Science.gov

Sample records for acid cycle enzymes

  1. A Study of Krebs Citric Acid Cycle Enzymes in Rice Larvae (Corcyrace phalonica St) During Mycotoxicosis

    PubMed Central

    Hegde, Umashashi C.; Shanmugasundaram, E. R. B.

    1967-01-01

    Krebs citric acid cycle enzymes have been studied in rice moth larvae (Corcyra cephalonica St) reared in groundnut meal control and contaminated with A. flavus, wheat bran control and wheat bran contaminated with A. flavus and also wheat bran containing aflatoxin. It was observed that the activity of enzymes other than succinic oxidase, succinic dehydrogenase and isocitric dehydrogenase were reduced significantly in larvae reared in contaminated groundnut meal when compared with the control. In the case of larvae reared in contaminated wheat bran all the enzymes except succinic oxidase were inhibited when compared to the control larvae. It was also observed that the inhibition of these enzymes is greater in the case of larvae reared in contaminated wheat bran than in contaminated groundnut meal. The higher toxicity of wheat bran has been discussed. PMID:4229935

  2. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.

    PubMed

    Meyer, Frederik M; Gerwig, Jan; Hammer, Elke; Herzberg, Christina; Commichau, Fabian M; Völker, Uwe; Stülke, Jörg

    2011-01-01

    The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions. PMID:20933603

  3. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle

    PubMed Central

    Schenk, Gerhard; Elliott, Tristan W; Leung, Eleanor; Carrington, Lyle E; Mitić, Nataša; Gahan, Lawrence R; Guddat, Luke W

    2008-01-01

    Background Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. Results Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 Å) and fluoride (2.2 Å) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this μ-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. Conclusion In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. PMID:18234116

  4. Relationship between extracellular enzymes and cell growth during the cell cycle of the fission yeast Schizosaccharomyces pombe: acid phosphatase.

    PubMed Central

    Miyata, M; Miyata, H

    1978-01-01

    By using the intact cells of the fission yeast Schizosaccharomyces pombe, the activity of acid phosphatase (EC 3.1.3.2) was compared through the cell cycle with the growth in cell length as a measure of cell growth. The cells of a growing asynchronous culture increased exponentially in number and in total enzyme activity, but remained constant in average length and in specific activity, In a synchronous culture prepared by selection or by induction, the specific activity was periodic in parallel with the increase in average cell length. When hydroxyurea was added to an asynchronous or a synchronous culture by selection, both specific and total activity followed the same continuous pattern as the growth in cell length after the stoppage of cell division. When oversized cells produced by a hydroxyurea pulse treatment to the culture previously syndronized by selection were transferred to a poor medium, they divided synchronously but could hardly grow in the total cell length. In this experimental situation, the total enzyme activity also scarcely increased through three division cycles. These results suggested that the increase in acid phosphatase in dependent on cell elongation. PMID:711673

  5. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  6. [Effect of heavy metals on activity of key enzymes of glyoxylate cycle and content of thiobarbituric acid reactive substances in the germinating soybean Glicine max L.seeds].

    PubMed

    Bezdudnaia, E F; Kaliman, P A

    2008-01-01

    The influence of CoCl2 and CdCl2 on the activity of isocytrate lyase, malate synthase and NAD-malate dehydrogenase in the seed lobes and the composition of malondialdehyde products at early stages of germinating of soybean seeds: after first 24-hours, 72 hours and 96 hours are investigated. It is shown that when germinating in the medium containing no metal salts, isocytrate lyase activity is greatly increased during 96 h and malate synthase is increased after 72 h and is decreased after 96 h of germination period. CoCl2 activated isocytrate lyase activity after 72 hours and decreased malate synthase activity after 96 hours. The lengthening of the primary root under such conditions is noted. CdCl2 inhibited isocytrate lyase activity during first 24 hours and suppressed malate synthase activity after 96 hours. During this process the germ growth is suppressed. CoCl2 increased the composition of malondialdehyde products during each period of germination, and CdCl2 increased malondialdehyde content after 72 and 96 hours. The role of glyoxylate cycle enzymes in transforming fatty acids into carbohydrates and in forming the primary root under the process of germination of seed lobes of soybean is discussed. PMID:18710031

  7. [Enzymes of the citramalate cycle in Rhodospirillum rubrum].

    PubMed

    Berg, I A; Ivanovskiĭ, R N

    2009-01-01

    Rhodospirillum rubrum is among the bacteria that can assimilate acetate in the absence of isocitrate lyase, the key enzyme of glyoxylate shunt. Previously we have suggested the functioning of a new anaplerotic cycle of acetate assimilation in this bacterium: citramalate cycle, where acetyl-CoA is oxidized to glyoxylate. This work has demonstrated the presence of all the key enzymes of this cycle in R. rubrum extracts: citramalate synthase catalyzing condensation of acetyl-CoA and pyruvate with the formation of citramalate, mesaconase forming mesaconate from L-citramalate, and the enzymes catalyzing transformation of propyonyl-CoA + glyoxylate <--> 3-methylmalyl-CoA <--> mesaconyl-CoA. At the same time, R. rubrum synthesizes crotonyl-CoA carboxylase/reductase, which is the key enzyme of ethylmalonyl-CoA pathway discovered recently in Rhodobacter sphaeroides. Physiological differences between the citramalate cycle and the ethylmalonyl-CoA pathway are discussed. PMID:19334594

  8. Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Sirajudeen, Kuttulebbai N S; Chandran, Govindasamy

    2009-01-01

    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity. PMID:19793024

  9. Enzyme immunoassay for carminic acid in foods.

    PubMed

    Yoshida, A; Takagaki, Y; Nishimune, T

    1995-01-01

    A competitive enzyme immunoassay (EIA) for carminic acid was investigated. Monoclonal anticarminic acid antibody was obtained from A/J mice immunized with carminic acid-human immunoglobulin G (IgG) conjugate. Carminic acid was extracted with distilled water from beverage, jelly, candy, pasta sauce, yogurt, or ice cream samples. Ham or fish paste samples were digested with pronase, then carminic acid was extracted from samples with sodium hydroxide solution. The extract was diluted more than 10-fold with 1% gelatin in borate buffer solution. Microtiter plates were coated with carminic acid-bovine serum albumin (BSA) conjugate or just BSA. Goat anti-mouse IgG(H+L)-peroxidase complex was used as a second antibody, and 3,3',5,5'-tetramethylbenzidine was used as a substrate for the peroxidase. The working range for quantitative analysis was 0.3-10 ng/mL, and the detection limit was 0.2 micrograms/g original sample. Recoveries of carminic acid by this assay were > 95% for milk beverage and jelly, and > 85% for yogurt and fish paste. Carminic acid was detected in 7 of 26 red-colored commercial food products and ranged from 3.5 to 356 micrograms/g. This EIA system also responded to the structural analogue of carminic acid, laccaic acid. PMID:7756895

  10. The Pyruvate-Tricarboxylic Acid Cycle Node

    PubMed Central

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-01-01

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [13C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia. PMID:25164818

  11. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    EPA Science Inventory

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  12. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  13. Key enzymes of the retinoid (visual) cycle in vertebrate retina

    PubMed Central

    Kiser, Philip D.; Golczak, Marcin; Maeda, Akiko; Palczewski, Krzysztof

    2011-01-01

    A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. PMID:21447403

  14. Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    PubMed Central

    Cordero, P; Campion, J; Milagro, FI; Marzo, F; Martinez, JA

    2008-01-01

    The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes. PMID:19077206

  15. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  16. Method for Enzyme Design with Genetically Encoded Unnatural Amino Acids.

    PubMed

    Hu, C; Wang, J

    2016-01-01

    We describe the methodologies for the design of artificial enzymes with genetically encoded unnatural amino acids. Genetically encoded unnatural amino acids offer great promise for constructing artificial enzymes with novel activities. In our studies, the designs of artificial enzyme were divided into two steps. First, we considered the unnatural amino acids and the protein scaffold separately. The scaffold is designed by traditional protein design methods. The unnatural amino acids are inspired by natural structure and organic chemistry methods, and synthesized by either organic chemistry methods or enzymatic conversion. With the increasing number of published unnatural amino acids with various functions, we described an unnatural amino acids toolkit containing metal chelators, redox mediators, and click chemistry reagents. These efforts enable a researcher to search the toolkit for appropriate unnatural amino acids for the study, rather than design and synthesize the unnatural amino acids from the beginning. After the first step, the model enzyme was optimized by computational methods and directed evolution. Lastly, we describe a general method for evolving aminoacyl-tRNA synthetase and expressing unnatural amino acids incorporated into a protein. PMID:27586330

  17. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  18. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  19. Subcellular distribution of key enzymes of lipid metabolism during the euthermia-hibernation-arousal cycle

    PubMed Central

    Suozzi, Anna; Malatesta, Manuela; Zancanaro, Carlo

    2009-01-01

    Mammalian hibernation is a natural, fully reversible hypometabolic state characterized by a drastic reduction of body temperature and metabolic activity, which ensures survival to many species under adverse environmental conditions. During hibernation, many hibernators rely for energy supply almost exclusively on lipid reserves; the shift from carbohydrate to lipid metabolism implies profound rearrangement of the anabolic and catabolic pathways of energetic substrates. However, the structural counterpart of such adaptation is not known. In this study we investigated, by using immunoelectron microscopy, the fine intracellular distribution of two key enzymes involved in lipid metabolism, namely, the fatty acid synthase (FAS) and the long-chain fatty acyl-CoA synthetase (ACSL), in hepatocytes of euthermic, hibernating and arousing hazel dormice. Our results show that the two enzymes are differentially distributed in cellular compartments (cytoplasm, mitochondria and cell nuclei) of hepatocytes during euthermia. Quantitative redistribution of both enzymes among cellular compartments takes place during hibernation and arousal, in accordance with the physiological changes. Interestingly, this redistribution follows different seasonal patterns in cytoplasm, mitochondria and nuclei. In conclusion, our data represent the first quantitative morphological evidence of lipid enzyme distribution in a true hibernator throughout the year cycle, thus providing a structural framework to biochemical changes associated with the hypometabolism of hibernation. PMID:19538638

  20. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  1. Enzymes of the Glyoxylate Cycle in Rhizobia and Nodules of Legumes 1

    PubMed Central

    Johnson, Gordon V.; Evans, Harold J.; Ching, Temay

    1966-01-01

    The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role. PMID:16656404

  2. Beyond Vmax and Km: How details of enzyme function influence geochemical cycles

    NASA Astrophysics Data System (ADS)

    Steen, A. D.

    2015-12-01

    Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.

  3. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  4. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  5. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  6. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis

    PubMed Central

    Cavalcanti, João Henrique Frota; Esteves-Ferreira, Alberto A.; Quinhones, Carla G.S.; Pereira-Lima, Italo A.; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Araújo, Wagner L.

    2014-01-01

    The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations. PMID:25274566

  7. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  8. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  9. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. PMID:25940300

  10. Activities of enzymes related to NADPH generation and amino acid metabolism in the ruminal mucosa of sheep.

    PubMed

    Weekes, T E

    1984-09-01

    Experiments were performed with growing lambs to investigate dietary influences on enzymes involved in the metabolism of propionate, amino acids and NADPH in the ruminal mucosa. Glutamate dehydrogenase (GDH) was the only enzyme assayed that was consistently affected by diet. First, lambs were fed either rolled barley, resulting in epithelial hyperkeratosis, or whole unprocessed barley, resulting in keratin aplasia and reduced GDH activity. Secondly, lambs were fed isonitrogenous diets containing either fish meal or urea. GDH activity was greater when fish meal was fed. NADP-isocitrate dehydrogenase was more active than other NADPH-generating enzymes in ruminal mucosa and several other lamb tissues, but the operation of the isocitrate cycle in rumen epithelium may be restricted by a low activity of aconitate hydratase. These results suggest that enzyme activities in ruminal mucosa are generally unresponsive to diet and that adaptations in GDH are related to changes in rumen morphology, rather than to isocitrate cycle activity or ammonia assimilation. PMID:6470829

  11. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  12. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  13. Waiting cycle times and generalized Haldane equality in the steady-state cycle kinetics of single enzymes.

    PubMed

    Ge, Hao

    2008-01-10

    Enzyme kinetics are cyclic. A more realistic reversible three-step mechanism of the Michaelis-Menten kinetics is investigated in detail, and three kinds of waiting cycle times T, T+, T- are defined. It is shown that the mean waiting cycle times T, T+, and T- are the reciprocal of the steady-state cycle flux Jss, the forward steady-state cycle flux Jss+ and the backward steady-state cycle flux Jss, respectively. We also show that the distribution of T+ conditioned on T+cycle time of T+ conditioned on T+cycle fluxes and waiting cycle times. Furthermore, we extend the same results to the n-step cycle, and finally, experimental and theoretically based evidence are also included. PMID:18069809

  14. Indoleacetic Acid and the Synthesis of Glucanases and Pectic Enzymes

    PubMed Central

    Datko, Anne Harmon; Maclachlan, G. A.

    1968-01-01

    Indoleacetic acid (IAA) and/or inhibitors of DNA, RNA or protein synthesis were added to the apex of decapitated seedlings of Pisum sativum L. var. Alaska. At various times up to 4 days, enzymic protein was extracted from a segment of epicotyl immediately below the apex and assayed for its ability to hydrolyse polysaccharides or their derivatives. With the exception of amylase, the total amounts per segment of all of the tested enzymes increased due to IAA treatment. The development of β-1,4-glucanase (cellulase) activity per unit of protein or fresh weight proceeded according to a typical sigmoid induction curve. Pectinase was formed for about 2 days in control segments and IAA treatment resulted in continued synthesis for at least another 2 days provided cell division took place. β-1,3-glucanase and pectinesterase activities were only enhanced by IAA to the extent that total protein levels increased. Reaction mechanisms for these effects and functions for the enzymes during growth are discussed. PMID:16656834

  15. Regulation of leukocyte tricarboxylic acid cycle in drug-naïve Bipolar Disorder.

    PubMed

    de Sousa, Rafael T; Streck, Emilio L; Forlenza, Orestes V; Brunoni, Andre R; Zanetti, Marcus V; Ferreira, Gabriela K; Diniz, Breno S; Portela, Luis V; Carvalho, André F; Zarate, Carlos A; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-09-25

    Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naïve BD patients in a major depressive episode (n=18) and compared to 24 age-matched healthy controls. Drug-naïve BD patients did not show differences in activities of citrate synthase (p=0.79), malate dehydrogenase (p=0.17), and succinate dehydrogenase (p=0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD. PMID:26297865

  16. Structural and functional insights into enzymes of the vitamin K cycle.

    PubMed

    Tie, J-K; Stafford, D W

    2016-02-01

    Vitamin K-dependent proteins require carboxylation of certain glutamates for their biological functions. The enzymes involved in the vitamin K-dependent carboxylation include: gamma-glutamyl carboxylase (GGCX), vitamin K epoxide reductase (VKOR) and an as-yet-unidentified vitamin K reductase (VKR). Due to the hydrophobicity of vitamin K, these enzymes are likely to be integral membrane proteins that reside in the endoplasmic reticulum. Therefore, structure-function studies on these enzymes have been challenging, and some of the results are notably controversial. Patients with naturally occurring mutations in these enzymes, who mainly exhibit bleeding disorders or are resistant to oral anticoagulant treatment, provide valuable information for the functional study of the vitamin K cycle enzymes. In this review, we discuss: (i) the discovery of the enzymatic activities and gene identifications of the vitamin K cycle enzymes; (ii) the identification of their functionally important regions and their active site residues; (iii) the membrane topology studies of GGCX and VKOR; and (iv) the controversial issues regarding the structure and function studies of these enzymes, particularly, the membrane topology, the role of the conserved cysteines and the mechanism of active site regeneration of VKOR. We also discuss the possibility that a paralogous protein of VKOR, VKOR-like 1 (VKORL1), is involved in the vitamin K cycle, and the importance of and possible approaches for identifying the unknown VKR. Overall, we describe the accomplishments and the remaining questions in regard to the structure and function studies of the enzymes in the vitamin K cycle. PMID:26663892

  17. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  18. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  19. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis.

    PubMed

    Pommerrenig, Benjamin; Feussner, Kirstin; Zierer, Wolfgang; Rabinovych, Valentyna; Klebl, Franz; Feussner, Ivo; Sauer, Norbert

    2011-05-01

    The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis. PMID:21540433

  20. Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.

    PubMed

    Straube, Ronny

    2013-10-15

    Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system's components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme's opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively. PMID:24138868

  1. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  2. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  3. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  4. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  5. Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans.

    PubMed

    Greenfield, S; Claus, G W

    1972-12-01

    Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated. PMID:4640504

  6. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  7. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Shurubor, Yevgeniya I; Cooper, Arthur J L; Isakova, Elena P; Deryabina, Yulia I; Beal, M Flint; Krasnikov, Boris F

    2016-06-15

    Here we describe a simple high-performance liquid chromatography (HPLC) procedure for the simultaneous detection and quantitation in standard solutions of 13 important metabolites of cellular energy metabolism, including 9 tricarboxylic acid (TCA) cycle components and 4 additional metabolites. The metabolites are detected by their absorbance at 210 nm. The procedure does not require prior derivatization, and an analysis can be carried out at ambient temperature within 15 min. The significance of the current work is that the current HPLC procedure should motivate the development of simplified TCA cycle enzyme assays, isotopomer analysis, and determination of selected TCA metabolite levels in plasma/tissues. PMID:27001310

  8. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  9. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  10. Thermostable lipoxygenase, a key enzyme in bioconversion of linoleic acid to trihycroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases, enzymes that contain non-heme iron, catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene moiety leading to conjugated (Z,E)-hydroperoxydienoic acids. These enzymes are widely distributed in plants and animals, and a few microorganisms are reported as well. It ...

  11. MARINE SULFUR CYCLE. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle.

    PubMed

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S; Vardi, Assaf

    2015-06-26

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms. PMID:26113722

  12. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  13. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  14. Multivariable fluctuation theorems in the steady-state cycle kinetics of single enzyme with competing substrates

    NASA Astrophysics Data System (ADS)

    Ge, Hao

    2012-06-01

    We prove the detailed and integral multivariable fluctuation theorems in the steady-state cycle kinetics of single enzyme with competing substrates for any arbitrary time interval [0, t]. It is shown that the moment generating function for the stochastic number of each enzymatic cycle follows the multivariable fluctuation theorems in the form of Kurchan-Lebowitz-Spohn-type symmetry. These symmetry relations associated with different variables are independent of each other, which may help experimentally determine the thermodynamic affinities from the sample trajectories separately. Furthermore, we also obtain the Kawasaki equalities for the fluctuating chemical work done within each enzymatic cycle. The derivation here is directly based on the generalized Haldane equalities, which say that the forward and backward conditional dwell times for each enzymatic cycle have identical distributions. These symmetries are independent of each other, which may help experimentally determine the thermodynamic affinities from the sample trajectories separately.

  15. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    NASA Astrophysics Data System (ADS)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil

  16. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.

    PubMed

    Marri, Lucia; Thieulin-Pardo, Gabriel; Lebrun, Régine; Puppo, Rémy; Zaffagnini, Mirko; Trost, Paolo; Gontero, Brigitte; Sparla, Francesca

    2014-02-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two energy-consuming enzymes of the Calvin-Benson cycle, whose regulation is crucial for the global balance of the photosynthetic process under different environmental conditions. In oxygen phototrophs, GAPDH and PRK regulation involves the redox-sensitive protein CP12. In the dark, oxidized chloroplast thioredoxins trigger the formation of a GAPDH/CP12/PRK complex in which both enzyme activities are down-regulated. In this report, we show that free GAPDH (A4-isoform) and PRK are also inhibited by oxidants like H2O2, GSSG and GSNO. Both in the land plant Arabidopsis thaliana and in the green microalga Chlamydomonas reinhardtii, both enzymes can be glutathionylated as shown by biotinylated-GSSG assay and MALDI-ToF mass spectrometry. CP12 is not glutathionylated but homodisulfides are formed upon oxidant treatments. In Arabidopsis but not in Chlamydomonas, the interaction between oxidized CP12 and GAPDH provides full protection from oxidative damage. In both organisms, preformed GAPDH/CP12/PRK complexes are protected from GSSG or GSNO oxidation, and in Arabidopsis also from H2O2 treatment. Overall, the results suggest that the role of CP12 in oxygen phototrophs needs to be extended beyond light/dark regulation, and include protection of enzymes belonging to Calvin-Benson cycle from oxidative stress. PMID:24211189

  17. Factors Affecting the Pathways of Glucose Catabolism and the Tricarboxylic Acid Cycle in Pseudomonas natriegens

    PubMed Central

    Cho, H. W.; Eagon, R. G.

    1967-01-01

    Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-14C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH2) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH2 and to repressed levels of key enzymes. PMID:4381634

  18. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation

    PubMed Central

    Kondrashov, Fyodor A; Koonin, Eugene V; Morgunov, Igor G; Finogenova, Tatiana V; Kondrashova, Marie N

    2006-01-01

    Background The glyoxylate cycle is thought to be present in bacteria, protists, plants, fungi, and nematodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate synthase (MS) and isocitrate lyase (ICL), in animal tissues has been reported. In order to clarify the status of the MS and ICL genes in animals and get an insight into their evolution, we undertook a comparative-genomic study. Results Using sequence similarity searches, we identified MS genes in arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of placental mammals. The regions of the placental mammals' genomes expected to code for malate synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear similarity to the opossum MS sequence but contain stop codons, indicating that the MS gene became a pseudogene in placental mammals. By contrast, the ICL gene is undetectable in animals other than the nematodes that possess a bifunctional, fused ICL-MS gene. Examination of phylogenetic trees of MS and ICL suggests multiple horizontal gene transfer events that probably went in both directions between several bacterial and eukaryotic lineages. The strongest evidence was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial source with the corresponding operonic organization by the common ancestor of the nematodes. Conclusion The distribution of the MS and ICL genes in animals suggests that either they encode alternative enzymes of the glyoxylate cycle that are not orthologous to the known MS and ICL or the animal MS acquired a new function that remains to be characterized. Regardless of the ultimate solution to this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable variety of evolutionary events including unusual horizontal gene transfer from bacteria to animals. Reviewers Arcady Mushegian (Stowers Institute for Medical

  19. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  20. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1)*

    PubMed Central

    O'Neill, Ellis C.; Stevenson, Clare E. M.; Tantanarat, Krit; Latousakis, Dimitrios; Donaldson, Matthew I.; Rejzek, Martin; Nepogodiev, Sergey A.; Limpaseni, Tipaporn; Field, Robert A.; Lawson, David M.

    2015-01-01

    The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The “gate” is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms. PMID:26504082

  1. Acetaminophen Toxicity and 5-Oxoproline (Pyroglutamic Acid): A Tale of Two Cycles, One an ATP-Depleting Futile Cycle and the Other a Useful Cycle

    PubMed Central

    2014-01-01

    Summary The acquired form of 5-oxoproline (pyroglutamic acid) metabolic acidosis was first described in 1989 and its relationship to chronic acetaminophen ingestion was proposed the next year. Since then, this cause of chronic anion gap metabolic acidosis has been increasingly recognized. Many cases go unrecognized because an assay for 5-oxoproline is not widely available. Most cases occur in malnourished, chronically ill women with a history of chronic acetaminophen ingestion. Acetaminophen levels are very rarely in the toxic range; rather, they are usually therapeutic or low. The disorder generally resolves with cessation of acetaminophen and administration of intravenous fluids. Methionine or N-acetyl cysteine may accelerate resolution and methionine is protective in a rodent model. The disorder has been attributed to glutathione depletion and activation of a key enzyme in the γ-glutamyl cycle. However, the specific metabolic derangements that cause the 5-oxoproline accumulation remain unclear. An ATP-depleting futile 5-oxoproline cycle can explain the accumulation of 5-oxoproline after chronic acetaminophen ingestion. This cycle is activated by the depletion of both glutathione and cysteine. This explanation contributes to our understanding of acetaminophen-induced 5-oxoproline metabolic acidosis and the beneficial role of N-acetyl cysteine therapy. The ATP-depleting futile 5-oxoproline cycle may also play a role in the energy depletions that occur in other acetaminophen-related toxic syndromes. PMID:24235282

  2. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    PubMed

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. PMID:26566594

  3. Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2009-11-01

    A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as bio chemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the α-ketocarboxylic acids pyruvate and α-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, α-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of α-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15°C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to α-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that α-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.

  4. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  5. Uronic Acid products release from enzymically active cell wall from tomato fruit and its dependency on enzyme quantity and distribution.

    PubMed

    Huber, D J; Lee, J H

    1988-07-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  6. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder

    PubMed Central

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M.; Sellgren, Carl M.; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-01-01

    Background Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. Methods We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). Results After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. Conclusions The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. General significance The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD. PMID:27114925

  7. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  8. Genetic Evidence for Bacterial Chemolithoautotrophy Based on the Reductive Tricarboxylic Acid Cycle in Groundwater Systems

    PubMed Central

    Alfreider, Albin; Vogt, Carsten

    2012-01-01

    Geologically and chemically distinct aquifers were screened for the presence of two genes coding for key enzymes of the reverse tricarboxylic acid (rTCA) cycle in autotrophic bacteria, 2-oxoglutarate : ferredoxin oxidoreductase (oorA) and the beta subunit of ATP citrate lyase enzymes (aclB). From 42 samples investigated, aclB genes were detected in two and oorA genes in six samples retrieved from polluted and sulfidic aquifers. aclB genes were represented by a single phylotype of almost identical sequences closely affiliated with chemolithoautotrophic Sulfurimonas species. In contrast, sequences analysis of oorA genes revealed diverse phylotypes mainly related to sequences from cultivation-independent studies. PMID:22791056

  9. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    PubMed

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-12-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  10. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    PubMed Central

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  11. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  12. Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function

    PubMed Central

    Wong, H. Edward; Kwon, Inchan

    2015-01-01

    Techniques to incorporate non-natural amino acids (NNAAs) have enabled biosynthesis of proteins containing new building blocks with unique structures, chemistry, and reactivity that are not found in natural amino acids. It is crucial to understand how incorporation of NNAAs affects protein function because NNAA incorporation may perturb critical function of a target protein. This study investigates how the site-specific incorporation of NNAAs affects catalytic properties of an enzyme. A NNAA with a hydrophobic and bulky sidechain, 3-(2-naphthyl)-alanine (2Nal), was site-specifically incorporated at six different positions in the hydrophobic core of a model enzyme, murine dihydrofolate reductase (mDHFR). The mDHFR variants with a greater change in van der Waals volume upon 2Nal incorporation exhibited a greater reduction in the catalytic efficiency. Similarly, the steric incompatibility calculated using RosettaDesign, a protein stability calculation program, correlated with the changes in the catalytic efficiency. PMID:26402667

  13. Lipoxygenase, a key enzyme in bioconversion of linoleic acid into trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene structure leading to the formation of conjugated (Z,E)-hydroperoxydienoic acids, which in turn result in production of hydroxy lipid. These enzymes are widely distributed in plants, animals, and microorganisms...

  14. Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis1s⃞

    PubMed Central

    Yuki, Koichi; Shindou, Hideo; Hishikawa, Daisuke; Shimizu, Takao

    2009-01-01

    Glycerophospholipids are structural and functional components of cellular membranes as well as precursors of various lipid mediators. Using acyl-CoAs as donors, glycerophospholipids are formed by the de novo pathway (Kennedy pathway) and modified in the remodeling pathway (Lands' cycle). Various acyltransferases, including two lysophosphatidic acid acyltransferases (LPAATs), have been discovered from a 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family. Proteins of this family contain putative acyltransferase motifs, but their biochemical properties and physiological roles are not completely understood. Here, we demonstrated that mouse LPAAT3, previously known as mouse AGPAT3, possesses strong LPAAT activity and modest lysophosphatidylinositol acyltransferase activity with a clear preference for arachidonoyl-CoA as a donor. This enzyme is highly expressed in the testis, where CDP-diacylglycerol synthase 1 preferring 1-stearoyl-2-arachidonoyl-phosphatidic acid as a substrate is also highly expressed. Since 1-stearoyl-2-arachidonoyl species are the main components of phosphatidylinositol, mouse LPAAT3 may function in both the de novo and remodeling pathways and contribute to effective biogenesis of 1-stearoyl-2-arachidonoyl-phosphatidylinositol in the testis. Additionally, the expression of this enzyme in the testis increases significantly in an age-dependent manner, and β-estradiol may be an important regulator of this enzyme's induction. Our findings identify this acyltransferase as an alternative important enzyme to produce phosphatidylinositol in the testis. PMID:19114731

  15. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy.

    PubMed

    Hadera, Mussie G; Smeland, Olav B; McDonald, Tanya S; Tan, Kah Ni; Sonnewald, Ursula; Borges, Karin

    2014-04-01

    Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re-filling the tricarboxylic acid (TCA) cycle with C4-intermediates (anaplerosis). Here, we injected mice with [1,2-(13) C]glucose 3.5-4 weeks after pilocarpine-induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of (13) C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two (13) C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control-fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin-fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin-fed SE mice showed few changes in most other metabolite levels and their (13) C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3-(13) C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C-4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl-CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoin's effects on neuroglial metabolism and interaction. PMID:24236946

  16. Ketol-acid reductoisomerase enzymes and methods of use

    DOEpatents

    Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O'Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent

    2016-07-12

    Provided herein are polypeptides having ketol-acid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.

  17. Metabolic Transformation of Mevalonic Acid by an Enzyme System from Peas 1

    PubMed Central

    Pollard, C. J.; Bonner, J.; Haagen-Smit, A. J.; Nimmo, C. C.

    1966-01-01

    En enzyme system has been found in peas which converts mevalonic acid to isoprenoid compounds. Among the intermediates in such conversion are mevalonic acid-5-phosphate and pyrophosphate, isopentenyl pyrophosphate and dimethylallylpyrophosphate. Among the products formed by the system are the pyrophosphates of geraniol, farnesol, nerolidol and higher isoprenoid alcohols. PMID:16656233

  18. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  19. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa.

    PubMed

    Taura, Futoshi; Sirikantaramas, Supaart; Shoyama, Yoshinari; Yoshikai, Kazuyoshi; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-06-26

    Cannabidiolic-acid (CBDA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic-acid into CBDA, the dominant cannabinoid constituent of the fiber-type Cannabis sativa. We cloned a novel cDNA encoding CBDA synthase by reverse transcription and polymerase chain reactions with degenerate and gene-specific primers. Biochemical characterization of the recombinant enzyme demonstrated that CBDA synthase is a covalently flavinylated oxidase. The structural and functional properties of CBDA synthase are quite similar to those of tetrahydrocannabinolic-acid (THCA) synthase, which is responsible for the biosynthesis of THCA, the major cannabinoid in drug-type Cannabis plants. PMID:17544411

  20. Comparative Analysis on the Key Enzymes of the Glycerol Cycle Metabolic Pathway in Dunaliella salina under Osmotic Stresses

    PubMed Central

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments. PMID:22675484

  1. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  2. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids

    PubMed Central

    Houten, Sander M.; Denis, Simone; Argmann, Carmen A.; Jia, Yuzhi; Ferdinandusse, Sacha; Reddy, Janardan K.; Wanders, Ronald J. A.

    2012-01-01

    L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting. PMID:22534643

  3. Amino sugars: new inhibitors of zeaxanthin epoxidase, a violaxanthin cycle enzyme.

    PubMed

    Latowski, Dariusz; Banaś, Agnieszka Katarzyna; Strzałka, Kazimierz; Gabryś, Halina

    2007-03-01

    The effect of three sugars and their amino derivatives on violaxanthin cycle enzymes activity was investigated in duckweed (Lemna trisulca), a model water-plant. No effect of sugars and amino sugars on violaxanthin de-epoxidase was observed independent of incubation time; however, epoxidation of zeaxanthin to violaxanthin was inhibited. The minimum amino sugar concentrations causing maximum inhibition of zeaxanthin epoxidation have been estimated. Amino sugars but not sugars caused more than a 50% inhibition of zeaxanthin epoxidation in duckweed after a 24h incubation when applied at a concentration of 0.5%. Incubation with amino sugars under a 6d photoperiod enhanced the inhibitory effect. Zeaxanthin epoxidation was completely inhibited under such conditions, whereas only a minor inhibitory effect was observed in sugar treated plants. The strong amino sugar inhibition of zeaxanthin epoxidase activity represents additional evidence for the creation of an unstable carotenoid carbocation in the molecular mechanism of epoxidation. PMID:17074410

  4. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials. PMID:21889401

  5. Phosphorus constrains accelerated nitrogen cycling in limed acidic forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Shaw, A. N.; Kluber, L. A.; Burke, D. J.; Carrino-Kyker, S. R.; Smemo, K. A.

    2011-12-01

    Anthropogenic deposition can increase phosphorus (P) limitation by abiotic and biotic means. Soil acidification can remove P from available pools and nitrogen (N) deposition can increase the demand for P. We reason that chronic acidic deposition is promoting P limitation in acidic hardwood forests and thereby altering N cycling. The objectives of this study were to investigate the interactive influence of P availability and soil pH on N and P cycling and availability to determine if the response varies between two physiographic regions experiencing similar chronic acidic deposition. We addressed these objectives by experimentally manipulating soil pH, P, or both in strongly acidic glaciated and unglaciated hardwood forests in eastern Ohio, USA. Our results suggest complex interactions between P, soil pH, and the N cycle. Glaciated soils were found to be more N-saturated with nitrification rates 18 times greater than in unglaciated soils. Elevating pH, with or without added P, doubled nitrification rates in glaciated soils. For unglaciated soils, raising pH increased nitrification 10-fold, but increased nitrification only 5-fold in combination with P. This result suggests raising soil pH lowered the demand of soil N, or directly stimulated nitrifying activity, and that increasing P availability could limit N availability. To various degrees, readily available P was geochemically or biologically immobilized in all treatments, suggesting chronic P deficiency in these ecosystems. Phosphorus immobilization decreased as soil pH was elevated, but elevated P either had no effect (glaciated) or doubled P immobilization rates (unglaciated). These results suggest that raising soil pH reduces microbial P limitation for phosphate, whereas adding P appears to make phosphate scarcer. We suggest that P plays an important role in N transformations and cycling, but appears more important in unglaciated soils than in glaciated soils. Chronic soil acidification may have a greater

  6. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.

    PubMed

    Hallows, William C; Yu, Wei; Smith, Brian C; Devries, Mark K; Devires, Mark K; Ellinger, James J; Someya, Shinichi; Shortreed, Michael R; Prolla, Tomas; Markley, John L; Smith, Lloyd M; Zhao, Shimin; Guan, Kun-Liang; Denu, John M

    2011-01-21

    Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation. PMID:21255725

  7. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  8. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model.

    PubMed

    Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali

    2015-01-21

    Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. PMID:25452135

  9. Hepatic and extrahepatic distribution of ornithine urea cycle enzymes in holocephalan elephant fish (Callorhinchus milii).

    PubMed

    Takagi, Wataru; Kajimura, Makiko; Bell, Justin D; Toop, Tes; Donald, John A; Hyodo, Susumu

    2012-04-01

    Cartilaginous fish comprise two subclasses, the Holocephali (chimaeras) and Elasmobranchii (sharks, skates and rays). Little is known about osmoregulatory mechanisms in holocephalan fishes except that they conduct urea-based osmoregulation, as in elasmobranchs. In the present study, we examined the ornithine urea cycle (OUC) enzymes that play a role in urea biosynthesis in the holocephalan elephant fish, Callorhinchus milii (cm). We obtained a single mRNA encoding carbamoyl phosphate synthetase III (cmCPSIII) and ornithine transcarbamylase (cmOTC), and two mRNAs encoding glutamine synthetases (cmGSs) and two arginases (cmARGs), respectively. The two cmGSs were structurally and functionally separated into two types: brain/liver/kidney-type cmGS1 and muscle-type cmGS2. Furthermore, two alternatively spliced transcripts with different sizes were found for cmgs1 gene. The longer transcript has a putative mitochondrial targeting signal (MTS) and was predominantly expressed in the liver and kidney. MTS was not found in the short form of cmGS1 and cmGS2. A high mRNA expression and enzyme activities were found in the liver and muscle. Furthermore, in various tissues examined, mRNA levels of all the enzymes except cmCPSIII were significantly increased after hatching. The data show that the liver is the important organ for urea biosynthesis in elephant fish, but, extrahepatic tissues such as the kidney and muscle may also contribute to the urea production. In addition to the role of the extrahepatic tissues and nitrogen metabolism, the molecular and functional characteristics of multiple isoforms of GSs and ARGs are discussed. PMID:22227372

  10. A Condensing Enzyme from the Seeds of Lesquerella fendleri That Specifically Elongates Hydroxy Fatty Acids1

    PubMed Central

    Moon, Hangsik; Smith, Mark A.; Kunst, Ljerka

    2001-01-01

    Lesquerella fendleri seed oil contains up to 60% hydroxy fatty acids, nearly all of which is the 20-carbon hydroxy fatty acid lesquerolic acid (d-14-hydroxyeicos-cis-11-enoic acid). Previous work suggested that lesquerolic acid in L. fendleri was formed by the elongation of the 18-carbon hydroxy fatty acid, ricinoleic acid. To identify a gene encoding the enzyme involved in hydroxy fatty acid elongation, an L. fendleri genomic DNA library was screened using the coding region of the Arabidopsis Fatty Acid Elongation1 gene as a probe. A gene, LfKCS3, with a high sequence similarity to known very long-chain fatty acid condensing enzymes, was isolated. LfKCS3 has a 2,062-bp open reading frame interrupted by two introns, which encodes a polypeptide of 496 amino acids. LfKCS3 transcripts accumulated only in the embryos of L. fendleri and first appeared in the early stages of development. Fusion of the LfKCS3 promoter to the uidA reporter gene and expression in transgenic Arabidopsis resulted in a high level of β-glucuronidase activity exclusively in developing embryos. Seeds of Arabidopsis plants transformed with LfKCS3 showed no change in their very long-chain fatty acid content. However, when these Arabidopsis plants were crossed with the transgenic plants expressing the castor oleate 12-hydroxylase, significant amounts of 20-carbon hydroxy fatty acids accumulated in the seed, indicating that the LfKCS3 condensing enzyme specifically catalyzes elongation of 18-carbon hydroxy fatty acids. PMID:11743108

  11. Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

    PubMed Central

    Brunner, Patrick C.; Torriani, Stefano F.F.; Croll, Daniel; Stukenbrock, Eva H.; McDonald, Bruce A.

    2013-01-01

    Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle. PMID:23515261

  12. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    PubMed Central

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors. PMID:27516771

  13. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase

    PubMed Central

    Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan

    2016-01-01

    Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70–4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes. PMID:27537184

  14. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase.

    PubMed

    Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan; Trnka, Jan

    2016-01-01

    Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70-4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes. PMID:27537184

  15. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    PubMed

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors. PMID:27516771

  16. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    SciTech Connect

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2013-02-28

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

  17. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    PubMed Central

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  18. The catalytic machinery of a key enzyme in amino Acid biosynthesis.

    PubMed

    Viola, Ronald E; Faehnle, Christopher R; Blanco, Julio; Moore, Roger A; Liu, Xuying; Arachea, Buenafe T; Pavlovsky, Alexander G

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  19. Cell cycle effect on the activity of deoxynucleoside analogue metabolising enzymes

    SciTech Connect

    Fyrberg, Anna; Albertioni, Freidoun; Lotfi, Kourosh . E-mail: koulo@imv.liu.se

    2007-06-15

    Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5'-nucleotidases (5'-NTs) and elevated activities of 5'-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5'-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-{beta}-D-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-{beta}-D-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational.

  20. Oxidase-peroxidase enzymes of Datura innoxia. Oxidation of formylphenylacetic acid ethyl ester.

    PubMed Central

    Kalyanaraman, V S; Mahadevan, S; Kumar, S A

    1975-01-01

    An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed. PMID:997

  1. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  2. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    PubMed Central

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2014-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (106–107) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase. PMID:23423887

  3. Enzyme-entrapped mesoporous silica for treatment of uric acid disorders.

    PubMed

    Muthukoori, Shanthini; Narayanan, Naagarajan; Chandra, Manuguri Sesha Sarath; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2013-05-01

    Gout is an abnormality in the body resulting in the accumulation of uric acid mainly in joints. Dissolution of uric acid crystals into soluble allantoin by the enzyme uricase might provide a better alternative for the treatment of gout. This work aims to investigate the feasibility of a transdermal patch loaded with uricase for better patient compliance. Mesoporous silica (SBA-15) was chosen as the matrix for immobilisation of uricase. Highly oriented mesoporous SBA-15 was synthesized, characterized and uricase was physisorbed in the mesoporous material. The percentage adsorption and release of enzyme in borate buffer was monitored. The release followed linear kinetics and greater than 80% enzyme activity was retained indicating the potential of this system as an effective enzyme immobilization matrix. The enzyme permeability was studied with Wistar rat skin and human cadaver skin. It was found that in case of untreated rat skin 10% of enzyme permeated through skin in 100 h. The permeation increased by adding permeation enhancer (combination of oleic acid in propylene glycol (OA in PG)). The permeation enhancement was studied under two concentrations of OA in PG (1%, 5%) in both rat and human cadaver skin and it was found that 1% OA in PG showed better result in rat skin and 5% OA in PG showed good results in human cadaver skin. PMID:23802423

  4. Enzyme Regulation in Crassulacean Acid Metabolism Photosynthesis : Studies on Thioredoxin-Linked Enzymes of KalanchoE daigremontiana.

    PubMed

    Hutcheson, S W; Buchanan, B B

    1983-07-01

    Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C(3) (spinach) and C(4) (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin.Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates.Kalanchoë FBPase could be partially activated by Mg(2+) at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca(2+), especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg(2+) concentration. However, like FBPase, increased Mg(2+) concentrations enhanced the thioredoxin-linked activation of this enzyme.In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity.These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C(3) and C(4) plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the

  5. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  6. Production of Cell Wall Hydrolyzing Enzymes by Barley Aleurone Layers in Response to Gibberellic Acid 1

    PubMed Central

    Taiz, Lincoln; Honigman, William A.

    1976-01-01

    The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds. Images PMID:16659683

  7. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    PubMed

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  8. Role of Malic Enzyme during Fatty Acid Synthesis in the Oleaginous Fungus Mortierella alpina

    PubMed Central

    Hao, Guangfei; Chen, Haiqin; Wang, Lei; Gu, Zhennan; Song, Yuanda; Zhang, Hao

    2014-01-01

    The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi. PMID:24532075

  9. Isolation and Compositional Analysis of a CP12-Associated Complex of Calvin Cycle Enzymes from Nicotiana tabacum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CP12 is a small intrinsically unstructured protein that forms a multiprotein complex with two Calvin Cycle enzymes, phosphoribulokinase (PRK) and NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The complex can be reconstituted in vitro from recombinant proteins under conditions t...

  10. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.

    PubMed

    Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt

    2016-07-01

    Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes. PMID:27198564

  11. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    PubMed

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. PMID:27317665

  12. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  13. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea; Feng, Sheng; Zhou, Jizhong

    2010-01-01

    Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the g-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other g-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis.

  14. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea B.; Feng, Sheng; Zhou, Jizhong

    2010-10-26

    It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. In this study, we showed that a fur deletion mutant of the γ-proteobacterium S. oneidensis could utilize TCA compounds. In addition, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and demonstrated its expression experimentally. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. This work delineates an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other γ-proteobacteria.

  15. Identification of mycobacteria from animals by restriction enzyme analysis and direct DNA cycle sequencing of polymerase chain reaction-amplified 16S rRNA gene sequences.

    PubMed Central

    Hughes, M S; Skuce, R A; Beck, L A; Neill, S D

    1993-01-01

    Two methods, based on analysis of the polymerase chain reaction-amplified 16S rRNA gene by restriction enzyme analysis (REA) or direct cycle sequencing, were developed for rapid identification of mycobacteria isolated from animals and were compared to traditional phenotypic typing. BACTEC 7H12 cultures of the specimens were examined for "cording," and specific polymerase chain reaction amplification was performed to identify the presence of tubercle complex mycobacteria. Combined results of separate REAs with HhaI, MspI, MboI, and ThaI differentiated 12 of 15 mycobacterial species tested. HhaI, MspI, and ThaI restriction enzyme profiles differentiated Actinobacillus species from mycobacterial species. Mycobacterium bovis could not be differentiated from M. bovis BCG or Mycobacterium tuberculosis. Similarly, Mycobacterium avium and Mycobacterium paratuberculosis could not be distinguished from each other by REA but were differentiated by cycle sequencing. Compared with traditional typing, both methods allowed rapid and more accurate identification of acid-fast organisms recovered from 21 specimens of bovine and badger origin. Two groups of isolates were not typed definitively by either molecular method. One group of four isolates may constitute a new species phylogenetically very closely related to Mycobacterium simiae. The remaining unidentified isolates (three badger and one bovine) had identical restriction enzyme profiles and shared 100% nucleotide identify over the sequenced signature region. This nucleotide sequence most closely resembled the data base sequence of Mycobacterium senegalense. Images PMID:7508456

  16. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity.

    PubMed

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-03-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  17. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  18. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria

    PubMed Central

    van Hijum, Sacha A. F. T.; Kralj, Slavko; Ozimek, Lukasz K.; Dijkhuizen, Lubbert; van Geel-Schutten, Ineke G. H.

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and α-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with α-amylase enzymes (family GH13), with a predicted permuted (β/α)8 barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of α-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize β-fructan polymers with either β-(2→6) (inulin) or β-(2→1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed β-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either β-(2→6) or β-(2→1) linkages, degree and type of branching, and fructan molecular mass remain to be identified. PMID:16524921

  19. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  20. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  1. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy.

    PubMed

    Schuchman, Edward H

    2016-09-01

    Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease. PMID:27155573

  2. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    PubMed Central

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to succinate and carbon dioxide. A variety of other phenoxyacetates and alpha-ketoacids can be used by the enzyme, but the greatest catalytic efficiencies were found using 2,4-D and alpha-ketoglutarate. The enzyme possesses multiple essential histidine residues, whereas catalytically essential cysteine and lysine groups do not appear to be present. PMID:8565907

  3. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  4. [Ascorbate-glutathione cycle enzymes activity in Zea mays leaves under salinity and treatment by adaptogenic compounds].

    PubMed

    Konturs'ka, O O; Palladina, T O

    2012-01-01

    The effect of different salinity levels and synthetic compounds treatments on ascorbate-glutathione cycle enzymes activity in maize leaves has been investigated. One-day seedlings exposition with 0.05 M NaCl increased ascorbate peroxidase activity, whereas 10-day exposition did not affect it. However the exposition with 0.1 M NaCl, which is extreme for maize, decreased ascorbate peroxidase activity in leaves during 10 days. On the other hand glutathione reductase activity in leaves increased under both salt concentrations. Seeds treatments with Methyure and Ivine increased ascorbate peroxidase activity in the leaves of seedlings under 0.1 M NaCl, but did not affect glutathione reductase activity as compared to the salt control. The results obtained have shown differences of ascorbate-glutathione cycle enzymes responses to salt exposition of seedlings and the effects of adaptogenic compounds on the ascorbate-glutathione cycle via ascorbate peroxidase activation. PMID:23387279

  5. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.

    PubMed

    Haas, Simon; Hain, Nicole; Raoufi, Mohammad; Handschuh-Wang, Stephan; Wang, Tao; Jiang, Xin; Schönherr, Holger

    2015-03-01

    We introduce a new hyaluronidase-responsive amphiphilic block copolymer system, based on hyaluronic acid (HYA) and polycaprolactone (PCL), that can be assembled into polymersomes by an inversed solvent shift method. By exploiting the triggered release of encapsulated dye molecules, these HYA-block-PCL polymersomes lend themselves as an autonomous sensing system for the detection of the presence of hyaluronidase, which is produced among others by the pathogenic bacterium Staphylococcus aureus. The synthesis of the enzyme-responsive HYA-block-PCL block copolymers was carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition of ω-azide-terminated PCL and ω-alkyne-functionalized HYA. The structure of the HYA-block-PCL assemblies and their enzyme-triggered degradation and concomitant cargo release were investigated by dynamic light scattering, fluorescence spectroscopy, confocal laser-scanning microscopy, scanning and transmission electron, and atomic force microscopy. As shown, a wide range of reporter dye molecules as well as antimicrobials can be encapsulated into the vesicles during formation and are released upon the addition of hyaluronidase. PMID:25654495

  6. [Activity of the sphingomyelin cycle enzymes and concentration of products of sphingomyelin degradation in the rat liver in the course of acute toxic hepatitis].

    PubMed

    Serebrov, V Iu; Kuz'menko, D I; Burov, P G; Sapugol'tseva, O B

    2010-01-01

    Activity of key enzymes of a sphingomyelin cycle and the maintenance of its components (sphingomyelin, ceramide and sphingosine-1-phosphate) have been studied in livers of rats in dynamics of the acute toxic hepatitis caused by hypodermic introduction of an oil solution of CCl4. Sphingomyelinase activity significally increased already on early terms and remained increased over the whole period of observation. Activity of ceramidase insignificantly differed from the control level. The levels of sphingomyelin and sphingosine-1-phosphate did not undergo marked changes while ceramide content significally increased. Thus, balance between liver content of ceramide (proapoptotic) and the sphingosine-1-phosphate, being the antiapoptotic factor, was shifted towards ceramide. In sphingomyelin molecules there was a significant decrease in the content of fatty acids C18: and C22:2, while in ceramide molecules and sphingosine-1-phosphate only fatty acid C22:2 changed. In spite of significant decrease in content of some unsaturated fatty acids, calculated unsaturation coefficients of the fatty acid component of the sphingomyelin cycle metabolites. Thus, our results together with literature data suggests involvement of ceramide-mediated apoptosis in the pathogenesis of acute toxic hepatitis. Elimination of damaged hepatocytes facilitates realization of repair processes and optimization of cellular community of a liver. PMID:21341516

  7. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.

    PubMed

    Lavrukhin, O V; Lloyd, R S

    2000-12-12

    Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates. PMID:11106507

  8. Acid wash of second cycle solvent in the recovery of uranium from phosphate rock

    SciTech Connect

    York, W.R.

    1984-02-07

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle-uranium recovery process, by washing the organic solvent stream containing entrained H/sub 3/PO/sub 4/ from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper.

  9. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor.

    PubMed

    Ahuja, T; Tanwar, V K; Mishra, S K; Kumar, D; Biradar, A M; Rajesh

    2011-06-01

    An enzyme immobilization matrix is described by preparing a self-assembly of gold nanoparticles (GNPs) over a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) on an indium-tin-oxide (ITO) coated glass plate. The surface of the GNPs was modified with a mixed (1:9) SAM of 11-mercaptoundecanoic acid (MUA) and 3-mercapto-propionic acid (MPA). The enzyme, uricase was covalently immobilized to the carboxyl groups of the mixed SAM of MUA/MPA through carbodiimide coupling reaction. The whole assembly was constructed on 1 cm2 area of ITO-glass plate and was tested as an amperometric biosensor for the detection of uric acid in aqueous solution. The biosensor assembly was characterized by atomic force microscopy (AFM) and electrochemical techniques. The AFM of the enzyme biosensor assembly reveals an asymmetrical sharp regular island-like structure with an average roughness parameter value of 2.81 nm. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4), which exhibits a linear response over a concentration range of 0.07 to 0.63 mM with a sensitivity of 19.27 microAmM(-1) and a response of 25 s with excellent reproducibility. These results are not influenced by the presence of interfering reagents such as ascorbic acid, urea and glucose. GNPs-biomolecule assemblies constructed using this method may facilitate development of new hybrid biosensing materials. PMID:21770094

  10. Non-enzymic phosphorylation of polyphosphoinositides and phosphatidic acid is catalysed by bivalent metal ions.

    PubMed Central

    Gumber, S C; Lowenstein, J M

    1986-01-01

    Phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate and phosphatidic acid undergo non-enzymic phosphorylation by ATP in the presence of bivalent metal ions. The non-enzymic reaction is more rapid in a mixture of water, chloroform and methanol than in water alone. Chemical evidence indicates that the product formed from phosphatidylinositol 4-phosphate is the corresponding 4-pyrophosphate. This product shows an RF value very close to that of phosphatidylinositol 4,5-bisphosphate on t.l.c. with an acidic solvent commonly used to characterize and measure the latter; however, it can be separated readily with an alkaline solvent. Chemical evidence indicates that the products formed from phosphatidylinositol 4,5-bisphosphate and phosphatidic acid are also pyrophosphates. Images Fig. 1. Fig. 2. PMID:3017309

  11. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm–Horsfall glycoprotein

    PubMed Central

    Neuberger, A.; Ratcliffe, Wendy A.

    1972-01-01

    Rabbit Tamm–Horsfall glycoprotein and bovine submaxillary glycoprotein were both found to contain sialic acid residues which are released at a slow rate by the standard conditions of acid hydrolysis. These residues are also resistant to neuraminidases from Vibrio cholerae and Clostridium perfringens. This behaviour was attributed to the presence of O-acetylated sialic acid, since the removal of O-acetyl groups by mild alkaline treatment normalized the subsequent release of sialic acid from rabbit Tamm–Horsfall glycoprotein by acid and by enzymic hydrolysis. Determination of the O-acetyl residues in rabbit Tamm–Horsfall glycoprotein indicated that on average two hydroxyl groups of sialic acid are O-acetylated, and these were located on the polyhydroxy side-chain of sialic acid or on C-4 and C-8. These findings confirm the assumption that certain O-acetylated forms of sialic acid are not substrates for bacterial neuraminidases. Several explanations have been suggested to explain the effect of O-acetylation of the side-chain on the rate of acidcatalysed hydrolysis of sialic acid residues. PMID:4349114

  12. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. PMID:20701974

  13. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo.

    PubMed

    Okegawa, Yuki; Motohashi, Ken

    2015-12-01

    Thioredoxins (Trxs) regulate the activity of various chloroplastic proteins in a light-dependent manner. Five types of Trxs function in different physiological processes in the chloroplast of Arabidopsis thaliana. Previous in vitro experiments have suggested that the f-type Trx (Trx f) is the main redox regulator of chloroplast enzymes, including Calvin cycle enzymes. To investigate the in vivo contribution of each Trx isoform to the redox regulatory system, we first quantified the protein concentration of each Trx isoform in the chloroplast stroma. The m-type Trx (Trx m), which consists of four isoforms, was the most abundant type. Next, we analyzed several Arabidopsis Trx-m-deficient mutants to elucidate the physiological role of Trx m in vivo. Deficiency of Trx m impaired plant growth and decreased the CO2 assimilation rate. We also determined the redox state of Trx target enzymes to examine their photo-reduction, which is essential for enzyme activation. In the Trx-m-deficient mutants, the reduction level of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase was lower than that in the wild type. Inconsistently with the historical view, our in vivo study suggested that Trx m plays a more important role than Trx f in the activation of Calvin cycle enzymes. PMID:26468055

  14. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  15. Does single-amino-acid replacement work in favor of or against improvement of the thermostability of immobilized enzyme?

    PubMed Central

    Koizumi, J; Zhang, M; Imanaka, T; Aiba, S

    1990-01-01

    Thermostabilities of kanamycin nucleotidyltransferase and of its mutants that became thermostable, in the free state, because of single-amino-acid replacements were studied after immobilization of the enzymes on cyanogen bromide-activated Sephadex G-200 particles. Lys in place of Gln at position 102 decreased the thermostability of the immobilized enzyme, whereas replacement with other amino acids enhanced it. PMID:2176451

  16. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  17. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron.

    PubMed Central

    McCarthy, R E; Kotarski, S F; Salyers, A A

    1985-01-01

    When Bacteroides thetaiotaomicron is grown in medium which contains polygalacturonic acid (PGA) as the sole carbon source, two different polygalacturonases are produced: a PGA lyase (EC 4.2.2.2) and a PGA hydrolase (EC 3.2.1.15). Both enzymes are cell associated. The PGA hydrolase appears to be an inner membrane protein. The PGA lyase is a soluble protein that associates with membranes under certain conditions. The PGA lyase was purified to apparent homogeneity. It has a molecular weight (from sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 74,000, a pH optimum of 8.7, a pI of 7.5, and a Km for PGA of 40 to 70 micrograms/ml. It requires calcium for maximal activity. The main product of this enzyme appears to be a disaccharide that contains a delta 4,5-unsaturated galacturonic acid residue. The PGA hydrolase can be solubilized from membranes with 2% Triton X-100 and has been partially purified. It has a pH optimum of 5.4 to 5.5, a pI of 4.7 to 4.9, and a Km for PGA of 350 to 400 micrograms/ml. The main product of this enzyme appears to be galacturonic acid. The specific activities of both PGA hydrolase and PGA lyase increase at the same rate when bacteria are exposed to PGA. The two enzymes therefore appear to be similarly regulated. Images PMID:3968032

  18. Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification.

    PubMed

    de Koning, W; Groeneveld, K; Oehlen, L J; Berden, J A; van Dam, K

    1991-04-01

    Activities of glycolytic enzymes were determined in elutriation fractionated cultures of Saccharomyces cerevisiae grown on different carbon sources. Almost pure fractions of single cells at the G1 state of cell division were obtained for some of the growth conditions tested, whereas other stages were enriched in particular fractions. Specific activities of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase were found to be constant during the cell cycle, as reported by van Doorn et al. (1988a), Journal of Bacteriology 170, 4808-4815, and (1988b), Journal of General Microbiology 134, 785-790. In contrast to the earlier reports, the activities of hexokinase, phosphofructokinase, pyruvate kinase and trehalase were also constant in different states of the cell cycle. For hexokinase and phosphofructokinase it was shown that the apparent specific activity in a cell-free extract strongly diminished when extracts contained less that 0.5-1 mg protein ml-1. In the experiments of van Doorn et al. (1988a) the protein content of the outer fractions was up to 20 times lower than that of the central fractions, suggesting an alternative explanation for the observed changes in enzyme activities during the cell cycle. Therefore, we want to rectify the observations presented by van Doorn et al. (1988a), and conclude that the activities of the glycolytic enzymes do not vary greatly during the cell cycle of S. cervisiae. PMID:1856683

  19. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  20. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  1. Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer.

    PubMed

    Starska, Katarzyna; Forma, Ewa; Brzezińska-Błaszczyk, Ewa; Lewy-Trenda, Iwona; Bryś, Magdalena; Jóźwiak, Paweł; Krześlak, Anna

    2015-11-01

    Aberrant protein O-GlcNAcylation may contribute to the development and malignant behavior of many cancers. This modification is controlled by O-linked β-N-acetylglucosamine transferase (OGT) and O-GlcNAcase (OGA). The aim of this study was to determine the expression of O-GlcNAc cycling enzymes mRNA/protein and to investigate their relationship with clinicopathological parameters in laryngeal cancer. The mRNA levels of OGT and MGEA5 genes were determined in 106 squamous cell laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent laryngeal mucosa (NCLM) controls using quantitative real-time PCR. The level of OGT and OGA proteins was analyzed by Western blot. A positive expression of OGT and MGEA5 transcripts and OGT and OGA proteins was confirmed in 75.5 and 68.9 % and in 43.7 and 59.4 % samples of SCLC, respectively. Higher levels of mRNA/protein for both OGT and OGA as well as significant increases of 60 % in total protein O-GlcNAcylation levels were noted in SCLC compared with NCLM (p < 0.05). As a result, an increased level of OGT and MGEA5 mRNA was related to larger tumor size, nodal metastases, higher grade and tumor behavior according to TFG scale, as well as incidence of disease recurrence (p < 0.05). An inverse association between OGT and MGEA5 transcripts was determined with regard to prognosis (p < 0.05). In addition, the highest OGT and OGA protein levels were observed in poorly differentiated tumors (p < 0.05). No correlations with other parameters were noted, but the results showed a trend of more advanced tumors to be more frequently OGT and OGA positive. The results suggest that increased O-GlcNAcylation may have an effect on tumor aggressiveness and prognosis in laryngeal cancer. PMID:25315705

  2. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  3. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes. PMID:26877002

  4. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  5. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation

    PubMed Central

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-01

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with 14C-glucose and 3H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD+] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation. PMID:15550462

  6. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    PubMed Central

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  7. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    PubMed

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  8. Cytochemical localisation of lysosomal enzymes and acidic mucopolysaccharides in the salivary glands of Aplysia depilans (Opisthobranchia).

    PubMed

    Lobo-da-Cunha, A

    2002-04-01

    Three types of secretory cells were reported in the salivary glands of Aplysia depilans: granular cells, vacuolated cells and mucocytes. To improve the characterisation of these cells, cytochemical methods for the detection of lysosomal enzymes and acidic mucopolysaccharides were applied. In granular cells, acid phosphatase and arylsulphatase were present in small lysosomes and in some secretory granules. The secretory granules could have received these enzymes after fusion with the small lysosomes that were frequently found very close to them. These cells were not stained with colloidal iron because they do not contain acidic mucopolysaccharides. In vacuolated cells, acid phosphatase and arylsulphatase were detected in lysosomes but not in the secretory vacuoles. Colloidal iron staining revealed the presence of acidic mucopolysaccharides in the vacuoles and in the Golgi apparatus of these cells. In mucocytes, lysosomes were very rare, but the secretion of these cells was very rich in acidic mucopolysaccharides. The filamentous network within the secretory vesicles was completely covered with iron particles, but practically no particles were observed over the granular masses attached to the membrane of the vesicles. Iron particles were also found in the trans-face cisternae of the U-shaped Golgi stacks, but were not seen in the cis-face cisternae or in the rough endoplasmic reticulum. PMID:12117284

  9. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    PubMed

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  10. CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities

    PubMed Central

    Edson, Katheryne Z.; Rettie, Allan E.

    2014-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20-hydroxyeicosatetraenoic acid or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases. PMID:23688133

  11. Pistagremic acid, a novel β-secretase enzyme (BACE1) inhibitor from Pistacia integerrima Stewart.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Khan, Ajmal; Siddiqui, Bina S; Arfan, Mohammad; Dalvandi, Kourosh; Ben Hadda, Taibi

    2015-01-01

    A new triterpenic compound named pistagremic acid (PA) was once again isolated from Pistaciaintegerrima. The β-secretase inhibition study was carried out. Compound PA was found significantly active against β-secretase enzyme (BACE1) with IC50 value of 350 ± 2 nM in comparison to the standard inhibitors [Asn670, Sta671, Val672]-amyloid-β/A4 precursor protein 770 fragment 662-675 (IC50 = 290.71 ± 1 nM). The selectivity of this compound was also evaluated against the acetylcholinesterase and butyrylcholinesterase enzymes. Interestingly compound PA was found to be inactive against them and showed selectivity towards β-secretase enzyme (BACE1). PMID:25588845

  12. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  13. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  14. The viability of a nonenzymatic reductive citric acid cycle--kinetics and thermochemistry.

    PubMed

    Ross, David S

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate --> pyruvate --> oxaloacetate --> malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. PMID:17136437

  15. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway.

    PubMed

    Cronan, John E

    2016-06-01

    Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism. PMID:27074917

  16. Role of dexamethasone and insulin on the development of the five urea-cycle enzymes in cultured rat foetal hepatocytes.

    PubMed Central

    Husson, A; Bouazza, M; Buquet, C; Vaillant, R

    1985-01-01

    The activity changes of the urea-cycle enzymes were monitored in cultured foetal hepatocytes after dexamethasone and insulin treatments. Addition of dexamethasone induced the development of carbamoyl-phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase activities as soon as day 16.5 of gestation. When insulin was added together with dexamethasone, it markedly inhibited the steroid-induced increase in carbamoyl-phosphate synthetase, argininosuccinate synthetase and argininosuccinase activities. PMID:3883987

  17. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. PMID:27012885

  18. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes

    PubMed Central

    Reyes-Prieto, Adrian; Moustafa, Ahmed

    2012-01-01

    Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids. PMID:23233874

  19. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  20. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

    PubMed Central

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  1. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  2. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system

    PubMed Central

    Tritz, Richard; Habita, Cellia; Robbins, Joan M.; Gomez, German G.; Kruse, Carol A.

    2005-01-01

    Summary Nucleic acid enzymes have been used with great success for studying natural processes in the central nervous system (CNS). We first provide information on the structural and enzymatic differences of various ribozymes and DNAzymes. We then discuss how they have been used to explore new therapeutic approaches for treating diseases of the CNS. They have been tested in various systems modeling retinitis pigmentosum, proliferative vitreoretinopathy, Alzheimer's disease, and malignant brain tumors. For these models, effective targets for nucleic acid enzymes have been readily identified and the rules for selecting cleavage sites have been well established. The bulk of studies, including those from our laboratory, have emphasized their use for gliomas. With the availability of multiple excellent animal models to test glioma treatments, good progress has been made in the initial testing of nucleic acid enzymes for brain tumor therapy. However, opportunities still exist to significantly improve the delivery and efficacy of ribozymes to achieve effective treatment. The future holds significant potential for the molecular targeting and therapy of eye diseases, neurodegenerative disorders, and brain tumors with these unique treatment agents. PMID:16467915

  3. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  4. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  5. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  6. DEVELOPMENT OF ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR ISOCUPRESSIC ACID AND SERUM METABOLITES OF ISOCUPRESSIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), common juniper (Juniperus communis) and Monterey cypress (Cupressus macrocarpa) causes abortions in pregnant cattle. Recent studies have identified isocupressic acid as the primary abortifacient compound in these ...

  7. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  8. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  9. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor.

    PubMed Central

    Zhao, J; Williams, C C; Last, R L

    1998-01-01

    The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated. PMID:9501110

  10. Study and comparison of two enzyme membrane reactors for fatty acids and glycerol production

    SciTech Connect

    Molinari, R.; Santoro, M.E.; Drioli, E. . Dept. of Chemical Engineering and Materials Inst. on Membranes and Chemical Reactors-CNR, Arcavacata di Rende )

    1994-11-01

    Two enzyme membrane reactors (EMR), (1) with one substrate (olive oil) in an oil-in-water emulsion (E-EMR) and (2) with two separated liquid phases (oil and water) (TSLP-EMR), have been studied for the conversion of the triglycerides to fatty acids and glycerol. The enzyme was Candida cylindracea lipase confined on the pressurized face or entrapped in the sponge side of capillary ultrafiltration membranes. Two methods for immobilizing the enzyme in the TSLP-EMR were used: ultrafiltration on a virgin membrane and ultrafiltration on glutaraldehyde pretreated membranes. A multiple use of the reactor was obtained immobilizing the enzyme on the membrane preactivated with glutaraldehyde. The TSLP-EMR showed a specific activity of 0.529 mmol/(mg[center dot]h) versus a specific activity of 0.170 mmol/(mg[center dot]h) of the E-EMR. The rate of fatty acid production in the TSLP-EMR was linear with time showing no enzyme deactivation in an operating time of 80 h. The kinetics observed in the two reactors was different: an equilibrium reaction product-inhibited for the E-EMR and an apparent irreversible reaction of zero order for the TSLP-EMR. Taking into account that in the TSLP-EMR, compared to the E-EMR, (1) the specific activity was higher, (2) the specific rate was constant with the time, and (3) the two products were already separated after the reaction, the TSLP-EMR configuration seems the more convenient.

  11. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    PubMed

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina

    2016-09-01

    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  12. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  13. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.

    PubMed

    Wu, Yufan; Fried, Stephen D; Boxer, Steven G

    2015-12-01

    Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement. PMID:26571340

  14. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme.

    PubMed

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C K

    2010-11-01

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site. PMID:21045284

  15. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  16. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  17. Ensemble Methods for Monitoring Enzyme Translocation along Single Stranded Nucleic Acids

    PubMed Central

    Tomko, Eric J.; Fischer, Christopher J.; Lohman, Timothy M.

    2010-01-01

    We review transient kinetic methods developed to study the mechanism of translocation of nucleic acid motor proteins. One useful stopped-flow fluorescence method monitors arrival of the translocase at the end of a fluorescently labeled nucleic acid. When conducted under single-round conditions the time courses can be analyzed quantitatively using n-step sequential models to determine the kinetic parameters for translocation (rate, kinetic step size and processivity). The assay and analysis discussed here can be used to study enzyme translocation along a linear lattice such as ssDNA or ssRNA. We outline the methods for experimental design and two approaches, along with their limitations, that can be used to analyze the time courses. Analysis of the full time courses using n-step sequential models always yields an accurate estimate of the translocation rate. An alternative semi-quantitative “time to peak” analysis yields accurate estimates of translocation rates only if the enzyme initiates translocation from a unique site on the nucleic acid. However, if initiation occurs at random sites along the nucleic acid, then the “time to peak” analysis can yield inaccurate estimates of even the rates of translocation depending on the values of other kinetic parameters, especially the rate of dissociation of the translocase. Thus, in those cases analysis of the full time course is needed to obtain accurate estimates of translocation rates. PMID:20371288

  18. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  19. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit. PMID:24912701

  20. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  1. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  2. Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice

    PubMed Central

    Lin, Hsuan-Ni; O’Connor, J. Patrick

    2014-01-01

    This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

  3. Novel control of S-phase of the cell cycle by ubiquitin conjugating enzyme H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Timely degradation of regulatory proteins by the ubiquitin proteolytic pathway (UPP) is an established paradigm of cell cycle regulation during the G2/M and G1/S transitions. Less is known about roles for the UPP during S phase. Here we present evidence that dynamic cell cycle dependent changes in l...

  4. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  5. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations

    PubMed Central

    Arnold, Samuel L.; Kent, Travis; Hogarth, Cathryn A.; Schlatt, Stefan; Prasad, Bhagwat; Haenisch, Michael; Walsh, Thomas; Muller, Charles H.; Griswold, Michael D.; Amory, John K.; Isoherranen, Nina

    2015-01-01

    Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types. PMID:25502770

  6. Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7?

    PubMed

    Carias, Cátia C; Novais, Júlio M; Martins-Dias, Susete

    2008-01-01

    The role of antioxidant and detoxification enzymes of Phragmites australis, in the degradation of an azo dye, acid orange 7 (AO7), was studied. Activities of several enzymes involved in plant protection against stress were assayed through the activity characterization of superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST), obtained from P. australis crude extracts of leaves, stems and roots. A sub-surface vertical flow constructed wetland, planted with P. australis was used to test the plants response to the AO7 exposure at two different concentrations (130 and 700 mg l(-1)). An activity increase was detected for an AO7 concentration of 130 mg l(-1) for most enzymes studied (SOD, CAT and APOX), especially in leaves, suggesting a response of the reactive oxygen species scavenging enzymes to the chemical stress imposed. GST activity increase in this situation can also be interpreted as an activation of the detoxification pathway and subsequent AO7 conjugation. A totally different behaviour was observed for AO7 at 700 mg l(-1). An evident decrease in activity was observed for SOD, CAT, APOX and GST, probably due to enzymatic inhibition by AO7. Contrarily, DHAR activity augmented drastically in this situation. POD activity was not greatly affected during trial. Altogether these results suggest that P. australis effectively uses the ascorbate-glutathione pathway for the detoxification of AO7. PMID:17336060

  7. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  8. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.

    PubMed

    Ohno, Yoko; Nakamori, Toshihiko; Zheng, Haitao; Suye, Shin-ichiro

    2008-05-01

    Malic enzyme [L-malate: NAD(P)(+) oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)(+)). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO(3)(-) fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD(+), and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO(3)(-) and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 degrees C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD(+). PMID:18460807

  9. Influence of cycling current and power profiles on the cycle life of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Papazov, G.; Pavlov, D.

    Batteries are assembled with positive plates of the novel strap grid tubular (SGTP) design described in a previous paper [1]. These batteries are subjected to four tests: (i) Peukert dependence determinations; (ii) classical galvanostatic cycling (5 h charge and 1 h discharge); (iii) EV-SFUDS, and (iv) EV-ECE-15 cycling tests. It has been established that the Peukert dependence curve of SGTP batteries is very close in profile to that for SLI batteries. This guarantees SGTP's batteries high power performance. These batteries endure over 950 cycles on galvanostatic cycling. When cycled according to the SFUDS power profile under a current load of 320 A/kg positive active mass during the 15th SFUDS step, SGTP batteries exhibit a cycle life of 350-450 cycles. If the current density during the 15th step is 190 A/kg PAM, the batteries endure over 600 charge/discharge cycles. The life of positive SGT plates is limited by power loss, but not by capacity. Similar results have also been obtained from ECE-15 cycle-life tests. On cycling SGTP batteries with a current load of 210 A/kg PAM during the 23rd ECE-15 step (the step during which maximum power output is demanded from the battery), they endure between 550 and 650 charge/discharge cycles. A summary of the test results obtained for two batches of experimental batteries indicates that there is a direct dependence between the SGTP battery cycle life and the maximum current density on discharge. Increasing the discharge current density decreases the battery life. It has also been established that the capacity on SFUDS (ECE-15) discharge declines gradually on cycling in favour of the residual galvanostatic capacity at 5 h rate of discharge (100% depth-of-discharge) which increases. This implies that two types of structures are formed in the positive plates on cycling: the first type ensuring high power output and the second type yielding low power but long cycle life. The higher the power delivered by the positive plate, the

  10. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  11. Nitric oxide inhibits specific enzymes in the Krebs cycle and the respiratory chain of rat hepatocyte mitochondria

    SciTech Connect

    Stadler, J.; Billiar, T.R.; Curran, R.D.; Kim, R.; Simmons, R.L. )

    1990-02-26

    Nitric oxide (NO) is a highly-reactive molecule produced from L-arginine as recently described. In macrophages and tumor cells, NO inhibits specific mitochondrial enzymes presumably by attacking their intrinsic 4Fe-4S centers. The susceptible enzymes include aconitase of the Krebs cycle and oxidoreductase (complex II) of the electron transport chain. The authors have recently demonstrated that hepatocytes (HC) produce NO in large amounts in response to endotoxin and inflammatory cytokines. To determine whether HC suffer a similar enzyme inhibition, the authors exposed rat HC to increasing concentrations of NO solutions for 5 minutes. The activity of aconitase, complex 1, complex 2, and complex 4 (cytochrome oxidase) was determined by measuring O{sub 2} consumption after addition of enzyme-specific substrates. An NO concentration-dependent inhibition of aconitase, complex 1, and complex 2 was measured. After exposure to 0.6 mM solution, the activity of aconitase was blocked to non-measurable values while complex 1 was reduced to 11 + 8%, and complex 2 to 36 + 2% of the activity of control HC. Complex 4 of the respiratory chain remained intact at 100 + 8%. These data indicate that HC, like other cell types, are susceptible to inhibition of important steps of energy production by NO. As NO is produced in response to septic stimuli, this mechanism may play a role in the metabolic dysfunction of HC in sepsis.

  12. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  13. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass. PMID:25342454

  14. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    SciTech Connect

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  15. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut

    PubMed Central

    Chen, Hui; Wilkerson, Curtis G.; Kuchar, Jason A.; Phinney, Brett S.; Howe, Gregg A.

    2005-01-01

    The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores. PMID:16357201

  16. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    NASA Astrophysics Data System (ADS)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  17. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    PubMed Central

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  18. Distribution of Two C Cycle Enzymes in Soil Aggregates of a Prairie Chronosequence

    SciTech Connect

    Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey; Bailey, Vanessa L.

    2005-11-01

    Recently attention has focused on the potential of using soil as a sink for atmospheric CO2. The objective of this study was to use soil enzymes and classical methods of soil aggregate fractionation to explore the relationship between microbial community function and soil structure of a tallgrass prairie chronosequence. The soils within the chronosequence were: (1) remnant native prairie, (2) agricultural soil, and (3, 4) tallgrass prairies restored from agriculture in 1979 and 1993. β-glucosidase (E.C. 3.2.1.21) and N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) assays were conducted on four different aggregate size fractions (>2 mm, 1 -2 mm, 250µm-1 mm, and 2 - 250 µm) from each soil. Specific activities for both enzymes (µg PNP g-1 soil h-1) were greatest in the microaggregate (2 µm -250 µm) fractions across the chronosequence; however, this size fraction makes up only a small proportion of the whole soil. Therefore, it is the larger macroaggregate-derived enzyme activities that have the greatest impact on the activity of the whole soil. Analyzing both enzymes and the physical structure, a reversion from an agricultural soil through the restored to more like the prairie soil, was not detected. It appears that the function of these microbial community systems in the native tallgrass prairie and agricultural soils of the chronosequence are in equilibria while the lands restored to tallgrass prairie are in an ongoing state of recovery.

  19. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography.

    PubMed

    Wille, Georg; Meyer, Danilo; Steinmetz, Andrea; Hinze, Erik; Golbik, Ralph; Tittmann, Kai

    2006-06-01

    Enzymes that use the cofactor thiamin diphosphate (ThDP, 1), the biologically active form of vitamin B(1), are involved in numerous metabolic pathways in all organisms. Although a theory of the cofactor's underlying reaction mechanism has been established over the last five decades, the three-dimensional structures of most major reaction intermediates of ThDP enzymes have remained elusive. Here, we report the X-ray structures of key intermediates in the oxidative decarboxylation of pyruvate, a central reaction in carbon metabolism catalyzed by the ThDP- and flavin-dependent enzyme pyruvate oxidase (POX)3 from Lactobacillus plantarum. The structures of 2-lactyl-ThDP (LThDP, 2) and its stable phosphonate analog, of 2-hydroxyethyl-ThDP (HEThDP, 3) enamine and of 2-acetyl-ThDP (AcThDP, 4; all shown bound to the enzyme's active site) provide profound insights into the chemical mechanisms and the stereochemical course of thiamin catalysis. These snapshots also suggest a mechanism for a phosphate-linked acyl transfer coupled to electron transfer in a radical reaction of pyruvate oxidase. PMID:16680160

  20. Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie

    2014-05-01

    Climate change research predicts that both frequency and intensity of weather extremes such as long drought periods and heavy rainfall events will increase in mid Europe over the next decades. Soil moisture is one of the major factors controlling microbial soil processes, and it has been widely agreed that feedback effects between altered precipitation and changed soil fluxes of the greenhouse gases CO2, CH4 and N2O could intensify climate change. In a field experiment in an Austrian beech forest, we established a precipitation manipulation experiment, which will be conducted for 3 years. We use roofs to exclude rainfall from reaching the forest soil and simulate drought periods, and a sprinkler system to simulate heavy rainfall events. We applied repeated dry-wet cycles in two intensities: one treatment received 6 cycles of 1 month drought followed by 75mm irrigation within 2 hours, and a parallel treatment received 3 cycles of 2 months drought followed by 150mm irrigation within 3 hours. We took soil samples 1 day before, 1 day after and 1 week after rewetting events and analyzed them for soil nutrients and extracellular enzyme activities. Soil fluxes of CO2, N2O and CH4 were constantly monitored with an automated flux chamber system, and environmental parameters were recorded via dataloggers. In addition, we determined fluxes and nutrient concentrations of bulk precipitation, throughfall, stemflow, litter percolate and soil water. Next we plan to analyze soil microbial community composition via PLFAs to investigate microbial stress resistance and resilience, and we will use ultrasonication to measure soil aggregate stability and protection of soil organic matter in stressed and control plots. The results of the first year show that experimental rainfall manipulation has influenced soil extracellular enzymes. Potential phenoloxidase activity was significantly reduced in stressed treatments compared to control plots. All measured hydrolytic enzymes (cellulase

  1. The activity of Krebs cycle enzymes in the visual analyzer of rats in the norm and under stress.

    PubMed

    Lutsenko, N S; Yakushev, V S

    1993-01-01

    Higher activity of the NAD-dependent dehydrogenases of the tricarboxylic acid cycle (TAC) is observed in the optic retina, and of FAD-dependent dehydrogenases in the occipital lobes of the brain, in the visual analyzer of intact rats. The influence of stress using Desiderato's method induces a compensatory increase in the activity of succinate dehydrogenase. Acute stress induces a change in the regulation of the activity of the TAC dehydrogenases, assessed on the basis of the reaction to functional load. The animals' remaining in the dark following stress promotes the restoration of the activity of the TAC cycle to the normal level. PMID:8413911

  2. A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress

    PubMed Central

    Chittezham Thomas, Vinai; Kinkead, Lauren C.; Janssen, Ashley; Schaeffer, Carolyn R.; Woods, Keith M.; Lindgren, Jill K.; Peaster, Jonathan M.; Chaudhari, Sujata S.; Sadykov, Marat; Jones, Joselyn; Mohamadi AbdelGhani, Sameh M.; Zimmerman, Matthew C.; Bayles, Kenneth W.; Somerville, Greg A.; Fey, Paul D.

    2013-01-01

    ABSTRACT A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. PMID:23963176

  3. Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascae Seed

    PubMed Central

    Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian

    2002-01-01

    Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164

  4. A new electrolyte formulation for low cost cycling lead acid batteries

    NASA Astrophysics Data System (ADS)

    Torcheux, L.; Lailler, P.

    This paper is devoted to the development of a new lead acid battery electrolyte formulation for cycling applications, especially for renewable energy markets in developing countries. These emerging markets, such as solar home systems, require lead acid batteries at very low prices and improved performances compared to automotive batteries produced locally. The new acid formulation developed is a mixture of sulphuric acid, liquid colloidal silica and other additives including phosphoric acid. The colloidal silica is used at a low concentration in order to decrease the acid stratification process during cycling at high depth of discharge. Phosphoric acid is used for the improvement of the textural evolution of the positive active material during cycling. After a description of the markets and of the additives used in the new acid formulation, this paper presents the results obtained with normalised photovoltaic cycle testing on low cost automotive batteries modified by the new electrolyte formulation. It is shown that the cycling life of such batteries is much increased in the presence of the new formulation. These results are explained by the improved evolution of positive active mass softening parameters (specific surface and β-PbO 2 crystallite size) and also by a more homogeneous sulphating process on both plates.

  5. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  6. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases.

    PubMed Central

    Ullrich, M; Bender, C L

    1994-01-01

    Coronamic acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine, functions as an intermediate in the biosynthesis of coronatine, a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. The DNA required for CMA biosynthesis (6.9 kb) was sequenced, revealing three distinct open reading frames (ORFs) which share a common orientation for transcription. The deduced amino acid sequence of a 2.7-kb ORF designated cmaA contained six core sequences and two conserved motifs which are present in a variety of amino acid-activating enzymes, including nonribosomal peptide synthetases. Furthermore, CmaA contained a spatial arrangement of histidine, aspartate, and arginine residues which are conserved in the ferrous active site of some nonheme iron(II) enzymes which catalyze oxidative cyclizations. The deduced amino acid sequence of a 1.2-kb ORF designated cmaT was related to thioesterases of both procaryotic and eucaryotic origins. These data suggest that CMA assembly is similar to the thiotemplate mechanism of nonribosomal peptide synthesis. No significant similarities between a 0.9-kb ORF designated cmaU and other database entries were found. The start sites of two transcripts required for CMA biosynthesis were identified in the present study. pRG960sd, a vector containing a promoterless glucuronidase gene, was used to localize and study the promoter regions upstream of the two transcripts. Data obtained in the present study indicate that CMA biosynthesis is regulated at the transcriptional level by temperature. Images PMID:8002582

  7. Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2016-04-28

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway. PMID:26838342

  8. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform. PMID:26649493

  9. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery.

    PubMed

    Yang, Chenchen; Wang, Xin; Yao, Xikuang; Zhang, Yajun; Wu, Wei; Jiang, Xiqun

    2015-05-10

    A methacrylation strategy was employed to functionalize hyaluronic acid and prepare hyaluronic acid (HA) nanogels. Dynamic light scattering, zeta potential analyzer and electron microscopy were utilized to characterize the nanogels and their enzyme-degradability in vitro. It was found that these nanogels had a spherical morphology with the diameter of about 70nm, and negative surface potential. When doxorubicin (DOX) was loaded into the nanogels, the diameter decreased to approximately 50nm with a drug loading content of 16% and encapsulation efficiency of 62%. Cellular uptake examinations showed that HA nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs) which both overexpress CD44 receptor. Near-infrared fluorescence imaging, biodistribution and penetration examinations in tumor tissue indicated that the HA nanogels could efficiently accumulate and penetrate the tumor matrix. In vivo antitumor evaluation found that DOX-loaded HA nanogels exhibited a significantly superior antitumor effect. PMID:25665867

  10. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids.

    PubMed

    Lim, Sung In; Kwon, Inchan

    2016-10-01

    The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering. PMID:26036278

  11. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases

    PubMed Central

    Hexter, Suzannah V.; Grey, Felix; Happe, Thomas; Climent, Victor; Armstrong, Fraser A.

    2012-01-01

    The extraordinary ability of Fe- and Ni-containing enzymes to catalyze rapid and efficient H+/H2 interconversion—a property otherwise exclusive to platinum metals—has been investigated in a series of experiments combining variable-temperature protein film voltammetry with mathematical modeling. The results highlight important differences between the catalytic performance of [FeFe]-hydrogenases and [NiFe]-hydrogenases and justify a simple model for reversible catalytic electron flow in enzymes and electrocatalysts that should be widely applicable in fields as diverse as electrochemistry, catalysis, and bioenergetics. The active site of [FeFe]-hydrogenases, an intricate Fe-carbonyl complex known as the “H cluster,” emerges as a supreme catalyst. PMID:22802675

  12. Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat).

    PubMed

    Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-11-01

    A high inulinase activity was found in three commercially available glucoamylase enzymes. Its origin was investigated and two proteins in the commercial glucoamylases were identified as the potential enzymes showing inulinase activity. One of the commercial glucoamylases, GA-L New from Genencor, was used for Jerusalem artichoke tubers (Jat) hydrolysis and a high hydrolysis yield of fructose was obtained. The simultaneous saccharification and lactic acid fermentation (SSF) of Jat was carried out using GA-L New as the inulinase and Pediococcus acidilactici DQ2 as the fermenting strain. A high lactic acid titer, yield, and productivity of 111.5 g/L, 0.46 g/g DM, and 1.55 g/L/h, respectively, were obtained within 72 h. The enzyme cost using the commercial glucoamylase as inulinase was compared to that using the typical inulinase and a large profit margin was identified. The results provided a practical way of Jat application for lactic acid production using cheap commercial glucoamylase enzyme. PMID:24050923

  13. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-01-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  14. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  15. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  16. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  17. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation. PMID:19515264

  18. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system.

    PubMed

    Mafra, Agnes Cristina Oliveira; Furlan, Felipe Fernando; Badino, Alberto Colli; Tardioli, Paulo Waldir

    2015-04-01

    Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L(-1) h(-1). PMID:25326720

  19. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.

    PubMed

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme. PMID:26503170

  20. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

    PubMed Central

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170

  1. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium.

    PubMed Central

    Nuutinen, E M; Peuhkurinen, K J; Pietiläinen, E P; Hiltunen, J K; Hassinen, I E

    1981-01-01

    1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA). PMID:6796067

  2. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    PubMed Central

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  3. Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle.

    PubMed

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  4. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended.

  5. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  6. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates.

    PubMed

    Mukherjee, Joyeeta; Majumder, Abir Baran; Gupta, Munishwar Nath

    2016-08-15

    Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles. PMID:27237371

  7. CLINICAL CONSEQUENCES OF UREA CYCLE ENZYME DEFICIENCIES AND POTENTIAL LINKS TO ARGININE AND NITRIC OXIDE METABOLISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urea cycle disorders (UCD) are human conditions caused by the dysregulation of nitrogen transfer from ammonia nitrogen into urea. The biochemistry and the genetics of these disorders were well elucidated. Earlier diagnosis and improved treatments led to an emerging, longer-lived cohort of patients. ...

  8. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  9. Enzymes in the glutamate-glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism

    PubMed Central

    2013-01-01

    Background Accumulating evidence suggests that dysfunction in the glutamatergic system may underlie the pathophysiology of autism. The anterior cingulate cortex (ACC) has been implicated in autism as well as in glutamatergic neurotransmission. We hypothesized that alterations in the glutamate-glutamine cycle in the ACC might play a role in the pathophysiology of autism. Methods We performed Western blot analyses for the protein expression levels of enzymes in the glutamate-glutamine cycle, including glutamine synthetase, kidney-type glutaminase, liver-type glutaminase, and glutamate dehydrogenases 1 and 2, in the ACC of postmortem brain of individuals with autism (n = 7) and control subjects (n = 13). Results We found that the protein levels of kidney-type glutaminase, but not those of the other enzymes measured, in the ACC were significantly lower in subjects with autism than in controls. Conclusion The results suggest that reduced expression of kidney-type glutaminase may account for putative alterations in glutamatergic neurotransmission in the ACC in autism. PMID:23531457

  10. Rapid and enzyme-free nucleic acid detection based on exponential hairpin assembly in complex biological fluids.

    PubMed

    Ma, Cuiping; Zhang, Menghua; Chen, Shan; Liang, Chao; Shi, Chao

    2016-05-10

    Herein, we have developed a rapid and enzyme-free nucleic acid amplification detection method that combined the exponential self-assembly of four DNA hairpins and the FRET pair Cy3 and Cy5. This strategy was very ingenious and rapid, and could detect nucleic acids at concentrations as low as 10 pM in 15 min in biological fluids. PMID:27138054

  11. An enzymic assay for uric acid in serum and urine compared with HPLC.

    PubMed

    Dubois, H; Delvoux, B; Ehrhardt, V; Greiling, H

    1989-03-01

    We evaluated a colorimetric method for the assay of uric acid in serum or urine, which utilises a Trinder chromogenic system modified by the inclusion of 2,4,6-tribromo-3-hydroxybenzoic acid for oxidative coupling to p-aminophenazone. Colour development (Amax: 512 nm) is complete within five minutes. Measurement of a sample blank is not needed. The procedure involves pre-incubation with ascorbic acid oxidase and detergent to eliminate interference by ascorbic acid and to abolish turbidity due to lipaemia; this pretreatment was effective up to 1.14 mmol/l ascorbate and up to at least 25 mmol/l triacylglycerol. Interference by icteric sera was insignificant up to about 170 mumol/l bilirubin. The method is linear up to at least 1428 mumol/l. In human serum and urine the procedure correlates well with HPLC and the uricase p-aminophenazone method on the SMAC analyser. Within-run and between-run imprecisions of the enzymic test were higher than for HPLC, but did not exceed 1.2% (CV) and 2.5% (CV), respectively. PMID:2708944

  12. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  13. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes.

    PubMed

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Gencler-Ozkan, Ayse Mine; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2016-04-01

    Epilobium hirsutum (EH) is a medicinal plant for treating various diseases. Despite its wide usage, there is no available information about its potential influences on drug metabolism. The present study was undertaken to determine the in vivo effects of EH on hepatic CYP2B, CYP2C, CYP2D, and CYP3A enzymes that are primarily involved in drug metabolism. Male Wistar rats were injected intraperitoneally with EH water extract (EHWE) and ellagic acid (EA) at a daily dose of 37.5 and 20 mg/kg, respectively, for 9 days and hepatic drug-metabolizing enzymes were assessed at activity, protein and mRNA levels. Erythromycin N-demethylase activity was inhibited by 53 and 21 % in EHWE- and EA-treated rats, respectively. Benzphetamine N-demethylase and 7-benzyloxyresorufin-O-debenzylase activities were decreased by 53 and 43 %, and 57 and 57 % in EHWE-and EA-treated rats, respectively. Moreover, protein levels of CYP2B1, CYP2C6, CYP2D2, and CYP3A1 also decreased by 55, 15, 33, and 82 % as a result of EHWE treatment of rats, respectively. Similarly, CYP2B1, CYP2C6, CYP2D2, and CYP3A1 protein levels decreased by 62, 63, 49, and 37 % with EA treatment, respectively. qRT-PCR analyses also showed that mRNA levels of these enzymes were significantly inhibited with bothEHWE and EA treatments. In conclusion, inhibition of drug clearances leading to drug toxicity because of the lowered activity and expression of drug-metabolizing enzymes might be observed in the people who used EH as complementary herbal remedy that might be contributed by its EA content. PMID:25425117

  14. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    PubMed Central

    Kristensen, David M; Ward, R Matthew; Lisewski, Andreas Martin; Erdin, Serkan; Chen, Brian Y; Fofanov, Viacheslav Y; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2008-01-01

    Background Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA) pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome. PMID:18190718

  15. Sensitive electrochemical detection of the hydroxyl radical using enzyme-catalyzed redox cycling.

    PubMed

    Tatsumi, Hirosuke; Osaku, Naoya

    2011-01-01

    Enzyme-catalyzed signal amplification was introduced to the electrochemical detection of the OH radical. In the presence of phenol as a trapping agent, glucose as a substrate, and pyrroloquinoline quinone-containing glucose dehydrogenase (PQQ-GDH) as a catalyst, the current signal for the trapping adducts (catechol and hydroquinone) produced by the hydroxylation of phenol could be amplified and detected sensitively. The limit of detection (S/N = 3) for catechol was 8 nM. The trapping efficiency of phenol was also estimated. PMID:22076331

  16. Thermostable Lipoxygenase, a Key Enzyme in the Conversion of Linoleic Acid into Thrihydroxy-octadecenoic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOX) constitute a family of lipid-peroxidizing enzymes catalyzing the oxidation of unsaturated fatty acid with (1Z,4Z)-pentadiene structural unit, leading to formation of the conjugated (Z,E)-hydroperoxydienoic acid. LOXs have been known to be widely distributed in plants and animals...

  17. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.

    PubMed

    Herring, Christopher D; Thorne, Philip G; Lynd, Lee R

    2016-03-01

    Clostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin. We found that C. thermocellum and cell-free cellulase preparations both release coumaric acid from bagasse and switchgrass. Cellulase preparations from a mutant strain lacking the scaffoldin cipA still showed activity, though diminished. Deletion of all three proteins in C. thermocellum with ferulic acid esterase domains, either singly or in combination, did not eliminate the activity. Further work will be needed to identify the novel enzyme(s) responsible for the release of coumaric acid from grasses and to determine whether these enzymes are important factors of microbial biomass degradation. PMID:26762388

  18. Characterization of enzymes in the oxidation of 1,2-propanediol to D: -(-)-lactic acid by Gluconobacter oxydans DSM 2003.

    PubMed

    Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi

    2010-09-01

    Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003. PMID:20300886

  19. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    PubMed

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs. PMID:21618010

  20. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    PubMed

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    on enzyme localization, a scheme of C(4) photosynthesis in P. grandiflora is proposed.Well-watered plants of P. grandiflora exhibit a diurnal fluctuation of total titratable acidity, with an amplitude of 61 and 54 microequivalent per gram fresh weight for the leaves and stems, respectively. These changes were in parallel with changes in malic acid concentration in these tissues. Under severe drought conditions, diurnal changes in both titratable acidity and malic acid concentration in both leaves and stems were much reduced. However, another C(4) dicot Amaranthus graecizans (nonsucculent) did not show any diurnal acid fluctuation under the same conditions. These results confirm the suggestion made by Koch and Kennedy (Plant Physiol. 65: 193-197, 1980) that succulent C(4) dicots can exhibit an acid metabolism similar to Crassulacean acid metabolism plants in certain environments. PMID:16662054

  1. Fresh insight to functioning of selected enzymes of the nitrogen cycle.

    PubMed

    Eady, Robert R; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-04-01

    The global nitrogen cycle is the process in which different forms of environmental N are interconverted by microorganisms either for assimilation into biomass or in respiratory energy-generating pathways. This short review highlights developments over the last 5 years in our understanding of functionality of nitrogenase, Cu-nitrite reductase, NO reductase and N2O reductase, complex metalloenzymes that catalyze electron/proton-coupled substrate reduction reactions. PMID:26963700

  2. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  3. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  4. Ultrasensitive enzyme-linked immunosorbent assay (ELISA) of proteins by combination with the thio-NAD cycling method

    PubMed Central

    Watabe, Satoshi; Kodama, Hiromi; Kaneda, Mugiho; Morikawa, Mika; Nakaishi, Kazunari; Yoshimura, Teruki; Iwai, Atsushi; Miura, Toshiaki; Ito, Etsuro

    2014-01-01

    An ultrasensitive method for the determination of proteins is described that combines an enzyme-linked immunosorbent assay (ELISA) and a thionicotinamide-adenine dinucleotide (thio-NAD) cycling method. A sandwich method using a primary and a secondary antibody for antigens is employed in an ELISA. An androsterone derivative, 3α-hydroxysteroid, is produced by the hydrolysis of 3α-hydroxysteroid 3-phosphate with alkaline phosphatase linked to the secondary antibody. This 3α-hydroxysteroid is oxidized to a 3-ketosteroid by 3α- hydroxysteroid dehydrogenase (3α-HSD) with a cofactor thio-NAD. By the opposite reaction, the 3-ketosteroid is reduced to a 3α-hydroxysteroid by 3α-HSD with a cofactor NADH. During this cycling reaction, thio-NADH accumulates in a quadratic function-like fashion. Accumulated thio-NADH can be measured directly at an absorbance of 400 nm without any interference from other cofactors. These features enable us to detect a target protein with ultrasensitivity (10−19 mol/assay) by measuring the cumulative quantity of thio-NADH. Our ultrasensitive determination of proteins thus allows for the detection of small amounts of proteins only by the application of thio-NAD cycling reagents to the usual ELISA system. PMID:27493498

  5. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions.

    PubMed

    Soo, Ee Lin; Salleh, Abu Bakar; Basri, Mahiran; Zaliha Raja Abdul Rahman, Raja Noor; Kamaruddin, Kamarulzaman

    2003-01-01

    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications. PMID:16233420

  6. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  7. [Reconstitution of polyunsaturated fatty acid synthesis enzymes in mammalian cells to convert LA to DHA].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Qiu, Lihong; Sun, Jie; Shang, Yu; Jiang, Xudong; Ge, Tangdong; Zhang, Tao

    2015-02-01

    DHA (22:6n-3) is a Ω-3 polyunsaturated fatty acid with 22 carbon atoms and 6 double bonds, which has important biological functions in human body. Human and other mammals synthesize only limited amounts of DHA, more requirements must be satisfied from food resources. However, the natural resources of DHA (Mainly deep-sea fish and other marine products) are prone to depletion. New resources development is still insufficient to satisfy the growing market demand. Previous studies have revealed that the mammals can increase the synthesis of DHA and other long-chain polyunsaturated fatty acids after transgenic procedures. In this study, mammalian cells were transfected with Δ6, Δ5 desaturase, Δ6, Δ5 elongase, Δ15 desaturase (Isolated from nematode Caenorhabditis elegans) and Δ4 desaturase (Isolated from Euglena gracilis), simultaneously. Results show that the expression or overexpression of these 6 enzymes is capable of conversion of the o-6 linoleic acid (LA, 18:2n-6) in DHA (22:6n-3). DHA content has increased from 16.74% in the control group to 25.3% in the experimental group. The strategy and related technology in our research provided important data for future production the valuable DHA (22:6n-3) by using genetically modified animals. PMID:26062349

  8. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  9. Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.

    PubMed

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna; Pesce, C Gustavo

    2013-12-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  10. Secretion of three enzymes for fatty acid synthesis into mouse milk in association with fat globules, and rapid decrease of the secreted enzymes by treatment with rapamycin.

    PubMed

    Moriya, Hitomi; Uchida, Kana; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2011-04-01

    The mammary epithelium produces numerous lipid droplets during lactation and secretes them in plasma membrane-enclosed vesicles known as milk fat globules. The biogenesis of such fat globules is considered to provide a model for clarifying the mechanisms of lipogenesis in mammals. In the present study, we identified acetyl coenzyme A carboxylase, ATP citrate lyase, and fatty acid synthase in mouse milk. Fractionation of milk showed that these three enzymes were located predominantly in milk fat globules. The three enzymes were resistant to trypsin digestion without Triton X-100, indicating that they were not located on the outer surface of the globules and thus associated with the precursors of the globules before secretion. When a low dose of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), was injected into lactating mice, the levels of the three enzymes in milk were decreased within 3h after injection. Since the protein levels of the three enzymes in tissues were not obviously altered by this short-term treatment, known transcriptional control by mTOR signaling was unlikely to account for this decrease in their levels in milk. Our findings suggest a new, putatively mTOR-dependent localization of the three enzymes for de novo lipogenesis. PMID:21281598

  11. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes.

    PubMed

    Shafreen, Rajamohmed Beema; Pandian, Shunmugiah Karutha

    2013-09-01

    Streptococcus pyogenes (SP) is the major cause of pharyngitis accompanied by strep throat infections in humans. 3-keto acyl reductase (FabG), an important enzyme involved in the elongation cycle of the fatty acid pathway of S. pyogenes, is essential for synthesis of the cell-membrane, virulence factors and quorum sensing-related mechanisms. Targeting SPFabG may provide an important aid for the development of drugs against S. pyogenes. However, the absence of a crystal structure for FabG of S. pyogenes limits the development of structure-based drug designs. Hence, in the present study, a homology model of FabG was generated using the X-ray crystallographic structure of Aquifex aeolicus (PDB ID: 2PNF). The modeled structure was refined using energy minimization. Furthermore, active sites were predicted, and a large dataset of compounds was screened against SPFabG. The ligands were docked using the LigandFit module that is available from Discovery Studio version 2.5. From this list, 13 best hit ligands were chosen based on the docking score and binding energy. All of the 13 ligands were screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. From this, the two best descriptors, along with one descriptor that lay outside the ADMET plot, were selected for molecular dynamic (MD) simulation. In vitro testing of the ligands using biological assays further substantiated the efficacy of the ligands that were screened based on the in silico methods. PMID:23988477

  12. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  13. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  14. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    DOEpatents

    Lu, Yi; Liu, Juewen

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  15. Lysosomal Acid Phosphatase Biosynthesis and Dysfunction: A Mini Review Focused on Lysosomal Enzyme Dysfunction in Brain.

    PubMed

    Ashtari, N; Jiao, X; Rahimi-Balaei, M; Amiri, S; Mehr, S E; Yeganeh, B; Marzban, H

    2016-01-01

    Lysosomes are membrane-bound organelles that are responsible for degrading and recycling macromolecules. Lysosomal dysfunction occurs in enzymatic and non-enzymatic deficiencies, which result in abnormal accumulation of materials. Although lysosomal storage disorders affect different organs, the central nervous system is the most vulnerable. Evidence shows the role of lysosomal dysfunction in different neurodegenerative diseases, such as Niemann-Pick Type C disease, juvenile neuronal ceroid lipofuscinosis, Alzheimer's disease and Parkinson's disease. Lysosomal enzymes such as lysosomal acid phosphatase 2 (Acp2) play a critical role in mannose-6-phosphate removal and Acp2 controls molecular and cellular functions in the brain during development and adulthood. Acp2 is essential in cerebellar development, and mutations in this gene cause severe cerebellar neurodevelopmental and neurodegenerative disorders. In this mini-review, we highlight lysosomal dysfunctions in the pathogenesis of neurodevelopmental and/or neurodegenerative diseases with special attention to Acp2 dysfunction. PMID:27132795

  16. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis.

    PubMed

    Pennimpede, Tracie; Cameron, Don A; MacLean, Glenn A; Li, Hui; Abu-Abed, Suzan; Petkovich, Martin

    2010-10-01

    Retinoic acid (RA) is a pleiotropic derivative of vitamin A, or retinol, which is responsible for all of the bioactivity associated with this vitamin. The teratogenic influences of vitamin A deficiency and excess RA in rodents were first observed more than 50 years ago. Efforts over the last 15-20 years have refined these observations by defining the molecular mechanisms that control RA availability and signaling during murine embryonic development. This review will discuss our current understanding of the role of RA in teratogenesis, with specific emphasis on the essential function of the RA catabolic CYP26 enzymes in preventing teratogenic consequences caused by uncontrolled distribution of RA. Particular focus will be paid to the RA-sensitive tissues of the caudal and cranial regions, the limb, and the testis, and how genetic mutation of factors controlling RA distribution have revealed important roles for RA during embryogenesis. PMID:20842651

  17. Enzyme-free detection and quantification of double-stranded nucleic acids.

    PubMed

    Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle

    2012-08-01

    We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection. PMID:22695500

  18. Boronic Acid-Appended Molecular Glues for ATP-Responsive Activity Modulation of Enzymes.

    PubMed

    Okuro, Kou; Sasaki, Mizuki; Aida, Takuzo

    2016-05-01

    Water-soluble linear polymers GumBAn (m/n = 18/6, 12/12, and 6/18) with multiple guanidinium ion (Gu(+)) and boronic acid (BA) pendants in their side chains were synthesized as ATP-responsive modulators for enzyme activity. GumBAn polymers strongly bind to the phosphate ion (PO4(-)) and 1,2-diol units of ATP via the Gu(+) and BA pendants, respectively. As only the Gu(+) pendants can be used for proteins, GumBAn is able to modulate the activity of enzymes in response to ATP. As a proof-of-concept study, we demonstrated that trypsin (Trp) can be deactivated by hybridization with GumBAn. However, upon addition of ATP, Trp was liberated to retrieve its hydrolytic activity due to a higher preference of GumBAn toward ATP than Trp. This event occurred in a much lower range of [ATP] than reported examples. Under cellular conditions, the hydrolytic activity of Trp was likewise modulated. PMID:27087468

  19. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    PubMed

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  20. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R.B.; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  1. Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage.

    PubMed Central

    Jackson, M J; Wagenmakers, A J; Edwards, R H

    1987-01-01

    The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage. PMID:3109374

  2. [Effect of trace metals on cell morphology, enzyme activation, and production of citric acid in a strain of Aspergillus wentii].

    PubMed

    Majolli, M V; Aguirre, S N

    1999-01-01

    Data concerning the effect of very low concentrations of metals on citric acid production by microorganisms, as well as on the activity of enzymes presumptively involved in the process, are confuse. The bulk of information was obtained mainly studying selected strains of Aspergillus niger. Information concerning other citric acid producer filamentous fungi, such as A. wentii, is scanty. In the present article we report the effect of different cations on the growth pattern of A. wentii P1 as well as on the related citric acid production and the activity of several enzymes. It was found that without any addition to the culture medium the fungus developed a pelleted form of growth, pellets being about 1.5 mm in diameter. The citric acid yield was about 90%. The addition of Cu2+ impaired the sugar uptake, as well as the production of citric acid and biomass. The uptake of sugar increased in the presence of Zn2+, and there was a marked increase of the biomass production, which could account for the low citric acid production. The addition of Fe2+ impaired the citric acid production and, as sulfate, the sugar uptake. The presence of Fe3+ markedly impaired the citric acid production and increased the sugar uptake. There is no agreement about the enzymes involved in the accumulation of citric acid by microorganisms. In spite of this, aconitase (Ac), isocitrate lyase (IL), isocitrate dehydrogenase NAD(+)-dependent (ICDH- NAD+) and isocitrate dehydrogenase NADP(+)-dependent (ICDH-NADP+) are often postulated as key enzymes. In our case, these enzymes were active during the standard fermentation, although with variations, particularly concerning Ac and IL. The behavior of enzymes might be different when tested in vivo or in vitro, mainly from the quantitative point of view. Nevertheless, the activity determined in vitro might give some indication concerning the effect on fermentation of substances present in the medium. It was found that all the enzymes tested increased their

  3. An alternative mechanism for guanidinoacetic acid to affect methylation cycle.

    PubMed

    Ostojic, Sergej M

    2014-12-01

    Guanidinoacetic acid (also known as glycocyamine; GAA) is an endogenous substance which occurs in humans and plays a central role in the biosynthesis of creatine. The formation of creatine from GAA consumes methyl groups, and increases production of homocysteine. GAA may have the potential to stimulate insulin secretion. Insulin reduces plasma homocysteine and raises methyl group supply. It is possible that the ability of GAA to trigger the insulin secretion modulates methyl group metabolism, and comparatively counterbalance for the direct effect of GAA on increased methylation demand. Possible insulinotropic effect of GAA may contribute to total in vivo methylation demand during biotransformation. PMID:25468046

  4. Preparation of crosslinked enzyme aggregates (CLEAs) of acid urease with urethanase activity and their application.

    PubMed

    Zhang, Qian; Zha, Xiaohong; Zhou, Nandi; Tian, Yaping

    2016-04-01

    An acid urease from Providencia rettgeri JN-B815 was purified via ultrasonication, ethanol precipitation, and DEAE ion-exchange column chromatography. It was found that the enzyme exhibits not only urease activity, but also urethanase activity, which made it possible to reduce EC already existed or would produce and its precursor urea at the same time. Then, crosslinked enzyme aggregates of P. rettgeri urease (PRU-CLEAs) were prepared using genipin as crosslinking agent. The purification process of acid urease, the effects of genipin concentration, and crosslinking time on PRU-CLEAs activity were investigated. The crosslinking was performed at pH 4.5 for 2.5 h, using 0.3% genipin as crosslinking agent, and 0.3 g · L(-1) bovine serum albumin as protein feeder. Using the obtained PRU-CLEAs, the removal rate of urea was up to 9.31 mg · L(-1) · h(-1). The removal rate of urea was still up to 7.56 mg · L(-1) · h(-1) after PRU-CLEAs was re-used for 6 times. When PRU-CLEAs were applied in a batch stirred and membrane reactor, the removal rate of urea in rice wine reached 5.16 mg · L(-1) · h(-1) and the removal rate of EC was 9.21 μg · L(-1) · h(-1). Furthermore, the treatment with PRU-CLEAs revealed no significant change of volatile flavor substances in Chinese rice wine. Thus PRU-CLEAs have great potential in the elimination of EC in Chinese rice wine. PMID:26627914

  5. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant.

    PubMed Central

    Stols, L; Donnelly, M I

    1997-01-01

    NAD(+)-dependent malic enzyme was cloned from the Escherichia coli genome by PCR based on the published partial sequence of the gene. The enzyme was overexpressed and purified to near homogeneity in two chromatographic steps and was analyzed kinetically in the forward and reverse directions. The Km values determined in the presence of saturating cofactor and manganese ion were 0.26 mM for malate (physiological direction) and 16 mM for pyruvate (reverse direction). When malic enzyme was induced under appropriate culture conditions in a strain of E. coli that was unable to ferment glucose and accumulated pyruvate, fermentative metabolism of glucose was restored. Succinic acid was the major fermentation product formed. When this fermentation was performed in the presence of hydrogen, the yield of succinic acid increased. The constructed pathway represents an alternative metabolic route for the fermentative production of dicarboxylic acids from renewable feedstocks. PMID:9212416

  6. A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly.

    PubMed

    Li, Xinmin; Cheng, Wei; Li, Dandan; Wu, Jiangling; Ding, Xiaojuan; Cheng, Quan; Ding, Shijia

    2016-06-15

    MicroRNAs (miRNAs) are potentially useful biomarkers for early diagnosis of human diseases. Here, a simple surface plasmon resonance (SPR) biosensor has been developed for highly sensitive detection of miRNA by designing a new enzyme-free and isothermal amplification strategy, named multi component nucleic acid enzyme-mediated mismatched catalyzed hairpin assembly (MNAzyme-CHA). The partial MNAzymes co-recognized the target to form a stable active MNAzyme, which continued to digest multiple hairpin H0 substrates, concomitantly generating a lot of fragments. The H0 fragments could initiate the mismatched CHA cycles, resulting in the generation of massive hairpin H1-H2 complexes. As a result, the H1-H2 complexes and streptavidin were attached to the sensor surface, leading to a significantly amplified SPR signal readout. The established biosensor showed high sensitivity and selectivity with a wide dynamic range from 1 pM to 100 nM. It was also successfully applied to the determination of target miRNA spiked into human total RNA samples. Thus, this developed biosensing strategy presents a simple and stable platform toward sensitive and convenient miRNA detection, and has great potential in assays of many other nucleic acids analytes for biomedical research and early clinical diagnosis. PMID:26807523

  7. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus.

    PubMed Central

    van den Bergh, E R; Baker, S C; Raggers, R J; Terpstra, P; Woudstra, E C; Dijkhuizen, L; Meijer, W G

    1996-01-01

    Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives. PMID:8550527

  8. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.

    PubMed

    Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J

    2016-11-01

    Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. PMID:27544648

  9. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato.

    PubMed

    Maloney, Gregory S; Kochevenko, Andrej; Tieman, Denise M; Tohge, Takayuki; Krieger, Uri; Zamir, Dani; Taylor, Mark G; Fernie, Alisdair R; Klee, Harry J

    2010-07-01

    Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis. PMID:20435740

  10. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.

    PubMed

    Malvessi, Eloane; Carra, Sabrina; Pasquali, Flávia Cristina; Kern, Denise Bizarro; da Silveira, Mauricio Moura; Ayub, Marco Antônio Záchia

    2013-01-01

    In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l(-1) of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l(-1) were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0-8.0 and temperatures of 47-50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved. PMID:23053345

  11. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  12. The Expression and Prognostic Significance of Retinoic Acid Metabolising Enzymes in Colorectal Cancer

    PubMed Central

    Brown, Gordon T.; Cash, Beatriz Gimenez; Blihoghe, Daniela; Johansson, Petronella; Alnabulsi, Ayham; Murray, Graeme I.

    2014-01-01

    Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104–1.390, χ2 = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034–1.688, χ2 = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173–1.509, χ2 = 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110–1.930, χ2 = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are

  13. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  14. [Development of direct competitive enzyme-linked immunosorbent assay for the determination of domoic acid].

    PubMed

    Wang, Qian; Cheng, Jin-Ping; Gao, Li-Li; Dong, Yu; Xi, Lei

    2012-02-01

    To develop a direct competitive enzyme-linked immunosorbent assay (ELISA) for rapid detection of domoic acid concentrations, HRP (horse radish peroxidase) was successfully linked to DA using EDC. The concentration of DA was quantitatively analyzed on the basic of the specific immune responses between the DA- HRP and the monoclonal antibodies made in advance. Calibration curve were established after the optimization of reaction conditions such as the type of blocking solution, the blocking time and the incubation temperature. The results show that, the best reaction condition of the direct competitive ELISA is 1% gelatin, blocking 1 h at 37 degrees C, incubating 1 h at 37 degrees C after the monoclonal antibodies added. The detect limit is 3.58 ng x mL(-1), the coefficient of variation between the holes is below 15%, and the recovery is 80% - 120%. The whole analysis process could be completed within 1.5 h. It meets the requirements of rapid and batch detection of domoic acid. The method will have broad development prospects. PMID:22509610

  15. Nicotinamide Adenine Dinucleotide-specific "Malic" Enzyme in Kalanchoë daigremontiana and Other Plants Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Dittrich, P

    1976-02-01

    NAD-specific "malic" enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO(4) (2-), suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn(2+), which cannot be replaced by NADP or Mg(2+). For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn(2+), and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 mumole/hr.mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO(2) for recycling during cessation of gas exchange in periods of severe drought. PMID:16659473

  16. Aberrant Expression and Distribution of Enzymes of the Urea Cycle and Other Ammonia Metabolizing Pathways in Dogs with Congenital Portosystemic Shunts

    PubMed Central

    van Straten, Giora; van Steenbeek, Frank G.; Grinwis, Guy C. M.; Favier, Robert P.; Kummeling, Anne; van Gils, Ingrid H.; Fieten, Hille; Groot Koerkamp, Marian J. A.; Holstege, Frank C. P.; Rothuizen, Jan; Spee, Bart

    2014-01-01

    The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase. PMID:24945279

  17. Mutation for Nonsyndromic Mental Retardation in the trans-2-Enoyl-CoA Reductase TER Gene Involved in Fatty Acid Elongation Impairs the Enzyme Activity and Stability, Leading to Change in Sphingolipid Profile*

    PubMed Central

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-01-01

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TERP182L/P182L B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TERP182L/P182L B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation. PMID:24220030

  18. Structure of escherichia coli ribose-5-phosphate isomerase : a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.

    SciTech Connect

    Zhang, R.; Andersson, C. E.; Savchenko, A.; Skarina, T.; Evdokimova, E.; Beasley, S.; Arrowsmith, C. H.; Edwards, A.; Joachimiak, A.; Mowbray, S. L.; Biosciences Division; Uppsala Univ.; Univ. Health Network; Univ. of Toronto; Swedish Univ. of Agricultural Sciences

    2003-01-01

    Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 Angstroms resolution (R factor 22.4%, R{sub free} 23.7%). RpiA exhibits an {alpha}/{beta}/({alpha}/{beta})/{beta}/{alpha} fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.

  19. NHI-Acid Concentration Membranes -- Membrane Recommendations for the S-I Cycle

    SciTech Connect

    Frederick F Stewart

    2007-03-01

    Scope: The purpose of this draft report is to make recommendations concerning the applicability of specific membrane materials for acid concentration processes to the Sulfur-Iodine (S-I) thermochemical cycle integrated laboratory scale (ILS) demonstration. Introduction Acid concentration membrane processes have been studied for possible inclusion in the Sulfur-Iodine integrated laboratory scale (S-I ILS) demonstration. The need for this technology is driven by the chemical processes required for economical water splitting using the S-I cycle. Of the chemical processes inherent to the S-I cycle that have been identified as targets for deployment of membrane technology, three have been studied during the past three fiscal years as a part of the DOE Nuclear Hydrogen Initiative. First, the ability to concentrate hydriodic acid (HI) and iodine mixtures was sought as a method for aiding in the isolation of HI away from water and iodine. Isolated HI would then be delivered to the HI decomposition process for liberation of product hydrogen. Second, an extension of this technology to sulfuric acid was proposed to benefit sulfuric acid decomposition recycle. Third, decomposition of HI to form hydrogen is equilibrium limited. Removal of hydrogen, utilizing Le Chatelier’s principle, will increase to overall conversion and thus increasing the efficiency of the S-I cycle.

  20. SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING

    PubMed Central

    Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople

    2008-01-01

    This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257

  1. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  2. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  3. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  4. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2015-03-01

    We consider the much discussed hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach that quantifies the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for the investigations of the origin of the common metabolic core should be significantly extended. This work was supported by a grant from the Simons Foundation (SCOL 291937, Dmitry Zubarev).

  5. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  6. Chopper-controlled discharge life cycling studies on lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Kraml, J. J.; Ames, E. P.

    1982-01-01

    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.

  7. Microbial Dissimilatory Sulfur Cycle in Acid Mine Water

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Macmillan, Carol B.; Randles, Chester I.

    1969-01-01

    Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5. PMID:5773013

  8. Should South Africa Be Performing Nucleic Acid Testing on HIV Enzyme-Linked Immunosorbent Assay-Negative Samples?▿

    PubMed Central

    Gous, Natasha; Scott, Lesley; Perovic, Olga; Venter, Francios; Stevens, Wendy

    2010-01-01

    The frequency of acute HIV infection (AHI) among HIV-1 enzyme-linked immunosorbent assay (ELISA)-negative samples received from general hospital patient admissions was assessed. Of 3,005 samples pooled for nucleic acid testing, a prevalence of 0.13% was found. Pooled nucleic acid testing may be feasible for low-cost identification of AHI in high-prevalence settings. PMID:20610671

  9. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves.

    PubMed

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-10-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, (13)C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA "cycle" does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  10. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle.

    PubMed

    Sears, Avery E; Palczewski, Krzysztof

    2016-06-01

    Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations. PMID:27183166

  11. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    PubMed

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb. PMID:20565114

  12. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  13. Identification of RALDH2 as a Visually Regulated Retinoic Acid Synthesizing Enzyme in the Chick Choroid

    PubMed Central

    Hollaway, Lindsey R.; Lam, Wengtse; Li, Nan; Napoli, Joseph L.

    2012-01-01

    Purpose. All-trans-retinoic acid (atRA) has been implicated in the local regulation of scleral proteoglycan synthesis in vivo. The purpose of the present study was to identify the enzymes involved in the synthesis of atRA during visually guided ocular growth, the cells involved in modulation of atRA biosynthesis in the choroid, and the effect of choroid-derived atRA on scleral proteoglycan synthesis. Methods. Myopia was induced in White leghorn chicks by form deprivation for 10 days, followed by up to 15 days of unrestricted vision (recovery). Expression of atRA synthesizing enzymes was evaluated by semiquantitative qRT-PCR, in situ hybridization, and immunohistochemistry. atRA synthesis was measured in organ cultures of isolated choroids using LC-tandem MS quantification. Scleral proteoglycan synthesis was measured in vitro by the incorporation of 35SO4 in CPC-precipitable glycosaminoglycans. Results. RALDH2 was the predominant RALDH transcript in the choroid (>100-fold that of RALDH3). RALDH2 mRNA was elevated after 12 and 24 hours of recovery (60% and 188%, respectively; P < 0.01). The atRA concentration was significantly higher in cultures of choroids from 24-hour to 15-day recovering eyes than in paired controls (∼195%; P < 0.01). Choroid conditioned medium from recovering choroids inhibited proteoglycan synthesis to 43% of controls (P < 0.02, paired t-test; n = 16) and produced a relative inhibition corresponding to a RA concentration of 7.20 × 10−8 M. Conclusions. The results of this study suggest that RALDH2 is the major retinal dehydrogenase in the chick choroid and is responsible for increased atRA synthesis in response to myopic defocus. PMID:22323456

  14. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    PubMed Central

    Satpathy, Raghunath; Konkimalla, V. B.; Ratha, Jagnyeswar

    2016-01-01

    2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA), conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K) and aspartate (D) residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models. PMID:26880911

  15. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  16. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid

    PubMed Central

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  17. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    PubMed

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  18. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. Results We have identified two S. coelicolor genes, named lppα (SCO1102) and lppβ (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppβ genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppβ had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppβ in the wild type strain of S. coelicolor led to a significant increase in TAG production. Conclusions The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single

  19. Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum).

    PubMed

    Ostrowski, Maciej; Jakubowska, Anna

    2008-01-01

    This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C. PMID:17920159

  20. Changes in the Enzymes for Fatty Acid Synthesis and Desaturation during Acclimation of Developing Soybean Seeds to Altered Growth Temperature

    PubMed Central

    Cheesbrough, Thomas M.

    1989-01-01

    Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not. PMID:16666840

  1. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  2. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid.

    PubMed

    McGinn, S M; Beauchemin, K A; Coates, T; Colombatto, D

    2004-11-01

    Methane emitted from the livestock sector contributes to greenhouse gas (GHG) emissions. Understanding the effects of diet on enteric methane production can help refine GHG emission inventories and identify viable GHG reduction strategies. Our study focused on measuring methane and carbon dioxide emissions, total-tract digestibility, and ruminal fermentation in growing beef cattle fed a diet supplemented with various additives or ingredients. Two experiments, each designed as a 4 x 4 Latin square with 21-d periods, were conducted using 16 Holstein steers (initial BW 311.6 +/- 12.3 kg). In Exp. 1, treatments were control (no additive), monensin (Rumensin, Elanco Animal Health, Indianapolis, IN; 33 mg/kg DM), sunflower oil (400 g/d, approximately 5% of DMI), and proteolytic enzyme (Protex 6-L, Genencor Int., Inc., CA; 1 mL/kg DM). In Exp. 2, treatments were control (no additive), Procreatin-7 yeast (Prince Agri Products, Inc., Quincy, IL; 4 g/d), Levucell SC yeast (Lallemand, Inc., Rexdale, Ontario, Canada; 1 g/d), and fumaric acid (Bartek Ingredients Inc., Stoney Creek, Ontario, Canada; 80 g/d). The basal diet consisted of 75% barley silage, 19% steam-rolled barley grain, and 6% supplement (DM basis). Four large chambers (two animals per chamber) were equipped with lasers and infrared gas analyzers to measure methane and carbon dioxide, respectively, for 3 d each period. Total-tract digestibility was determined using chromic oxide. Approximately 6.5% of the GE consumed was lost in the form of methane emissions from animals fed the control diet. In Exp. 1, sunflower oil decreased methane emissions by 22% (P = 0.001) compared with the control, whereas monensin (P = 0.44) and enzyme had no effect (P = 0.82). However, oil decreased (P = 0.03) the total-tract digestibility of NDF by 20%. When CH(4) emissions were corrected for differences in energy intake, the loss of GE to methane was decreased by 21% (P = 0.002) using oil and by 9% (P = 0.09) using monensin. In Exp. 2

  3. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. PMID:20382410

  4. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  5. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice.

    PubMed

    Hoyer, Friedrich Felix; Khoury, Mona; Slomka, Heike; Kebschull, Moritz; Lerner, Raissa; Lutz, Beat; Schott, Hans; Lütjohann, Dieter; Wojtalla, Alexandra; Becker, Astrid; Zimmer, Andreas; Nickenig, Georg

    2014-01-01

    The role of endocannabinoids such as anandamide during atherogenesis remains largely unknown. Fatty acid amide hydrolase (FAAH) represents the key enzyme in anandamide degradation, and its inhibition is associated with subsequent higher levels of anandamide. Here, we tested whether selective inhibition of FAAH influences the progression of atherosclerosis in mice. Selective inhibition of FAAH using URB597 resulted in significantly increased plasma levels of anandamide compared to control, as assessed by mass spectrometry experiments in mice. Apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat, cholesterol-rich diet to induce atherosclerotic conditions. Simultaneously, mice received either the pharmacological FAAH inhibitor URB597 1mg/kg body weight (n=28) or vehicle (n=25) via intraperitoneal injection three times a week. After eight weeks, mice were sacrificed, and experiments were performed. Vascular superoxide generation did not differ between both groups, as measured by L012 assay. To determine whether selective inhibition of FAAH affects atherosclerotic plaque inflammation, immunohistochemical staining of the aortic root was performed. Atherosclerotic plaque formation, vascular macrophage accumulation, as well as vascular T cell infiltration did not differ between both groups. Interestingly, neutrophil cell accumulation was significantly increased in mice receiving URB597 compared to control. Vascular collagen structures in atherosclerotic plaques were significantly diminished in mice treated with URB597 compared to control, as assessed by picro-sirius-red staining. This was accompanied by an increased aortic expression of matrix metalloproteinase-9, as determined by quantitative RT-PCR and western blot analysis. Inhibition of fatty acid amide hydrolase does not influence plaque size but increases plaque vulnerability in mice. PMID:24286707

  6. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed Central

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-01-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032

  7. Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme.

    PubMed

    Liu, Pinghua; Liu, Aimin; Yan, Feng; Wolfe, Matt D; Lipscomb, John D; Liu, Hung-wen

    2003-10-14

    The last step of the biosynthesis of fosfomycin, a clinically useful antibiotic, is the conversion of (S)-2-hydroxypropylphosphonic acid (HPP) to fosfomycin. Since the ring oxygen in fosfomycin has been shown in earlier feeding experiments to be derived from the hydroxyl group of HPP, this oxirane formation reaction is effectively a dehydrogenation process. To study this unique C-O bond formation step, we have overexpressed and purified the desired HPP epoxidase. Results reported herein provided initial biochemical evidence revealing that HPP epoxidase is an iron-dependent enzyme and that both NAD(P)H and a flavin or flavoprotein reductase are required for its activity. The 2 K EPR spectrum of oxidized iron-reconstituted fosfomycin epoxidase reveals resonances typical of S = (5)/(2) Fe(III) centers in at least two environments. Addition of HPP causes a redistribution with the appearance of at least two additional species, showing that the iron environment is perturbed. Exposure of this sample to NO elicits no changes, showing that the iron is nearly all in the Fe(III) state. However, addition of NO to the Fe(II) reconstituted enzyme that has not been exposed to O(2) yields an intense EPR spectrum typical of an S = (3)/(2) Fe(II)-NO complex. This complex is also heterogeneous, but addition of substrate converts it to a single, homogeneous S = (3)/(2) species with a new EPR spectrum, suggesting that substrate binds to or near the iron, thereby organizing the center. The fact that NO binds to the ferrous center suggests O(2) can also bind at this site as part of the catalytic cycle. Using purified epoxidase and (18)O isotopic labeled HPP, the retention of the hydroxyl oxygen of HPP in fosfomycin was demonstrated. While ether ring formation as a result of dehydrogenation of a secondary alcohol has precedence in the literature, these catalyses require alpha-ketoglutarate for activity. In contrast, HPP epoxidase is alpha-ketoglutarate independent. Thus, the cyclization

  8. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  9. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent.

    PubMed

    Plou, Francisco J; Cruces, M Angeles; Ferrer, Manuel; Fuentes, Gloria; Pastor, Eitel; Bernabé, Manuel; Christensen, Morten; Comelles, Francisco; Parra, José L; Ballesteros, Antonio

    2002-06-13

    Enzymatic synthesis of fatty acid esters of di- and trisaccharides is limited by the fact that most biological catalysts are inactivated by the polar solvents (e.g. dimethylsulfoxide, dimethylformamide) where these carbohydrates are soluble. This article reviews the methodologies developed to overcome this limitation, namely those involving control over the reaction medium, the enzyme and the support. We have proposed the use of mixtures of miscible solvents (e.g. dimethylsulfoxide and 2-methyl-2-butanol) as a general strategy to acylate enzymatically hydrophilic substrates. We observed that decreasing the hydrophobicity of the medium (i.e. lowering the percentage of DMSO) the molar ratio sucrose diesters versus sucrose monoesters can be substantially enhanced. The different regioselectivity exhibited by several lipases and proteases makes feasible to synthesise different positional isomers, whose properties may vary considerably. In particular, the lipase from Thermomyces lanuginosus displays a notable selectivity for only one hydroxyl group in the acylation of sucrose, maltose, leucrose and maltotriose, compared with lipase from Candida antarctica. We have examined three immobilisation methods (adsorption on polypropylene, covalent coupling to Eupergit C, and silica-granulation) for sucrose acylation catalysed by T. lanuginosus lipase. The morphology of the support affected significantly the reaction rate and/or the selectivity of the process. PMID:12142143

  10. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina

    PubMed Central

    Hao, Guangfei; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q.

    2015-01-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina. PMID:24863290

  11. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control.

    PubMed

    Van Ekert, Evelien; Heylen, Kevin; Rougé, Pierre; Powell, Charles A; Shatters, Robert G; Smagghe, Guy; Borovsky, Dov

    2014-05-01

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzymatic activity and the Michaelis Menten kinetic parameters Km, Vmax, k(cat) (turn over number) and k(cat)/Km (catalytic efficiency) using JHA and its analogues as substrates. AeaJHAMT methylates JHA III 5-fold faster than farnesoic acid (FA). Significant differences in lower methyl transferase (MT) activities towards the cis/trans/trans, cis/trans/cis and the trans/cis/cis isomers of JHA I (1.32, 4.71 and 156-fold, respectively) indicate that substrate chirality is important for proper alignment at the catalytic cavity and for efficient methyl transfer by S-adenosyl methionine (SAM). Our 3D model shows a potential binding site below the main catalytic cavity for JHA analogues causing conformational change and steric hindrance in the transfer of the methyl group to JHA III. These, in silico, observations were corroborated by, in vitro, studies showing that several JHA analogues are potent inhibitors of AeaJHAMT. In vitro, and in vivo studies using [(3)H-methyl]SAM show that the enzyme is present and active throughout the adult life stage of A. aegypti. Tissue specific expressions of the JHAMT gene of A. aegypti (jmtA) transcript during the life cycle of A. aegypti show that AeaJHAMT is a constitutive enzyme and jmtA transcript is expressed in the corpora allata (CA), and the ovary before and after the blood meal. These results indicate that JH III can be synthesized from JHA III by the mosquito ovary, suggesting that ovarian JH III may play an important physiological role in ovarian development and reproduction. Incubating AeaJHAMT with highly pure synthetic substrates indicates that JHA III is the enzyme's preferred substrate, suggesting that AeaJHAMT is the ultimate

  12. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  13. Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni--purification and partial characterization of the enzyme.

    PubMed

    Kim, K K; Sawa, Y; Shibata, H

    1996-08-15

    The diterpenoic compound steviol (ent-kaur-16-en-13-ol-19-oic acid) is the aglycone of sweet glycosides accumulated in Stevia rebaudiana Bertoni. This compound is the hydroxylated form of ent-kaurenoic acid (ent-kaur-16-en-19-oic acid; ent-KA). The hydroxylation of ent-KA to form steviol requiring NADPH and molecular oxygen was detected in stroma prepared from S. rebaudiana Bertoni. The enzyme was purified from leaf extract to apparent homogeneity with a molecular mass of 39 kDa. Taken together with the value of 160 kDa estimated for native enzyme, this suggested that the hydroxylating enzyme is a homotetramer. The N-terminal sequence was determined through 20 residues. The pH optimum was 7.5-7.8. Apparent Km values were 11.1 microM for ent-KA and 20.6 microM for NADPH. Its visible absorption spectrum suggested that the enzyme was flavoprotein. The stoichiometric relationship between the formation of steviol and the utilization of ent-KA and cofactors confirmed the equation ent-KA + NADPH + H(+) + O2-->steviol + NADPH(+) + H2O. PMID:8806729

  14. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  15. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  16. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  17. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  18. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  19. Soil Enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functionality and resilience of natural and managed ecosystems mainly rely on the metabolic abilities of microbial communities, the main source of enzymes in soils. Enzyme mediated reactions are critical in the decomposition of organic matter, cycling of nutrients, and in the breakdown of herbic...

  20. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis.

    PubMed

    Stoney, Patrick N; Fragoso, Yara D; Saeed, Reem Bu; Ashton, Anna; Goodman, Timothy; Simons, Claire; Gomaa, Mohamed S; Sementilli, Angelo; Sementilli, Leonardo; Ross, Alexander W; Morgan, Peter J; McCaffery, Peter J

    2016-07-01

    Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2-7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2-7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system. PMID:26374207

  1. Classifying Multifunctional Enzymes by Incorporating Three Different Models into Chou's General Pseudo Amino Acid Composition.

    PubMed

    Zou, Hong-Liang; Xiao, Xuan

    2016-08-01

    With the avalanche of the newly found protein sequences in the post-genomic epoch, there is an increasing trend for annotating a number of newly discovered enzyme sequences. Among the various proteins, enzyme was considered as the one of the largest kind of proteins. It takes part in most of the biochemical reactions and plays a key role in metabolic pathways. Multifunctional enzyme is enzyme that plays multiple physiological roles. Given a multifunctional enzyme sequence, how can we identify its class? Especially, how can we deal with the multi-classes problem since an enzyme may simultaneously belong to two or more functional classes? To address these problems, which are obviously very important both to basic research and drug development, a multi-label classifier was developed via three different prediction models with multi-label K-nearest algorithm. Experimental results obtained on a stringent benchmark dataset of enzymes by jackknife cross-validation test show that the predicting results were exciting, indicating that the current method could be an effective and promising high throughput method in the enzyme research. We hope it could play an important complementary role to the existing predictors in identifying the classes of enzymes. PMID:27113936

  2. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation.

    PubMed

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drozdzyńska, Agnieszka; Chrzanowski, Łukasz

    2012-09-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l⁻¹. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g⁻¹ VSS h⁻¹, which was higher than in the absence of ectoine (3.2 mg N g⁻¹ VSS h⁻¹). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine. PMID:22286267

  3. Gallic acid modulates cerebral oxidative stress conditions and activities of enzyme-dependent signaling systems in streptozotocin-treated rats.

    PubMed

    Kade, I J; Rocha, J B T

    2013-04-01

    Redox imbalances and altered signaling processes in the brain are characteristic features of diabetic complications. Hence, the present study therefore sought to evaluate the effect of gallic acid (GA) on disturbed redox systems and activity of neurotransmission signaling dependent enzymes such as sodium pump, purinergic enzymes and acetylcholinesterase in diabetic animal models. We observed that GA markedly improves the antioxidant status of diabetic animals. Furthermore, the diminution of the activity of Na(+)/K(+)-ATPase and increased activities of acetylcholinesterase and the purinergic enzymes associated with diabetes progression were reversed to normalcy with the administration of GA in diabetic animals. Hence, we conclude that GA is a potential candidate in the management of neuronal dysfunction that often accompanied complications associated with diabetic hyperglycemia. PMID:23381106

  4. Unusual Fatty Acids Produced by Microbial Expression of Enzymes from the Tung Tree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tung oil, produced by fruit of the tung tree (Aleurites fordii), is a valuable industrial oil used in formulations of inks, dyes, coatings, and resins. The fruit contains all of the genes and enzymes required for synthesis of the oil, and such enzymes could be used for conversion of low-cost veget...

  5. Flavor and other quality factors of enzyme-peeled oranges treated with citric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oranges can be satisfactorily processed for fresh slices using a process of enzyme infiltration under vacuum. Scored 'Valencia' and 'Hamlin' oranges were placed under 90 kPa vacuum in a 0 ppm (water-infused) or 1000 ppm enzyme solution (Ultrazym) at 30 °C for 2 min, followed by 30 min incubation in ...

  6. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    PubMed Central

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty

  7. Suppression of tricarboxylic acid cycle in Escherichia coli exposed to sub-MICs of aminoglycosides.

    PubMed Central

    Cavallero, A; Eftimiadi, C; Radin, L; Schito, G C

    1990-01-01

    The metabolic activity of Escherichia coli ATCC 25922 challenged with sub-MICs of aminoglycosides was analyzed with a batch calorimeter. High-performance and gas-liquid chromatographic techniques were utilized to evaluate the concentrations of metabolic reactants, intermediates, and end products. The data reported indicate that aminoglycosides inhibit or delay bacterial catabolism of carboxylic acids, with the following relative degrees of activity: amikacin greater than gentamicin greater than sisomicin greater than netilmicin greater than kanamycin. The decrease in total biomass production was proportional to the degree of tricarboxylic acid cycle inhibition. PMID:2183717

  8. X-ray absorption studies of the purple acid phosphatase from red kidney beans (native enzyme, metal exchanged form)

    NASA Astrophysics Data System (ADS)

    Ahlers, F.; Zippel, F.; Klabunde, T.; Krebs, B.; Löcke, R.; Witzel, H.; Nolting, H.-F.

    1995-02-01

    Purple acid phosphatase from red kidney beans (KBP) catalyzes the hydrolysis of activated phosphoric acid monoesters and contains a heterodinuclear Fe(III)Zn(II) core in its active site. Iron K-edge X-ray absorption data have been obtained for the native enzyme and for a metal exchanged derivative, where Zn(II) was substituted by Fe(III). The environment of the native enzyme consists of 2.5 O/N at 1.91 Å, 3 O/N at 2.09 Å, and 1 Zn at 4.05 Å. For the metal exchanged form we obtained 2.5 O/N at 1.94 Å, 2.5 O/N at 2.09 Å, and 1 Fe at 3.79 Å.

  9. Production of Cellulose-Hydrogen from Corn Stalk based on Acid-enzyme Two-Stage Pretreatment by Mixed Culture

    NASA Astrophysics Data System (ADS)

    Xing, Y.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    Production of cellulose-hydrogen from corn stalk based on acid-enzyme two-stage pretreatment by lesser panda manure was carried out in batch tests. The acid-enzyme two-stage pretreatment of corn stalk was found most effective, in which the yields of soluble saccharides (SS) were 470 mg/g-TS. The maximum cumulative H2 yield (165.8 ml H2/g-TS) and H2 production rate (12.8 ml H2/g-TS h-1) were obtained at pH 5.5, 36 °C by treating a substrate of 15 g/L. The hydrogen content in biogas was 57.0% and there was no significant methane gas observed.

  10. Hypouricemic effect of allopurinol are improved by Pallidifloside D based on the uric acid metabolism enzymes PRPS, HGPRT and PRPPAT.

    PubMed

    Li, Hong-Gang; Hou, Pi-Yong; Zhang, Xi; He, Yi; Zhang, Jun; Wang, Shu-Qing; Anderson, Samantha; Zhang, Yan-Wen; Wu, Xiao-Hui

    2016-09-01

    Allopurinol is a commonly used medication to treat hyperuricemia and its complications. Pallidifloside D, a saponin glycoside constituent from the total saponins of Smilax riparia, had been proved to enhanced hypouricemic effect of allopurinol based on uric acid metabolism enzyme XOD. In this study, we evaluated whether Pallidifloside D (5mg/kg) enhanced hypouricemic effect of allopurinol (5mg/kg) related to others uric acid metabolism enzymes such as PRPS, HGPRT and PRPPAT. We found that, compared with allopurinol alone, the combination of allopurinol and Pallidifloside D significantly up-regulated HGPRT mRNA expression and down-regulated the mRNA expression of PRPS and PRPPAT in PC12 cells (all P<0.01). These results strongly suggest that hypouricemic effect of allopurinol are improved by Pallidifloside D via numerous mechanisms and our data may have a potential value in clinical practice in the treatment of gout and other hyperuricemic conditions. PMID:27370097

  11. Enzymes of 2-oxo acid degradation and biosynthesis in cell-free extracts of mixed rumen micro-organisms.

    PubMed Central

    Bush, R S; Sauer, F D

    1976-01-01

    The enzymes of 2-oxo acid decarboxylation and 2-oxo acid synthesis (EC 1.2.7.1 and EC 1.2.7.2) were isolated and partially purified from cell-free extracts of rumen micro-organisms. The lyase was active with pyruvate, 3-hydroxypyruvate and 2-oxobutyrate. The synthase was active with acetate, 2-oxoglutarate or succinate. Pyruvate synthase was separated from pyruvate lyase by Sephadex G-200 gel filtration. With Sephadex filtration, approximate mol.wts. of 310000 and 210000 were determined for pyruvate lyase and pyruvate synthase respectively. Images PLATE 1 PMID:962871

  12. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase.

    PubMed

    Hoeven, Robin; Hardman, Samantha J O; Heyes, Derren J; Scrutton, Nigel S

    2016-02-16

    Experimental interrogation of the relationship between protein dynamics and enzyme catalysis is challenging. Light-activated protochlorophyllide oxidoreductase (POR) is an excellent model for investigating this relationship because photoinitiation of the reaction cycle enables coordinated turnover in a "dark-assembled" ternary enzyme-substrate complex. The catalytic cycle involves sequential hydride and proton transfers (from NADPH and an active site tyrosine residue, respectively) to the substrate protochlorophyllide. Studies with a limited cross-species subset of POR enzymes (n = 4) have suggested that protein dynamics associated with hydride and proton transfer are distinct [Heyes, D. J., Levy, C., Sakuma, M., Robertson, D. L., and Scrutton, N. S. (2011) J. Biol. Chem. 286, 11849-11854]. Here, we use steady-state assays and single-turnover laser flash spectroscopy to analyze hydride and proton transfer dynamics in an extended series of POR enzymes taken from many species, including cyanobacteria, algae, embryophytes, and angiosperms. Hydride/proton transfer in all eukaryotic PORs is faster compared to prokaryotic PORs, suggesting active site architecture has been optimized in eukaryotic PORs following endosymbiosis. Visible pump-probe spectroscopy was also used to demonstrate a common photoexcitation mechanism for representative POR enzymes from different branches of the phylogenetic tree. Dynamics associated with hydride transfer are localized to the active site of all POR enzymes and are conserved. However, dynamics associated with proton transfer are variable. Protein dynamics associated with proton transfer are also coupled to solvent dynamics in cyanobacterial PORs, and these networks are likely required to optimize (shorten) the donor-acceptor distance for proton transfer. These extended networks are absent in algal and plant PORs. Our analysis suggests that extended networks of dynamics are disfavored, possibly through natural selection. Implications for

  13. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    PubMed

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  14. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis

    PubMed Central

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  15. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  16. Hepatic drug-oxidizing enzyme systems and urinary D-glucaric acid excretion in patients with congestive heart failure.

    PubMed Central

    Tokola, O; Pelkonen, O; Karki, N T; Luoma, P

    1975-01-01

    Drug-oxidizing enzyme systems in liver biopsy samples and the urinary excretion of D-glucaric acid were studied in two different groups of patients with cardiac insufficiency. 2. In one group of six patients, the activities of drug-metabolizing enzymes had decreased considerably as compared with the control values, but in four liver samples from patients treated with oral hypoglycaemic agents for their diabetes, activities were higher than in control samples from ten patients. 3. In the other group of seven patients, the urinary excretion of D-glucaric acid (isolated by ion-exchange chromatography) was 60% lower than in the control group of nine humans, whereas in four patients taking antiepileptic agents excretion rate was higher than control values. 4. Because the age distribution was markedly different between cardiac insufficiency and control groups, it is difficult to conclude, if the impairment of drug metabolism was a consequence of the old age or of the disease process. However, drug-oxidizing enzyme systems seem to be inducible also in old age. 5. The results support further the opinion that the urinary excretion of D-glucaric acid may be one useful index in assessing an individual's capacity to metabolize foreign compounds especially in the patients with lowered drug metabolizing capacity. PMID:786355

  17. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.

    PubMed

    Singh, Ranji; Lemire, Joseph; Mailloux, Ryan J; Chénier, Daniel; Hamel, Robert; Appanna, Vasu D

    2009-01-01

    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2)-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2)-limited conditions. PMID:19809498

  18. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  19. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    SciTech Connect

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  20. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    SciTech Connect

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  1. Regulation of the Tyrosine Biosynthetic Enzymes in Salmonella typhimurium: Analysis of the Involvement of Tyrosyl-Transfer Ribonucleic Acid and Tyrosyl-Transfer Ribonucleic Acid Synthetase1

    PubMed Central

    Heinonen, J.; Artz, S. W.; Zalkin, H.

    1972-01-01

    Mutants of Salmonella typhimurium were isolated that require tyrosine for growth because of an altered tyrosyl-transfer ribonucleic acid (tRNA) synthetase. Extracts of one strain (JK10) contain a labile enzyme with decreased ability to transfer tyrosine to tRNATyr and a higher Km for tyrosine than the wild-type enzyme. Strain JK10 maintains repressed levels of the tyrosine biosynthetic enzymes when the growth rate is restricted due to limitation of charged tRNATyr. Several second-site revertants of strain JK10 exhibit temperature-sensitive growth due to partially repaired, heat-labile tyrosyl-tRNA synthetase. The tyrosine biosynthetic enzymes are not derepressed in thermosensitive strains grown at the restrictive temperature. A class of tyrosine regulatory mutants, designated tyrR, contains normal levels of tyrosyl-tRNA synthetase and tRNATyr. These results suggest that charging of tRNATyr is not necessary for repression. This conclusion is substantiated by the finding that 4-aminophenylalanine, a tyrosine analogue which causes repression of the tyrosine biosynthetic enzymes, is not attached to tRNATyr in vivo, nor does it inhibit the attachment reaction in vitro. A combined regulatory effect due to the simultaneous presence of tyrS and tyrR mutations in the same strain was detected. The possibility of direct participation of tyrosyl-tRNA synthetase in tyrosine regulation is discussed. PMID:4404819

  2. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  3. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  4. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  5. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  6. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    PubMed Central

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  7. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    PubMed

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity. PMID:26094213

  8. Characterization of a C-5,13-Cleaving Enzyme of 13(S)-Hydroperoxide of Linolenic Acid by Soybean Seed.

    PubMed Central

    Salch, Y. P.; Grove, M. J.; Takamura, H.; Gardner, H. W.

    1995-01-01

    An activity was found in mature soybean seeds (Glycine max L. cv Century) that cleaved 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) into 13-oxo-9(Z),11(E)-tridecadienoic acid and two isomeric pentenols, 2(Z)-penten-1-ol and 1-penten-3-ol. Isomeric pentene dimers were also produced and were presumably derived from the combination of two pentene radicals. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) was, by contrast, a poor substrate. Activity with 13S-HPOT increased 24-fold under anaerobic conditions reminiscent of a similar anaerobic promoted reaction of 13S-HPOD catalyzed by lipoxygenase (LOX) in the presence of linoleic acid. However, prior to ion-exchange chromatography, cleavage activity did not require linoleic acid. After separation by gel filtration followed by ion-exchange chromatography, cleavage activity was lost but reappeared in the presence of either linoleic acid or dithiothreitol. Under these conditions cleavage activity was coincident with the activity of types 1 and 2 LOX. LOX inhibitors suppressed the cleavage reaction in a manner similar to inhibition of LOX activity. Heat-generated alkoxyl radicals derived from either 13S-HPOT or 13S-HPOD afforded similar products and yields of 13-oxo-9(Z),11(E)-tridecadienoic acid compared to the enzymic reaction. The product 1-penten-3-ol may be the precursor of the "raw-bean" volatile ethylvinylketone. PMID:12228538

  9. Molecular mapping of genes encoding microsomal omega-6 desaturase enzymes and their cosegregation with QTL affecting oleic acid content in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsomal omega-6 desaturase enzymes, which catalyze the desaturation of oleic acid to linoleic acid during fatty acid biosynthesis, are encoded by the FAD2-1 and FAD2-2 genes in soybeans. Breeders aim to incorporate the high oleate trait into soybean germplasm in order to improve the nutrition...

  10. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme

    PubMed Central

    Asadzadeh, Azizeh; Sirous, Hajar; Pourfarzam, Morteza; Yaghmaei, Parichehreh; Afshin, Fassihi

    2016-01-01

    Objective(s): Tyrosinase is a key enzyme in pigment synthesis. Overproduction of melanin in parts of the skin results in hyperpigmentation diseases. This enzyme is also responsible for the enzymatic browning in fruits and vegetables. Thus, its inhibitors are of great importance in the medical, cosmetic and agricultural fields. Materials and Methods: A series of twelve kojic acid derivatives were designed to be evaluated as tyrosinase activity inhibitors. The potential inhibitory activity of these compounds was investigated in silico using molecular docking simulation method. Four compounds with a range of predicted tyrosinase inhibitory activities were prepared and their inhibitory effect on tyrosinase activity was evaluated. The antioxidant properties of these compounds were also investigated by in vitro DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydrogen peroxide scavenging assays. Results: Compound IIId exhibited the highest tyrosinase inhibitory activity with an IC50 value of 0.216 ± 0.009 mM which was in accordance with the in silico ΔGbind results (-13.24 Kcal/mol). Conclusion: Based on the docking studies, from the twelve compounds studied, one (IIId) appeared to have the highest inhibition on tyrosinase activity. This was confirmed by enzyme activity measurements. Compound IIId has an NO2 group which binds to both of Cu2+ ions located inside the active site of the enzyme. This compound appeared to be even stronger than kojic acid in inhibiting tyrosinase activity. The DPPH free radical scavenging ability of all the studied compounds was more than that of BHT. However, they were not as strong as BHT or gallic acid in scavenging hydrogen peroxide. PMID:27081457

  11. Modulation of fatty acid metabolism and tricarboxylic acid cycle to enhance the lipstatin production through medium engineering in Streptomyces toxytricini.

    PubMed

    Kumar, Punit; Dubey, Kashyap Kumar

    2016-08-01

    This work investigated the potential of medium engineering to obtain maximum biomass, non-conventional carbon sources for lipstatin production and modulation of tricarboxylic acid (TCA) cycle to promote lipstatin synthesis. It was found that 2:3 carbon and nitrogen ratio, produced maximum biomass of 7.9g/L in growth medium and 6.6g/L in pre-seed medium. Among the studied non-conventional carbon sources i.e., soya flour 40g/L and sesame oil 30mL/L were found producing 1109.37mg/L (1.24-fold of control) and 1196.75mg/L (1.34-fold of control) lipstatin respectively. Supplementation of TCA cycle intermediates revealed that NADH and succinic acid showed lipstatin production to 1132.99mg/L and 1171.10mg/L respectively. Experimental outcome was validated in 7L bioreactor and produced 2242.63mg/L lipstatin which was ∼14% higher than shake flask. PMID:26897471

  12. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  13. Clinical and microbiological effects of subgingival antimicrobial irrigation with citric acid as evaluated by an enzyme immunoassay and culture analysis.

    PubMed

    Renvert, S; Dahlén, G; Snyder, B

    1997-04-01

    The purpose of the present study was to compare an enzyme immunoassay with culture samples from untreated and non-surgically treated periodontal pockets and to assess the clinical and microbiological effects of citric acid irrigation as a supplement to scaling and root planing. The enzyme immunoassay used in this study is a chairside diagnostic tool aimed at identifying the presence of P. gingivalis, P. intermedia, and A. actinomycetemcomitans. Six sites with pocket depths > or = 6 mm in each of 16 patients were monitored for 24 weeks using clinical and microbiological parameters. In two out of the six sites, scaling and root planing was supplemented with subgingival citric acid irrigation of the pocket after completion of the mechanical treatment. The sensitivity of the immunoassay in relation to culture was calculated to 85.5% and the specificity to 90.2%. The immunoassay corresponded to a detection level of 10(4) as estimated by culture. Sites treated with a combination of scaling and irrigation with citric acid demonstrated a similar healing pattern as sites treated with scaling and root planing alone. The profile of the marker bacteria was almost parallel for the two groups. The results of this investigation thus indicated that the immunoassay can be used as a screening tool for selected periodontal pathogens and that adjunctive irrigation with citric acid has no measurable clinical or microbiological effects. PMID:9150039

  14. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  15. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  16. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    PubMed

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226-1236, 2016. © 2015 Wiley Periodicals, Inc. PMID:26480024

  17. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes

    PubMed Central

    Hinder, Lucy M.; Vivekanandan-Giri, Anuradha; McLean, Lisa L.; Pennathur, Subramaniam; Feldman, Eva L.

    2013-01-01

    Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted LC/MS/MS to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Leprdb; db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve and DRG from diabetic mice. Utilizing LC/ESI/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids, HODEs) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerve to rely on truncated TCA cycle metabolism in the type 2 diabetes environment. PMID:23086140

  18. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training. PMID:15040848

  19. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  20. Schistosoma mansoni: possible involvement of protein kinase C in linoleic acid-induced proteolytic enzyme release from cercariae.

    PubMed

    Matsumura, K; Mitsui, Y; Sato, K; Sakamoto, M; Aoki, Y

    1991-04-01

    The possible involvement of protein kinase C and Ca2+ metabolism in the proteolytic enzyme release from schistosome cercariae was studied. Cercariae were placed in dechlorinated tap water containing 0.37 mM calcium in the small glass petri dish and exposed to the stimuli (linoleic acid, phorbol esters, and Ca2+ ionophore) with or without inhibitors of protein kinase C or Ca2+ metabolism. The proteolytic activity of incubation medium of cercariae thus treated was measured by the azocoll assay. The penetration response of cercariae induced by linoleic acid, a physiological stimulus, was mimicked by phorbol esters. When exposed to phorbol esters, 0.02 to 2 microM of 12-O-tetradecanoylphorbol-13-acetate (TPA) and 0.2 to 2 microM of phorbol-12,13-dibutyrate (PDBu), cercariae ceased the swimming movement, began a rhythmic thrusting of the anterior tip of the parasite, and released the proteolytic enzyme, but they did not shed the tails. Lowering Ca2+ in water by addition of 5 mM ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), phorbol ester-induced release of enzyme was completely inhibited. Phorbol ester-induced release of enzyme was partially inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, at a concentration of 100 microM. H-7 alone, at a concentration of 100 microM, did not affect the swimming movement of cercariae. The cercariae were stimulated to release the enzyme by high concentrations (10 and 100 microM) of the Ca2+ ionophore, A23187, but enzyme was not released by low concentrations (0.5 and 1 microM) of this drug. Cercariae exposed to A23187 behaved differently from those exposed to phorbol esters. They ceased swimming, showed strong muscle contraction, and shed their tail. A23187 stimulated cercariae to release the enzyme in the water containing 5 mM EGTA. A23187-induced enzyme release was not inhibited by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin

  1. Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes

    PubMed Central

    Adamberg, Kaarel; Seiman, Andrus; Vilu, Raivo

    2012-01-01

    Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol−1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h−1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h−1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h−1). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h−1). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions. PMID:23133574

  2. Delta-aminolevulinic acid dehydratase enzyme activity in blood, brain, and liver of lead-dosed ducks

    USGS Publications Warehouse

    Dieter, M.P.; Finley, M.T.

    1979-01-01

    Mallard ducks were dosed with a single shotgun pellet (ca. 200 mg lead). After 1 month there was about 1 ppm lead in blood, 2.5 in liver, and 0.5 in brain. Lead-induced inhibition of delta-aminolevulinic acid dehydratase enzyme in blood and cerebellum was much greater than in cerebral hemisphere or liver and was strongly correlated with the lead concentration in these tissues. The cerebellar portion of the brain was more sensitive to delta-aminolevulinic acid dehydratase enzyme inhibition by lead than were the other tissues examined. There was also a greater increase in the glial cell marker enzyme, butyrylcholinesterase, in cerebellum than in cerebral hemisphere, suggesting that nonregenerating neuronal cells were destroyed by lead and replaced by glial cells in that portion of the brain. Even partial loss of cerebellar tissue is severely debilitating in waterfowl, because functions critical to survival such as visual, auditory, motor, and reflex responses are integrated at this brain center.

  3. RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens.

    PubMed

    Yu, Minli; Yu, Ping; Leghari, Imdad H; Ge, Chutian; Mi, Yuling; Zhang, Caiqiao

    2013-02-01

    Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells. Meiotic germ cells were first detected at day 15.5 in chicken embryo ovary when the expression of synaptonemal complex protein 3 (Scp3) and disrupted meiotic cDNA 1 homologue (Dmc1) became elevated, while Stra8 expression was specifically up-regulated at day 12.5 before meiosis onset. It was observed from the increase in Raldh2 mRNA expression levels and decreases in Cyp26b1 (the enzyme for RA catabolism) expression levels during meiosis that requirement for RA accumulation is essential to sustain meiosis. This was also revealed by RA stimulation of the cultured ovaries with the initiation of meiosis response, and the knocking down of the Raldh2 expression during meiosis, leading to abolishment of RA-dependent action. Altogether, these studies indicate that RA synthesis by the enzyme RALDH2 and signaling through its receptor is crucial for meiosis initiation in chicken embryonic ovary. PMID:22733143

  4. Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle

    PubMed Central

    Grabarczyk, Daniel B.; Chappell, Paul E.; Johnson, Steven; Stelzl, Lukas S.; Berks, Ben C.

    2015-01-01

    The bacterial Sox (sulfur oxidation) pathway is an important route for the oxidation of inorganic sulfur compounds. Intermediates in the Sox pathway are covalently attached to the heterodimeric carrier protein SoxYZ through conjugation to a cysteine on a protein swinging arm. We have investigated how the carrier protein shuttles intermediates between the enzymes of the Sox pathway using the interaction between SoxYZ and the enzyme SoxB as our model. The carrier protein and enzyme interact only weakly, but we have trapped their complex by using a “suicide enzyme” strategy in which an engineered cysteine in the SoxB active site forms a disulfide bond with the incoming carrier arm cysteine. The structure of this trapped complex, together with calorimetric data, identifies sites of protein–protein interaction both at the entrance to the enzyme active site tunnel and at a second, distal, site. We find that the enzyme distinguishes between the substrate and product forms of the carrier protein through differences in their interaction kinetics and deduce that this behavior arises from substrate-specific stabilization of a conformational change in the enzyme active site. Our analysis also suggests how the carrier arm-bound substrate group is able to outcompete the adjacent C-terminal carboxylate of the carrier arm for binding to the active site metal ions. We infer that similar principles underlie carrier protein interactions with other enzymes of the Sox pathway. PMID:26655737

  5. Lipid peroxidation and cyclooxygenase enzyme inhibitory activities of acidic aqueous extracts of some dietary supplements.

    PubMed

    Raman, Priyadarshini; Dewitt, David L; Nair, Muraleedharan G

    2008-02-01

    The botanical supplement market is growing at a fast pace with more and more people resorting to them for maintaining good health. Echinacea, garlic, ginkgo, ginseng, Siberian ginseng, grape seed extract, kava kava, saw palmetto and St John's wort are some of the popular supplements used for a variety of health benefits. These supplements are associated with various product claims, which suggest that they possess cyclooxygenase (COX) enzyme and lipid s inhibitory activities. COX enzymes are found to be at elevated levels in inflamed and cancerous cells. To test some of the product claims, selected supplements were analysed for their ability to inhibit COX-1 and -2 enzymes and lipid peroxidation in vitro. The supplements were extracted with acidified water (pH 2) at 37 degrees C to simulate the gastric environment. The supplements tested demonstrated varying degrees of COX enzyme inhibition (5-85% for COX-1 and 13-28% for COX-2). Interestingly, extracts of garlic (Meijer), ginkgo (Solaray), ginseng (Nature's Way), Siberian ginseng (GNC, Nutrilite, Solaray, Natrol), kava kava (GNC, Sundown, Solaray) and St John's wort (Nutrilite) selectively inhibited COX-2 enzyme. These supplements also inhibited lipid peroxidation in vitro (5-99%). The results indicated that the consumption of these botanical supplements studied possess health benefits. PMID:17726737

  6. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.

    PubMed Central

    Grogan, D W; Cronan, J E

    1984-01-01

    Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and CFA synthase activity. Subsequent manipulation of the cfa locus, facilitated by the insertion of pLC18-11 into a bacteriophage lambda vector, allowed genetic and physiological studies of CFA synthase in E. coli. Overproduction of this enzyme via multicopy cfa plasmids caused abnormally high levels of CFA in membrane phospholipid but no discernable growth perturbation. Infection with phage lambda derivatives bearing cfa caused transient overproduction of the enzyme, although pL-mediated expression of cfa could not be demonstrated in plasmids derived from such phages. CFA synthase specific activities could be raised to very high levels by using cfa runaway-replication plasmids. A variety of physiological factors were found to modulate the levels of CFA synthase in normal and gene-amplified cultures. These studies argue against several possible mechanisms for the temporal regulation of CFA formation. PMID:6325391

  7. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    PubMed

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. PMID:25042691

  8. Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus*

    PubMed Central

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A.; Bischoff, Markus

    2013-01-01

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB. PMID:24194525

  9. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  10. Ecophysiology of Fe-Cycling Bacteria in Acidic Sediments ▿ †

    PubMed Central

    Lu, Shipeng; Gischkat, Stefan; Reiche, Marco; Akob, Denise M.; Hallberg, Kevin B.; Küsel, Kirsten

    2010-01-01

    Using a combination of cultivation-dependent and -independent methods, this study aimed to elucidate the diversity of microorganisms involved in iron cycling and to resolve their in situ functional links in sediments of an acidic lignite mine lake. Using six different media with pH values ranging from 2.5 to 4.3, 117 isolates were obtained that grouped into 38 different strains, including 27 putative new species with respect to the closest characterized strains. Among the isolated strains, 22 strains were able to oxidize Fe(II), 34 were able to reduce Fe(III) in schwertmannite, the dominant iron oxide in this lake, and 21 could do both. All isolates falling into the Gammaproteobacteria (an unknown Dyella-like genus and Acidithiobacillus-related strains) were obtained from the top acidic sediment zones (pH 2.8). Firmicutes strains (related to Bacillus and Alicyclobacillus) were only isolated from deep, moderately acidic sediment zones (pH 4 to 5). Of the Alphaproteobacteria, Acidocella-related strains were only isolated from acidic zones, whereas Acidiphilium-related strains were isolated from all sediment depths. Bacterial clone libraries generally supported and complemented these patterns. Geobacter-related clone sequences were only obtained from deep sediment zones, and Geobacter-specific quantitative PCR yielded 8 × 105 gene copy numbers. Isolates related to the Acidobacterium, Acidocella, and Alicyclobacillus genera and to the unknown Dyella-like genus showed a broad pH tolerance, ranging from 2.5 to 5.0, and preferred schwertmannite to goethite for Fe(III) reduction. This study highlighted the variety of acidophilic microorganisms that are responsible for iron cycling in acidic environments, extending the results of recent laboratory-based studies that showed this trait to be widespread among acidophiles. PMID:20971876

  11. [The mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate pathway: enzymes of the citramalate cycle in Rhodobacter sphaeroides].

    PubMed

    Filatova, L V; Berg, I A; Krasil'nikova, E N; Ivanovskiĭ, R N

    2005-01-01

    The mechanism of acetate assimilation by the purple nonsulfur bacterium Rhodobacter sphaeroides, which lacks the glyoxylate shortcut, has been studied. In a previous work, proceeding from data on acetate assimilation by Rba. sphaeroides cell suspensions, a suggestion was made regarding the operation, in this bacterium, of the citramalate cycle. This cycle was earlier found in Rhodospirillum rubrum in the form of an anaplerotic reaction sequence that operates during growth on acetate instead of the glyoxylate shortcut, which is not present in the latter bacterium. The present work considers the enzymes responsible for acetate assimilation in Rba. sphaeroides. It is shown that this bacterium possesses the key enzymes of the citramalate cycle: citramalate synthase, which catalyzes condensation of acetyl-CoA and pyruvate and, as a result, forms citramalate, and 3-methylmalyl-CoA lyase, which catalyzes the cleavage of 3-methylmalyl-CoA to glyoxylate and propionyl-CoA. The regeneration of pyruvate, which is the acetyl-CoA acceptor in the citramalate cycle, involves propionyl-CoA and occurs via the following reaction sequence: propionyl-CoA (+ CO2) --> methylmalonyl-CoA --> succinyl-CoA --> succinate --> fumarate --> malate --> oxalacetate (- CO2) --> phosphoenolpyruvate --> pyruvate. The independence of the cell growth and the acetate assimilation of CO2 is due to the accumulation of CO2/HCO3- (released during acetate assimilation) in cells to a level sufficient for the effective operation of propionyl-CoA carboxylase. PMID:16119844

  12. Deciphering Carbamoylpolyoxamic Acid Biosynthesis Reveals Unusual Acetylation Cycle Associated with Tandem Reduction and Sequential Hydroxylation.

    PubMed

    Qi, Jianzhao; Wan, Dan; Ma, Hongmin; Liu, Yuanzhen; Gong, Rong; Qu, Xudong; Sun, Yuhui; Deng, Zixin; Chen, Wenqing

    2016-08-18

    Polyoxin, produced by Streptomcyes cacaoi var. asoensis and Streptomyces aureochromogenes, contains two non-proteinogenic amino acids, carbamoylpolyoxamic acid (CPOAA) and polyoximic acid. Although the CPOAA moiety is highly unusual, its biosynthetic logic has remained enigmatic for decades. Here, we address CPOAA biosynthesis by reconstitution of its pathway. We demonstrated that its biosynthesis is initiated by a versatile N-acetyltransferase, PolN, catalyzing L-glutamate (1) to N-acetyl glutamate (2). Remarkably, we verified that PolM, a previously annotated dehydrogenase, catalyzes an unprecedented tandem reduction of acyl-phosphate to aldehyde, and subsequently to alcohol. We also unveiled a distinctive acetylation cycle catalyzed by PolN to synthesize α-amino-δ-hydroxyvaleric acid (6). Finally, we report that PolL is capable of converting a rare sequential hydroxylation of α-amino-δ-carbamoylhydroxyvaleric acid (7) to CPOAA. PolL represents an intriguing family of Fe(II)-dependent α-ketoglutarate dioxygenase with a cupin fold. These data illustrate several novel enzymatic reactions, and also set a foundation for rational pathway engineering for polyoxin production. PMID:27541195

  13. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    SciTech Connect

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  14. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    SciTech Connect

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  15. Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution.

    PubMed

    Sun, Zhoutong; Lonsdale, Richard; Kong, Xu-Dong; Xu, Jian-He; Zhou, Jiahai; Reetz, Manfred T

    2015-10-12

    Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme. PMID:25891639

  16. The partial state-of-charge cycle performance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Takeuchi, Taisuke; Sawai, Ken; Tsuboi, Yuichi; Shiota, Masashi; Ishimoto, Shinji; Hirai, Nobumitsu; Osumi, Shigeharu

    Negative plate lugs of flooded lead-acid battery were corroded during partial state-of-charge (PSoC) pattern cycle life tests simulated from stop and go vehicle driving. Potential step was applied to Pb-Ca-Sn alloy electrode at various potential and time regimes, and the electrode surface was observed by in situ electrochemical atomic force microscope (EC-AFM) to investigate the corrosion mechanisms during the potential step cycles. It was found out that the severe corrosion occurs when the oxidation of Pb to PbSO 4 and partial reduction of passive layer of PbSO 4 take turns many times. It was also found out that the periodic full charge, the optimization of the alloy composition, addition of the material that may make the reaction mechanism change to electrolyte were effective to suppress the corrosion rate.

  17. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  18. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  19. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  20. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    PubMed

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications. PMID:25058513

  1. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.

    PubMed

    Shlaifer, Irina; Turnbull, Joanne L

    2016-07-01

    Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity. PMID:27290727

  2. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  3. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    PubMed

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P < 0.01), palmitic (16:0, r = 0.80, P < 0.001), stearic (18:0, r = -0.58, P < 0.01), and oleic (18:1c-9, r = 0.79, P < 0.001) acids. For PCD, significant relationships were found between marbling and palmitic (r = 0.71, P < 0.001) and oleic (r = 0.74, P < 0.001) acids. Microsomal fractions prepared from PCD muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P < 0.01), total PAP (r = 0.66, P < 0.001), and PAP-1 (r = 0.63, P < 0.01) specific activities. The results on FA compositions of whole muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA. PMID:17263304

  4. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    PubMed

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  5. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  6. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium.

    PubMed Central

    Epelbaum, S; Chipman, D M; Barak, Z

    1996-01-01

    The metabolic effects of inhibitors of two enzymes in the pathway for biosynthesis of branched-chain amino acids were examined in Salmonella typhimurium mutant strain TV105, expressing a single isozyme of acetohydroxy acid synthase (AHAS), AHAS isozyme II. One inhibitor was the sulfonylurea herbicide sulfometuron methyl (SMM), which inhibits this isozyme and AHAS of other organisms, and the other was N-isopropyl oxalylhydroxamate (IpOHA), which inhibits ketol-acid reductoisomerase (KARI). The effects of the inhibitors on growth, levels of several enzymes of the pathway, and levels of intermediates of the pathway were measured. The intracellular concentration of the AHAS substrate 2-ketobutyrate increased on addition of SMM, but a lack of correlation between increased ketobutyrate and growth inhibition suggests that the former is not the immediate cause of the latter. The levels of the keto acid precursor of valine, but not of the precursor of isoleucine, were drastically decreased by SMM, and valine, but not isoleucine, partially overcame SMM inhibition. This apparent stronger effect of SMM on the flux into the valine arm, as opposed to the isoleucine arm, of the branched-chain amino acid pathway is explained by the kinetics of the AHAS reaction, as well as by the different roles of pyruvate, ketobutyrate, and the valine precursor in metabolism. The organization of the pathway thus potentiates the inhibitory effect of SMM. IpOHA has strong initial effects at lower concentrations than does SMM and leads to increases both in the acetohydroxy acid substrates of KARI and, surprisingly, in ketobutyrate. Valine completely protected strain TV105 from IpOHA at the MIC. A number of explanations for this effect can be ruled out, so that some unknown arrangement of the enzymes involved must be suggested. IpOHA led to initial cessation of growth, with partial recovery after a time whose duration increased with the inhibitor concentration. The recovery is apparently due to

  7. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium.

    PubMed

    Epelbaum, S; Chipman, D M; Barak, Z

    1996-02-01

    The metabolic effects of inhibitors of two enzymes in the pathway for biosynthesis of branched-chain amino acids were examined in Salmonella typhimurium mutant strain TV105, expressing a single isozyme of acetohydroxy acid synthase (AHAS), AHAS isozyme II. One inhibitor was the sulfonylurea herbicide sulfometuron methyl (SMM), which inhibits this isozyme and AHAS of other organisms, and the other was N-isopropyl oxalylhydroxamate (IpOHA), which inhibits ketol-acid reductoisomerase (KARI). The effects of the inhibitors on growth, levels of several enzymes of the pathway, and levels of intermediates of the pathway were measured. The intracellular concentration of the AHAS substrate 2-ketobutyrate increased on addition of SMM, but a lack of correlation between increased ketobutyrate and growth inhibition suggests that the former is not the immediate cause of the latter. The levels of the keto acid precursor of valine, but not of the precursor of isoleucine, were drastically decreased by SMM, and valine, but not isoleucine, partially overcame SMM inhibition. This apparent stronger effect of SMM on the flux into the valine arm, as opposed to the isoleucine arm, of the branched-chain amino acid pathway is explained by the kinetics of the AHAS reaction, as well as by the different roles of pyruvate, ketobutyrate, and the valine precursor in metabolism. The organization of the pathway thus potentiates the inhibitory effect of SMM. IpOHA has strong initial effects at lower concentrations than does SMM and leads to increases both in the acetohydroxy acid substrates of KARI and, surprisingly, in ketobutyrate. Valine completely protected strain TV105 from IpOHA at the MIC. A number of explanations for this effect can be ruled out, so that some unknown arrangement of the enzymes involved must be suggested. IpOHA led to initial cessation of growth, with partial recovery after a time whose duration increased with the inhibitor concentration. The recovery is apparently due to

  8. Antisense Reduction of NADP-Malic Enzyme in Flaveria bidentis Reduces Flow of CO2 through the C4 Cycle[W][OA

    PubMed Central

    Pengelly, Jasper J.L.; Tan, Jackie; Furbank, Robert T.; von Caemmerer, Susanne

    2012-01-01

    An antisense construct targeting the C4 isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO2 to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (α-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reducing NADP-ME on photosynthesis by measuring in vitro photosynthetic enzyme activity, gas exchange, and real-time carbon isotope discrimination (Δ). In α-NADP-ME plants with less than 40% of wild-type NADP-ME activity, CO2 assimilation rates at high intercellular CO2 were significantly reduced, whereas the in vitro activities of both phosphoenolpyruvate carboxylase and Rubisco were increased. Δ measured concurrently with gas exchange in these plants showed a lower Δ and thus a lower calculated leakiness of CO2 (the ratio of CO2 leak rate from the bundle sheath to the rate of CO2 supply). Comparative measurements on antisense Rubisco small subunit F. bidentis plants showed the opposite effect of increased Δ and leakiness. We use these measurements to estimate the C4 cycle rate, bundle sheath leak rate, and bundle sheath CO2 concentration. The comparison of α-NADP-ME and antisense Rubisco small subunit demonstrates that the coordination of the C3 and C4 cycles that exist during environmental perturbations by light and CO2 can be disrupted through transgenic manipulations. Furthermore, our results suggest that the efficiency of the C4 pathway could potentially be improved through a reduction in C4 cycle activity or increased C3 cycle activity. PMID:22846191

  9. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    PubMed

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. PMID:26761593

  10. Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus.

    PubMed

    McGuire, Liam P; Fenton, M Brock; Guglielmo, Christopher G

    2013-06-01

    The high energy density of fat, and limited capacity for carbohydrate storage suggest that migrating bats should fuel endurance flights with fat, as observed in migrating birds. Yet, cursorial mammals are unable to support high intensity exercise with fat stores. We hypothesized that migratory bats and birds have converged on similar physiological mechanisms to fuel endurance flight with fat. We predicted bats would seasonally upregulate fatty acid transport and oxidation pathways when migration demands were high. We studied seasonal variation in mitochondrial oxidative enzyme activities and fatty acid transport protein expression in the flight muscle of hoary bats (Lasiurus cinereus). Carnitine palmitoyl transferase, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity increased during migration. There were no changes in expression of fatty acid translocase or plasma membrane fatty acid binding protein. Heart-type fatty acid binding protein expression increased 5-fold in migrating females, but did not vary seasonally in males. An aerial insectivore lifestyle, and the coincidence of migration and pregnancy may explain differences in transporter expression compared to previously studied birds. Overall, our results are consistent with seasonal upregulation of lipid metabolism and aerobic capacity, and confirm that migration poses distinct physiological challenges for bats. PMID:23545469

  11. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  12. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR

  13. Enzyme-substrate complementarity governs access to a cationic reaction manifold in the P450(BM3)-catalysed oxidation of cyclopropyl fatty acids.

    PubMed

    Cryle, Max J; Hayes, Patricia Y; De Voss, James J

    2012-12-01

    The products of cytochrome P450(BM3)-catalysed oxidation of cyclopropyl-containing dodecanoic acids are consistent with the presence of a cationic reaction intermediate, which results in efficient dehydrogenation of the rearranged probes by the enzyme. These results highlight the importance of enzyme-substrate complementarity, with a cationic intermediate occurring only when the probes used begin to diverge from ideal substrates for this enzyme. This also aids in reconciling literature reports supporting the presence of cationic intermediates with certain cytochrome P450 enzyme/substrate pairs. PMID:23109039

  14. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  15. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  16. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, < 0.03 U mg−1 protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24–7.64 U mg−1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  17. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    PubMed

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, < 0.03 U mg(-1) protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24-7.64 U mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  18. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients

    PubMed Central

    Tartara, A.; Galimberti, C.A.; Manni, R.; Parietti, L.; Zucca, C.; Baasch, H.; Caresia, L.; Mück, W.; Barzaghi, N.; Gatti, G.; Perucca, E.

    1991-01-01

    1 The single dose pharmacokinetics of orally administered nimodipine (60 mg) were investigated in normal subjects and in two groups of epileptic patients receiving chronic treatment with hepatic microsomal enzyme-inducing anticonvulsants (carbamazepine, phenobarbitone or phenytoin) and sodium valproate, respectively. 2 Compared with the values found in the control group, mean areas under the plasma nimodipine concentration curve were lowered by about seven-fold (P < 0.01) in patients taking enzyme-inducing anticonvulsants and increased by about 50% (P < 0.05) in patients taking sodium valproate. 3 Nimodipine half-lives were shorter in enzyme-induced patients than in controls (3.9 ± 2.0 h vs 9.1 ± 3.4 h, means ± s.d., P < 0.01), but this difference could be artifactual since in the patients drug concentrations declined rapidly below the limit of assay, thus preventing identification of a possible slower terminal phase. In valproate-treated patients, half-lives (8.2 ± 1.8 h) were similar to those found in controls. PMID:1777370

  19. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  20. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    PubMed

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions. PMID:26156238

  1. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  2. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  3. Seasonal and diurnal cycles of ammonia, nitrous acid and nitric acid at a forest site in Finland

    NASA Astrophysics Data System (ADS)

    Virkkula, A.; Makkonen, U.; Mäntykenttä, J.; Hakola, H.

    2012-04-01

    Background In July - August 2010 a large campaign "Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission Concentration 2010 (HUMPPA - COPEC-10)", was conducted in a boreal forest at the SMEAR II station in Hyytiälä, southwestern central Finland. The general goal was to study links between gas phase oxidation chemistry and particle properties and processes. The Finnish Meteorological Institute contributed to the campaign with an on-line analyzer MARGA 2S (Ten Brink et al., 2007) for semi-continuous (1-hr time resolution) measurement of water-soluble gases and ions. Concentrations of gases (HCl, HNO3, HNO2, NH3, SO2) and major ions in particles (Cl, NO3, SO4, NH4, Na, K, Mg, Ca) were measured in two size fractions: PM2.5 and PM10. The MARGA was kept running at SMEAR II also after the campaign. Here we discuss data collected until 30 April, 2011, and restrict the analysis to the nitrogen-containing gases. Ammonia plays a key role in neutralizing acidic atmospheric compounds and in aerosol formation. The concentration of semi-volatile aerosol species such as ammonium nitrate and ammonium chloride is strongly dependent on the gas phase precursors, NH3, HNO3 and HCl. HONO is of atmospheric importance due to its expected significant contribution to the production of OH radicals. Results and discussion The median concentrations of ammonia (NH3), nitrous acid (HONO) and nitric acid (HNO3) during whole period of 21 June 2010 - 30 April 2011 were 85, 54, and 57 ppt, respectively. The seasonal cycle was such that in summer the concentrations of all of these gases were the highest, the respective medians were 356, 70, and 81 ppt in June 21 - August 12, and lowest in winter (December - February), the respective medians were 38, 54, and 52 ppt. A very clear diurnal cycle of all these gases was observed, especially in July. In December there were no cyclic diurnal variation of these but in spring, especially in April the

  4. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  5. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Gurvitz, Aner; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2008-08-01

    We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Delta cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Delta cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C(4) to C(8)) than was previously thought (>C(12)). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis. PMID:18552191

  6. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.

    PubMed

    Bohn, Andreas; Hinderlich, Sven; Hütt, Marc-Thorsten; Kaiser, Friedemann; Lüttge, Ulrich

    2003-05-01

    Leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie show overt circadian rhythms in net CO2 uptake, leaf conductance to water and intercellular CO2 concentration, which are entrained by periodic temperature cycles. To probe their sensitivity to thermoperiodic perturbations, intact leaves were exposed to continuous light intensity and temperature cycles with a period of 16 h, applying a set of different baseline temperatures and thermodriver amplitudes. All three overt rhythms were analyzed with respect to their frequency spectra and their phase relations with the thermodriver. For most stimulation protocols, stomatal conductance and net CO2 change were fully or partially entrained by the temperature pulses, while the internal CO2 concentration remained dominated by oscillations in the circadian range. Prolonged time series recorded for up to 22 d in continuous light underline the robustness of these circadian oscillations. This suggests that the overt circadian rhythm of net CO2 uptake in CAM results from the interaction of two coupled original systems: (i) an endogenous cycle of CO2 fixation in the mesophyll, showing very robust periodic activity, and (ii) stomatal movements that respond to environmental stimuli independently of rhythmic processes in the mesophyll, and thus modulate the gas exchange amplitude. PMID:12817468

  7. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    PubMed

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions. PMID:25963883

  8. Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving.

    PubMed

    Kumar, Arun; Randhawa, Vinay; Acharya, Vishal; Singh, Kashmir; Kumar, Sanjay

    2016-01-01

    Enzymes are known to be denatured upon boiling, although Cu,Zn superoxide dismutase of Potentilla atrosanguinea (Pot-SOD) retains significant catalytic activity even after autoclaving (heating at 121 °C at a pressure of 1.1 kg per square cm for 20 min). The polypeptide backbone of Pot-SOD consists of 152 amino acids with a central core spanning His45 to Cys145 that is involved in coordination of Cu(2+) and Zn(2+) ions. While the central core is essential for imparting catalytic activity and structural stability to the enzyme, the role of sequences flanking the central core was not understood. Experiments with deletion mutants showed that the amino acid sequences flanking the central core were important in retaining activity of Pot-SOD after autoclaving. Molecular dynamics simulations demonstrated the unfavorable structure of mutants due to increased size of binding pocket and enhanced negative charge on the electrostatic surface, resulting in unavailability of the substrate superoxide radical ([Formula: see text]) to the catalytic pocket. Deletion caused destabilization of structural elements and reduced solvent accessibility that further produced unfavorable structural geometry of the protein. PMID:25990646

  9. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    PubMed

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  10. The Catalytic Scaffold fo the Haloalkanoic Acid Dehalogenase Enzyme Superfamily Acts as a Mold for the Trigonal Bipyramidal Transition State

    SciTech Connect

    Lu,Z.; Dunaway-Mariano, D.; Allen, K.

    2008-01-01

    The evolution of new catalytic activities and specificities within an enzyme superfamily requires the exploration of sequence space for adaptation to a new substrate with retention of those elements required to stabilize key intermediates/transition states. Here, we propose that core residues in the large enzyme family, the haloalkanoic acid dehalogenase enzyme superfamily (HADSF) form a 'mold' in which the trigonal bipyramidal transition states formed during phosphoryl transfer are stabilized by electrostatic forces. The vanadate complex of the hexose phosphate phosphatase BT4131 from Bacteroides thetaiotaomicron VPI-5482 (HPP) determined at 1.00 Angstroms resolution via X-ray crystallography assumes a trigonal bipyramidal coordination geometry with the nucleophilic Asp-8 and one oxygen ligand at the apical position. Remarkably, the tungstate in the complex determined to 1.03 Angstroms resolution assumes the same coordination geometry. The contribution of the general acid/base residue Asp-10 in the stabilization of the trigonal bipyramidal species via hydrogen-bond formation with the apical oxygen atom is evidenced by the 1.52 Angstroms structure of the D10A mutant bound to vanadate. This structure shows a collapse of the trigonal bipyramidal geometry with displacement of the water molecule formerly occupying the apical position. Furthermore, the 1.07 Angstroms resolution structure of the D10A mutant complexed with tungstate shows the tungstate to be in a typical 'phosphate-like' tetrahedral configuration. The analysis of 12 liganded HADSF structures deposited in the protein data bank (PDB) identified stringently conserved elements that stabilize the trigonal bipyramidal transition states by engaging in favorable electrostatic interactions with the axial and equatorial atoms of the transferring phosphoryl group.

  11. A cryptic role of a glycolytic-gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans.

    PubMed

    Roumelioti, Katerina; Vangelatos, Ioannis; Sophianopoulou, Vicky

    2010-03-01

    In Aspergillus nidulans the fbaA1013 mutation results in reduced or total loss of growth on glycolytic and gluconeogenic carbon sources, respectively. It also negatively affects growth on several amino acids (including L-proline, L-glutamate or L-aspartate) that the fungus can use as nitrogen source on glycolytic carbon sources. Complementation of the fbaA1013 mutation using an A. nidulans genomic library resulted in cloning of the fbaA gene, which encodes a putative fructose 1,6-biphosphate aldolase (FBA), an enzyme involved in both glycolysis and gluconeogenesis. The fbaA1013 mutation is a chromosome rearrangement in the 5' regulatory region of the fbaA gene resulting in reduced or total loss of transcription in response to glycolytic and gluconeogenic carbon sources respectively. The fbaA gene is essential for growth. A functional FbaA protein is necessary for plasma membrane localization of the AgtA acidic amino acid (L-glutamate/L-aspartate) transporter, as the fbaA1013 mutation results in targeting to and presumably subsequent degradation of AgtA in the vacuole. Our results support a novel role of the FbaA protein that is, involvement in the regulation of amino acids transporters. PMID:20026236

  12. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi.

    PubMed

    Studt, Lena; Janevska, Slavica; Niehaus, Eva-Maria; Burkhardt, Immo; Arndt, Birgit; Sieber, Christian M K; Humpf, Hans-Ulrich; Dickschat, Jeroen S; Tudzynski, Bettina

    2016-03-01

    Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety. PMID:26662839

  13. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. PMID:26776822

  14. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain.

    PubMed

    Gupta, Adarsha; Abraham, Reinu E; Barrow, Colin J; Puri, Munish

    2015-05-01

    In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3. PMID:25497057

  15. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    PubMed

    Coelho, Carla R V; Pernollet, Franck; van der Werf, Hayo M G

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  16. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  17. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  18. Determining the N and O isotope effects of microbial nitrite reduction: the global N cycle implications of an enzyme-dependent isotope effect

    NASA Astrophysics Data System (ADS)

    Martin, T. S.; Casciotti, K. L.

    2014-12-01

    The marine nitrogen (N) cycle is a dynamic system of critical importance, since nitrogen is the limiting nutrient in over half of the world's oceans. Denitrification and anammox, the main N loss processes from the ocean, have different effects on carbon cycling and greenhouse gas emission. Understanding the balance between the two processes is vital to understanding the role of the N cycle in global climate change. One approach for investigating these processes is by using stable isotope analysis to estimate the relative magnitudes of N fluxes, particularly for biologically mediated processes. In order to make the most of the currently available isotope analysis techniques, it is necessary to know the isotope effects for each processes occurring in the environment. Nitrite reduction is an important step in denitrification. Previous work had begun to explore the N isotope effects for nitrite reduction, but no oxygen (O) isotope effect has been measured. Additionally, no consideration has been given to the type of nitrite reductase carrying out the reaction. There are two main types of respiratory nitrite reductase, one that is Cu-based and another that is Fe-based. We performed batch culture experiments with denitrifier strains possessing either a Cu-type or Fe-type nitrite reductase. Both N and O isotope effects for nitrite reduction were determined for each of these experiments by measuring the NO2- concentration, as well as the N and O isotopes of nitrite and applying a Rayleigh fractionation model. Both the N and O isotope effects were found to be significantly different between the two types of enzymes. This enzyme-linked difference in isotope effects emphasizes the importance of microbial community composition within the global N cycle.

  19. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  20. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  1. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.

    PubMed

    Carpini, Guido; Lucarelli, Fausto; Marrazza, Giovanna; Mascini, Marco

    2004-09-15

    An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples. PMID:15308218

  2. Annotating enzymes of uncertain function: the deacylation of D-amino acids by members of the amidohydrolase superfamily.

    PubMed

    Cummings, Jennifer A; Fedorov, Alexander A; Xu, Chengfu; Brown, Shoshana; Fedorov, Elena; Babbitt, Patricia C; Almo, Steven C; Raushel, Frank M

    2009-07-14

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k(cat)/K(m) = 5.8 x 10(6) M(-1) s(-1)), N-acetyl-d-glutamate (k(cat)/K(m) = 5.2 x 10(6) M(-1) s(-1)), and l-methionine-d-glutamate (k(cat)/K(m) = 3.4 x 10(5) M(-1) s(-1)). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k(cat)/K(m) = 3.2 x 10(4) M(-1) s(-1)), N-acetyl-d-tryptophan (k(cat)/K(m) = 4.1 x 10(4) M(-1) s(-1)), and l-tyrosine-d-leucine (k(cat)/K(m) = 1.5 x 10(4) M(-1) s(-1)). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the alpha-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional approximately 250 sequences identified as members of this group

  3. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    SciTech Connect

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  4. Prediction of positional isotopomers of the citric acid cycle: the syntactic approach.

    PubMed

    Cohen, D M; Bergman, R N

    1994-03-01

    We propose a syntactic approach to modeling of biochemical fluxes that combines a rule-based description of atomic transfer in chemical reactions with a structurally oriented, stochastic model of chemical reaction kinetics. This approach avoids the use of differential equations to describe the production and disappearance of each molecule. The computer simulation predicts the changes over time in the abundance of each positional isotopomer of every metabolic intermediate in the citric acid cycle of heart cells, subsequent to administration of [2-13C]acetate (including natural abundance of 13C). (Positional isotopomers are isomers that differ in the positions of isotopes within the molecule.) The 32 positional isotopomers of glutamate fell into four groups with similar intragroup dynamics but with very different amplitudes. From the relative abundance of each isotopomer of glutamate, we calculate the relative area of multiplets of the nuclear magnetic resonance spectrum. PMID:7909408

  5. Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins

    PubMed Central

    Starcevic, Antonio; Akthar, Shamima; Dunlap, Walter C.; Shick, J. Malcolm; Hranueli, Daslav; Cullum, John; Long, Paul F.

    2008-01-01

    The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a “shared metabolic adaptation” between the partners. PMID:18268342

  6. Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins.

    PubMed

    Starcevic, Antonio; Akthar, Shamima; Dunlap, Walter C; Shick, J Malcolm; Hranueli, Daslav; Cullum, John; Long, Paul F

    2008-02-19

    The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. PMID:18268342

  7. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers.

    PubMed

    Sarmiento-Franco, L; McNab, J M; Pearson, A; Belmar-Casso, R

    2003-07-01

    1. The apparent ileal nitrogen (N) and amino acid digestibilities in chaya leaf meal (CLM) (Cnidoscolus aconitifolius) with added enzymes, and the same variables in diets containing different amounts of CLM were studied in chickens. 2. In the first experiment pectinase, beta-glucanase, and pectinase + beta-glucanase were added to CLM. In the second experiment, there were three diets based on maize and soybean: 0, 150 and 250 g/kg CLM. 3. Pectinase significantly increased both lysine and overall amino acid digestibilities in CLM. 4. In experiment 2, the amino acid digestibility in birds fed on CLM250 was lower than that from birds fed on either control or CLM150. Only the digestibilities of alanine, arginine and proline were lower in birds fed on CLM150 than in those fed on the control diet. Nitrogen digestibility was lower in birds fed on the CLM250 diet than on either control or CLM150 diets. These findings were attributed to the increasing concentration of fibre with increasing dietary CLM. PMID:12964630

  8. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  9. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  10. [Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil].

    PubMed

    Fan, Miao-zhen; Yin, Chang; Fan, Fen-liang; Song, A-lin; Wang, Bo-ren; Li, Dong-chu; Liang, Yong-chao

    2015-03-01

    Using a microplate fluorimetric assay method, five fertilization treatments, i.e. no-fertilizer control (CK) , sole application of nitrogen (N), balanced application of nitrogen, phosphorus, and potassium fertilizer (NPK), application of pig manure (M), and combination of pig manure with balanced chemical fertilizer (MNPK) were selected to investigate the effects of different long-term fertilization regimes on the activity of five enzymes (β-1, 4-glucosidase, βG; cellobiohydrolase, CBH; β-1, 4-xylosidase, βX; β-1, 4-N-acetylglucosaminidase, NAG; acid phosphatase, AP) in a red soil sampled from Qiyang, Hunnan Province. The results showed that compared with CK treatment, N treatment had no impact on βG, βX, CBH, and NAG activities but reduced AP activity, while NPK, M and MNPK treatments increased the activities of all the five enzymes. Correlation analysis indicated that all the five enzyme activities were positively correlated with the content of nitrate (r=0.465-0.733) , the content of available phosphorus (r=0.612-0.947) , soil respiration (r=0.781-0.949) and crop yield (r=0.735-0.960), while βG, CBH and AP were positively correlated with pH (r= 0.707-0.809), only AP was significantly correlated with dissolvable organic carbon (r = -0.480). These results suggested that the activities of the measured enzymes could be used as indicators of red soil fertility under different fertilization regimes, but the five enzymes tested provided limited information on the degree of acidification induced by application of mineral nitrogen. PMID:26211066

  11. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    SciTech Connect

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  12. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    PubMed

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops. PMID:26824138

  13. Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1

    PubMed Central

    Strand, Åsa; Hurry, Vaughan; Henkes, Stefan; Huner, Norman; Gustafsson, Petter; Gardeström, Per; Stitt, Mark

    1999-01-01

    Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23°C and then shifted to 5°C. We compared the leaves shifted to 5°C for 10 d and the new leaves developed at 5°C with the control leaves on plants that had been left at 23°C. Leaf development at 5°C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23°C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5°C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5°C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield. PMID:10198098

  14. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway.

    PubMed

    Strand, A; Hurry, V; Henkes, S; Huner, N; Gustafsson, P; Gardeström, P; Stitt, M

    1999-04-01

    Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 10 d and the new leaves developed at 5 degrees C with the control leaves on plants that had been left at 23 degrees C. Leaf development at 5 degrees C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23 degrees C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5 degrees C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5 degrees C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield. PMID:10198098

  15. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. PMID:22759534

  16. New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.

    PubMed

    Prestwich, G D; Xu, Y; Qian, L; Gajewiak, J; Jiang, G

    2005-12-01

    Lysophosphatidic acid (LPA) is a metabolically labile natural phospholipid with a bewildering array of physiological effects. We describe herein a variety of long-lived receptor-specific agonists and antagonists for LPA receptors. Several LPA and PA (phosphatidic acid) analogues also inhibit LPP (lipid phosphate phosphatase). The sn-1 or sn-2 hydroxy groups have been replaced by fluorine, difluoromethyl, difluoroethyl, O-methyl or O-hydroxyethoxy groups to give non-migrating LPA analogues that resist acyltransferases. Alkyl ether replacement of acyl esters produced lipase and acyltransferase-resistant analogues. Replacement of the bridging oxygen in the monophosphate by an alpha-monofluoromethylene-, alpha-bromomethylene- or alpha,alpha-difluoromethylenephosphonate gave phosphatase-resistant analogues. Phosphorothioate analogues with O-acyl and O-alkyl chains are potent, long-lived agonists for LPA1 and LPA3 receptors. Most recently, we have (i) prepared stabilized O-alkyl analogues of lysobisphosphatidic acid, (ii) explored the structure-activity relationship of stabilized cyclic LPA analogues and (iii) synthesized neutral head group trifluoromethylsulphonamide analogues of LPA. Through collaborative studies, we have collected data for these stabilized analogues as selective LPA receptor (ant)agonists, LPP inhibitors, TREK (transmembrane calcium channel) K+ channel agonists, activators of the nuclear transcription factor PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), promoters of cell motility and survival, and radioprotectants for human B-cells. PMID:16246118

  17. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats--a chemopreventive approach.

    PubMed

    Giftson Senapathy, J; Jayanthi, S; Viswanathan, P; Umadevi, P; Nalini, N

    2011-04-01

    Colon cancer risk may be influenced by phase I and II xenobiotic-metabolizing enzyme systems. The chemopreventive agent gallic acid (GA), a plant polyphenol, is found in various natural products. Our aim was to evaluate the potential role of GA on drug-metabolizing enzymes in 1,2-dimethyl hydrazine (DMH) induced rat colon carcinogenesis. The total experimental duration was 30 weeks. The effect of GA (50 mg/kg b.w.) on the activities of phase I enzymes (cytochrome P450 and cytochrome b5) and phase II enzymes (glutathione S-transferase, DT-diaphorase and gamma glutamyl transpeptidase) were assessed in the liver and colonic mucosa and the colons were also examined visually. In DMH induced rats, there was a decrease in the activities of phase II enzymes and an increase in the activities of phase I enzymes. On GA supplementation, there was a significant increase in the activities of phase II enzymes and a significant decrease in the activities of phase I enzymes, in addition to the decreased tumor incidence. Histopathological changes also confirm this. Thus, the marked potential of GA in modulating the phase I and II xenobiotic-metabolizing enzymes suggests that GA may have a major impact on colon cancer chemoprevention. PMID:21172399

  18. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls.

    PubMed

    Zhao, X L; Li, Y K; Cao, S J; Hu, J H; Wang, W H; Hao, R J; Gui, L S; Zan, L S

    2015-01-01

    The aim of this study was to determine the protective effects of the combination of ascorbic acid (Vc) and vitamin E (VE) on antioxidant enzyme activity, sperm motility, viability, and acrosome integrity of Qinchuan bulls after freeze-thaw. In this study, we determined the effects of Vc and VE on the activity of the antioxidant enzyme defense system comprising glutathione peroxidase (GSH-Px), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD). The combination of Vc and VE had protective effects on sperm motility and viability. With respect to acrosome integrity and the activity of GR and SOD, differences were observed between the experimental groups with added Vc (7 mg/mL) and VE (0.12 IU/mL) and the control group. The activity of GSH-Px in the experimental group (1400 IU/mL Vc and 0.12 IU/mL VE) was not different (P > 0.05) compared with that in the control group, while the activity of CAT showed a significant difference between the 2 groups (P < 0.05). Therefore, we inferred that the combination of Vc (1400 IU/mL) and VE (0.12 IU/mL) protected the sperm quality in the freeze-thaw process. PMID:25867404

  19. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  20. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms.

    PubMed

    Palacín, Manuel; Errasti-Murugarren, Ekaitz; Rosell, Albert

    2016-06-15

    Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle. PMID:27284037

  1. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  2. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  3. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  4. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  5. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  6. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis.

    PubMed

    Bhatt, Apoorva; Kremer, Laurent; Dai, Annie Z; Sacchettini, James C; Jacobs, William R

    2005-11-01

    Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development. PMID:16267284

  7. Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella⋆

    PubMed Central

    Ferguson, D.J.P.; Campbell, S.A.; Henriquez, F.L.; Phan, L.; Mui, E.; Richards, T.A.; Muench, S.P.; Allary, M.; Lu, J.Z.; Prigge, S.T.; Tomley, F.; Shirley, M.W.; Rice, D.W.; McLeod, R.; Roberts, C.W.

    2009-01-01

    Apicomplexan parasites, Eimeria tenella, Plasmodium spp. and Toxoplasma gondii, possess a homologous plastid-like organelle termed the apicoplast, derived from the endosymbiotic enslavement of a photosynthetic alga. However, currently no eimerian nuclear encoded apicoplast targeted proteins have been identified, unlike in Plasmodium spp. and T. gondii. In this study, we demonstrate that nuclear encoded enoyl reductase of E. tenella (EtENR) has a predicted N-terminal bipartite transit sequence, typical of apicoplast-targeted proteins. Using a combination of immunocytochemistry and EM we demonstrate that this fatty acid biosynthesis protein is located in the apicoplast of E. tenella. Using the EtENR as a tool to mark apicoplast development during the Eimeria lifecycle, we demonstrate that nuclear and apicoplast division appear to be independent events, both organelles dividing prior to daughter cell formation, with each daughter cell possessing one to four apicoplasts. We believe this is the first report of multiple apicoplasts present in the infectious stage of an apicomplexan parasite. Furthermore, the microgametes lacked an identifiable apicoplast consistent with maternal inheritance via the macrogamete. It was found that the size of the organelle and the abundance of EtENR varied with developmental stage of the E. tenella lifecycle. The high levels of EtENR protein observed during asexual development and macrogametogony is potentially associated with the increased synthesis of fatty acids required for the rapid formation of numerous merozoites and for the extracellular development and survival of the oocyst. Taken together the data demonstrate that the E. tenella apicoplast participates in type II fatty acid biosynthesis with increased expression of ENR during parasite growth. Apicoplast division results in the simultaneous formation of multiple fragments. The division mechanism is unknown, but is independent of nuclear division and occurs prior to daughter

  8. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site.

    PubMed Central

    Wise, R J; Barr, P J; Wong, P A; Kiefer, M C; Brake, A J; Kaufman, R J

    1990-01-01

    Intracellular proteolytic processing of precursor polypeptides is an essential step in the maturation of many proteins, including plasma proteins, hormones, neuropeptides, and growth factors. Most frequently, propeptide cleavage occurs after paired basic amino acid residues. To date, no mammalian propeptide processing enzyme with such specificity has been purified or cloned and functionally characterized. We report the isolation and functional expression of a cDNA encoding a propeptide-cleaving enzyme from a human liver cell line. The encoded protein, called PACE (paired basic amino acid cleaving enzyme), has structural homology to the well-characterized subtilisin-like protease Kex2 from yeast. The functional specificity of PACE for mediating propeptide cleavage at paired basic amino acid residues was demonstrated by the enhancement of propeptide processing of human von Willebrand factor when coexpressed with PACE in COS-1 cells. Images PMID:2251280

  9. Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato1[W][OA

    PubMed Central

    Maloney, Gregory S.; Kochevenko, Andrej; Tieman, Denise M.; Tohge, Takayuki; Krieger, Uri; Zamir, Dani; Taylor, Mark G.; Fernie, Alisdair R.; Klee, Harry J.

    2010-01-01

    Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis. PMID:20435740

  10. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  11. Development of a scintillation proximity assay for the Mycobacterium tuberculosis KasA and KasB enzymes involved in mycolic acid biosynthesis.

    PubMed

    Schaeffer, M L Merrill L; Carson, J D Jeffrey D; Kallender, Howard; Lonsdale, J T John T

    2004-01-01

    Tuberculosis remains a global health problem, and programs dedicated to discovery of novel compounds against Mycobacterium tuberculosis require robust assays for high-throughput screening of chemical and natural product libraries. Enzymes involved in the biosynthesis of mycolic acids, vital components of the mycobacterial cell wall, have received much attention as potential drug targets. KasA and KasB, examples of the beta-ketoacyl-acyl carrier protein synthase I/II (KASI/II) class of condensing enzymes of the M. tuberculosis fatty acid synthase II system have been the focus of several studies designed to biochemically characterize these enzymes. Whilst robust methods have been developed for FabH-like proteins, fast and sensitive assays for high-throughput screening of KASI/II enzymes have not been available. Here we report the development of a direct scintillation proximity assay (SPA) for the KASI/II enzymes, KasA and KasB. The SPA was more sensitive than existing assays, as shown by its ability to measure activity using less enzyme than other assay formats, and the SPA was validated using the known KAS inhibitor thiolactomycin. In addition, the KasA and KasB SPA was adapted for use with Staphylococcus aureus FabF to show the versatility of this assay format to KAS enzymes from other pathogenic organisms. PMID:15525558

  12. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots.

    PubMed

    Long, N M; Rule, D C; Zhu, M J; Nathanielsz, P W; Ford, S P

    2012-07-01

    perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease. PMID:22266999

  13. Metals control activity and expression of the heme biosynthesis enzyme delta-aminolevulinic acid dehydratase in Bradyrhizobium japonicum.

    PubMed Central

    Chauhan, S; Titus, D E; O'Brian, M R

    1997-01-01

    The heme biosynthesis enzyme delta-aminolevulinic acid dehydratase (ALAD) requires magnesium or zinc for activity, depending on the organism, and the heme moiety contains iron. Thus, metals are important for heme formation in at least two different ways. Bradyrhizobium japonicum ALAD* is an engineered derivative of wild-type ALAD that requires Zn2+ for activity rather than Mg2+ (S. Chauhan and M. R. O'Brian, J. Biol. Chem. 270:19823-19827, 1995). The pH optimum for ALAD* activity was over 3.5 units lower than for that of the wild-type enzyme, and ALAD* activity was inhibited by lead and cadmium, as reported for the zinc-containing dehydratases of animals. In addition, ALAD* was significantly more thermostable than ALAD; the temperature optima are 50 and 37 degrees C, respectively. These observations strongly suggest that the metal contributes to both catalysis and structure, and this conclusion may be extrapolated to ALADs in general. Although iron did not affect the activity of the preformed protein, enzyme assays and immunoblot analysis demonstrated that the iron concentration in which the cells were grown had a strong positive effect on ALAD activity and the protein level. RNase protection analysis showed that the transcript quantity of hemB, the gene encoding ALAD, was iron dependent; thus, iron regulates hemB at the mRNA level. Induction of hemB mRNA in response to iron was rapid, suggesting that the factor(s) needed to mediate iron control was present in iron-limited cells and did not need to be synthesized de novo. ALAD protein levels and enzyme activities were similar in cells of the wild type and a heme-defective strain, indicating that control by iron is not an indirect effect of the cellular heme status. We conclude that the heme biosynthetic pathway is coordinated with cellular iron levels and that this control may prevent the accumulation of toxic porphyrin intermediates. PMID:9287008

  14. Effects of acute ammonia toxicity on nitric oxide (NO), citrulline-NO cycle enzymes, arginase and related metabolites in different regions of rat brain.

    PubMed

    Swamy, M; Zakaria, Adlin Zafrulan; Govindasamy, Chandran; Sirajudeen, K N S; Nadiger, H A

    2005-10-01

    Nitric oxide (NO) is involved in many pathophysiological processes in the brain. NO is synthesized from arginine by nitric oxide synthase (NOS) enzymes. Citrulline formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) via the citrulline-NO cycle. Hyperammonemia is known to cause poorly understood perturbations of the citrulline-NO cycle. To understand the role of citrulline-NO cycle in hyperammonemia, NOS, ASS, ASL and arginase activities, as well as nitrate/nitrite (NOx), arginine, ornithine, citrulline, glutamine, glutamate and GABA were estimated in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats subjected to acute ammonia toxicity. NOx concentration and NOS activity were found to increase in all the regions of brain in acute ammonia toxicity. The activities of ASS and ASL showed an increasing trend whereas the arginase was not changed. The results of this study clearly demonstrated the increased formation of NO, suggesting the involvement of NO in the pathophysiology of acute ammonia toxicity. The increased activities of ASS and ASL suggest the increased and effective recycling of citrulline to arginine in acute ammonia toxicity, making NO production more effective and contributing to its toxic effects. PMID:16009439

  15. The Fungal Product Terreic Acid is a Covalent Inhibitor of the Bacterial Cell Wall Biosynthetic Enzyme UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA)†

    PubMed Central

    Han, Huijong; Yang, Yan; Olesen, Sanne H.; Becker, Andreas; Betzi, Stephane; Schönbrunn, Ernst

    2010-01-01

    Terreic acid is a metabolite with antibiotic properties produced by the fungus Aspergillus terreus. We found that terreic acid is a covalent inhibitor of the bacterial cell wall biosynthetic enzyme MurA from E. cloacae and E. coli in-vitro. The crystal structure of the MurA dead-end complex with terreic acid revealed that the quinine ring is covalently attached to the thiol group of Cys115, the molecular target of the antibiotic fosfomycin. Kinetic characterization established that the inactivation requires the presence of substrate UNAG (UDP-N-acetylglucosamine), proceeding with an inactivation rate constant of kinact = 130 M−1s−1. Although the mechanisms of inactivation are similar, fosfomycin is approximately 50 times more potent than terreic acid, and the structural consequences of covalent modification by these two inhibitors are fundamentally different. The MurA-fosfomycin complex exists in the closed enzyme conformation, with the Cys115-fosfomycin adduct buried in the active site. In contrast, the dead-end complex with terreic acid is open, free of UNAG, and has the Cys115-terreic acid adduct solvent–exposed. It appears that terreic acid reacts with Cys115 in the closed, binary state of the enzyme, but that the resulting Cys115-terreic acid adduct imposes steric clashes in the active site. As a consequence, the loop containing Cys115 rearranges, the enzyme opens and UNAG is released. The differential kinetic and structural characteristics of MurA inactivation by terreic acid and fosfomycin reflect the importance of non-covalent binding potential, even for covalent inhibitors, to ensure inactivation efficiency and specificity. PMID:20392080

  16. Effect of n-3 and n-6 Polyunsaturated Fatty Acids on Microsomal P450 Steroidogenic Enzyme Activities and In Vitro Cortisol Production in Adrenal Tissue From Yorkshire Boars.

    PubMed

    Xie, Xuemei; Wang, Xudong; Mick, Gail J; Kabarowski, Janusz H; Wilson, Landon Shay; Barnes, Stephen; Walcott, Gregory P; Luo, Xiaoping; McCormick, Kenneth

    2016-04-01

    Dysregulation of adrenal glucocorticoid production is increasingly recognized to play a supportive role in the metabolic syndrome although the mechanism is ill defined. The adrenal cytochrome P450 (CYP) enzymes, CYP17 and CYP21, are essential for glucocorticoid synthesis. The omega-3 and omega-6 polyunsaturated fatty acids (PUFA) may ameliorate metabolic syndrome, but it is unknown whether they have direct actions on adrenal CYP steroidogenic enzymes. The aim of this study was to determine whether PUFA modify adrenal glucocorticoid synthesis using isolated porcine microsomes. The enzyme activities of CYP17, CYP21, 11β-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase (H6PDH), and CYP2E1 were measured in intact microsomes treated with fatty acids of disparate saturated bonds. Cortisol production was measured in a cell-free in vitro model. Microsomal lipid composition after arachidonic acid (AA) exposure was determined by sequential window acquisition of all theoretical spectra-mass spectrometry. Results showed that adrenal microsomal CYP21 activity was decreased by docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid, α-linolenic acid, AA, and linoleic acid, and CYP17 activity was inhibited by DPA, DHA, eicosapentaenoic acid, and AA. Inhibition was associated with the number of the PUFA double bonds. Similarly, cortisol production in vitro was decreased by DPA, DHA, and AA. Endoplasmic enzymes with intraluminal activity were unaffected by PUFA. In microsomes exposed to AA, the level of AA or oxidative metabolites of AA in the membrane was not altered. In conclusion, these observations suggest that omega-3 and omega-6 PUFA, especially those with 2 or more double bonds (DPA, DHA, and AA), impede adrenal glucocorticoid production. PMID:26889941

  17. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    SciTech Connect

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatase using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.

  18. Menstrual cycle and reproductive aging alters immune reactivity, NGF expression, antioxidant enzyme activities, and intracellular signaling pathways in the peripheral blood mononuclear cells of healthy women.

    PubMed

    Priyanka, Hannah P; Sharma, Utsav; Gopinath, Srinivasan; Sharma, Varun; Hima, Lalgi; ThyagaRajan, Srinivasan

    2013-08-01

    Reproductive senescence in women is a process that begins with regular menstrual cycles and culminates in menopause followed by gradual development of diseases such as autoimmune diseases, osteoporosis, neurodegenerative diseases, and hormone-dependent cancers. The age-associated impairment in the functions of neuroendocrine system and immune system results in menopause which contributes to subsequent development of diseases and cancer. The aim of this study is to characterize the alterations in immune responses, compensatory factors such as nerve growth factor (NGF) and antioxidant enzyme activities, and the molecular mechanisms of actions in the peripheral blood mononuclear cells (PBMCs) of young (follicular and luteal phases), middle-aged, and old healthy women. Peripheral blood mononuclear cells were isolated from young women in follicular and luteal phases of the menstrual cycle (n=20; 22.6±2.9 yrs), middle-aged women (n=19; 47.1±3.8 yrs; perimenopausal) and old (n=16; 63.2±4.7 yrs; post-menopausal) women and analyzed for Concanavalin (Con A)-induced proliferation of lymphocytes and cytokine (IL-2 and IFN-γ) production, expression of NGF, p-NF-κB, p-ERK, p-CREB, and p-Akt, antioxidant enzymes [superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), glutathione-S-transferase (GST)], extent of lipid peroxidation, and nitric oxide (NO) production. Serum gonadal hormones (17β-estradiol and progesterone) were also measured. A characteristic age- and menstrual cycle-related change was observed in the serum gonadal hormone secretion (estrogen and progesterone), T lymphocyte proliferation and IFN-γ production. Salient features include the age-related decline observed in target-derived growth factors (lymphocyte NGF expression), signaling molecules (p-ERK/ERK and p-CREB/CREB ratios) and compensatory factors such as the activities of plasma and PBMC antioxidant enzymes (SOD and catalase) and NO production. Further, an age-associated increase in p

  19. Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of D-amino acid enantiomer-biomarkers.

    PubMed

    Batalla, Pilar; Martín, Aída; López, Miguel Ángel; González, María Cristina; Escarpa, Alberto

    2015-01-01

    An electrochemical microfluidic strategy for the separation and enantiomeric detection of D-methionine (D-Met) and D-leucine (D-Leu) is presented. These D-amino acids (D-AAs) act as biomarkers involved in relevant diseases caused by Vibrio cholerae. On a single layout microfluidic chip (MC), highly compatible with extremely low biological sample consumption, the strategy allowed the controlled microfluidic D-AA separation and the specific reaction between D-amino acid oxidase (DAAO) and each D-AA biomarker avoiding the use of additives (i.e., cyclodextrins) for enantiomeric separation as well as any covalent immobilization of the enzyme into the wall channels or on the electrode surface such as in the biosensor-based approaches. Hybrid polymer/graphene-based electrodes were end-channel coupled to the microfluidic system to improve the analytical performance. D-Met and D-Leu were successfully detected becoming this proof-of-the-concept a promising principle for the development of point-of-care (POC) devices for in situ screening of V. cholerae related diseases. PMID:25870911

  20. Dehydroabietic acid (DHAA) alters metabolic enzyme activity and the effects of 17β-estradiol in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pandelides, Z; Guchardi, J; Holdway, D

    2014-03-01

    Recent studies have shown that dehydroabietic acid (DHAA), a resin acid present in pulp and paper mill effluent, affects liver energy metabolism and may have anti-estrogenic effects in fish. A chronic-exposure toxicity experiment using immature rainbow trout (Oncorhynchus mykiss) was conducted in order to assess the endocrine disrupting and liver metabolic effects of the model estrogen 17β-estradiol (E2) and the wood extractives DHAA and β-sitosterol (BS), regularly present in pulp and paper mill effluents. Exposure to 5ppm of E2 significantly increased hepatosomatic index (HSI), vitellogenin (VTG) and plasma sorbitol dehydrogenase (SDH). This latter effect was reduced by mixing E2 with DHAA, indicating that DHAA does not cause its endocrine disrupting effects indirectly due to liver damage. Exposure to 0.5ppm of DHAA as well as all the DHAA mixed treatments caused significant increases in liver citrate synthase (CS), activity after 7 days, however, the fish returned to control values by 28 days. Results indicate that DHAA may alter metabolic enzyme activity as well as alter the effects of E2 in juvenile rainbow trout. PMID:24507142

  1. Nicotinamide Adenine Dinucleotide-specific “Malic” Enzyme in Kalanchoë daigremontiana and Other Plants Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Dittrich, Peter

    1976-01-01

    NAD-specific “malic” enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO42−, suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn2+, which cannot be replaced by NADP or Mg2+. For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn2+, and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 μmole/hr·mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO2 for recycling during cessation of gas exchange in periods of severe drought. PMID:16659473

  2. Rhodobacter capsulatus OlsA is a bifunctional enzyme active in both ornithine lipid and phosphatidic acid biosynthesis.

    PubMed

    Aygun-Sunar, Semra; Bilaloglu, Rahmi; Goldfine, Howard; Daldal, Fevzi

    2007-12-01

    The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis. PMID

  3. Diurnal Variations of Mouse Plasma and Hepatic Bile Acid Concentrations as well as Expression of Biosynthetic Enzymes and Transporters

    PubMed Central

    Zhang, Yu-Kun Jennifer; Guo, Grace L.; Klaassen, Curtis D.

    2011-01-01

    Background Diurnal fluctuation of bile acid (BA) concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis. Methods and Results The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin). Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR) null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters. Conclusion BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals. PMID:21346810

  4. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    PubMed

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. PMID:27152459

  5. Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery.

    PubMed

    Tukappa, Asha; Ultimo, Amelia; de la Torre, Cristina; Pardo, Teresa; Sancenón, Félix; Martínez-Máñez, Ramón

    2016-08-23

    Mesoporous silica nanoparticles (MSNs) are highly attractive as supports in the design of controlled delivery systems that can act as containers for the encapsulation of therapeutic agents, overcoming common issues such as poor water solubility and poor stability of some drugs and also enhancing their bioavailability. In this context, we describe herein the development of polyglutamic acid (PGA)-capped MSNs that can selectively deliver rhodamine B and doxorubicin. PGA-capped MSNs remain closed in an aqueous environment, yet they are able to deliver the cargo in the presence of pronase because of the hydrolysis of the peptide bonds in PGA. The prepared solids released less than 20% of the cargo in 1 day in water, whereas they were able to reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells were also undertaken. Rhodamine-loaded nanoparticles were not toxic, whereas doxorubicin-loaded nanoparticles were able to efficiently kill more than 90% of the cancer cells at a concentration of 100 μg/mL. PMID:27468799

  6. Enzymatic characterization of ELOVL1, a key enzyme in very long-chain fatty acid synthesis.

    PubMed

    Schackmann, Martin J A; Ofman, Rob; Dijkstra, Inge M E; Wanders, Ronald J A; Kemp, Stephan

    2015-02-01

    X-linked adrenoleukodystrophy (X-ALD) is a neurometabolic disease that is caused by mutations in the ABCD1 gene. ABCD1 protein deficiency impairs peroxisomal very long-chain fatty acid (VLCFA) degradation resulting in increased cytosolic VLCFA-CoA levels, which are further elongated by the VLCFA-specific elongase, ELOVL1. In adulthood, X-ALD most commonly manifests as a gradually progressive myelopathy (adrenomyeloneuropathy; AMN) without any curative or disease modifying treatments. We recently showed that bezafibrate reduces VLCFA accumulation in X-ALD fibroblasts by inhibiting ELOVL1. Although, in a clinical trial, bezafibrate was unable to lower VLCFA levels in plasma or lymphocytes in X-ALD patients, inhibition of ELOVL1 remains an attractive therapeutic option. In this study, we investigated the kinetic characteristics of ELOVL1 using X-ALD fibroblasts and microsomal fractions from ELOVL1 over-expressing HEK293 cell lines and analyzed the inhibition kinetics of a series of fibrates. Our data show that the CoA esters of bezafibrate and gemfibrozil reduce chain elongation by specifically inhibiting ELOVL1. These fibrates can therefore serve as lead compounds for the development of more potent and more specific inhibitors for ELOVL1. PMID:25499606

  7. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities

    PubMed Central

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  8. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  9. [Metabolism of pantothenic acid and its derivatives in animals deficient in this enzyme].

    PubMed

    Gurinovich, V A; Moiseenok, A G

    1987-01-01

    Distribution of [14C]labelled metabolites of pantothenic acid (PAA) has been studied in tissues of normal and PAA-deficient rats-weaners 6 h after single injection of the calcium pantothenate (PAA-Ca), calcium 4'-phosphopantothenate (PAA-Ca) or pantethine (PT) preparations. Essential differences in the intertissue distribution of vitamin derivatives to be injected are revealed against a background of a higher vitamin-retaining ability of the PAA-deficient tissues. A degree of radionuclides' biotransformation into CoA permits them to be arranged in the series: PPA-Ca greater than PAA-Ca greater than PT. In PAA-deficient animals which were injected labelled PPA-Ca up to 41% of the liver radioactivity is concentrated in the CoA fraction and the quantity of label in the composition of PAA-protein cytosolium complexes increases considerably. It is supposed that there is a special PAA-depositing system which provides the intracellular CoA biosynthesis. PMID:3686695

  10. Fermentative Conversion of Cellulose to Acetic Acid and Cellulolytic Enzyme Production by a Bacterial Mixed Culture Obtained from Sewage Sludge †

    PubMed Central

    Khan, A. W.; Wall, Duncan; van den Berg, L.

    1981-01-01

    A simple procedure that uses a cellulose-enriched culture started from sewage sludge was developed for producing cellulolytic enzymes and converting cellulose to acetic acid rather than CH4 and CO2. In this procedure, the culture which converts cellulose to CH4 and CO2 was mixed with a synthetic medium and cellulose and heated to 80°C for 15 min before incubation. The end products formed were acetic acid, propionic acid, CO2, and traces of ethanol and H2. Supernatants from 6- to 10-day-old cultures contained 16 to 36 mM acetic acid. Cellulolytic enzymes in the supernatant were stable at 2°C under aerobic conditions for up to 4 weeks and had the ability to hydrolyze carboxymethyl cellulose, a microcystalline cellulose, cellobiose, xylan, and filter paper to reducing sugars. PMID:16345772

  11. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  12. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The p