter. One possibility for NH3 generation was the cycling of seawater through volcanics (Holland, 1984). Under such a process, NH3 could then be released to the atmosphere where, when combined with CH4, H2, H2O, and electrical energy, organic molecules including amino acids could be formed (Miller, 1953). In essence, electrical discharges and UV radiation can convert mixtures of reduced gases into mixtures of organic

  7. Modeling the glutamate–glutamine neurotransmitter cycle

    PubMed Central

    Shen, Jun

    2012-01-01

    Glutamate is the principal excitatory neurotransmitter in brain. Although it is rapidly synthesized from glucose in neural tissues the biochemical processes for replenishing the neurotransmitter glutamate after glutamate release involve the glutamate–glutamine cycle. Numerous in vivo 13C magnetic resonance spectroscopy (MRS) experiments since 1994 by different laboratories have consistently concluded: (1) the glutamate–glutamine cycle is a major metabolic pathway with a flux rate substantially greater than those suggested by early studies of cell cultures and brain slices; (2) the glutamate–glutamine cycle is coupled to a large portion of the total energy demand of brain function. The dual roles of glutamate as the principal neurotransmitter in the CNS and as a key metabolite linking carbon and nitrogen metabolism make it possible to probe glutamate neurotransmitter cycling using MRS by measuring the labeling kinetics of glutamate and glutamine. At the same time, comparing to non-amino acid neurotransmitters, the added complexity makes it more challenging to quantitatively separate neurotransmission events from metabolism. Over the past few years our understanding of the neuronal-astroglial two-compartment metabolic model of the glutamate–glutamine cycle has been greatly advanced. In particular, the importance of isotopic dilution of glutamine in determining the glutamate–glutamine cycling rate using [1−13C] or [1,6-13C2] glucose has been demonstrated and reproduced by different laboratories. In this article, recent developments in the two-compartment modeling of the glutamate–glutamine cycle are reviewed. In particular, the effects of isotopic dilution of glutamine on various labeling strategies for determining the glutamate–glutamine cycling rate are analyzed. Experimental strategies for measuring the glutamate–glutamine cycling flux that are insensitive to isotopic dilution of glutamine are also suggested. PMID:23372548

  8. Which 100-kyr Cycle?

    NASA Astrophysics Data System (ADS)

    Berger, A.; Loutre, M. F.; Mélice, J. L.

    The origin of all the fundamental frequencies characterising the long term variations of the astronomical parameters has been identified. This allows to discuss their inter- relationship and possible changes in times. Different sources for the so-called 100-kyr cycle have been found in the astronomical parameters and in the insolation itself. The most popular 100-kyr cycle is certainly the eccentricity one. Actually, the periods of the most important spectral components of e used in Berger (1978) are 412 885, 14 945, 123 297, 99 590 and 131 248 yr. Instability of the resulting average 100-kyr cy- cle has been shown related to the ~ 400-kyr cycle. The derivative of eccentricity is definitely showing a spectrum dominated by the 100-kyr cycle with the same spectral components as e itself. The inclination of the Earth orbital plane on the ecliptic does not display any 100-kyr cycle, but it is not the case for its inclination on the reference plane for which cycles of 98 046 and 107 478 years appear. Finally the frequency modulation of obliquity is characterised by cycles 171 kyr and 97 kyr long. For inso- lation, it is known that there is only a very weak signal around 100-kyr coming from e itself. However, if we consider the seasonal cycle at the equator, its amplitude varies with cycles of 400 kyr, 100 kyr, 41 kyr, 10 kyr and 5 kyr, all related to e. Although all these cycles are close to the 100 kyr cycle found in geological data, the origin of this kind of cycle can be best identified by comparing the proxy record to the re- sponse of the climate system to the astronomical forcing. This forcing signal which contains, in one way or another, the astronomical characteristics mentioned above is, at least, partly distorted and transformed, a modification which can only be estimated through climate models. Such a climate model has been developed in the early 80Ss in Louvain-la-Neuve and used since to simulate the last and next glacial-interglacial cycles.

  9. Bimodality and the Hale cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1988-01-01

    Evidence is provided of a modulation of between 20 and 24 yr for the Hale cycle, and comparison of consecutive pairs of cycles strongly suggests that even-numbered cycles are preferentially paired with odd-numbered following cycles. The results indicate that cycles 22 and 23 form a new cyle pair. The sum of monthly mean sunspot numbers over consecutively paired sunspot cycles for Hale cycle 12 is found to be about 19,100 + or - 3000.

  10. Applied physiology of cycling.

    PubMed

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  11. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  12. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  13. Mining the Learning Cycle.

    ERIC Educational Resources Information Center

    Hemler, Debra; King, Hobart

    1996-01-01

    Describes an approach that uses the learning cycle to meaningfully teach students about mineral properties while alleviating the tedious nature of identifying mineral specimens. Discusses mineral properties, cooperative learning, and mineral identification. (JRH)

  14. Life Cycle Costing.

    ERIC Educational Resources Information Center

    McCraley, Thomas L.

    1985-01-01

    Life cycle costing establishes a realistic comparison of the cost of owning and operating products. The formula of initial cost plus maintenance plus operation divided by useful life identifies the best price over the lifetime of the product purchased. (MLF)

  15. The global carbon cycle

    SciTech Connect

    Sedjo, R.A. )

    1990-10-01

    The author discusses the global carbon cycle and cites the results of several recently completed research projects, that seem to indicate that the temperate zone forests are a sink for carbon rather than a source, as was previously believed.

  16. Solar Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2011-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan your next vacation. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. I will describe the current state of solar cycle predictions and anticipate how those predictions could be made more accurate in the future.

  17. Cycle isolation monitoring

    SciTech Connect

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C.

    2009-07-15

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  18. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  19. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  20. Malone cycle refrigerator development

    SciTech Connect

    Shimko, M.A.; Crowley, C.J.

    1999-07-01

    This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

  1. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  2. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  3. Metabolic cycles in a circannual hibernator.

    PubMed

    Epperson, L Elaine; Karimpour-Fard, Anis; Hunter, Lawrence E; Martin, Sandra L

    2011-07-14

    Hibernation as manifested in ground squirrels is arguably the most plastic and extreme of physiological phenotypes in mammals. Homeostasis is challenged by prolonged fasting accompanied by heterothermy, yet must be facilitated for survival. We performed LC and GC-MS metabolomic profiling of plasma samples taken reproducibly during seven natural stages of the hibernator's year, three in summer and four in winter (each n ≥ 5), employing a nontargeted approach to define the metabolite shifts associated with the phenotype. We quantified 231 named metabolites; 106 of these altered significantly, demarcating a cycle within a cycle where torpor-arousal cycles recur during the winter portion of the seasonal cycle. A number of robust hibernation biomarkers that alter with season and winter stage are identified, including specific free fatty acids, antioxidants, and previously unpublished modified amino acids that are likely to be associated with the fasting state. The major pattern in metabolite levels is one of either depletion or accrual during torpor, followed by reversal to an apparent homeostatic level by interbout arousal. This finding provides new data that strongly support the predictions of a long-standing hypothesis that periodic arousals are necessary to restore metabolic homeostasis. PMID:21540299

  4. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  5. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Astrophysics Data System (ADS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  6. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  7. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  8. Theoretical studies of the marine sulfur cycle

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Kasting, James B.; Liu, May S.

    1985-01-01

    Several reduced sulfur compounds are produced by marine organisms and then enter the atmosphere, where they are oxidized and ultimately returned to the ocean or the land. The oceanic dimethyl sulfide (DMS) flux, in particular, represents a significant fraction of the annual global sulfur input to the atmosphere. In the atmosphere, this gas is converted to sulfur dioxide (SO2), methane sulfonic acid, and other organic acids which are relatively stable and about which little is known. SO2 is a short lived gas which, in turn, is converted to sulfuric acid and other sulfate compounds which contribute significantly to acid rain. Because of the complexity of the sulfur system, it is not well understood even in the unperturbed atmosphere. However, a number of new observations and experiments have led to a significant increase in the understanding of this system. A number of one dimensional model experiments were conducted on the gas phase part of the marine sulfur cycle. The results indicate the measured concentration of DMS and the amplitude of its diurnal cycle are in agreement with estimates of its global flux. It was also found that DMS can make a large contribution to the background SO2 concentration in the free troposphere. Estimates of CS2 concentrations in the atmosphere are inconsistent with estimated fluxes; however, measured reaction rates are consistent with the observed steep tropospheric gradient in CS2. Observations of CS2 are extremely sparse. Further study is planned.

  9. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are

  10. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  11. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  12. Solar magnetic cycle

    NASA Technical Reports Server (NTRS)

    Harvey, Karen L.

    1993-01-01

    Using NSO/KP magnetograms, the pattern and rate of the emergence of magnetic flux and the development of the large-scale patterns of unipolar fields are considered in terms of the solar magnetic cycle. Magnetic flux emerges in active regions at an average rate of 2 x 10(exp 21) Mx/day, approximately 10 times the estimated rate in ephemeral regions. Observations are presented that demonstrate that the large-scale unipolar fields originate in active regions and activity nests. For cycle 21, the net contribution of ephemeral regions to the axial dipole moment of the Sun is positive, and is of opposite sign to that of active regions. Its amplitude is smaller by a factor of 6, assuming an average lifetime of ephemeral regions of 8 hours. Active regions larger than 4500 Mm(sup 2) are the primary contributor to the cycle variation of Sun's axial dipole moment.

  13. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  14. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  15. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  16. Breaking a vicious cycle.

    PubMed

    Hayes, Daniel F; Allen, Jeff; Compton, Carolyn; Gustavsen, Gary; Leonard, Debra G B; McCormack, Robert; Newcomer, Lee; Pothier, Kristin; Ransohoff, David; Schilsky, Richard L; Sigal, Ellen; Taube, Sheila E; Tunis, Sean R

    2013-07-31

    Despite prodigious advances in tumor biology research, few tumor-biomarker tests have been adopted as standard clinical practice. This lack of reliable tests stems from a vicious cycle of undervaluation, resulting from inconsistent regulatory standards and reimbursement, as well as insufficient investment in research and development, scrutiny of biomarker publications by journals, and evidence of analytical validity and clinical utility. We offer recommendations designed to serve as a roadmap to break this vicious cycle and call for a national dialogue, as changes in regulation, reimbursement, investment, peer review, and guidelines development require the participation of all stakeholders. PMID:23903752

  17. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  18. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  19. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  20. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  1. Urea Cycle Disorders.

    PubMed

    Kleppe, Soledad; Mian, Asad; Lee, Brendan

    2003-07-01

    Urea cycle disorders comprise a group of inborn errors of metabolism that represent unique gene-nutrient interactions whose significant morbidity arises from acute and chronic neurotoxicity associated with often massive hyperammonemia. Current paradigms of treatment are focused on controlling the flux of nitrogen transfer through the hepatic urea cycle by a combination of dietary and pharmacologic approaches. Evolving paradigms include the development of cell and gene therapies. Current research is focused on understanding the pathophysiology of ammonia-mediated toxicity and prevention of neural injury. PMID:12791198

  2. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  3. Mefenamic Acid

    MedlinePlus

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  4. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  5. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  6. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  7. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  8. Metabolic cycle, cell cycle, and the finishing kick to Start

    PubMed Central

    Futcher, Bruce

    2006-01-01

    Slowly growing budding yeast store carbohydrate, then liquidate it in late G1 phase of the cell cycle, superimposing a metabolic cycle on the cell cycle. This metabolic cycle may separate biochemically incompatible processes. Alternatively it may provide a burst of energy and material for commitment to the cell cycle. Stored carbohydrate could explain the size requirement for cells passing the Start point. PMID:16677426

  9. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  10. MERCURY CYCLING AND BIOMAGNIFICATION

    EPA Science Inventory

    Mercury cycling and biomagnification was studied in man-made ponds designed for watering livestock on the Cheyenne River Sioux Reservation in South Dakota. Multiple Hg species were quantified through multiple seasons for 2 years in total atmospheric deposition samples, surface wa...

  11. Assisted Cycling Tours

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  12. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  13. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  14. The Science of Cycling

    ERIC Educational Resources Information Center

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  15. Re-Cycling

    ERIC Educational Resources Information Center

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  16. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  17. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  18. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  19. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  20. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  1. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  2. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  3. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  4. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Stirling cycle engine

    DOEpatents

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  6. Nuclear Fuel Cycle

    SciTech Connect

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  7. The urea cycle disorders.

    PubMed

    Helman, Guy; Pacheco-Colón, Ileana; Gropman, Andrea L

    2014-07-01

    The urea cycle is the primary nitrogen-disposal pathway in humans. It requires the coordinated function of six enzymes and two mitochondrial transporters to catalyze the conversion of a molecule of ammonia, the α-nitrogen of aspartate, and bicarbonate into urea. Whereas ammonia is toxic, urea is relatively inert, soluble in water, and readily excreted by the kidney in the urine. Accumulation of ammonia and other toxic intermediates of the cycle lead to predominantly neurologic sequelae. The disorders may present at any age from the neonatal period to adulthood, with the more severely affected patients presenting earlier in life. Patients are at risk for metabolic decompensation throughout life, often triggered by illness, fasting, surgery and postoperative states, peripartum, stress, and increased exogenous protein load. Here the authors address neurologic presentations of ornithine transcarbamylase deficiency in detail, the most common of the urea cycle disorders, neuropathology, neurophysiology, and our studies in neuroimaging. Special attention to late-onset presentations is given. PMID:25192511

  8. Gap Cycling for SWIFT

    PubMed Central

    Corum, Curtis A.; Idiyatullin, Djaudat; Snyder, Carl J.; Garwood, Michael

    2014-01-01

    Purpose SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a “bulls-eye” artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy “gap cycling.” Methods We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results Theoretical analysis reveals the mechanism for gap-cycling’s effectiveness in canceling inter-band crosstalk in the received data. We show phantom and in-vivo results demonstrating bulls-eye artifact free images. Conclusion Gap cycling is an effective method to remove bulls-eye artifact resulting from inter-band crosstalk in SWIFT data. PMID:24604286

  9. Episodic Tremor and Slip: Cycles Within Cycles

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Wech, A.; Vidale, J. E.

    2009-12-01

    Episodic tremor and slip (ETS) events, each with geodetically determined moment magnitudes in the mid-6 range, repeat about every 15 months under the Olympic Peninsula/southern Vancouver Island region. We have automatically searched for non-volcanic tremor in all 5-minute time windows both during the past five ETS events and during the two inter-ETS periods from February, 2007 through April, 2008 and June 2008 through April 2009. Inter-ETS tremor was detected in 5000 windows, which overlap by 50%, so tremor was seen 2% of the time. The catalog of 5-minute tremor locations cluster in time and space into groups we call tremor swarms, revealing 50 inter-ETS tremor swarms. The number of hours of tremor per swarm ranged from about 1 to 68, totaling 374 hours. The inter-ETS tremor swarms generally locate along the downdip side of the major ETS events, and account for approximately 45% of the time that tremor has been detected during the last two entire ETS cycles. Many of the inter-ETS events are near-carbon copies in duration, spatial extent and propagation direction, as is seen for the larger 15-month-interval events. These 50 inter-ETS swarms plus two major ETS episodes follow a power law relationship such that the number of swarms, N, exceeding duration τ is given by N ˜ τ-0.7. If we assume that seismic moment is proportional to τ as proposed by Ide et al. [Nature, 2007], we find that the tremor swarms follow a standard Gutenberg-Richter logarithmic frequency-magnitude relation, N ˜ 10-bMw, with b = 1.0, which lies in the range for normal earthquake catalogs. Furthermore, the major ETS events fall on the curve defined by the inter-ETS swarms, suggesting that the inter-ETS swarms are just smaller versions of the major 15-month ETS events. Only the largest events coincide with geodetically observed slip, suggesting that current geodetic observations may be missing nearly half of the total slip. Finally, crude estimates of the spatial dimensions of tremor swarms L

  10. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  11. Correlation between CAM-Cycling and Photosynthetic Gas Exchange in Five Species of Talinum (Portulacaceae) 1

    PubMed Central

    Harris, Fred S.; Martin, Craig E.

    1991-01-01

    Photosynthetic gas exchange and malic acid fluctuations were monitored in 69 well-watered plants from five morphologically similar species of Talinum in an investigation of the ecophysiological significance of the Crassulacean acid metabolism (CAM)-cycling mode of photosynthesis. Unlike CAM, atmospheric CO2 uptake in CAM-cycling occurs exclusively during the day; at night, the stomata are closed and respiratory CO2 is recaptured to form malic acid. All species showed similar patterns of day-night gas exchange and overnight malic acid accumulation, confirming the presence of CAM-cycling. Species averages for gas exchange parameters and malic acid fluctuation were significantly different such that the species with the highest daytime gas exchange had the lowest malic acid accumulation and vice versa. Also, daytime CO2 exchange and transpiration were negatively correlated with overnight malic acid fluctuation for all individuals examined together, as well as within one species. This suggests that malic acid may effect reductions in both atmospheric CO2 uptake and transpiration during the day. No significant correlation between malic acid fluctuation and water-use efficiency was found, although a nonsignificant trend of increasing water-use efficiency with increasing malic acid fluctuation was observed among species averages. This study provides evidence that CO2 recycling via malic acid is negatively correlated with daytime transpirational water losses in well-watered plants. Thus, CAM-cycling could be important for survival in the thin, frequently desiccated soils of rock outcrops on which these plants occur. PMID:16668307

  12. A COMPREHENSIVE LIFE CYCLE ASSESSMENT OF THE BIOPOLYMER POLYLACTIC ACID

    EPA Science Inventory

    Research into the environmental implications of biobased production has focused primarily on global warming and fossil fuel use, while neglecting other environmental impacts. There are a multitude of contemporary environmental problems associated with the production of agricultu...

  13. Sulfuric Acid on Europa's Surface and the Radiolytic Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R.; Johnson, R.; Anderson, M.

    1999-01-01

    Galileo infrared spectra of Europa's surface show distorted water bands that have been attributed to hydrated evaporite salts (McCord et al., J. Geophys. Res. 104, 11827, 1999) or to the scattering properties of ice (Dalton and Clark, Bull. Am. Astron. Soc. 30, 1081, 1998).

  14. Rapid Cycling and Its Treatment

    MedlinePlus

    ... may be rapid, ultra-rapid or ultradian cycling. Biological rhythm disturbances: This theory proposes that people with rapid cycling have daily biological rhythms that are out of sync with typical “ ...

  15. Fictitious Supercontinent Cycles

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    "Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid

  16. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, T.; Lawford, R. G.; Cripe, D.

    2012-12-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS/WCI is now leading to effective actions and public awareness in support of water security and

  17. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  18. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  19. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  20. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  1. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  2. Geomicrobiological cycling of antimony

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Terry, L.; Dovick, M. A.; Braiotta, F.

    2013-12-01

    Microbiologically catalyzed oxidation and reduction of toxic metalloids (e.g., As, Se, and Te) generally proceeds much faster than corresponding abiotic reactions. These microbial transformations constitute biogeochemical cycles that control chemical speciation and environmental behavior of metalloids in aqueous environments. Particular progress has been made over the past two decades in documenting microbiological biotransformations of As, which include anaerobic respiratory reduction of As(V) to As(III), oxidation of As(III) to As(V) linked to chemoautotrophy or photoautotrophy, and cellular detoxification pathways. By contrast, microbial interactions with Sb, As's group 15 neighbor and a toxic element of emerging global concern, are poorly understood. Our work with sediment microcosms, enrichment cultures, and bacterial isolates suggests that prokaryotic metabolisms may be similarly important to environmental Sb cycling. Enrichment cultures and isolates from a Sb-contaminated mine site in Idaho exhibited Sb(V)-dependent heterotrophic respiration under anaerobic conditions and Sb(III)-dependent autotrophic growth in the presence of air. Live, anoxic cultures reduced 2 mM Sb(V) to Sb(III) within 5 d, while no activity occurred in killed controls. Sb(V) reduction was stimulated by lactate or acetate and was quantitatively coupled to the oxidation of lactate. The oxidation of radiolabeled 14C-acetate (monitored by GC-GPC) demonstrated Sb(V)-dependent oxidation to 14CO2, suggesting a dissimilatory process. Sb(V) dependent growth in cultures was demonstrated by direct counting. Microbiological reduction of Sb(V) also occurred in anerobic sediment microcosms from an uncontaminated suburban lake, but did not appear to be linked to growth and is interpreted as a mechanism of biological detoxification. Aerobic microcosms and cultures from the Idaho mine oxidized 2 mM Sb(III) to Sb(V) within 7 d and coupled this reaction to cell growth quantified by direct counting. An

  3. Natural Cycles, Gases

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Rood, R. B.; Aikin, A. C.; Stolarski, R. S.; Mccormick, M. P.; Fahey, David W.

    1992-01-01

    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust.

  4. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  7. Stirling cycle machine

    SciTech Connect

    Burnett, S.C.; Purcell, J.R.; Creedon, W.P.; Joshi, C.H.

    1990-06-05

    This patent describes an improvement in a Stirling cycle machine including first and second variable-volume, compression-expansion chambers containing a gas a regenerator interconnecting the chambers and for conducting the gas therebetween, and eccentric drive means for driving the first and second chambers. It comprises: the eccentric drive means comprising a pair of rotatably mounted shafts, at least one pair of eccentric disks fixed on the shafts in phase with each other, and means for causing the shafts and thereby the eccentric disks to rotate in opposite directions.

  8. Re-Cycling

    NASA Astrophysics Data System (ADS)

    Brown, Robert W.; Covault, Corbin E.

    2015-11-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version of a given course in the first third of the semester, a deeper and more integrated version in the second third, and the final, targeted version in the last third. We describe the benefits and challenges in this tale from the trenches.

  9. Developing a Safe Cycling Course.

    ERIC Educational Resources Information Center

    Riddle, Amy Backus

    1983-01-01

    A cycling course can take advantage of students' interests, teach safe cycling, and give students a fuller appreciation of a lifetime sport. Suggestions for planning and scheduling a cycling course, covering safety procedures, and considering other elements necessary for a successful course are given. (PP)

  10. Sometimes "Newton's Method" Always "Cycles"

    ERIC Educational Resources Information Center

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  11. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  12. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  13. Culture in cycles: considering H.T. Odum's 'information cycle'

    NASA Astrophysics Data System (ADS)

    Abel, Thomas

    2014-01-01

    'Culture' remains a conundrum in anthropology. When recast in the mold of 'information cycles,' culture is transformed. New fault lines appear. Information is splintered into parallel or nested forms. Dynamics becomes cycling. Energy is essential. And culture has function in a directional universe. The 'information cycle' is the crowning component of H.T. Odum's theory of general systems. What follows is an application of the information cycle to the cultural domains of discourse, social media, ritual, education, journalism, technology, academia, and law, which were never attempted by Odum. In information cycles, cultural information is perpetuated - maintained against Second Law depreciation. Conclusions are that culture is in fact a nested hierarchy of cultural forms. Each scale of information production is semi-autonomous, with its own evolutionary dynamics of production and selection in an information cycle. Simultaneously, each information cycle is channeled or entrained by its larger scale of information and ultimately human-ecosystem structuring.

  14. [Gastric Acid].

    PubMed

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  15. Air blown gasification cycle

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Brown, D.; Burnard, G.K.

    1995-12-31

    The Air Blown Gasification Cycle (ABGC) is a hybrid partial gasification cycle based on a novel, air blown pressurized fluidized bed gasifier (PFBG) with a circulating fluidized bed combustor (CFBC) to burn the residual char from the PFBG. The ABGC has been developed primarily as a clean coal generation system and embodies a sulfur capture mechanism based on the addition of limestone, or other sorbent, to the PFBG where it is sulfided in the reducing atmosphere, followed by oxidation to a stable sulfate residue in the CFBC. In order to achieve commercialization, certain key technological issues needed to be addressed and an industry-led consortium was established to develop the components of the system through the prototype plant to commercial exploitation. The consortium, known as the Clean Coal Power Generation Group (CCPGG), is undertaking a program of activity aimed at achieving a design specification for a 75 MWe prototype integrated plant by March, 1996. Component development consists of both the establishment of new components, such as the PFBG and the hot gas clean up system, and specific development of already established components, such as the CFBC, raw gas cooler, heat recovery steam generator (HRSG) and gas turbine. This paper discusses the component development activities and indicates the expected performance and economics of both the prototype and commercial plants. In addition, the strategy for component development and achievement of the specification for a 75 MWe prototype integrated plant is described.

  16. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  17. Superior Cardiac Function Via Anaplerotic Pyruvate in the Immature Swine Heart After Cardiopulmonary Bypass and Reperfusion

    SciTech Connect

    Olson, Aaron; Hyyti, Outi M.; Cohen, Gordon A.; Ning, Xue-Han; Sadilek, Martin; Isern, Nancy G.; Portman, Michael A.

    2008-12-01

    Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the citric acid cycle (CAC) via carboxylation are linked to stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age 10-18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2]-13C-pyruvate (to achieve a final concentration of 8 mM) was given for 35 minutes starting either during weaning (Group I), after discontinuation (Group II) or without (Control) CPB. Hemodynamic data was collected. 13C NMR spectroscopy was used to determine the fraction of pyruvate entering the CAC via pyruvate carboxylation (PC) to total CAC entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatography-mass spectrometry was used to determine total glutamate enrichment.

  18. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  19. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  20. The Pyrogenic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Bird, Michael I.; Wynn, Jonathan G.; Saiz, Gustavo; Wurster, Christopher M.; McBeath, Anna

    2015-05-01

    Pyrogenic carbon (PyC; includes soot, char, black carbon, and biochar) is produced by the incomplete combustion of organic matter accompanying biomass burning and fossil fuel consumption. PyC is pervasive in the environment, distributed throughout the atmosphere as well as soils, sediments, and water in both the marine and terrestrial environment. The physicochemical characteristics of PyC are complex and highly variable, dependent on the organic precursor and the conditions of formation. A component of PyC is highly recalcitrant and persists in the environment for millennia. However, it is now clear that a significant proportion of PyC undergoes transformation, translocation, and remineralization by a range of biotic and abiotic processes on comparatively short timescales. Here we synthesize current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle.