Science.gov

Sample records for acid cycle intermediate

  1. Tricarboxylic-acid-cycle intermediates and cycle endurance capacity.

    PubMed

    Brown, Amy C; Macrae, Holden S H; Turner, Nathan S

    2004-12-01

    The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists' time to exhaustion during a submaximal endurance-exercise test (approximately 70 % to 75 % VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL x kg(-1) x in(-1), 28.6 +/- 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 +/- 18, P = 113 +/- 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 +/- 3.2, P = 15 +/- 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75 % VO2peak or speed recovery from previously fatiguing exercise.

  2. Citric acid cycle intermediates in cardioprotection.

    PubMed

    Czibik, Gabor; Steeples, Violetta; Yavari, Arash; Ashrafian, Houman

    2014-10-01

    Over the last decade, there has been a concerted clinical effort to deliver on the laboratory promise that a variety of maneuvers can profoundly increase cardiac tolerance to ischemia and/or reduce additional damage consequent upon reperfusion. Here we will review the proximity of the metabolic approach to clinical practice. Specifically, we will focus on how the citric acid cycle is involved in cardioprotection. Inspired by cross-fertilization between fundamental cancer biology and cardiovascular medicine, a set of metabolic observations have identified novel metabolic pathways, easily manipulable in man, which can harness metabolism to robustly combat ischemia-reperfusion injury.

  3. Citric acid cycle and role of its intermediates in metabolism.

    PubMed

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  4. Analysis of the citric acid cycle intermediates using gas chromatography-mass spectrometry.

    PubMed

    Kombu, Rajan S; Brunengraber, Henri; Puchowicz, Michelle A

    2011-01-01

    Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.

  5. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.

  6. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide.

    PubMed

    Saladino, Raffaele; Brucato, John Robert; De Sio, Antonio; Botta, Giorgia; Pace, Emanuele; Gambicorti, Lisa

    2011-10-01

    The emergence of the citric acid cycle is one of the most remarkable occurrences with regard to understanding the origin and evolution of metabolic pathways. Although the chemical steps of the cycle are preserved intact throughout nature, diverse organisms make wide use of its chemistry, and in some cases organisms use only a selected portion of the cycle. However, the origins of this cycle would have arisen in the more primitive anaerobic organism or even back in the proto-metabolism, which likely arose spontaneously under favorable prebiotic chemical conditions. In this context, we report that UV irradiation of formamide in the presence of titanium dioxide afforded 6 of the 11 carboxylic acid intermediates of the reductive version of the citric acid cycle. Since this cycle is the central metabolic pathway of contemporary biology, this report highlights the role of photochemical processes in the origin of the metabolic apparatus.

  7. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates.

    PubMed

    GROMET-ELHANAN, Z; HESTRIN, S

    1963-02-01

    Gromet-Elhanan, Zippora (The Hebrew University, Jerusalem, Israel) and Shlomo Hestrin. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates. J. Bacteriol. 85:284-292. 1963.-Acetobacter xylinum could be made to grow on ethanol, acetate, succinate, or l-malate. The growth was accompanied by formation of opaque leathery pellicles on the surface of the growth medium. These pellicles were identified as cellulose on the basis of their chemical properties, solubility behavior, and infrared absorption spectra. Washed-cell suspensions prepared from cultures grown on ethanol or the organic acids, in contrast to washed sugar-grown cells, were able to transform citric-cycle intermediates into cellulose. The variations in the substrate spectrum of cellulose synthesis between sugar-grown cells and organic acids-grown cells were found to be correlated with differences in the oxidative capacity of the cells. The significance of the findings that A. xylinum could be made to grow on ethanol on complex as well as synthetic media is discussed from the viewpoint of the whole pattern of Acetobacter classification.

  8. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro.

    PubMed

    Puntel, Robson L; Nogueira, Cristina W; Rocha, João B T

    2005-02-01

    The aim of this study was to investigate the effect of Krebs cycle intermediates on basal and quinolinic acid (QA)- or iron-induced TBARS production in brain membranes. Oxaloacetate, citrate, succinate and malate reduced significantly the basal and QA-induced TBARS production. The potency for basal TBARS inhibition was in the order (IC50 is given in parenthesis as mM) citrate (0.37) > oxaloacetate (1.33) = succinate (1.91) > > malate (12.74). alpha-Ketoglutarate caused an increase in TBARS production without modifying the QA-induced TBARS production. Cyanide (CN-) did not modify the basal or QA-induced TBARS production; however, CN- abolished the antioxidant effects of succinate. QA-induced TBARS production was enhanced by iron ions, and abolished by desferrioxamine (DFO). The intermediates used in this study, except for alpha-ketoglutarate, prevented iron-induced TBARS production. Oxaloacetate, citrate, alpha-ketoglutarate and malate, but no succinate and QA, exhibited significantly iron-chelating properties. Only alpha-ketoglutarate and oxaloacetate protected against hydrogen peroxide-induced deoxyribose degradation, while succinate and malate showed a modest effect against Fe2+/H2O2-induced deoxyribose degradation. Using heat-treated preparations citrate, malate and oxaloacetate protected against basal or QA-induced TBARS production, whereas alpha-ketoglutarate induced TBARS production. Succinate did not offer protection against basal or QA-induced TBARS production. These results suggest that oxaloacetate, malate, succinate, and citrate are effective antioxidants against basal and iron or QA-induced TBARS production, while alpha-ketoglutarate stimulates TBARS production. The mechanism through which Krebs cycle intermediates offer protection against TBARS production is distinct depending on the intermediate used. Thus, under pathological conditions such as ischemia, where citrate concentrations vary it can assume an important role as a modulator of oxidative

  9. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  10. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  11. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection.

    PubMed

    Marrero, Joeli; Rhee, Kyu Y; Schnappinger, Dirk; Pethe, Kevin; Ehrt, Sabine

    2010-05-25

    Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb). In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and (13)C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle-derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow-derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNgamma-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy.

  12. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    PubMed

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (P<0.05); VO2peak was not different between the T and UT thighs with glutamate infusion. Peak exercise under control conditions revealed a greater glutamate uptake in the T thigh compared with rest (7.3+/-3.7 vs. 1.0+/-0.1 micromol.min(-1).kg wet wt(-1), P<0.05) without increase in TCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), P<0.05) and malate (2.2+/-0.4 vs. 0.5+/-0.03 mmol/kg dw, P<0.05) and a decrease in 2-oxoglutarate (12.2+/-1.6 vs. 32.4+/-6.8 micromol/kg dw, P<0.05). Overall, glutamate infusion increased arterial glutamate (P<0.05) and maintained this increase. Glutamate infusion coincided with elevated fumarate and malate (P<0.05) and decreased 2-oxoglutarate (P<0.05) at peak exercise relative to rest in the T thigh; there were no further changes in the UT thigh. Although glutamate may have a role in the expansion of the TCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  13. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection

    PubMed Central

    Marrero, Joeli; Rhee, Kyu Y.; Schnappinger, Dirk; Pethe, Kevin; Ehrt, Sabine

    2010-01-01

    Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb). In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and 13C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle–derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow–derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNγ-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy. PMID:20439709

  14. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.

    PubMed

    Janzer, Andreas; German, Natalie J; Gonzalez-Herrera, Karina N; Asara, John M; Haigis, Marcia C; Struhl, Kevin

    2014-07-22

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.

  15. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  16. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    PubMed

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  17. Lewis acid promoted titanium alkylidene formation: off-cycle intermediates relevant to olefin trimerization catalysis.

    PubMed

    Sattler, Aaron; VanderVelde, David G; Labinger, Jay A; Bercaw, John E

    2014-07-30

    Two new precatalysts for ethylene and α-olefin trimerization, (FI)Ti(CH2SiMe3)2Me and (FI)Ti(CH2CMe3)2Me (FI = phenoxy-imine), have been synthesized and structurally characterized by X-ray diffraction. (FI)Ti(CH2SiMe3)2Me can be activated with 1 equiv of B(C6F5)3 at room temperature to give the solvent-separated ion pair [(FI)Ti(CH2SiMe3)2][MeB(C6F5)3], which catalytically trimerizes ethylene or 1-pentene to produce 1-hexene or C15 olefins, respectively. The neopentyl analogue (FI)Ti(CH2CMe3)2Me is unstable toward activation with B(C6F5)3 at room temperature, giving no discernible diamagnetic titanium complexes, but at -30 °C the following can be observed by NMR spectroscopy: (i) formation of the bis-neopentyl cation [(FI)Ti(CH2CMe3)2](+), (ii) α-elimination of neopentane to give the neopentylidene complex [(FI)Ti(═CHCMe3)](+), and (iii) subsequent conversion to the imido-olefin complex [(MeOAr2N═)Ti(OArHC═CHCMe3)](+) via an intramolecular metathesis reaction with the imine fragment of the (FI) ligand. If the reaction is carried out at low temperature in the presence of ethylene, catalytic production of 1-hexene is observed, in addition to the titanacyclobutane complex [(FI)Ti(CH(CMe3)CH2CH2)](+), resulting from addition of ethylene to the neopentylidene [(FI)Ti(═CHCMe3)](+). None of the complexes observed spectroscopically subsequent to [(FI)Ti(CH2CMe3)2](+) is an intermediate or precursor for ethylene trimerization, but notwithstanding these off-cycle pathways, [(FI)Ti(CH2CMe3)2](+) is a precatalyst that undergoes rapid initiation to generate a catalyst for trimerizing ethylene or 1-pentene.

  18. Influence of tricarboxylic acid cycle intermediates and related metabolites on the biosynthesis of aflatoxin by resting cells of Aspergillus flavus.

    PubMed

    Shantha, T; Murthy, V S

    1981-11-01

    Resting cells of Aspergillus flavus synthesized aflatoxin from acetate as the sole carbon source after 36 h of incubation. Addition of pyruvate (5.5 mg/m) as cosubstrate to [1-14C]acetate and unlabeled acetate considerably reduced toxin production but increased the radioactivity on the tricarboxylic acid intermediates. This suggests that high tricarboxylic acid activity drastically affected toxin synthesis.

  19. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice

    PubMed Central

    Liang, Qianqian; Wang, Baoyu; Pang, Lingxia; Wang, Youpei; Zheng, Meiqin; Wang, Qing; Yan, Jingbin; Xu, Jinzhong

    2016-01-01

    Objective(s): Higher cellular reactive oxygen species (ROS) levels is important in reducing cellular energy charge (EC) by increasing the levels of key metabolic protein, and nitrosative modifications, and have been shown to damage the cardiac tissue of diabetic mice. However, the relation between energy production and heart function is unclear. Materials and Methods: Streptozotocin (STZ, 150 mg/kg body weight) was injected intraperitoneally once to mice that had been fasted overnight for induction of diabetes. After diabetic induction, mice received citrate (5 µg/kg) through intraperitoneal injection every other day for 5 weeks. The caspase-3, plasminogen activator inhibitor 1 (PAI1), protein kinase B (PKB), commonly known as AKT and phosphorylated-AKT (p-AKT) proteins were examined to elucidate inflammation and apoptosis in the heart. For histological analysis, heart samples were fixed with 10% formalin and stained with hematoxylin-eosin (HE) and Sirius red to assess pathological changes and fibrosis. The expression levels[AGA1] of marker proteins, tyrosine nitration, activity of ATP synthase and succinyl-CoA3-ketoacid coenzyme A transferase-1 (SCOT), and EC were measured. Results: Intraperitoneal injection of citrate significantly reduced caspase-3 and PAI-1 protein levels and increased p-AKT level on the 5th week; EC in the heart was found to be increased as well. Further, the expression level, activity, and tyrosine nitration of ATP synthase and SCOT were not affected after induction of diabetes. Conclusion: Results indicate that application of citrate, a tricarboxylic acid (TCA) cycle intermediate, might alleviate cardiac dysfunction by reducing cardiac inflammation, apoptosis, and increasing cardiac EC. PMID:27096063

  20. The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS.

    PubMed

    Mamer, Orval; Gravel, Simon-Pierre; Choinière, Luc; Chénard, Valérie; St-Pierre, Julie; Avizonis, Daina

    2013-01-01

    The quantitative profiling of the organic acid intermediates of the citric acid cycle (CAC) presents a challenge due to the lack of commercially available internal standards for all of the organic acid intermediates. We developed an analytical method that enables the quantitation of all the organic acids in the CAC in a single stable isotope dilution GC/MS analysis with deuterium-labeled analogs used as internal standards. The unstable α-keto acids are rapidly reduced with sodium borodeuteride to the corresponding stable α-deutero-α-hydroxy acids and these, along with their unlabeled analogs and other CAC organic acid intermediates, are converted to their tert-butyldimethylsilyl derivatives. Selected ion monitoring is employed with electron ionization. We validated this method by treating an untransformed mouse mammary epithelial cell line with well-known mitochondrial toxins affecting the electron transport chain and ATP synthase, which resulted in profound perturbations of the concentration of CAC intermediates.

  1. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.

    PubMed

    Ni, Bin; Huang, Zhou; Fan, Zheng; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2013-11-01

    Bacterial chemotaxis towards aromatic compounds has been frequently observed; however, knowledge of how bacteria sense aromatic compounds is limited. Comamonas testosteroni CNB-1 is able to grow on a range of aromatic compounds. This study investigated the chemotactic responses of CNB-1 to 10 aromatic compounds. We constructed a chemoreceptor-free, non-chemotactic mutant, CNB-1Δ20, by disruption of all 19 putative methyl-accepting chemotaxis proteins (MCPs) and the atypical chemoreceptor in strain CNB-1. Individual complementation revealed that a putative MCP (tagged MCP2201) was involved in triggering chemotaxis towards all 10 aromatic compounds. The recombinant sensory domain of MCP2201 did not bind to 3- or 4-hydroxybenzoate, protocatechuate, catechol, benzoate, vanillate and gentisate, but bound oxaloacetate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate and malate. The mutant CNB-1ΔpmdF that lost the ability to metabolize 4-hydroxybenzoate and protocatechuate also lost its chemotactic response to these compounds, suggesting that taxis towards aromatic compounds is metabolism-dependent. Based on the ligand profile, we proposed that MCP2201 triggers taxis towards aromatic compounds by sensing TCA cycle intermediates. Our hypothesis was further supported by the finding that introduction of the previously characterized pseudomonad chemoreceptor (McpS) for TCA cycle intermediates into CNB-1Δ20 likewise triggered chemotaxis towards aromatic compounds.

  2. Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: an underlying mechanism to reduce lipid accretion by whey protein ingestion?

    PubMed

    Lillefosse, Haldis H; Clausen, Morten R; Yde, Christian C; Ditlev, Ditte B; Zhang, Xumin; Du, Zhen-Yu; Bertram, Hanne C; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2014-05-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by (1)H NMR and LC-MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC-MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC-MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice.

  3. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  4. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    PubMed

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air. PMID:24226409

  5. GPR91: expanding the frontiers of Krebs cycle intermediates.

    PubMed

    de Castro Fonseca, Matheus; Aguiar, Carla J; da Rocha Franco, Joao Antônio; Gingold, Rafael N; Leite, M Fatima

    2016-01-12

    Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed.

  6. GPR91: expanding the frontiers of Krebs cycle intermediates.

    PubMed

    de Castro Fonseca, Matheus; Aguiar, Carla J; da Rocha Franco, Joao Antônio; Gingold, Rafael N; Leite, M Fatima

    2016-01-01

    Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed. PMID:26759054

  7. Cerebral metabolic and circulatory effects of 1,1,1-trichloroethane, a neurotoxic industrial solvent. 2. Tissue concentrations of labile phosphates, glycolytic metabolites, citric acid cycle intermediates, amino acids, and cyclic nucleotides.

    PubMed

    Folbergrová, J; Hougaard, K; Westerberg, E; Siesjö, B K

    1984-01-01

    In order to obtain information on the mechanisms of neurotoxicity of 1,1,1-trichloroethane, rats maintained artificially ventilated on N2O:O2 (70:30) were exposed to a concentration of 1,1,1-trichloroethane of 8000 ppm, 43.7 mg L-1, that induces moderate ataxia in awake, spontaneously breathing animals. After 5 and 60 min of exposure, as well as after a 60-min recovery period following 60 min of exposure, the brain was frozen in situ and cortical tissue was assayed for phosphocreatine (PCr), + ATP, ADP, AMP, glycogen, glucose, pyruvate, lactate, citric acid cycle intermediates, associated amino acids, and cyclic nucleotides; in addition, purine nucleotides, nucleosides, and bases were assayed by HPLC techniques. Exposure of animals to 1,1,1-trichloroethane failed to alter blood glucose, lactate, and pyruvate concentrations. However, the solvent induced highly significant increases in tissue lactate and pyruvate concentrations that were also reflected in cisternal CSF. Associated with these changes were increases in all citric acid cycle intermediates except succinate, an increase in alanine concentration, and a rise in the glutamate/aspartate ratio. After 5 min, a small decrease in glycogen concentration also occurred. All these changes were reversed when the exposure was terminated. No changes were observed in tissue concentrations of purine nucleotides, nucleosides, and bases except for a small reduction of ATP concentration after 60 min of exposure, still noticeable after 60 min of recovery. Apart from a small reduction in cAMP concentration after 5 min of exposure, cyclic nucleotide concentrations did not change.

  8. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1.

    PubMed

    Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi

    2010-04-01

    In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM.

  9. Intermediate Fidelity Closed Brayton Cycle Power Conversion Model

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.

    2006-01-01

    This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.

  10. [Effect of carboxylin and sodium citrate on the content of intermediate products of tricarboxylic cycle, free amino acids and urea in rabbit tissues in alloxan diabetes].

    PubMed

    Shevtsova, N F; Dzvonkevich, N D; Solodova, E V; Gulyi, M F

    1980-01-01

    Feeding carboxylin and sodium citrate to rabbits with alloxane diabetes, normalizes the disturbed contents of malate, alpha-ketoglutarate, oxaloacetate, citrate and pyruvate in the blood and liver of these animals restores the total content of alpha-keto-and free amino acids, increases considerably the urea content in the liver. PMID:7385382

  11. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  12. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    PubMed

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  13. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    1995-09-01

    The national laboratory consortium has undertaken an R&D project with the Michigan Biotechnology Institute (MBI) to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources. The projects near-term goal is to demonstrate an economically competetive process for producing 1,4-butanediol and other derivatives from biologically produced succinic acid without generating a major salt waste. The competitiveness to the petrochemical process must be demonstrated.

  14. Citric acid cycle and the origin of MARS.

    PubMed

    Eswarappa, Sandeepa M; Fox, Paul L

    2013-05-01

    The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.

  15. Tuberal hypothalamic expression of the glial intermediate filaments, glial fibrillary acidic protein and vimentin across the turkey hen (Meleagris gallopavo) reproductive cycle: Further evidence for a role of glial structural plasticity in seasonal reproduction.

    PubMed

    Steinman, Michael Q; Valenzuela, Anthony E; Siopes, Thomas D; Millam, James R

    2013-11-01

    Glia regulate the hypothalamic-pituitary-gonadal (HPG) axis in birds and mammals. This is accomplished mechanically by ensheathing gonadotrophin-releasing hormone I (GnRH) nerve terminals thereby blocking access to the pituitary blood supply, or chemically in a paracrine manner. Such regulation requires appropriate spatial associations between glia and nerve terminals. Female turkeys (Meleagris gallopavo) use day length as a primary breeding cue. Long days activate the HPG-axis until the hen enters a photorefractory state when previously stimulatory day lengths no longer support HPG-axis activity. Hens must then be exposed to short days before reactivation of the reproductive axis occurs. As adult hens have discrete inactive reproductive states in addition to a fertile state, they are useful for examining the glial contribution to reproductive function. We immunostained tuberal hypothalami from short and long-day photosensitive hens, plus long-day photorefractory hens to examine expression of two intermediate filaments that affect glial morphology: glial fibrillary acidic protein (GFAP) and vimentin. GFAP expression was drastically reduced in the central median eminence of long day photosensitive hens, especially within the internal zone. Vimentin expression was similar among groups. However, vimentin-immunoreactive fibers abutting the portal vasculature were significantly negatively correlated with GFAP expression in the median eminence, which is consistent with our hypothesis for a reciprocal relationship between GFAP and vimentin expression. It appears that up-regulation of GFAP expression in the central median eminence of turkey hens is associated with periods of reproductive quiescence and that photofractoriness is associated with the lack of a glial cytoskeletal response to long days.

  16. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Lee, Yong-Min; Nam, Wonwoo

    2015-12-01

    Redox-inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal-oxygen intermediates, such as metal-oxo and metal-peroxo complexes. The mechanisms of the oxidative CH bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)-oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate-determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3 ) by iron(III)-oxo complexes. All logarithms of the observed second-order rate constants of Lewis acid-promoted oxidative CH bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)-oxo complexes exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal-oxo moiety has been confirmed for Mn(IV) -oxo complexes. The enhancement of the electron-transfer reactivity of metal-oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox-inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)-peroxo complexes, resulting in acceleration of the electron-transfer reduction but deceleration of the electron-transfer oxidation. Such a control on the reactivity of metal-oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca(2+) in the oxidation of water to dioxygen by the oxygen-evolving complex in photosystem II.

  17. Intermediates of Salicylic Acid Biosynthesis in Tobacco1

    PubMed Central

    Ribnicky, David M.; Shulaev, Vladimir; Raskin, Ilya

    1998-01-01

    Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis. PMID:9765542

  18. Tropospheric cycle of nitrous acid

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Peak, John D.; Collins, Gareth M.

    1996-06-01

    Measurements of the land surface exchange of nitrous acid over grass and sugar beet surfaces reveal both upward and downward fluxes with flux reversal occurring at an ambient concentration of nitrogen dioxide of about 10 ppb. This confirms earlier preliminary findings and strengthens the hypothesis that substantial production of nitrous acid can occur on land surfaces from reaction of nitrogen dioxide and water vapor. Detailed measurements of nitrous acid have been made in central urban, suburban, and rural environments. These measurements, in conjunction with a simple box model, indicate that the atmospheric concentrations of nitrous acid are explicable in terms of a small number of basic processes in which the most important are the surface production of nitrous acid from nitrogen dioxide, atmospheric production from the NO-OH reaction and loss of nitrous acid by photolysis and dry deposition. In the suburban atmosphere, concentrations of nitrous acid are strongly correlated with nitrogen dioxide. In the rural atmosphere a different behavior is seen, with much higher nitrous acid to nitrogen dioxide ratios occurring in more polluted air with nitrogen dioxide concentrations in excess of 10 ppb. At lower nitrogen dioxide concentrations, net deposition of nitrous acid at the ground leads to very low concentrations in advected air. The model study indicates that during daytime in the suburban atmosphere, production of HONO from the NO-OH reaction can compete with photolysis giving a HONO concentration of a few tenths of a part per billion. At the highest observed daytime concentrations of HONO, production of OH radical from its photolysis can proceed at a rate more than 10 times faster than from photolysis of ozone.

  19. Ionic and covalent stabilization of intermediates and transition states in catalysis by solid acids.

    PubMed

    Deshlahra, Prashant; Carr, Robert T; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE-reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born-Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  20. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  1. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; et al

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavymore » or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  2. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    SciTech Connect

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; Taiwo, T. A.

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  3. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  4. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  5. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  6. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process.

    PubMed

    Salminen, Antero; Kauppinen, Anu; Hiltunen, Mikko; Kaarniranta, Kai

    2014-07-01

    Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.

  7. The role of intermediates in mitochondrial fatty acid oxidation.

    PubMed Central

    Stanley, K K; Tubbs, P K

    1975-01-01

    1. Rat liver mitochondria oxidizing [16-14C]palmitoylcarnitine accumulate saturated long-chain thiester intermediates which may be detected by radio-g.1.c.2. Time-courses of intermediate accumulation display no product-precursor relationships and the end product, measured as [14C]citrate, is produced without a detectable initial lag. 3. A short pulse of [16-14C]palmitoylcarnitine followed by unlabelled palmitoylcarnitine showed that the observed intermediates(at least in the greater part)were not the direct precursors of [14C]citrate. 4. The quantity of saturated intermediates depended on the total accumulated flux of acyl units through the pathway provided that some mitochondrial CoA and unused substrate remained. 5. In the presence of rotenone and carnitine, 2-unsaturated, 3-unsaturated and 3-hydroxy intermediates were formed as well as saturated intermediates... PMID:1201010

  8. Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway during Induction of Photosynthesis in Maize Leaves 1

    PubMed Central

    Usuda, Hideaki

    1985-01-01

    Changes in the level of metabolites of the C4 cycle and reductive pentose phosphate (RPP) pathway were measured simultaneously with induction of photosynthesis in maize (Zea mays L.) to evaluate what may limit carbon assimilation during induction in a C4 plant. After 20 minutes in the dark, there was an immediate rise in photosynthesis during the first 30 seconds of illumination, followed by a gradual rise approaching steady-state rate after 20 minutes of illumination. Among metabolites of the C4 cycle, there was a net increase in the level of C3 compounds (the sum of pyruvate, alanine, and phosphoenolpyruvate) during the first 30 seconds of illumination, while there was a net decrease in the level of C4 acids (malate plus aspartate). The total level of metabolites of the C4 cycle underwent a sharp increase during this period. At the same time, there was a sharp rise in the level of intermediates of the RPP pathway (ribulose-1,5-bis-phosphate, 3-phosphoglycerate, dihydroxyacetonephosphate, and fructose-1,6-bisphosphate) during the first minute of illumination. The net increase of carbon among intermediates of the C4 cycle and RPP pathway was far above that of carbon input from CO2 fixation, and the increase in intermediates of the RPP pathway could not be accounted for by decarboxylation of C4 acids, suggesting that an endogenous source of carbon supplies the cycles. After 3 minutes of illumination there was a gradual rise in the levels of intermediates of the C4 cycle and in the total level of metabolites measured in the RPP pathway. This rise in metabolite levels occurs as photosynthesis gradually increases and may be required for carbon assimilation to reach maximum rates in C4 plants. This latter stage of inductive autocatalysis through the RPP pathway may contribute to the final buildup of these intermediates. PMID:16664341

  9. Acid Rain: A Teaching Focus for the Intermediate Grades.

    ERIC Educational Resources Information Center

    Adams, Renee B.; Adams, Neil D.

    1992-01-01

    The study of acid rain provides ample opportunities for active, interdisciplinary learning. This article describes 12 hands-on activities designed to expand students' understanding of acid rain. Background information on acid rain is included. (LB)

  10. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  11. The Impact of a Participant-Based Accounting Cycle Course on Student Performance in Intermediate Financial Accounting I

    ERIC Educational Resources Information Center

    Siagian, Ferdinand T.; Khan, Mohammad

    2016-01-01

    The authors investigated whether students in an Intermediate Financial Accounting I course who took a 1-credit, participant-based accounting cycle course performed better than students who did not take the accounting cycle course. Results indicate a higher likelihood of earning a better grade for students who took the accounting cycle course even…

  12. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200 °C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175 °C is the poor wettability of molten sodium on β″-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175 °C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  13. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200°C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175°C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  14. The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats.

    PubMed

    Casazza, J P; Veech, R L

    1986-01-15

    Equilibrium constants for reactions catalyzed by ribulose-5-phosphate 3-epimerase, [sigma xylulose-5-P]/[sigma ribulose-5-P] = 1.82, ribose-5-phosphate isomerase, [sigma Rib-5-P]/[sigma ribulose-5-P] = 1.20, transaldolase, [sigma erythrose-4-P] [sigma Fru-6-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.37, and transketolase, [sigma Fru-6-P] [sigma glyceraldehyde 3-P]/[sigma erythrose-4-P] [sigma xylulose-5-P] = 29.7 and [sigma Rib-5-P] [sigma xylulose-5-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.48, were redetermined under physiological conditions. The equilibrium constant for the combined glucose-6-P dehydrogenase and 6-phosphoglucono-gamma-lactonase reaction, [6-phosphogluconate3-] [NADPH] [H+]2/[Glc-6-P2-] [NADP+], was found to be at least 1 X 10(-9). Using these redetermined equilibrium constants, calculated values of pentose cycle intermediates, based on near equilibrium assumptions and the tissue content of Fru-6-P and glyceraldehyde 3-P, were found to be in good agreement with measured values for male Wistar rats injected with saline, 20 mumol/g pyruvate, 20 mumol/g gluconate, and 20 mumol/g ribose. Measured and calculated values for pentose cycle intermediates in saline injected animals were ribulose-5-P; 3.8 +/- 0.4 and 2.4 +/- 0.1 nmol/g; xylulose-5-P, 5.9 +/- 0.6 nmol/g and 4.3 +/- 0.2 nmol/g; sedoheptulose-7-P, 41.5 +/- 2.4 and 37.6 +/- 2.9 nmol/g; and combined sedopheptulose-7-P and Rib-5-P, 43.0 +/- 2.8 nmol/g and 40.5 +/- 3.0 nmol/g; liver content of erythrose-4-P was less than the detection limits of the assay, 2 nmol/g. Calculated erythrose-4-P was 0.23 +/- 0.01 nmol/g. Liver content of 6-phosphogluconate was 8.5 +/- 0.7 nmol/g. The free cytosolic [NADP+]/[NADPH] ratio calculated from the 6-phosphogluconate dehydrogenase redox couple, 0.0030 +/- 0.0002, was also in good agreement with that calculated from the malic enzyme redox couple, 0.0051 +/- 0.0007, and the isocitrate dehydrogenase redox couple, 0.0066 +/- 0

  15. Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence.

    PubMed

    Basting, Daniel; Lorch, Mark; Lehner, Ines; Glaubitz, Clemens

    2008-02-01

    Efflux pumps of the small multidrug resistance family bind cationic, lipophilic antibiotics and transport them across the membrane in exchange for protons. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation, and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties. Thus the substrate itself can report intermediate states that form during the transport cycle. We show the existence of such a substrate-transporter complex for the EmrE homolog Mycobacterium tuberculosis TBsmr and its substrate ethidium bromide. The pH gradient needed for antiport has been generated by co-reconstituting TBsmr with bacteriorhodopsin. Sample illumination generates a DeltapH, which results in enhanced ethidium fluorescence intensity, which is abolished when DeltapH or DeltaPsi is collapsed or when the essential residue Glu-13 in TBsmr is exchanged with Ala. This observation shows the formation of a pH-dependent, transient substrate-protein complex between binding and release of ethidium. We have further characterized this state by determining the K(d), by inhibiting ethidium transport through titration with nonfluorescent substrate and by fluorescence anisotropy measurements. Our findings support a model with a single occluded intermediate state in which the substrate is highly immobile.

  16. The Pyruvate-Tricarboxylic Acid Cycle Node

    PubMed Central

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-01-01

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [13C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia. PMID:25164818

  17. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling.

    PubMed

    Bénit, Paule; Letouzé, Eric; Rak, Malgorzata; Aubry, Laetitia; Burnichon, Nelly; Favier, Judith; Gimenez-Roqueplo, Anne-Paule; Rustin, Pierre

    2014-08-01

    Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.

  18. Intermediate role of α-keto acids in the formation of Strecker aldehydes.

    PubMed

    Hidalgo, Francisco J; Delgado, Rosa M; Zamora, Rosario

    2013-11-15

    The ability of α-keto acids to covert amino acids into Strecker aldehydes was investigated in an attempt to both identify new pathways for Strecker degradation, and analyse the role of α-keto acids as intermediate compounds in the formation of Strecker aldehydes by oxidised lipids. The results obtained indicated that phenylalanine was converted into phenylacetaldehyde to a significant extent by all α-keto acids assayed; glyoxylic acid being the most reactive α-keto acid for this reaction. It has been proposed that the reaction occurs by formation of an imine between the keto group of the α-keto acid, and the amino group of the amino acid. This then undergoes an electronic rearrangement with the loss of carbon dioxide to produce a new imine. This final imine is the origin of both the Strecker aldehyde and the amino acid from which the α-keto acid is derived. When glycine was incubated in the presence of 4,5-epoxy-2-decenal, the amino acid was converted into glyoxylic acid, and this α-keto acid was then able to convert phenylalanine into phenylacetaldehyde. All these results suggest that Strecker aldehydes can be produced by amino acid degradation initiated by different reactive carbonyl compounds, included those coming from amino acids and proteins. In addition, α-keto acids may act as intermediates for the Strecker degradation of amino acids by oxidised lipids.

  19. Anaerobic decomposition of benzoic acid during methane fermentation: Specific activity of fatty acid intermediates and postion of radioactive label

    SciTech Connect

    Bridges, R.L.

    1990-01-01

    A study of the pathway of anaerobic decomposition of benzoic acid by a mixed methanogenic culture of bacteria was conducted. Specific activities of the possible fatty acid intermediates cyclohexanecarboxylic acid, propanoic acid, and acetic acid were determined. In the case of propanoic acid, the position of the radioactive label was also determined by isotropic trapping and Phares-Schmidt degradation of the intermediate. The specific activities of cyclohexanecarboxylic acid and propanoic acid are the same as the benzoate substrate fed to the mixed methanogenic cultures. These fatty acids must be direct breakdown products from the aromatic ring. When (4{minus}{sup 14}C) benzoate is the substrate, the propanoic acid produced is labeled exclusively in the carboxyl position. This supports the pathway proposed by Keith et al. (1978), but would be unlikely for the pathway proposed by Evans (1977). The specific activity of the acetic acid isolated from a culture fed (4{minus}{sup 14}C) benzoate is 42% of the specific activity of the substrate. This is possible only if the methylmalonyl-CoA pathway for the conversion of propanoate to acetate is not being utilized. The amount of various intermediates found indicates that at least three syntrophically linked organisms are present in the mixed methanogenic culture. One is responsible for the production of cyclohexanecarboxylic acid, one for the production of acetate from propanoate, and one for the production of methane.

  20. Identification of C18 intermediates formed during stearidonic acid biohydrogenation by rumen microorganisms in vitro.

    PubMed

    Alves, S P; Maia, M R G; Bessa, R J B; Fonseca, A J M; Cabrita, A R J

    2012-02-01

    In vitro batch incubations were used to study the rumen biohydrogenation of unsaturated fatty acids. An earlier study using increasing supplementation levels of stearidonic acid (18:4n-3), revealed that the rumen microbial population extensively biohydrogenates 18:4n-3 after 72 h of in vitro incubation, though several intermediates formed were not completely characterized. Therefore, in the present study, samples were reanalyzed in order to identify the 18:2, 18:3 and 18:4 biohydrogenation intermediates of 18:4n-3. Gas-liquid chromatography coupled to mass spectrometry was used to characterize these intermediates. The acetonitrile chemical ionization mass spectrometry of the fatty acid methyl esters derivatives enabled the discrimination of fatty acids as non-conjugated or conjugated biohydrogenation intermediates. In addition, the acetonitrile covalent adduct chemical ionization tandem mass spectrometry yielded prominent ions indicative of the double bond position of the major 18:3 isomers, i.e. Δ5,11,15 18:3. Furthermore, the 4,4-dimethyloxazoline derivatives prepared from the fatty acid methyl esters enabled the structure of novel 18:2, 18:3 and 18:4 biohydrogenation intermediates to be elucidated. The intermediates accumulated in the fermentation media after 72 h of incubation of 18:4n-3 suggest that similar to the biohydrogenation pathways of linoleic (18:2n-6) and α-linolenic (18:3n-3) acids, the pathway of the 18:4n-3 also proceeds with the formation of conjugated fatty acids followed by hydrogenation, although no conjugated dienes were found. The formation of the novel biohydrogenation intermediates of 18:4n-3 seems to follow an uncommon isomerization pattern with distinct double bond migrations.

  1. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of sodium-nickel chloride battery at temperatures lower than 200°C reduces cell degradation and improves the cyclability. One of the main technical issues in terms of operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE) causing reduced active area and limited charging . In order to overcome the problem related to poor wettability of Na melt on BASE at 175°C, Pt grid was applied on the anode side of BASE using a screen printing technique. Deeper charging and improved cycling behavior was observed on the cells with metalized BASEs due to extended active area.

  2. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1990-05-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. {sup 18}O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of ({sup 18}O)ABA which contains two {sup 18}O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this ({sup 18}O)t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the {sup 18}O in ABA-aldehyde is trapped in the side chain by reduction to ({sup 18}O)ABA-alcohol, followed by isomerization to ({sup 18}O)t-ABA-alcohol and oxidation with {sup 18}O{sub 2} to ({sup 18}O)t-ABA. The ({sup 18}O)t-ABA is then rapidly converted to ({sup 18}O)t-ABA-GE. Because ({sup 18}O)ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway.

  3. In Vitro Synthesis of Poliovirus Ribonucleic Acid: Role of the Replicative Intermediate

    PubMed Central

    Girard, Marc

    1969-01-01

    Poliovirus ribonucleic acid (RNA) polymerase crude extracts could be stored frozen in liquid nitrogen without loss of activity or specificity. The major in vitro product of these extracts was viral single-stranded RNA. However, after short periods of incubation with radioactive nucleoside triphosphates, most of the incorporated label was found in replicative intermediate. When excess unlabeled nucleoside triphosphate was added, the label was displaced from the replicative intermediate and accumulated as viral RNA. It is concluded from this experiment that the replicative intermediate is the precursor to viral RNA. In addition, some of the label was chased into double-stranded RNA. The implications of this finding are discussed. PMID:4306193

  4. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  5. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  6. Carbonic acid: an important intermediate in the surface chemistry of calcium carbonate.

    PubMed

    Al-Hosney, Hashim A; Grassian, Vicki H

    2004-07-01

    Calcium carbonate is an important and ubiquitous component of biological and geochemical systems. In this study, the surface chemistry of calcium carbonate with several trace atmospheric gases including HNO3, SO2, HCOOH, and CH3COOH is investigated with infrared spectroscopy. Adsorbed carbonic acid, H2CO3, is found to be an intermediate in these reactions. In the absence of adsorbed water, carbonic acid is stable on the surface at room temperature. However, upon water adsorption, carbonic acid dissociates as indicated by the evolution of gaseous CO2 and the disappearance of infrared absorption bands associated with adsorbed carbonic acid. Thus, it is postulated that under ambient conditions, carbonic acid may be an important albeit short-lived intermediate in the surface chemistry of calcium carbonate. PMID:15225019

  7. Spectral signatures and molecular origin of acid dissociation intermediates.

    PubMed

    Iftimie, Radu; Thomas, Vibin; Plessis, Sylvain; Marchand, Patrick; Ayotte, Patrick

    2008-05-01

    The existence of a broad, mid-infrared absorption ranging from 1000 to 3000 cm(-1) is usually interpreted as a signature for the existence of protonated water networks. Herein, we use cryogenic mixtures of water and hydrogen fluoride (HF) and show experimental and computational evidence that similarly wide absorptions can be generated by a broad distribution of proton-shared and ion pair complexes. In the present case, we demonstrate that the broadening is mainly inhomogeneous, reflecting the fact that the topology of the first solvation shell determines the local degree of ionization and the shared-proton asymmetric stretching frequency within H2O x HF complexes. The extreme sensitivity of the proton transfer potential energy hypersurface to local hydrogen bonding topologies modulates its vibrational frequency from 2800 down to approximately 1300 cm(-1), the latter value being characteristic of solvation geometries that yield similar condensed-phase proton affinities for H2O and fluoride. By linking the local degree of ionization to the solvation pattern, we are able to propose a mechanism of ionization for HF in aqueous solutions and to explain some of their unusual properties at large concentrations. However, an important conclusion of broad scientific interest is our prediction that spectral signatures that are normally attributed to protonated water networks could also reveal the presence of strong hydrogen bonds between un-ionized acids and water molecules, with important consequences to spectroscopic investigations of biologically relevant proton channels and pumps.

  8. Selection of a closed Brayton cycle gas turbine for an intermediate-duty solar-electric power plant

    NASA Astrophysics Data System (ADS)

    Vieth, G. L.; Plummer, D. F.

    1980-03-01

    Subsystem and system analyses were performed to select the preferred working gas, performance characteristics and size of a closed cycle gas turbine for an intermediate-duty solar-electric power plant. Capital costs for all major subsystems were evaluated, but the principal selection criterion was the projected cost of electricity produced by the plant. Detailed analyses of the power conversion loop were conducted for both air and helium systems. Since the plant was intended for use on an intermediate-duty cycle, thermal storage was required. The coupling of the storage and power conversion loops in combination with the daily operating cycle influenced plant performance and energy costs in addition to the selection of the power conversion cycle.

  9. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.

    PubMed Central

    Pollard, T D; Bhandari, D; Maupin, P; Wachsstock, D; Weeds, A G; Zot, H G

    1993-01-01

    We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not

  10. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  11. Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803.

    PubMed

    Shimakawa, Ginga; Hasunuma, Tomohisa; Kondo, Akihiko; Matsuda, Mami; Makino, Amane; Miyake, Chikahiro

    2014-01-01

    We tested the hypothesis that inducing photosynthesis in cyanobacteria requires respiration. A mutant deficient in glycogen phosphorylase (∆GlgP) was prepared in Synechocystis sp. PCC 6803 to suppress respiration. The accumulated glycogen in ΔGlgP was 250-450% of that accumulated in wild type (WT). The rate of dark respiration in ΔGlgP was 25% of that in WT. In the dark, P700(+) reduction was suppressed in ΔGlgP, and the rate corresponded to that in (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone)-treated WT, supporting a lower respiration rate in ∆GlgP. Photosynthetic O2-evolution rate reached a steady-state value much slower in ∆GlgP than in WT. This retardation was solved by addition of d-glucose. Furthermore, we found that the contents of Calvin cycle intermediates in ∆GlgP were lower than those in WT under dark conditions. These observations indicated that respiration provided the carbon source for regeneration of ribulose 1,5-bisphosphate in order to drive the rapid start of photosynthesis.

  12. Suppression of tricarboxylic acid cycle in Escherichia coli exposed to sub-MICs of aminoglycosides.

    PubMed Central

    Cavallero, A; Eftimiadi, C; Radin, L; Schito, G C

    1990-01-01

    The metabolic activity of Escherichia coli ATCC 25922 challenged with sub-MICs of aminoglycosides was analyzed with a batch calorimeter. High-performance and gas-liquid chromatographic techniques were utilized to evaluate the concentrations of metabolic reactants, intermediates, and end products. The data reported indicate that aminoglycosides inhibit or delay bacterial catabolism of carboxylic acids, with the following relative degrees of activity: amikacin greater than gentamicin greater than sisomicin greater than netilmicin greater than kanamycin. The decrease in total biomass production was proportional to the degree of tricarboxylic acid cycle inhibition. PMID:2183717

  13. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  14. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  15. Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers

    PubMed Central

    Colberg, P. J.; Young, L. Y.

    1985-01-01

    Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers. PMID:16346722

  16. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis.

    PubMed

    Yuan, Yanqiu; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C(8)-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed.

  17. Disulfate ion as an intermediate to sulfuric Acid in Acid rain formation.

    PubMed

    Chang, S G; Littlejohn, D; Hu, K Y

    1987-08-14

    The oxidation of the bisulfite ion by dissolved oxygen to produce sulfate ion involves the formation of a previously undetected intermediate. This intermediate has a fairly strong Raman band at 1090 wave numbers and a weak Raman band at 740 wave numbers, both of which are probably due to sulfur-oxygen stretches. The intermediate is proposed to be the disulfate ion S(2)O(7)(2-), which hydrolyzes into H(+) and either SO(4)(2-) or HSO(4)(2-) with a half-life of about 52 seconds at 25 degrees C.

  18. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  19. PALADYN, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    PALADYN is presented, a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. The model explicitly treats permafrost, both in physical processes and as important carbon pool. The model distinguishes 9 surface types of which 5 are different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows to treat continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. It includes a single snow layer. The soil model distinguishes between three different macro surface types which have their own soil column: vegetation and bare soil, ice sheet and ocean shelf. The soil is vertically discretized into 5 layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. The model includes a dynamic vegetation module with 5 plant functional types competing for the gridcell share with their respective net primary productivity. Each macro surface type has its own carbon pools represented by a litter, a fast

  20. Structuring of intermediate scale equatorial spread F irregularities during intense geomagnetic storm of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Kakad, B.; Gurram, P.; Tripura Sundari, P. N. B.; Bhattacharyya, A.

    2016-07-01

    Here we examine the structuring of equatorial plasma bubble (EPB) during intense geomagnetic storm of solar cycle (SC) 24 that occurred on 17 March 2015 using spaced receiver scintillation observations on a 251 MHz radio signal, recorded by a network of stations in Indian region. As yet, this is the strongest geomagnetic storm (Dstmin˜-223nT) that occurred in present SC. Present study reveals that the structuring of equatorial spread F (ESF) irregularities was significantly different on 17 March as compared to quiet days of corresponding month. ESF irregularities of intermediate scale (100 m to few kilometers) are observed at unusually higher altitudes (≥ 800 km) covering wider longitudinal-latitudinal belt over Indian region. A presence of large-scale irregularity structures with stronger ΔN at raised F peak with small-scale irregularities at even higher altitudes is observed. It caused strong focusing effect (S4>1) that prevails throughout premidnight hours at dip equatorial station Tirunelveli. Other observational aspect is that zonal irregularity drifts over low-latitude station Kolhapur exhibited a large deviation of ˜230 m/s from their average quiet time pattern. During this geomagnetic storm, two southward turnings of significant strength (BZ≤-15 nT) occurred at 11.4 IST (Indian standard time) and 17.9 IST. The later southward turning of interplanetary magnetic field (IMF)BZ resulted in a large eastward prompt penetration electric field (PPEF) close to sunset hours in Indian longitude. Estimates of PPEF obtained from real-time ionospheric model are too low to explain the observed large upliftment of F region in the post sunset hours. Possible reason for observed enhanced PPEF-linked effects is discussed.

  1. The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.

    PubMed

    Knauf, Felix; Mohebbi, Nilufar; Teichert, Carsten; Herold, Diana; Rogina, Blanka; Helfand, Stephen; Gollasch, Maik; Luft, Friedrich C; Aronson, Peter S

    2006-07-01

    A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.

  2. Effect of antibrowning agents on browning and intermediate formation in the glucose-glutamic acid model.

    PubMed

    Lim, Seong-Il; Kwak, Eun-Jung; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-10-01

    In this study, the inhibitory effects of antibrowning agents on browning and the formation of intermediates such as 3-deoxyglucosone (3-DG) and hydroxymethylfurfural (HMF) were evaluated with a glucose-glutamic acid model for soybean paste. The initial antibrowning capacity was measured in the following order: pentasodium tripolyphosphate < citric acid and oxalic acid < cysteine and glutathione < sodium sulfite. Our data showed that antibrowning agents, such as pentasodium tripolyphosphate, citric acid, and oxalic acid, were maintained antibrowning capacities during storage at both 4 and 30 °C, respectively. However, both cysteine and glutathione was reduced with storage time, especially in the air. A marked effect of nitrogen treatment was noted for 3 of the antibrowning agents after storage in air at 30 °C in the following order: sodium sulfite < cysteine < glutathione. The formation ratio of 3-DG and HMF was higher after storage at 30 °C than at 4 °C. These compounds were produced most abundantly in the presence of sodium sulfite, and the yields were not related significantly to the degree of browning. Citric acid and oxalic acid were identified as the most effective in inhibitors of browning and intermediates, even during storage in air at 30 °C.

  3. Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.

    PubMed

    Oeda, Shiho; Hayashi, Yohei; Chan, Techuan; Takasato, Minoru; Aihara, Yuko; Okabayashi, Koji; Ohnuma, Kiyoshi; Asashima, Makoto

    2013-01-01

    Renal lineages including kidney are derived from intermediate mesoderm, which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined, serum-free, adherent, monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm, odd-skipped related 1 (Osr1) and Wilm’s Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist, but not by retinoid X receptor (RXR) agonists. Furthermore, the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.

  4. Patterns of diversity of citric acid cycle enzymes.

    PubMed

    Weitzman, P D

    1987-01-01

    The citric acid cycle performs a dual role in cell metabolism, acting as a source of both 'energy' and biosynthetic starting materials. The widespread occurrence of the cycle throughout Nature is an excellent example of the unity of biochemistry, but closer examination reveals that there is considerable diversity in the citric acid cycle of different organisms with respect to metabolic role, molecular enzymology and mode of regulation. Two enzymes of the cycle--citrate synthase and succinate thiokinase--have been found to exhibit particularly striking patterns of diversity in structure and catalytic and regulatory function. Some of these patterns show a correlation with the taxonomic groupings of the organisms and with their physiological characteristics. Comparative enzyme studies have a contribution to make to an ultimate understanding of the cycle and its cellular operation, and there are substantial benefits to be gained from interactive studies on both prokaryotic and eukaryotic systems.

  5. [Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].

    PubMed

    Sukhorukova, E G; Kruzhevskiĭ, D É; Alekseeva, O S

    2015-01-01

    Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.

  6. The Effect of Light on the Tricarboxylic Acid Cycle in Green Leaves

    PubMed Central

    Chapman, E. A.; Graham, D.

    1974-01-01

    Long term feeding of acetate-2-14C, 14CO2, citrate-1,5-14C, fumarate-2,3-14C, and succinate-2,3-14C to mung bean (Phaseolus aureus L. var. Mungo) leaves in the dark gave labeling predominantly in tricarboxylic acid cycle intermediates. Kinetics of the intermediates during dark/light/dark transitions showed a light-induced interchange of 14C between malate and aspartate, usually resulting in an accumulation of 14C in malate and a decrease of it in aspartate. 14C-Phosphoenolpyruvate also showed a marked decrease during illumination. Changes in other intermediates of the tricarboxylic acid cycle were relatively minor. The kinetic data have been analyzed using the Chance crossover theorem to locate control points during the dark/light/dark transitions. The major apparent control points are located at malate and isocitrate dehydrogenases, and less frequently at citrate synthase and fumarase. These findings are explained in terms of the light-induced changes in adenine nucleotides and nicotinamide adenine dinucleotides. PMID:16658810

  7. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2.

    PubMed

    Wong, Shaun D; Srnec, Martin; Matthews, Megan L; Liu, Lei V; Kwak, Yeonju; Park, Kiyoung; Bell, Caleb B; Alp, E Ercan; Zhao, Jiyong; Yoda, Yoshitaka; Kitao, Shinji; Seto, Makoto; Krebs, Carsten; Bollinger, J Martin; Solomon, Edward I

    2013-07-18

    Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(IV)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(IV)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(IV)=O active site. Here we present NRVS structural characterization of the reactive Fe(IV)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(IV)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.

  8. Direct observation of unstable reaction intermediates by acid-base complex formation.

    PubMed

    Ohashi, Yuji

    2013-06-01

    The structures of several unstable or metastable reaction intermediates that were photoproduced in crystals were analyzed by using X-ray techniques. The presence of enough void space around the reactive group(s) is an essential factor for the reaction to occur with retention of the single-crystal form. To expand the void space, an acid group (COOH) was substituted onto the reactant molecule and acid-base complex crystals were prepared with several amines, such as dibenzylamine and dicyclohexylamine. Following the formation of such acid-base complexes in crystals, the metastable structures of nitrenes and red species of photochromic salicylideneanilines have been successfully analyzed by using X-ray techniques. Moreover, the structure of a Pt complex anion in the excited state has been analyzed, which formed acid-base complex crystals with various alkylammonium cations. The formation of acid-base complexes will be a powerful tool for directly observing the structure of unstable or metastable reaction intermediates by using X-ray techniques.

  9. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  10. Intermediate and paratenic hosts in the life cycle of Aelurostrongylus abstrusus in natural environment.

    PubMed

    Jeżewski, Witold; Buńkowska-Gawlik, Katarzyna; Hildebrand, Joanna; Perec-Matysiak, Agnieszka; Laskowski, Zdzisław

    2013-12-01

    The cat lungworm Aelurostrongylus abstrusus affects the domestic cats and other felids all over the world. Feline aelurostrongylosis is of importance in clinical feline medicine. Snails and slugs are the intermediate hosts, but the cat is probably infected by eating paratenic hosts, e.g., rodents, birds, amphibians and reptiles. Herein we present the first finding of A. abstrusus in a naturally infected invasive synantropic slugs Arion lusitanicus (intermediate host) and wild living rodents Apodemus agrarius (paratenic host). The results confirm the usefulness of molecular approaches for investigating the biology, ecology and epidemiology of A. abstrusus, the agent of feline aelurostrongylosis.

  11. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  12. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.

  13. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  14. Radical intermediate generation and cell cycle arrest by an aqueous extract of Thunbergia Laurifolia Linn. In human breast cancer cells.

    PubMed

    Jetawattana, Suwimol; Boonsirichai, Kanokporn; Charoen, Savapong; Martin, Sean M

    2015-01-01

    Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an IC50 value of 843 μg/ml. Treatments with extract for 24 h at 250 μg/ml or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals. PMID:26028099

  15. Observations of intermediate- and high-degree p-mode oscillations during sunspot cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J.; Cacciani, A.; Korzennik, S. G.

    1991-01-01

    Extensive time series of resolved solar images have been available for helioseismological investigations since the late 1970's. The paper presents examples of the frequencies, power levels, modal energies, and widths of solar intermediate-degree and high-degreee p-modes obtained at the Mt. Wilson Observatory's 60-Foot Solar Tower Telescope during the rising phase of the current sunspot cycle. It is shown that the inclusion of frequency splittings from the high-degree p-modes has made it possible to demonstrate that the sun's internal equatorial angular velocity is not constant with radius but varies systematically with radius throughout the solar convection zone and below.

  16. Kinetic Study of the Acid Degradation of Lignin Model Compound Intermediates

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm the proposed mechanisms a kentic study of several possible intermediates was done under similar acidolysis conditions. Epoxystyrene and 1-phenyl-1,2-ethandiol were used as intermediates. 2-phenoxyvinylbenzene was synthesized and subsequently deconstructed in H2SO4. The kinetics and product distribution of these intermediates were then used in confirming our proposed mechanisms.

  17. Evidence for transport intermediates in aromatic amino acid synthesis of non-green tissues

    SciTech Connect

    Leuschner, C.; Schultz, G. )

    1990-05-01

    Quinate (QA) is the predominant pre-aromatic compound formed at high rates in leaves of many plants at the early vegetation stage and transported through the phloem. The transfer of 3-dehydroquinate, 3-dehydroshikimate and (SkA) across the plastidial membranes has been evidenced. The question was whether the rate of QA uptake is comparable to that of the 3 SkA-pathway intermediates. To demonstrate this, /U-{sup 14}C/QA and /U-{sup 14}C/SkA were applied to Brassica rapa roots. Both compounds were uptaken at considerable rates and incorporated into aromatic amino acids (Phe + Tyr + Trp formation, in nmol/g fresh wt x h: applying 145 {mu}mol QA: 21.2; applying 156 {mu}mol Ska: 31.8). Thus, QA is a possible candidate for transport into non-green tissues for aromatic amino acid synthesis.

  18. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  19. Opisthorchis viverrini: life cycle, intermediate hosts, transmission to man and geographical distribution in Thailand.

    PubMed

    Harinasuta, C; Harinasuta, T

    1984-01-01

    Opisthorchis viverrini has been found to be the only species of liver fluke in Thailand. The morphology is similar to that of O. felineus, but it has more deeply lobated testes, situated near the ovary. The appearance and distribution of the vitellaria with few granular clumps and the shorter and wider egg closely resemble that of C. sinensis. The adult worms live in the biliary system. Eggs pass out in faeces. On reaching water the eggs are eaten by snails, the first intermediate host. In the snail the miracidia hatch and develop further through the stages of sporocysts, rediae and cercariae in six to eight weeks. The cercariae then leave the snail, penetrate into susceptible fresh water fish, encyst in the muscle and develop into metacercariae, and infective stage, in six weeks. When ingested by man or animal the metacercariae excyst in the duodenum or jejunum and then migrate to the bile duct. They become mature within four weeks and begin to produce eggs. The life span of the fluke is over 10 years. The snail intermediate hosts are Bithynia goniomphalus, B. funiculata and B. siamensis. Many species of cyprinoid fish serve as second intermediate host; Cyclocheilichthys siaja is the most important. Cats, dogs and many fish eating mammals are definitive hosts. Man and animals acquire infection by eating raw fish containing metacercariae cysts. In Northeast Thailand "Koi-Pla" is the most popular raw fish dish. In 1980-1981 the prevalence in the north, northeast, centre and south of Thailand was 5.59, 34.60, 6.34, and 0.01%, respectively, with an overall prevalence of 14% or 7 million people. PMID:6542383

  20. Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater.

    PubMed

    Gu, Lin; Zhu, Nanwen; Wang, Liang; Bing, Xiaoxiao; Chen, Xiaoliang

    2011-12-30

    In this work, an humic acid adsorption with an enhanced Fenton oxidation was employed to treat the real effluent originating from the 1-diazo-2-naphthol-4-sulfonic acid (1,2,4-Acid) production plant. In a first step, humic acid with MgSO(4) was selected as adsorbent and precipitant for physicochemical pretreatment, the synergetic effect had led to 39% of COD removal and 89% of colour removal. A multi-staged Fenton oxidation process with inner circulation was introduced subsequently. The TOC, COD, 1,2,4-Acid, NH(4)(+)-N, SS and colour were reduced from 3024 mg/L, 12,780 mg/L, 9103 mg/L, 110 mg/L, 240 mg/L and 25,600 (multiple) to 46 mg/L, 210 mg/L, 21 mg/L, 16 mg/L, 3 mg/L and 25 through the combined process, respectively. Hydrogen peroxide consumed per kg COD had saved up to 36% when two-staged Fenton process with inner circulation (flow-back to influent ratio: 3) was applied. Influence of H(2)O(2) concentration, flow-back to influent ratio and staged Fenton mode were investigated in detail in order to find out the optimal operating parameters. The kinetics of 1,2,4-Acid degradation by two-staged Fenton process was investigated. The evolution of the main intermediates during the degradation process was conducted using the LC-(ESI)-TOF-MS technique, and the results showed a staged degradation pathway from the ring opening of naphthalene compounds to the formation of benzene compounds and carboxyl acids. The combined process had been proved effective in both technical and economic aspects.

  1. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    SciTech Connect

    Yu, Z.; Cocke, D.L.

    1998-09-01

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current, temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.

  2. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle.

    PubMed

    Astashkin, Andrei V; Seravalli, Javier; Mansoorabadi, Steven O; Reed, George H; Ragsdale, Stephen W

    2006-03-29

    Pyruvate ferredoxin oxidoreductase (PFOR) is central to the anaerobic metabolism of many bacteria and amitochondriate eukaryotes. PFOR contains thiamine pyrophosphate (TPP) and three [4Fe-4S] clusters, which link pyruvate oxidation to reduction of ferredoxin. In the PFOR reaction, TPP reacts with pyruvate to form lactyl-TPP, which undergoes decarboxylation to form a hydroxyethyl-TPP (HE-TPP) intermediate. One electron is then transferred from HE-TPP to one of the three [4Fe-4S] clusters to form an HE-TPP radical and a [4Fe-4S]1+ intermediate. Pulsed EPR methods have been used to measure the distance between the HE-TPP radical and the [4Fe-4S]1+ cluster to which it is coupled. Computational analysis including the PFOR crystal structure and the spin distribution in the HE-TPP radical and in the reduced [4Fe-4S] cluster demonstrates that the distance between the HE-TPP radical and the medial cluster B matches the experimentally determined dipolar interaction, while one of the other two clusters is too close and the other is too far away. These results clearly demonstrate that it is the medial cluster (cluster B) that is reduced. Thus, rapid electron transfer occurs through the electron-transfer chain, which leaves an oxidized proximal cluster poised to accept an electron from the HE-TPP radical in the subsequent reaction step. PMID:16551078

  3. Metabolomic and mass isotopomer analysis of liver gluconeogenesis and citric acid cycle: II. Heterogeneity of metabolite labeling pattern.

    PubMed

    Yang, Lili; Kasumov, Takhar; Kombu, Rajan S; Zhu, Shu-Han; Cendrowski, Andrea V; David, France; Anderson, Vernon E; Kelleher, Joanne K; Brunengraber, Henri

    2008-08-01

    In this second of two companion articles, we compare the mass isotopomer distribution of metabolites of liver gluconeogenesis and citric acid cycle labeled from NaH(13)CO(3) or dimethyl [1,4-(13)C(2)]succinate. The mass isotopomer distribution of intermediates reveals the reversibility of the isocitrate dehydrogenase + aconitase reactions, even in the absence of a source of alpha-ketoglutarate. In addition, in many cases, a number of labeling incompatibilities were found as follows: (i) glucose versus triose phosphates and phosphoenolpyruvate; (ii) differences in the labeling ratios C-4/C-3 of glucose versus (glyceraldehyde 3-phosphate)/(dihydroxyacetone phosphate); and (iii) labeling of citric acid cycle intermediates in tissue versus effluent perfusate. Overall, our data show that gluconeogenic and citric acid cycle intermediates cannot be considered as sets of homogeneously labeled pools. This probably results from the zonation of hepatic metabolism and, in some cases, from differences in the labeling pattern of mitochondrial versus extramitochondrial metabolites. Our data have implications for the use of labeling patterns for the calculation of metabolic rates or fractional syntheses in liver, as well as for modeling liver intermediary metabolism.

  4. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  5. Flexible Gates Generate Occluded Intermediates in the Transport Cycle of LacY☆

    PubMed Central

    Stelzl, Lukas S.; Fowler, Philip W.; Sansom, Mark S.P.; Beckstein, Oliver

    2014-01-01

    The major facilitator superfamily (MFS) transporter lactose permease (LacY) alternates between cytoplasmic and periplasmic open conformations to co-transport a sugar molecule together with a proton across the plasma membrane. Indirect experimental evidence suggested the existence of an occluded transition intermediate of LacY, which would prevent leaking of the proton gradient. As no experimental structure is known, the conformational transition is not fully understood in atomic detail. We simulated transition events from a cytoplasmic open conformation to a periplasmic open conformation with the dynamic importance sampling molecular dynamics method and observed occluded intermediates. Analysis of water permeation pathways and the electrostatic free-energy landscape of a solvated proton indicated that the occluded state contains a solvated central cavity inaccessible from either side of the membrane. We propose a pair of geometric order parameters that capture the state of the pathway through the MFS transporters as shown by a survey of available crystal structures and models. We present a model for the occluded state of apo-LacY, which is similar to the occluded crystal structures of the MFS transporters EmrD, PepTSo, NarU, PiPT and XylE. Our simulations are consistent with experimental double electron spin–spin distance measurements that have been interpreted to show occluded conformations. During the simulations, a salt bridge that has been postulated to be involved in driving the conformational transition formed. Our results argue against a simple rigid-body domain motion as implied by a strict “rocker-switch mechanism” and instead hint at an intricate coupling between two flexible gates. PMID:24513108

  6. Sporulation of Tricarboxylic Acid Cycle Mutants of Bacillus subtilis

    PubMed Central

    Yousten, Allan A.; Hanson, Richard S.

    1972-01-01

    A mutant of Bacillus subtilis 168 lacking aconitase (EC 4.2.1.3) was found to be blocked at stage 0 or I of sporulation. Although adenosine triphosphate levels, which normally decrease in tricarboxylic acid cycle mutants at the completion of exponential growth, could be maintained at higher levels by feeding metabolizable carbon sources, this did not permit the cells to progress further into the sporulation sequence. When post-exponential-phase cells of mutants blocked in the first half of the tricarboxylic acid cycle were resuspended with an energy source in culture fluid from post-exponential-phase wild-type B. subtilis or Escherichia coli, good sporulation occurred. The spores produced retained the mutant genotype and were heat stable but lost refractility and heat stability several hours after their production. Images PMID:4110146

  7. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression. PMID:26133667

  8. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression.

  9. Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine.

    PubMed Central

    Le, X C; Ma, M; Cullen, W R; Aposhian, H V; Lu, X; Zheng, B

    2000-01-01

    In this study we report on the finding of monomethylarsonous acid [MMA(III)] in human urine. This newly identified arsenic species is a key intermediate in the metabolic pathway of arsenic biomethylation, which involves stepwise reduction of pentavalent to trivalent arsenic species followed by oxidative addition of a methyl group. Arsenic speciation was carried out using ion-pair chromatographic separation of arsenic compounds with hydride generation atomic fluorescence spectrometry detection. Speciation of the inorganic arsenite [As(III)], inorganic arsenate [As(V)], monomethylarsonic acid [MMA(V)], dimethylarsinic acid [DMA(V)], and MMA(III) in a urine sample was complete in 5 min. Urine samples collected from humans before and after a single oral administration of 300 mg sodium 2,3-dimercapto-1-propane sulfonate (DMPS) were analyzed for arsenic species. MMA(III) was found in 51 out of 123 urine samples collected from 41 people in inner Mongolia 0-6 hr after the administration of DMPS. MMA(III )in urine samples did not arise from the reduction of MMA(V) by DMPS. DMPS probably assisted the release of MMA(III) that was formed in the body. Along with the presence of MMA(III), there was an increase in the relative concentration of MMA(V) and a decrease in DMA(V) in the urine samples collected after the DMPS ingestion. PMID:11102289

  10. Glial Fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker

    PubMed Central

    Yang, Zhihui; Wang, Kevin K.W.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament-III protein uniquely found in astrocytes in the CNS, non-myelinating Schwann cells in the PNS and enteric glial cells. GFAP mRNA expressions are regulated by several nuclear-receptor hormones, growth factors and lipopolysaccharides. GFAP is also subjected to a number of post-translational modifications while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglia cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP protein and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders. PMID:25975510

  11. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.

    PubMed

    Yang, Zhihui; Wang, Kevin K W

    2015-06-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.

  12. Adipocyte protein modification by Krebs cycle intermediates and fumarate ester-derived succination.

    PubMed

    Manuel, Allison M; Frizzell, Norma

    2013-11-01

    Protein succination, the non-enzymatic modification of cysteine residues by fumarate, is distinguishable from succinylation, an enzymatic reaction forming an amide bond between lysine residues and succinyl-CoA. Treatment of adipocytes with 30 mM glucose significantly increases protein succination with only a small change in succinylation. Protein succination may be significantly increased intracellularly after treatment with fumaric acid esters, however, the ester must be removed by saponification to permit 2SC-antibody detection of the fumarate adduct.

  13. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids

    PubMed Central

    Eoh, Hyungjin; Rhee, Kyu Y.

    2014-01-01

    Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb’s ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb’s ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb’s methylcitrate cycle into a “dead end” pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb’s ICLs and survival on fatty acids. PMID:24639517

  14. Modulation of fatty acid metabolism and tricarboxylic acid cycle to enhance the lipstatin production through medium engineering in Streptomyces toxytricini.

    PubMed

    Kumar, Punit; Dubey, Kashyap Kumar

    2016-08-01

    This work investigated the potential of medium engineering to obtain maximum biomass, non-conventional carbon sources for lipstatin production and modulation of tricarboxylic acid (TCA) cycle to promote lipstatin synthesis. It was found that 2:3 carbon and nitrogen ratio, produced maximum biomass of 7.9g/L in growth medium and 6.6g/L in pre-seed medium. Among the studied non-conventional carbon sources i.e., soya flour 40g/L and sesame oil 30mL/L were found producing 1109.37mg/L (1.24-fold of control) and 1196.75mg/L (1.34-fold of control) lipstatin respectively. Supplementation of TCA cycle intermediates revealed that NADH and succinic acid showed lipstatin production to 1132.99mg/L and 1171.10mg/L respectively. Experimental outcome was validated in 7L bioreactor and produced 2242.63mg/L lipstatin which was ∼14% higher than shake flask. PMID:26897471

  15. Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress

    PubMed Central

    Vuong, Cuong; Kidder, Joshua B.; Jacobson, Erik R.; Otto, Michael; Proctor, Richard A.; Somerville, Greg A.

    2005-01-01

    Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production. PMID:15838022

  16. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  17. Maintenance Carbon Cycle in Crassulacean Acid Metabolism Plant Leaves 1

    PubMed Central

    Kenyon, William H.; Severson, Ray F.; Black, Clanton C.

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations. Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants. In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  18. Estimates of late Quaternary mode and intermediate water silicic acid concentration in the Pacific Southern Ocean

    NASA Astrophysics Data System (ADS)

    Rousseau, Jonathon; Ellwood, Michael J.; Bostock, Helen; Neil, Helen

    2016-04-01

    The Southern Ocean plays a critical role in the exchange of carbon between the ocean and atmosphere over glacial-interglacial timescales. Hypotheses used to explain late Quaternary variations in atmospheric carbon dioxide (CO2) implicate changes in the nutrient dynamics and circulation of the Southern Ocean. Here we present silicon isotope (δ30Si) records of late Quaternary sponges and diatoms from the NZ-sector of the Southern Ocean. Analysis of our sponge δ30Si records strongly suggests that the silicic acid concentration at mode and intermediate depths was higher during the LGM and the deglacial period compared to the present day. Our diatom δ30Si record suggests biological productivity near of the Polar Front was greater during the deglacial period, but not significantly different during the LGM compared to the present day. Taking our dataset in context with other regional paleoceanographic records, we interpret the predicted elevation in LGM and deglacial silicic acid concentration to reflect a shoaling of water masses during the LGM and 'leakage' of excess Southern Ocean dissolved silicon during the deglacial period.

  19. Biodegradation of ichlorodiphenyltrichloroe-thane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes

    USGS Publications Warehouse

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA (J. E. Peterson and W. H. Robison, Toxicol. Appl. Pharmacol. 6:321, 1964). Recently, certain organisms (A. S. Perry, S. Miller, and A. J. Buckner. J. Agr. Food Chem. 11:457, 1963; J. D. Pinto, M. N. Comien, and M. S. Dunn. J. Biol. Chem. 240:2148, 1965) have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA (Pinto et al., J. Biol. Chem. 240:2148, 1965). Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes (G. Wedemeyer, Appl. Microbiol. 15:569, 1967; J. L. Mendel, and M. S. Walton, Science 151:1527, 1966), it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected (S. G. Waley, Mechanisms of Organic and Enzymatic Reactions, Oxford University Press, London, England 1962).

  20. Phosphorus constrains accelerated nitrogen cycling in limed acidic forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Shaw, A. N.; Kluber, L. A.; Burke, D. J.; Carrino-Kyker, S. R.; Smemo, K. A.

    2011-12-01

    Anthropogenic deposition can increase phosphorus (P) limitation by abiotic and biotic means. Soil acidification can remove P from available pools and nitrogen (N) deposition can increase the demand for P. We reason that chronic acidic deposition is promoting P limitation in acidic hardwood forests and thereby altering N cycling. The objectives of this study were to investigate the interactive influence of P availability and soil pH on N and P cycling and availability to determine if the response varies between two physiographic regions experiencing similar chronic acidic deposition. We addressed these objectives by experimentally manipulating soil pH, P, or both in strongly acidic glaciated and unglaciated hardwood forests in eastern Ohio, USA. Our results suggest complex interactions between P, soil pH, and the N cycle. Glaciated soils were found to be more N-saturated with nitrification rates 18 times greater than in unglaciated soils. Elevating pH, with or without added P, doubled nitrification rates in glaciated soils. For unglaciated soils, raising pH increased nitrification 10-fold, but increased nitrification only 5-fold in combination with P. This result suggests raising soil pH lowered the demand of soil N, or directly stimulated nitrifying activity, and that increasing P availability could limit N availability. To various degrees, readily available P was geochemically or biologically immobilized in all treatments, suggesting chronic P deficiency in these ecosystems. Phosphorus immobilization decreased as soil pH was elevated, but elevated P either had no effect (glaciated) or doubled P immobilization rates (unglaciated). These results suggest that raising soil pH reduces microbial P limitation for phosphate, whereas adding P appears to make phosphate scarcer. We suggest that P plays an important role in N transformations and cycling, but appears more important in unglaciated soils than in glaciated soils. Chronic soil acidification may have a greater

  1. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  2. Brønsted Acid-Promoted One-Pot Synthesis of Chrysene Derivatives via Isochromenylium Intermediate Formed in Situ.

    PubMed

    Guo, Biao; Zhou, Yiming; Zhang, Lei; Hua, Ruimao

    2015-08-01

    Trifluoromethanesulfonic acid (HOTf) promoted cross-coupling of ortho-[2-(4-methoxylphenyl)-alkynyl]acetophenones with ortho-alkynylbenzaldehydes affording chrysene derivatives has been developed. The present cascade reaction provides a facile one-pot synthesis of multisubstituted chrysenes as well as naked chrysene under mild conditions. The mechanism experimental results demonstrate isochromenylium is a key intermediate for this transformation.

  3. Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products.

    PubMed

    Marvig, C L; Kristiansen, R M; Nielsen, D S

    2015-01-01

    The most notorious spoilage organism of sweet intermediate moisture foods (IMFs) is Zygosaccharomyces rouxii, which can grow at low water activity, low pH and in the presence of organic acids. Together with an increased consumer demand for preservative free and healthier food products with less sugar and fat and a traditionally long self-life of sweet IMFs, the presence of Z. rouxii in the raw materials for IMFs has made assessment of the microbiological stability a significant hurdle in product development. Therefore, knowledge on growth/no growth boundaries of Z. rouxii in sweet IMFs is important to ensure microbiological stability and aid product development. Several models have been developed for fat based, sweet IMFs. However, fruit/sugar based IMFs, such as fruit based chocolate fillings and jams, have lower pH and aw than what is accounted for in previously developed models. In the present study growth/no growth models for acidified sweet IMFs were developed with the variables aw (0.65-0.80), pH (2.5-4.0), ethanol (0-14.5% (w/w) in water phase) and time (0-90 days). Two different strains of Z. rouxii previously found to show pronounced resistance to the investigated variables were included in model development, to account for strain differences. For both strains data sets with and without the presence of sorbic acid (250 ppm on product basis) were built. Incorporation of time as an exploratory variable in the models gave the possibility to predict the growth/no growth boundaries at each time between 0 and 90 days without decreasing the predictive power of the models. The influence of ethanol and aw on the growth/no growth boundary of Z. rouxii was most pronounced in the first 30 days and 60 days of incubation, respectively. The effect of pH was almost negligible in the range of 2.5-4.0. The presence of low levels of sorbic acid (250 ppm) eliminated growth of both strains at all conditions tested. The two strains tested have previously been shown to have

  4. Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin.

    PubMed

    Wunderlich, Kirsten A; Tanimoto, Naoyuki; Grosche, Antje; Zrenner, Eberhart; Pekny, Milos; Reichenbach, Andreas; Seeliger, Mathias W; Pannicke, Thomas; Perez, Maria-Thereza

    2015-12-01

    Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.

  5. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig

    2016-08-22

    Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3)  s(-1) and 5.4×10(-10)  cm(3)  s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

  6. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer.

    PubMed

    Schnarrenberger, Claus; Martin, William

    2002-02-01

    The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha

  7. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer.

    PubMed

    Schnarrenberger, Claus; Martin, William

    2002-02-01

    The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha

  8. S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate.

    PubMed

    Alderson, Nathan L; Wang, Yuping; Blatnik, Matthew; Frizzell, Norma; Walla, Michael D; Lyons, Timothy J; Alt, Nadja; Carson, James A; Nagai, Ryoji; Thorpe, Suzanne R; Baynes, John W

    2006-06-01

    S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.

  9. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  10. Glutathione plays a role in regulating the formation of toxic reactive intermediates from diphenylarsinic acid.

    PubMed

    Kinoshita, Kenji; Ochi, Takafumi; Suzuki, Toshihide; Kita, Kayoko; Kaise, Toshikazu

    2006-08-15

    The role of glutathione (GSH) in the cytotoxicity of diphenylarsinic acid [DPAA(V)], which was detected in drinking well water after a poisoning incident in Kamisu, Japan, was investigated in cultured human HepG2 cells. DPA-GS(III), which is the GSH adduct of DPAA, was synthesized and analyzed by HPLC/ESI-MS. DPA-GS(III) was highly toxic to cells and the potency was about 1000 times that of DPAA(V). DPAA(V) was stable in culture medium, while DPA-GS(III) was unstable and changed to protein-bound As (protein-As). By contrast, DPA-GS(III) remained stable with the addition of exogenous GSH, thereby reducing transformation to protein-As. In addition, DPA-GS(III) was transformed to bis(diphenylarsine)oxide [BDPAO(III)], which was observed under serum-free conditions. BDPAO(III) was very unstable and disappeared conversely with an increase in protein-As. In contrast, the presence of GSH suppressed the transformation of BDPAO(III) to protein-As while it enhanced the transformation of BDPAO(III) to DPA-GS(III). Depletion of cell GSH enhanced the cytotoxic effects of DPA-GS(III) and BDPAO(III). Moreover, exogenously-added GSH suppressed the cytotoxic effects of DPA-GS(III) and BDPAO(III). The dynamic behavior of arsenicals in the culture medium and the resultant cytotoxic effects suggested that GSH played a role in regulating the formation of toxic intermediates, such as DPA-GS(III) and BDPAO(III). Moreover, the results suggested that the formation of protein-As in culture medium was compatible with the cytotoxic effects and that GSH was a factor capable of regulating the formation of protein-As from either DPA-GS(III) or BDPAO(III). PMID:16793189

  11. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  12. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    PubMed

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L. PMID:25805013

  13. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    PubMed

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  14. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  15. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  16. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3. PMID:25384549

  17. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.

  18. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

    PubMed

    Percival, Carl J; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Topping, David O; Lowe, Douglas; Utembe, Steven R; Bacak, Asan; McFiggans, Gordon; Cooke, Michael C; Xiao, Ping; Archibald, Alexander T; Jenkin, Michael E; Derwent, Richard G; Riipinen, Ilona; Mok, Daniel W K; Lee, Edmond P F; Dyke, John M; Taatjes, Craig A; Shallcross, Dudley E

    2013-01-01

    Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved

  19. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

    PubMed

    Percival, Carl J; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Topping, David O; Lowe, Douglas; Utembe, Steven R; Bacak, Asan; McFiggans, Gordon; Cooke, Michael C; Xiao, Ping; Archibald, Alexander T; Jenkin, Michael E; Derwent, Richard G; Riipinen, Ilona; Mok, Daniel W K; Lee, Edmond P F; Dyke, John M; Taatjes, Craig A; Shallcross, Dudley E

    2013-01-01

    Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved

  20. Assay of the human liver citric acid cycle probe phenylacetylglutamine and of phenylacetate in plasma by gas chromatography-mass spectrometry.

    PubMed

    Yang, D; Beylot, M; Agarwal, K C; Soloviev, M V; Brunengraber, H

    1993-07-01

    Phenylacetate, derived from phenylalanine, is converted in human and primate liver to phenylacetylglutamine. The latter has been used to assess the labeling pattern of liver citric acid cycle intermediates. We present gas chromatographic-mass spectrometric assays of phenylacetylglutamine, phenylacetate, and phenylalanine in biological fluids. The compounds are derivatized with dimethylformamide dimethyl acetal. Limits of detection are 0.1 nmol for phenylacetylglutamine and phenylacetate and 2 nmol for phenylalanine. Baseline plasma concentrations of phenylacetate and phenylacetylglutamine and 1 and 3 microM, respectively. The 24-h urinary excretions of phenylacetate and phenylacetylglutamine are about 4 mumol and 1 mmol, respectively. Ingestion of phenylalanine (in the form of aspartame) by a human is followed by sequential increases in phenylacetate and phenylacetylglutamine concentrations in plasma and urine. This assay opens the way to noninvasive probing of the 13C-labeling pattern of liver citric acid cycle intermediates in humans.

  1. Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings.

    PubMed

    Saha, Papiya; Kunda, Pranamita; Biswas, Asok K

    2012-11-01

    The effect of common salt (NaCl) on ion contents, Krebs cycle intermediates and its regulatory enzymes was investigated in growing mungbean (Vigna radiata L. Wilczek, B 105) seedlings. Sodium and chloride ion contents increased in both root and shoot whereas potassium ion content decreased in shoot of test seedlings with increasing concentrations of NaCl. Organic acids like pyruvate and citrate levels increased whereas malate level decreased under stress in both roots and shoots. Salt stress also variedly affected the activities of different enzymes of respiratory chain. The activity of pyruvate dehydrogenase (E.C. 1.2.4.1) decreased in 50 mM NaCl but increased in 100 mM and 150 mM concentrations, in both root and shoot samples. Succinate dehydrogenase (E.C. 1.3.5.1) activity was reduced in root whereas stimulated in shoot under increasing concentrations of salt. The activity of isocitrate dehydrogenase (E.C. 1.1.1.41) and malate dehydrogenase (E.C. 1.1.1.37) decreased in both root and shoot samples under salt stress. On the contrary, pretreatment of mungbean seeds with sublethal dose of NaCl was able to overcome the adverse effects of stress imposed by NaCl to variable extents with significant alterations of all the tested parameters, resulting in better growth and efficient respiration in mungbean seedlings. Thus, plants can acclimate to lethal level of salinity by pretreatment of seeds with sublethal level of NaCl, which serves to improve their health and production under saline condition, but the sublethal concentration of NaCl should be carefully chosen.

  2. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.

    PubMed

    Zhu, Kun; Rock, Charles O

    2008-05-01

    Pseudomonas aeruginosa secretes a rhamnolipid (RL) surfactant that functions in hydrophobic nutrient uptake, swarming motility, and pathogenesis. We show that RhlA supplies the acyl moieties for RL biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Purified RhlA forms one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta-hydroxydecanoyl-ACP and is the only enzyme required to generate the lipid component of RL. The acyl groups in RL are primarily beta-hydroxydecanoyl, and in vitro, RhlA has a greater affinity for 10-carbon substrates, illustrating that RhlA functions as a molecular ruler that selectively extracts 10-carbon intermediates from FASII. Eliminating either FabA or FabI activity in P. aeruginosa increases RL production, illustrating that slowing down FASII allows RhlA to more-effectively compete for beta-hydroxydecanoyl-ACP. In Escherichia coli, the rate of fatty acid synthesis increases 1.3-fold when RhlA is expressed, to ensure the continued formation of fatty acids destined for membrane phospholipid even though 24% of the carbon entering FASII is diverted to RL synthesis. Previous studies have placed a ketoreductase, called RhlG, before RhlA in the RL biosynthetic pathway; however, our experiments show that RhlG has no role in RL biosynthesis. We conclude that RhlA is necessary and sufficient to form the acyl moiety of RL and that the flux of carbon through FASII accelerates to support RL production and maintain a supply of acyl chains for phospholipid synthesis.

  3. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery

    PubMed Central

    Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A.; Jung, Yousung; Choi, Jang Wook

    2014-01-01

    Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na+ while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials. PMID:24379365

  4. Improved amino acid, bioenergetic metabolite and neurotransmitter profiles following human amnion epithelial cell transplant in intermediate maple syrup urine disease mice.

    PubMed

    Skvorak, Kristen J; Dorko, Kenneth; Marongiu, Fabio; Tahan, Veysel; Hansel, Marc C; Gramignoli, Roberto; Arning, Erland; Bottiglieri, Teodoro; Gibson, K Michael; Strom, Stephen C

    2013-06-01

    Orthotopic liver transplant (OLT) significantly improves patient outcomes in maple syrup urine disease (MSUD; OMIM: 248600), yet organ shortages point to the need for alternative therapies. Hepatocyte transplantation has shown both clinical and preclinical efficacy as an intervention for metabolic liver diseases, yet the availability of suitable livers for hepatocyte isolation is also limited. Conversely, human amnion epithelial cells (hAEC) may have utility as a hepatocyte substitute, and they share many of the characteristics of pluripotent embryonic stem cells while lacking their safety and ethical concerns. We reported that like hepatocytes, transplantation of hAEC significantly improved survival and lifespan, normalized body weight, and significantly improved branched-chain amino acid (BCAA) levels in sera and brain in a transgenic murine model of intermediate maple syrup urine disease (imsud). In the current report, we detail the neural and peripheral metabolic improvements associated with hAEC transplant in imsud mice, including amino acids associated with bioenergetics, the urea cycle, as well as the neurotransmitter systems for serotonin, dopamine, and gamma-aminobutyric acid (GABA). This stem cell therapy results in significant global correction of the metabolic profile that characterizes the disease, both in the periphery and the central nervous system, the target organ for toxicity in iMSUD. The significant correction of the disease phenotype, coupled with the theoretical benefits of hAEC, particularly their lack of immunogenicity and tumorigenicity, suggests that human amnion epithelial cells deserve serious consideration for clinical application to treat metabolic liver diseases.

  5. Intermediates to ethylene glycol: carbonylation of formaldehyde catalyzed by Nafion solid perfluorosulfonic acid resin

    SciTech Connect

    Hendriksen, D.E.

    1983-01-01

    Details of a series of reactions for the production of ethylene glycol using a catalyst of Nafion solid perfluorosulfonic acid resin was detailed. The reactions included the carbonylation of formaldehyde and esterification and then hydrogenation of the product of the carbonylation, glycolic acid. Other preparations included in the work included methyl glycolate, acetylglycolic acid, methyl acetylglycolate, and methyl methoxyacetate.

  6. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  7. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    PubMed

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  8. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  9. Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones

    SciTech Connect

    Liebler, D.C.; Kaysen, K.L.; Kennedy, T.A. )

    1989-12-12

    Oxidation of the biological antioxidant {alpha}-tocopherol (vitamin E; TH) by peroxyl radicals yields 8a-(alkyldioxy)tocopherones, which either may hydrolyze to {alpha}-tocopheryl quinone (TQ) or may be reduced by ascorbic acid to regenerate TH. To define the chemistry of this putative two-electron TH redox cycle, we studied the hydrolysis and reduction of 8a-((2,4-dimethyl-1-nitrilopent-2-yl)dioxyl)tocopherone (1) in acetonitrile/buffer mixtures and in phospholipid liposomes. TQ formation in acetonitrile/buffer mixtures, which was monitored spectrophotometrically, declined with increasing pH and could not be detected above pH 4. The rate of TQ formation from 1 first increased with time and then decreased in a first-order terminal phase. Rearrangement of 8a-hydroxy-{alpha}-tocopherone (2) to TQ displayed first-order kinetics identical with the terminal phase for TQ formation from 1. Both rate constants increased with decreasing pH. Hydrolysis of 1 in acetonitrile/H{sub 2}{sup 18}O yielded ({sup 18}O)TQ. These observations suggest that 1 loses the 8a-(alkyldioxy) moiety to produce the tocopherone cation (T{sup +}), which hydrolyzes to 2, the TQ-forming intermediate. Incubation of either 1 or 2 with ascorbic acid in acetonitrile/buffer yielded TH. Reduction of both 1 and 2 decreased with increasing pH. In phosphatidylcholine liposomes at pH 7, approximately 10% of the T{sup +} generated from 1 was reduced to TH by 5 mM ascorbic acid. The results collectively demonstrate that T{sup +} is the ascorbic acid reducible intermediate in a two-electron TH redox cycle, a process that probably would require biocatalysis to proceed in biological membranes.

  10. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.

    PubMed Central

    Schmidt, E; Remberg, G; Knackmuss, H J

    1980-01-01

    Substituted muconic acids were prepared from the corresponding catechols by pyrocatechase II from Pseudomonas sp. B13. The stabilities of substituted muconic acids were compared under different pH conditions. 3-Substituted cis, cis-muconic acids cycloisomerized readily in slightly acidic solutions, whereas 2-chloro- and 2-fluoro-cis,cis-muconic acids were stable under these conditions and could be isolated as crystalline compounds. They were isomerized to the cis, trans-form in highly acidic solution (pH 1), particularly when heated to 80 degrees C. Cycloisomerization of 2-chloro-cis,cis-muconic acid in 75% (v/v) H2SO4 yields 4-carboxymethyl-2-chloro-but-2-en-4-olide (4-chloro-2,5-dihydro-5-oxo-3H-furan-2-ylacetic acid). THe cis,cis-configuration of 2-chloromuconic acid was certified by 1H n.m.r. spectroscopy and by enzymic cycloisomerization. Although the cis,cis-configuration of 2-fluoromuconic acid was confirmed by corresponding spectroscopic data, it was not cycloisomerized by crude extracts or cycloisomerase II preparations from Pseudomonas sp. B13. PMID:7305905

  11. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    PubMed

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  12. Changes in Levels of Intermediates of the C4 Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO2 in Maize Leaves 1

    PubMed Central

    Usuda, Hideaki

    1987-01-01

    The rate of CO2 assimilation and levels of metabolites of the C4 cycle and reductive pentose phosphate pathway in an attached leaf of maize (Zea mays L) were measured over a range of intercellular CO2 concentration (Ci) of 10 to 190 microliters per liter. The CO2 assimilation rate was saturated at a Ci of around 175 microliters per liter. The levels of ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate decreased substantially with increasing Ci. The levels of 3-phosphoglycerate, phosphoenolpyruvate (PEP), and pyruvate increased with increasing Ci. The level of dihydroxyacetone phosphate increased moderately from Ci of 10 microliters per liter to 20 to 50 microliters per liter and stayed almost constant over the rest of the range of Ci investigated. The levels of fructose 6-phosphate did not show any significant changes over the range of Ci. The levels of glucose 6-phosphate decreased slightly with increasing Ci. Although photosynthetically inactive pools of malate, asparate, and alanine could mask real changes in levels of the photosynthetically active pools of these compounds, the apparent levels of these compounds and the total amount of intermediates in the C4 cycle (malate, aspartate, pyruvate, PEP, and alanine) increased with increasing Ci. The results suggest that there is carbon input into the C4 cycle from the reductive pentose phosphate pathway which increases the level of total intermediates of the C4 cycle with increasing Ci. PMID:16665209

  13. Lewis acid trapping of an elusive copper-tosylnitrene intermediate using scandium triflate.

    PubMed

    Kundu, Subrata; Miceli, Enrico; Farquhar, Erik; Pfaff, Florian Felix; Kuhlmann, Uwe; Hildebrandt, Peter; Braun, Beatrice; Greco, Claudio; Ray, Kallol

    2012-09-12

    High-valent copper-nitrene intermediates have long been proposed to play a role in copper-catalyzed aziridination and amination reactions. However, such intermediates have eluded detection for decades, preventing the unambiguous assignments of mechanisms. Moreover, the electronic structure of the proposed copper-nitrene intermediates has also been controversially discussed in the literature. These mechanistic questions and controversy have provided tremendous motivation to probe the accessibility and reactivity of Cu(III)-NR/Cu(II)N(•)R species. In this paper, we report a breakthrough in this field that was achieved by trapping a transient copper-tosylnitrene species, 3-Sc, in the presence of scandium triflate. The sufficient stability of 3-Sc at -90 °C enabled its characterization with optical, resonance Raman, NMR, and X-ray absorption near-edge spectroscopies, which helped to establish its electronic structure as Cu(II)N(•)Ts (Ts = tosyl group) and not Cu(III)NTs. 3-Sc can initiate tosylamination of cyclohexane, thereby suggesting Cu(II)N(•)Ts cores as viable reactants in oxidation catalysis.

  14. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  15. Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclines.

    PubMed

    Eckardt, K; Tresselt, D; Schumann, G; Ihn, W; Wagner, C

    1985-08-01

    The fermentation, isolation and structure elucidation of aklanonic acid are described. The compound was isolated from fermentations of Streptomyces strain ZIMET 43,717. Aklanonic acid is a yellow-orange crystalline substance, melting at 203-204 degrees C (dec), having the molecular formula C21H16O8, and possessing UV maxima at 258, 282 (sh) and 438 nm (CHCl3). In dimethyl sulfoxide or pyridine aklanonic acid is unstable and a new compound (aklanone) is formed as a conversion product. The elucidation of the structures has shown that aklanonic acid and aklanone are derivatives of 1,8-dihydroxyanthraquinone. PMID:3862658

  16. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.

    PubMed

    Schatten, H; Walter, M; Mazia, D; Biessmann, H; Paweletz, N; Coffe, G; Schatten, G

    1987-12-01

    A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle. PMID:3120191

  17. The Utilization of Glycolytic Intermediates as Precursors for Fatty Acid Biosynthesis by Pea Root Plastids.

    PubMed Central

    Qi, Q.; Kleppinger-Sparace, K. F.; Sparace, S. A.

    1995-01-01

    Radiolabeled pyruvate, glucose, glucose-6-phosphate, acetate, and malate are all variously utilized for fatty acid and glycerolipid biosynthesis by isolated pea (Pisum sativum L.) root plastids. At the highest concentrations tested (3-5mM), the rates of incorporation of these precursors into fatty acids were 183, 154, 125, 99 and 57 nmol h-1 mg-1 protein, respectively. In all cases, cold pyruvate consistently caused the greatest reduction, whereas cold acetate consistently caused the least reduction, in the amounts of each of the other radioactive precursors utilized for fatty acid biosynthesis. Acetate incorporation into fatty acids was approximately 55% dependent on exogenously supplied reduced nucleotides (NADH and NADPH), whereas the utilization of the remaining precursors was only approximately 10 and 20% dependent on added NAD(P)H. In contrast, the utilization of all precursors was greatly dependent (85-95%) on exogenously supplied ATP. Palmitate, stearate, and oleate were the only fatty acids synthesized from radioactive precursors. Higher concentrations of each precursor caused increased proportions of oleate and decreased proportions of palmitate synthesized. Radioactive fatty acids from all precursors were incorporated into glycerolipids. The data presented indicate that the entire pathway from glucose, including glycolysis, to fatty acids and glycerolipids is operating in pea root plastids. This pathway can supply both carbon and reduced nucleotides required for fatty acid biosynthesis but only a small portion of the ATP required PMID:12228367

  18. [Influence of chosen metals on the citric acid cycle].

    PubMed

    Rojczyk-Gołebiewska, Ewa; Kucharzewski, Marek

    2013-03-01

    Industrial activity growth influenced not only technological progress, but also had negative effects on human natural environment. It results among others in increased human exposition to heavy metals. In case of detoxication mechanisms disturbance in organism, heavy metals cumulate in tissues causing mutations and disrupting metabolism, including Krebs cycle. Recent studies have revealed that iron, zinc and manganese have especially strong influence on Krebs cycle. These elements act as cofactors or inhibitors regulating activity of particular enzymes of this cycle, which has a reflection in cellular energy production disturbances.

  19. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids.

    PubMed Central

    Leppik, R A; Sinden, D J

    1987-01-01

    Transposon mutant strains which were affected in bile acid catabolism were isolated from four Pseudomonas spp. Two of the mutant groups isolated were found to accumulate 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione as the major product from deoxycholic acid. Strains in one of these two groups were able to grow on steroids such as chenodeoxycholic acid, which lacks a 12 alpha-hydroxy function, whereas the one member of the second group could not. With chenodeoxycholic acid, this latter strain accumulated a yellow muconic-like derivative, tentatively identified as 3,7-dihydroxy-5,9,17-trioxo-4(5),9(10)-disecoandrosta-1(10)2 -dien-4-oic acid. Members of two further mutant groups accumulated either 12 beta-hydroxyandrosta-1,4-diene-3,17-dione or 3,12 beta-dihydroxy-9(10)-secoandrosta-1,3,5(10)-triene-9,17-dione as the major product from deoxycholic acid. The relationship between the catabolism of m- and p-cresol, 3-ethylphenol and the bile acids was also examined. PMID:3038076

  20. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  1. Mechanism of proton transfer to coordinated thiolates: encapsulation of acid stabilizes precursor intermediate.

    PubMed

    Alwaaly, Ahmed; Clegg, William; Harrington, Ross W; Petrou, Athinoula L; Henderson, Richard A

    2015-07-14

    Earlier kinetic studies on the protonation of the coordinated thiolate in the square-planar [Ni(SC6H4R'-4)(triphos)](+) (R' = NO2, Cl, H, Me or MeO) by lutH(+) (lut = 2,6-dimethylpyridine) indicate a two-step mechanism involving initial formation of a (kinetically detectable) precursor intermediate, {[Ni(SC6H4R'-4)(triphos)]···Hlut}(2+) (K(R)1), followed by an intramolecular proton transfer step (k(R)2). The analogous [Ni(SR)(triphos)]BPh4 {R = Et, Bu(t) or Cy; triphos = PhP(CH2CH2PPh2)2} have been prepared and characterized by spectroscopy and X-ray crystallography. Similar to the aryl thiolate complexes, [Ni(SR)(triphos)](+) are protonated by lutH(+) in an equilibrium reaction but the observed rate law is simpler. Analysis of the kinetic data for both [Ni(SR)(triphos)](+) and [Ni(SC6H4R'-4)(triphos)](+) shows that both react by the same mechanism, but that K(R)1 is largest when the thiolate is poorly basic, or the 4-R' substituent in the aryl thiolates is electron-withdrawing. These results indicate that it is both NH···S hydrogen bonding and encapsulation of the bound lutH(+) (by the phenyl groups on triphos) which stabilize the precursor intermediate. PMID:26074501

  2. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.

    PubMed

    Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu

    2016-10-01

    Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease.

  3. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  4. Tricarboxylic Acid Cycle-Dependent Attenuation of Staphylococcus aureus In Vivo Virulence by Selective Inhibition of Amino Acid Transport▿

    PubMed Central

    Zhu, Yefei; Xiong, Yan Q.; Sadykov, Marat R.; Fey, Paul D.; Lei, Mei G.; Lee, Chia Y.; Bayer, Arnold S.; Somerville, Greg A.

    2009-01-01

    Staphylococci are the leading causes of endovascular infections worldwide. Commonly, these infections involve the formation of biofilms on the surface of biomaterials. Biofilms are a complex aggregation of bacteria commonly encapsulated by an adhesive exopolysaccharide matrix. In staphylococci, this exopolysaccharide matrix is composed of polysaccharide intercellular adhesin (PIA). PIA is synthesized when the tricarboxylic acid (TCA) cycle is repressed. The inverse correlation between PIA synthesis and TCA cycle activity led us to hypothesize that increasing TCA cycle activity would decrease PIA synthesis and biofilm formation and reduce virulence in a rabbit catheter-induced model of biofilm infection. TCA cycle activity can be induced by preventing staphylococci from exogenously acquiring a TCA cycle-derived amino acid necessary for growth. To determine if TCA cycle induction would decrease PIA synthesis in Staphylococcus aureus, the glutamine permease gene (glnP) was inactivated and TCA cycle activity, PIA accumulation, biofilm forming ability, and virulence in an experimental catheter-induced endovascular biofilm (endocarditis) model were determined. Inactivation of this major glutamine transporter increased TCA cycle activity, transiently decreased PIA synthesis, and significantly reduced in vivo virulence in the endocarditis model in terms of achievable bacterial densities in biofilm-associated cardiac vegetations, kidneys, and spleen. These data confirm the close linkage of TCA cycle activity and virulence factor production and establish that this metabolic linkage can be manipulated to alter infectious outcomes. PMID:19667045

  5. An iron–oxygen intermediate formed during the catalytic cycle of cysteine dioxygenase† †Electronic supplementary information (ESI) available: Experimental and computational details. See DOI: 10.1039/c6cc03904a Click here for additional data file.

    PubMed Central

    Tchesnokov, E. P.; Faponle, A. S.; Davies, C. G.; Quesne, M. G.; Turner, R.; Fellner, M.; Souness, R. J.; Wilbanks, S. M.

    2016-01-01

    Cysteine dioxygenase is a key enzyme in the breakdown of cysteine, but its mechanism remains controversial. A combination of spectroscopic and computational studies provides the first evidence of a short-lived intermediate in the catalytic cycle. The intermediate decays within 20 ms and has absorption maxima at 500 and 640 nm. PMID:27297454

  6. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  7. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    PubMed

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  8. Genetic variation in fatty acid elongases is not associated with intermediate cardiovascular phenotypes or myocardial infarction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elongases 2, 4 and 5, encoded by genes ELOVL2, ELOVL4 and ELOVL5, have a key role in the biosynthesis of very long chain polyunsaturated fatty acids (PUFAs). To date, few studies have investigated the associations between elongase polymorphisms and cardiovascular health. We investigated whether ELOV...

  9. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway.

    PubMed

    Matthijs, Sandra; Baysse, Christine; Koedam, Nico; Tehrani, Kourosh Abbaspour; Verheyden, Lieve; Budzikiewicz, Herbert; Schäfer, Mathias; Hoorelbeke, Bart; Meyer, Jean-Marie; De Greve, Henri; Cornelis, Pierre

    2004-04-01

    To cope with iron deficiency fluorescent pseudomonads produce pyoverdines which are complex peptidic siderophores that very efficiently scavenge iron. In addition to pyoverdine some species also produce other siderophores. Recently, it was shown that Pseudomonas fluorescens ATCC 17400 produces the siderophore quinolobactin, an 8-hydroxy-4-methoxy-2-quinoline carboxylic acid (Mossialos, D., Meyer, J.M., Budzikiewicz, H., Wolff, U., Koedam, N., Baysse, C., Anjaiah, V., and Cornelis, P. (2000) Appl Environ Microbiol 66: 487-492). The entire quinolobactin biosynthetic, transport and uptake gene cluster, consisting out of two operons comprising 12 open reading frames, was cloned and sequenced. Based on the genes present and physiological complementation assays a biosynthetic pathway for quinolobactin is proposed. Surprisingly, this pathway turned out to combine genes derived from the eukaryotic tryptophan-xanthurenic acid branch of the kynurenine pathway and from the pathway for the biosynthesis of pyridine-2,6-bis(thiocarboxylic acid) from P. stutzeri, PDTC. These results clearly show the involvement of the tryptophan-kynurenine-xanthurenic acid pathway in the synthesis of an authentic quinoline siderophore. PMID:15066027

  10. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  11. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended.

  12. Amino Acid Pools and Metabolism During the Cell Division Cycle of Arginine-Grown Candida utilis

    PubMed Central

    Nurse, P.; Wiemken, A.

    1974-01-01

    Synchronous cultures obtained by isopycnic density gradient centrifugation are used to investigate amino acid metabolism during the cell division cycle of the food yeast Candida utilis. Isotopic labeling experiments demonstrate that the rates of uptake and catabolism of arginine, the sole source of nitrogen, double abruptly during the first half of the cycle, while the cells undergo bud expansion. This is accompanied by a doubling in rate of amino acid biosynthesis, and an accumulation of amino acids. The accumulation probably occurs within the storage pools of the vacuoles. Amino acids derived from protein degradation contribute little to this accumulation. For the remainder of the cell cycle, during cell separation and until the next bud initiation, the rates of uptake and catabolism of arginine and amino acid biosynthesis remain constant. Despite the abrupt doubling in the rate of formation of amino acid pools, their rate of utilization for macromolecular synthesis increases steadily throughout the cycle. The significance of this temporal organization of nitrogen source uptake and amino acid metabolism during the cell division cycle is discussed. Images PMID:4591945

  13. New insights in nutritional management and amino acid supplementation in urea cycle disorders.

    PubMed

    Scaglia, Fernando

    2010-01-01

    Sodium phenylbutyrate is used in the pharmacological treatment of urea cycle disorders to create alternative pathways for nitrogen excretion. The primary metabolite, phenylacetate, conjugates glutamine in the liver and kidney to form phenylacetylglutamine that is readily excreted in the urine. Patients with urea cycle disorders taking sodium phenylbutyrate have a selective reduction in the plasma concentrations of branched chain amino acids despite adequate dietary protein intake. Moreover, this depletion is usually the harbinger of a metabolic crisis. Plasma branched chain amino acids and other essential amino acids were measured in control subjects, untreated ornithine transcarbamylase deficiency females, and treated patients with urea cycle disorders (ornithine transcarbamylase deficiency and argininosuccinate synthetase deficiency) in the absorptive state during the course of stable isotope studies. Branched chain amino acid levels were significantly lower in treated patients with urea cycle disorders when compared to untreated ornithine transcarbamylase deficiency females or control subjects. These results were replicated in control subjects who had low steady-state branched chain amino acid levels when treated with sodium phenylbutyrate. These studies suggested that alternative pathway therapy with sodium phenylbutyrate causes a substantial impact on the metabolism of branched chain amino acids in patients with urea cycle disorders, implying that better titration of protein restriction can be achieved with branched chain amino acid supplementation in these patients who are on alternative pathway therapy.

  14. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  15. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.

    PubMed

    Hol, Elly M; Pekny, Milos

    2015-02-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.

  16. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics.

    PubMed

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  17. Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(-13)C]glucose.

    PubMed

    Merle, M; Martin, M; Villégier, A; Canioni, P

    1996-08-01

    A mathematical model of the citric acid cycle devoted to the analysis of 13C-NMR data was developed for determining the relative flux of molecules through the anaplerotic versus oxidative pathways and the relative pyruvate carboxylase versus pyruvate dehydrogenase activities. Different variants of the model were considered depending on the reversibility of the conversion of fumarate into malate and oxaloacetate. The model also included the possibility of orientation-conserved transfer of the four-carbon citric acid cycle intermediates, leading to conversion of succinyl-CoA C1 into either malate C1 or C4. It was used to analyse NMR data from glutamine isotopomers produced by cerebellar astrocytes incubated with [1-13C]glucose. Partial cycling (39%) between oxaloacetate and fumarate was evident from the analysis. Application of the model to glutamate isotopomers from granule cells incubated with [1-13C]glucose [Martin, M.. Portais, J.C.. Labouesse. J., Canioni. P, & Merle, M. (1993) Eur. J. Biochem. 217, 617-625] indicated that total cycling of oxaloacetate into fumarate was, in this case, required to get the best fit. The results emphasized some important differences in carbon metabolism between cerebellar astrocytes and granule cells concerning the sources of carbon fuelling the citric acid cycle and the carbon fluxes on different pathways.

  18. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  19. Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions

    PubMed Central

    Druschel, Gregory K.

    2013-01-01

    The thermoacidophile and obligate elemental sulfur (S80)-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S80-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H2S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S80 and the biologically produced H2S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S80 was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S80 can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S80 provided as a solid phase in the medium or with S80 sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S80 sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S80 provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S80 particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S80 particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens. PMID:23335768

  20. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    PubMed

    Izac, Marie; Garnier, Dominique; Speck, Denis; Lindley, Nic D

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  1. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  2. Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions.

    PubMed

    Boyd, Eric S; Druschel, Gregory K

    2013-03-01

    The thermoacidophile and obligate elemental sulfur (S(8)(0))-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S(8)(0)-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H(2)S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S(8)(0) and the biologically produced H(2)S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S(8)(0) was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S(8)(0) can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S(8)(0) provided as a solid phase in the medium or with S(8)(0) sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S(8)(0) sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S(8)(0) provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S(8)(0) particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S(8)(0) particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.

  3. [A theoretical discussion on oscillations of concentrations of P700+ and the intermediates of the Calvin-Benson cycle].

    PubMed

    Kirzhanov, D V; Kukushkin, A K

    2010-01-01

    A theoretically obtained oscillatory mode caused by long-wave illumination is discussed. Repetitive variations in the performance of photosystem I, the electron transport chain, and the Calvin-Benson cycle take place in this mode. The corresponding alterations of photosystem II performance are not repetitive. Damped oscillations of P700+ concentration and CO2 assimilation rate are observed on the theoretical curves. The oscillations of the photosystem I variables of the model look similar to the P700+ concentration dependences derived earlier during experiments on registration of photosystem I EPR signal at different temperatures.

  4. Acidic metabolites. VI. 20 alpha-isosteroids as intermediates in 20 alpha-dihydrosteroid formation

    SciTech Connect

    Monder, C.; Bradlow, H.L.; Han, C.A.; Zumoff, B.

    1985-03-01

    We have previously shown that human subjects metabolize the 20 beta-epimer of isocortisol (11 beta, 17,20 beta-trihydroxy-3-oxo-pregn-4-en-21-al) to both 20 alpha- and 20 beta-hydroxy steroid end products. In this paper we describe the synthesis of tritium labeled 20 alpha-epimers of isocortisol and isoTHF (3 alpha, 11 beta, 17,20 alpha-tetrahydroxy-5 beta-pregnan-21-al) and their metabolic fate in humans. Both steroids yielded 20 alpha-hydroxy urinary neutral end-products (cortols and cortolones) and no 20 beta-hydroxy epimers. Regeneration of 17-ketols from aldols occurred to a small extent with isoTHF, but not with isocortisol. Isocortisol and isoTHF yielded less cortoic acids than did the corresponding ketols. The results provide further evidence that in man the stereochemistry at C-20 of the end-products of corticosteroid metabolism is determined by the configuration of the aldol at C-20 prior to subsequent metabolic events.

  5. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R.B.; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  6. An alternative mechanism for guanidinoacetic acid to affect methylation cycle.

    PubMed

    Ostojic, Sergej M

    2014-12-01

    Guanidinoacetic acid (also known as glycocyamine; GAA) is an endogenous substance which occurs in humans and plays a central role in the biosynthesis of creatine. The formation of creatine from GAA consumes methyl groups, and increases production of homocysteine. GAA may have the potential to stimulate insulin secretion. Insulin reduces plasma homocysteine and raises methyl group supply. It is possible that the ability of GAA to trigger the insulin secretion modulates methyl group metabolism, and comparatively counterbalance for the direct effect of GAA on increased methylation demand. Possible insulinotropic effect of GAA may contribute to total in vivo methylation demand during biotransformation. PMID:25468046

  7. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-01

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  8. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  9. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern.

  10. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.; Arzhanov, M. M.; Demchenko, P. F.; Denisov, S. N.

    2008-04-01

    The climate model of the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes. Methane emissions are allowed only from unfrozen top layers of the soil, with an additional constraint in the depth of the simulated layer. All wetland ecosystems are assumed to be water-saturated. The molar amount of the methane oxidized in the atmosphere is added to the simulated atmospheric concentration of CO2. A control preindustrial experiment and a series of numerical experiments for the 17th-21st centuries were conducted with the model forced by greenhouse gases and tropospheric sulfate aerosols. It is shown that the IAP RAS CM generally reproduces preindustrial and current characteristics of both seasonal thawing/freezing of the soil and the methane cycle. During global warming in the 21st century, the permafrost area is reduced by four million square kilometers. By the end of the 21st century, methane emissions from wetland ecosystems amount to 130-140 Mt CH4/year for the preindustrial and current period increase to 170-200 MtCH4/year. In the aggressive anthropogenic forcing scenario A2, the atmospheric methane concentration grows steadily to ≈3900 ppb. In more moderate scenarios A1B and B1, the methane concentration increases until the mid-21st century, reaching ≈2100-2400 ppb, and then decreases. Methane oxidation in air results in a slight additional growth of the atmospheric concentration of carbon dioxide. Allowance for the interaction between processes in wetland ecosystems and the methane cycle in the IAP RAS CM leads to an additional atmospheric methane increase of 10-20% depending on the anthropogenic forcing scenario and the time. The causes of this additional increase are the temperature dependence of integral methane production and the longer duration

  11. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  12. Sampangine (a Copyrine Alkaloid) Exerts Biological Activities through Cellular Redox Cycling of Its Quinone and Semiquinone Intermediates.

    PubMed

    Mahdi, Fakhri; Morgan, J Brian; Liu, Wenlong; Agarwal, Ameeta K; Jekabsons, Mika B; Liu, Yang; Zhou, Yu-Dong; Nagle, Dale G

    2015-12-24

    The cananga tree alkaloid sampangine (1) has been extensively investigated for its antimicrobial and antitumor potential. Mechanistic studies have linked its biological activities to the reduction of cellular oxygen, the induction of reactive oxygen species (ROS), and alterations in heme biosynthesis. Based on the yeast gene deletion library screening results that indicated mitochondrial gene deletions enhanced the sensitivity to 1, the effects of 1 on cellular respiration were examined. Sampangine increased oxygen consumption rates in both yeast and human tumor cells. Mechanistic investigation indicated that 1 may have a modest uncoupling effect, but predominately acts by increasing oxygen consumption independent of mitochondrial complex IV. Sampangine thus appears to undergo redox cycling that may involve respiratory chain-dependent reduction to a semi-iminoquinone followed by oxidation and consequent superoxide production. Relatively high concentrations of 1 showed significant neurotoxicity in studies conducted with rat cerebellar granule neurons, indicating that sampangine use may be associated with potential neurotoxicity. PMID:26637046

  13. Molecular identification of larvae of a tetraphyllidean tapeworm (Platyhelminthes: Eucestoda) in a razor clam as an alternative intermediate host in the life cycle of Acanthobothrium brevissime.

    PubMed

    Holland, Nicholas D; Wilson, Nerida G

    2009-10-01

    Dwarf razor clams (Ensis minor) in the Gulf of Mexico are known to be infected with plerocercoid larvae of a tetraphyllidean tapeworm. Here, we show that these larvae live unencysted in the intestinal lumen of the clam. Morphologically, the larvae are similar to (although significantly larger than) tapeworm larvae previously described living in the gut of amphioxus (Branchiostoma floridae) from the same habitat. Sequence data from the D2 region of the 28S rDNA from clam-infecting larvae were identical to the sequence of Acanthobothrium brevissime isolated as larvae from amphioxus and as adults from a stingray (Dasyatis say). The sequence data leave little doubt that the dwarf razor clam and the amphioxus are alternative intermediate hosts in the life cycle of A. brevissime. PMID:19366282

  14. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  15. 3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle

    PubMed Central

    Katayama, Eisaku

    2014-01-01

    Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. “tilting of the lever-arm” has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze deep-etch replica electron microscopy to directly visualize the structure of in vitro actin-sliding myosin, and found the existence of a novel oppositely-bent configuration, instead of the expected ADP/Vi-bound form. We also noticed that SH1–SH2 cross-linked myosin gives an aberrant appearance similar to the above structure. Since SH1–SH2-cross-linked myosin is a well-studied analogue of the transient intermediate of the actomyosin cross-bridge cycle, we devised a new image-processing procedure to define the relative view-angles between the catalytic-domain and the lever-arm from those averaged images, and built a 3-D model of the new conformer. The lever-arm in that model was bent oppositely to the ADP/Vi-bound form, in accordance with observed actin-sliding cross-bridge structure. Introducing this conformer as the crucial intermediate that transiently appears during sliding, we propose a revised scheme of the cross-bridge cycle. In the scenario, the novel conformer keeps actin-binding in two different modes until it forms a primed configuration. The final extension of the lever-arm back to the original rigor-state constitutes the “power-stroke”. Various images observed during sliding could be easily interpreted by the new conformer. Even the enigmatic behavior of the cross-bridges reported as “loose chemo-mechanical coupling” might be adequately explained under some assumptions. PMID:27493503

  16. Effects of oxolinic acid on the sleep-wakefulness cycle of the rat

    PubMed Central

    D'Angelo, L.; Monti, J.M.

    1981-01-01

    1 A study was carried out in rats (prepared for chronic sleep recording) of the effects of oxolinic acid on the sleep-wakefulness cycle. 2 In addition, the actions of oxolinic acid on the sleep-wake cycle were assessed after pretreatment with drugs interfering with central catecholamine mechanisms or facilitating central γ-aminobutyric acid (GABA) activity. 3 Oxolinic acid (8-32 mg/kg) induced a significant and dose-related increase of waking EEG, while slow wave and REM sleep were decreased. 4 The effects of oxolinic acid on waking, slow wave and REM sleep were antagonized by α-methyl-p-tyrosine (50-100 mg/kg) which interferes with the synthesis of catecholamines. 5 FLA-63 (25 mg/kg) which is a specific inhibitor of noradrenaline synthesis, was effective in blocking oxolinic acid-related increase of waking and decrease of slow wave sleep. 6 Haloperidol (0.4-0.6 mg/kg) which blocks central dopamine and noradrenaline receptors, reversed oxolinic acid-induced actions on waking and slow wave sleep. Spiroperidol (2-4 mg/kg) which interferes with dopamine and 5-hydroxytryptamine mechanisms, only antagonized the effect of oxolinic acid on light slow wave sleep. REM sleep was further decreased by both neuroleptic agents. 7 γ-Hydroxybutyrate (25-50 mg/kg), which acts as a GABA agonist and amino-oxyacetic acid (20 mg/kg), which considerably increases central GABA levels, were ineffective in blocking oxolinic acid-related disruption of the sleep-wake cycle. 8 Our results suggest that the catecholamines are involved in the arousing effect of oxolinic acid. PMID:7317689

  17. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.

    PubMed

    Santos, Patrícia S M; Domingues, M Rosário M; Duarte, Armando C

    2016-07-01

    A previous work showed that the night period is important for the occurrence of Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric waters, which originate new chromophoric compounds apparently more complex than the precursors, although the chemical transformations involved in the process are still unknown. In this work were identified by gas chromatography-mass spectrometry (GC-MS) and by electrospray mass spectrometry (ESI-MS) the organic intermediate compounds formed during the Fenton-like oxidation of three aromatic acids from biomass burning (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), the same compounds evaluated in the previous study, in water and in the absence of light, which in turns allows to disclose the chemical reaction pathways involved. The oxidation intermediate compounds found for benzoic acid were 2-hydroxybenzoic, 3-hydroxybenzoic, 4-hydroxybenzoic, 2,3-dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. The oxidation intermediates for 4-hydroxybenzoic acid were 3,4-hydroxybenzoic acid and hydroquinone, while for 3,5-dihydroxybenzoic acid were 2,4,6-trihydroxybenzoic and 3,4,5-trihydroxybenzoic acids, and tetrahydroxybenzene. The results suggested that the hydroxylation of the three small aromatic acids is the main step of Fenton-like oxidation in atmospheric waters during the night, and that the occurrence of decarboxylation is also an important step during the oxidation of the 4-dihydroxybenzoic and 3,5-dihydroxybenzoic acids. In addition, it is important to highlight that the compounds produced are also small aromatic compounds with potential adverse effects on the environment, besides becoming available for further chemical reactions in atmospheric waters.

  18. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China.

    PubMed

    Mao, Xiu Guang; Zhu, Guang Jian; Zhang, Shuyi; Rossiter, Stephen J

    2010-07-01

    The repeated formation and loss of land-bridges during the Pleistocene have had lasting impacts on population genetic structure. In the tropics, where island populations persisted through multiple glacial cycles, alternating periods of isolation and contact are expected to have driven population and taxonomic divergence. Here, we combine mitochondrial and nuclear sequence data with microsatellites to dissect the impact of Pleistocene climate change on intra-specific diversification in the horseshoe bat Rhinolophus affinis. This taxon shows considerable morphological and acoustic variation: two parapatric subspecies (himalayanus and macrurus) occur on mainland China and a third (hainanus) on Hainan Island. Our phylogeographic reconstruction and coalescent analyses suggest the island subspecies formed from an ancestral population of himalayanus via two colonization events c. 800,000 years before present. R. a. hainanus then recolonized the mainland, forming macrurus and thus a secondary contact zone with himalayanus. Finally, macrurus recolonized Hainan following the LGM. We found that all three biological events corresponded to known periods of land-bridge formation. Evidence of introgression was detected between macrurus and both its sister taxa, with geographical proximity rather than length of separation appearing to be the biggest determinant of subsequent genetic exchange. Our study highlights the important role of climate-mediated sea level changes have had in shaping current processes and patterns of population structure and taxonomic diversification.

  19. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurtén, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-11-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of the reaction of stabilized Criegee intermediates (sCIs) with SO2, atmospheric oxidation processes were thought to be dominated by a few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulfuric acid (H2SO4). The measured total sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) /k(sCI + SO2), was determined at relative humidities of 10 and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene-derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecules cm-3 and nearly independent of the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster

  20. Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurten, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-01-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of stabilized Criegee intermediates (sCI), atmospheric oxidation processes were thought to be dominated by few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulphuric acid (H2SO4). The measured sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for the ozonolysis of α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) / k(sCI + SO2), was determined at relative humidities of 10% and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecule cm-3 and nearly independent on the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster with the

  1. Chopper-controlled discharge life cycling studies on lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Kraml, J. J.; Ames, E. P.

    1982-01-01

    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.

  2. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  3. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2015-03-01

    We consider the much discussed hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach that quantifies the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for the investigations of the origin of the common metabolic core should be significantly extended. This work was supported by a grant from the Simons Foundation (SCOL 291937, Dmitry Zubarev).

  4. NHI-Acid Concentration Membranes -- Membrane Recommendations for the S-I Cycle

    SciTech Connect

    Frederick F Stewart

    2007-03-01

    Scope: The purpose of this draft report is to make recommendations concerning the applicability of specific membrane materials for acid concentration processes to the Sulfur-Iodine (S-I) thermochemical cycle integrated laboratory scale (ILS) demonstration. Introduction Acid concentration membrane processes have been studied for possible inclusion in the Sulfur-Iodine integrated laboratory scale (S-I ILS) demonstration. The need for this technology is driven by the chemical processes required for economical water splitting using the S-I cycle. Of the chemical processes inherent to the S-I cycle that have been identified as targets for deployment of membrane technology, three have been studied during the past three fiscal years as a part of the DOE Nuclear Hydrogen Initiative. First, the ability to concentrate hydriodic acid (HI) and iodine mixtures was sought as a method for aiding in the isolation of HI away from water and iodine. Isolated HI would then be delivered to the HI decomposition process for liberation of product hydrogen. Second, an extension of this technology to sulfuric acid was proposed to benefit sulfuric acid decomposition recycle. Third, decomposition of HI to form hydrogen is equilibrium limited. Removal of hydrogen, utilizing Le Chatelier’s principle, will increase to overall conversion and thus increasing the efficiency of the S-I cycle.

  5. [Effects of polyunsaturated fatty acids on Krebs cycle in the rat kidney in chronic phosphorus intoxication].

    PubMed

    Kulkybaev, G A; Merkusheva, N V

    1992-01-01

    The investigation of Krebs cycle state in kidney homogenates of August rats subjected to oral intoxication with oil solution of yellow phosphorus in a dose of 0.3 mg/kg, has shown that under conditions of balanced nutrition the activity of NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase and accumulation of the substrate fund of the cycle decreased 3.5-fold as compared to the control. The addition of polyunsaturated fatty acids to the ration produced a positive effect on Krebs cycle state: dehydrogenase activity was not significantly changed, accumulation of Krebs cycle substrate was two-fold lower. However, this ration did not completely abolish the toxic action of yellow phosphorus on Krebs cycle.

  6. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  7. The life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905.

    PubMed

    Huston, Daniel C; Cutmore, Scott C; Cribb, Thomas H

    2016-09-01

    Using novel molecular and morphological data we elucidated the life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 from off Lizard Island, on the northern Great Barrier Reef, Australia. ITS2 rDNA sequences generated for larval trematodes from the infected snail species Echinolittorina austrotrochoides Reid (Littorinidae) were identical to those from adult G. yaaji from the fish Kyphosus cinerascens (Forsskål) (Kyphosidae). Cercariae develop in rediae in E. austrotrochoides, emerge from the snail, encyst on algae as metacercariae, and are inferred to then be consumed by the herbivorous definitive fish host, K. cinerascens. In addition, we generated the first ITS2 rDNA sequences for a gorgocephalid previously reported from the littorind gastropod Austrolittorina unifasciata Gray. Although infections previously reported from A. unifasciata were the first larval gorgocephalids characterised, this study is the first to connect an intramolluscan infection to a sexual adult. In light of the new life-cycle information, a review of mollusc associations for the digenean superfamily Lepocreadioidea was performed, highlighting gaps in the knowledge and revealing patterns of host-parasite association. We find that distinct patterns of first intermediate host association are discernible for three lepocreadioid lineages: the Aephnidiogenidae Yamaguti, 1934, Gorgocephalidae Manter, 1966, and the Lepocreadiidae Odhner, 1905. However, the evolutionary origin for these patterns of host association remains unclear. PMID:27522365

  8. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  9. ReaxFF molecular dynamics simulations of intermediate species in dicyanamide anion and nitric acid hypergolic combustion

    NASA Astrophysics Data System (ADS)

    Weismiller, Michael R.; Junkermeier, Chad E.; Russo, Michael F., Jr.; Salazar, Michael R.; Bedrov, Dmitry; van Duin, Adri C. T.

    2015-10-01

    Ionic liquids based on the dicyanamide anion (DCA) are of interest as replacements for current hypergolic fuels, which are highly toxic. To better understand the reaction dynamics of these ionic liquid fuels, this study reports the results of molecular dynamics simulations performed for two predicted intermediate compounds in DCA-based ionic liquids/nitric acid (HNO3) combustion, i.e. protonated DCA (DCAH) and nitro-dicyanamide-carbonyl (NDC). Calculations were performed using a ReaxFF reactive force field. Single component simulations show that neat NDC undergo exothermic decomposition and ignition. Simulations with HNO3 were performed at both a low (0.25 g ml-1) and high (1.00 g ml-1) densities, to investigate the reaction in a dense vapor and liquid phase, respectively. Both DCAH and NDC react hypergolically with HNO3, and increased density led to shorter times for the onset of thermal runaway. Contrary to a proposed mechanism for DCA combustion, neither DCAH nor NDC are converted to 1,5-Dinitrobiuret (DNB) before thermal runaway. Details of reaction pathways for these processes are discussed.

  10. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate.

    PubMed

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.

  11. The predicted amino acid sequence of alpha-internexin is that of a novel neuronal intermediate filament protein.

    PubMed Central

    Fliegner, K H; Ching, G Y; Liem, R K

    1990-01-01

    Our laboratory recently isolated and began to characterize a 66 kd rat brain cytoskeletal protein, dubbed alpha-internexin for its interactions in vitro with several other cytoskeletal proteins. Although alpha-internexin bore several of the characteristics of intermediate filament (IF) proteins, including the recognition by an antibody reactive with all IF proteins, it did not polymerize into 10 nm filaments under the conditions tested. Here we show that the predicted amino acid sequence of a cDNA encoding alpha-internexin shows the latter to be an IF protein, probably most closely related to the neurofilament proteins. Northern blotting shows that alpha-internexin expression is brain specific, and that rat brain alpha-internexin mRNA levels are maximal prior to birth and decline into adulthood, while the converse is seen for NF-L, the low molecular weight neurofilament subunit, suggesting that these two proteins play different roles in the developing brain. Images Fig. 1. Fig. 3. Fig. 5. PMID:2311576

  12. Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale of two cycles, one an ATP-depleting futile cycle and the other a useful cycle.

    PubMed

    Emmett, Michael

    2014-01-01

    The acquired form of 5-oxoproline (pyroglutamic acid) metabolic acidosis was first described in 1989 and its relationship to chronic acetaminophen ingestion was proposed the next year. Since then, this cause of chronic anion gap metabolic acidosis has been increasingly recognized. Many cases go unrecognized because an assay for 5-oxoproline is not widely available. Most cases occur in malnourished, chronically ill women with a history of chronic acetaminophen ingestion. Acetaminophen levels are very rarely in the toxic range; rather, they are usually therapeutic or low. The disorder generally resolves with cessation of acetaminophen and administration of intravenous fluids. Methionine or N-acetyl cysteine may accelerate resolution and methionine is protective in a rodent model. The disorder has been attributed to glutathione depletion and activation of a key enzyme in the γ-glutamyl cycle. However, the specific metabolic derangements that cause the 5-oxoproline accumulation remain unclear. An ATP-depleting futile 5-oxoproline cycle can explain the accumulation of 5-oxoproline after chronic acetaminophen ingestion. This cycle is activated by the depletion of both glutathione and cysteine. This explanation contributes to our understanding of acetaminophen-induced 5-oxoproline metabolic acidosis and the beneficial role of N-acetyl cysteine therapy. The ATP-depleting futile 5-oxoproline cycle may also play a role in the energy depletions that occur in other acetaminophen-related toxic syndromes.

  13. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  14. Colanic Acid Intermediates Prevent De Novo Shape Recovery of Escherichia coli Spheroplasts, Calling into Question Biological Roles Previously Attributed to Colanic Acid

    PubMed Central

    Ranjit, Dev K.

    2016-01-01

    ABSTRACT After losing their protective peptidoglycan, bacterial spheroplasts can resynthesize a cell wall to recreate their normal shape. In Escherichia coli, this process requires the Rcs response. In its absence, spheroplasts do not revert to rod shapes but instead form enlarged spheroids and lyse. Here, we investigated the reason for this Rcs requirement. Rcs-deficient spheroids exhibited breaks and bulges in their periplasmic spaces and failed to synthesize a complete peptidoglycan cell wall, indicating that the bacterial envelope was defective. To determine the Rcs-dependent gene(s) required for shape recovery, we tested spheroplasts lacking selected RcsB-regulated genes and found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, extracellular CA was not required for recovery. Instead, lysis was caused by mutations that interrupted CA biosynthesis downstream of the initial glycosyl transferase, WcaJ. Deleting wcaJ prevented lysis of spheroplasts lacking ensuing steps in the pathway, and providing WcaJ in trans to a mutant lacking the entire CA operon triggered spheroplast enlargement and lysis. Thus, CA is not required for spheroplast recovery. Instead, CA intermediates accumulate as dead-end products which inhibit recovery of wall-less cells. The results strongly imply that CA may not be required for the survival E. coli L-forms. More broadly, these findings mandate that previous conclusions about the role of colanic acid in biofilm formation or virulence must be reevaluated. IMPORTANCE Wall-less bacteria can resynthesize their walls and recreate a normal shape, which in Escherichia coli requires the Rcs response. While attempting to identify the Rcs-dependent gene required for shape recovery, we found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, cell death was caused by mutations that interrupted CA biosynthesis downstream of the initial step in the pathway, creating dead-end compounds

  15. Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2009-11-01

    A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as bio chemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the α-ketocarboxylic acids pyruvate and α-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, α-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of α-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15°C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to α-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that α-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.

  16. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids

    PubMed Central

    Ferrebee, Courtney B.; Dawson, Paul A.

    2015-01-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  17. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients.

    PubMed

    Scaglia, Fernando; Carter, Susan; O'Brien, William E; Lee, Brendan

    2004-04-01

    Urea cycle disorders (UCDs) are a group of inborn errors of hepatic metabolism caused by the loss of enzymatic activities that mediate the transfer of nitrogen from ammonia to urea. These disorders often result in life-threatening hyperammonemia and hyperglutaminemia. A combination of sodium phenylbutyrate and sodium phenylacetate/benzoate is used in the clinical management of children with urea cycle defects as a glutamine trap, diverting nitrogen from urea synthesis to alternatives routes of excretion. We have observed that patients treated with these compounds have selective branched chain amino acid (BCAA) deficiency despite adequate dietary protein intake. However, the direct effect of alternative therapy on the steady state levels of plasma branched chain amino acids has not been well characterized. We have measured steady state plasma branched chain and other essential non-branched chain amino acids in control subjects, untreated ornithine transcarbamylase deficiency females and treated null activity urea cycle disorder patients in the fed steady state during the course of stable isotope studies. Steady-state leucine levels were noted to be significantly lower in treated urea cycle disorder patients when compared to either untreated ornithine transcarbamylase deficiency females or control subjects (P<0.0001). This effect was reproduced in control subjects who had depressed leucine levels when treated with sodium phenylacetate/benzoate (P<0.0001). Our studies suggest that this therapeutic modality has a substantial impact on the metabolism of branched chain amino acids in urea cycle disorder patients. These findings suggest that better titration of protein restriction could be achieved with branched chain amino acid supplementation in patients with UCDs who are on alternative route therapy.

  18. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis.

    PubMed

    Cavalcanti, João Henrique Frota; Esteves-Ferreira, Alberto A; Quinhones, Carla G S; Pereira-Lima, Italo A; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2014-10-01

    The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations.

  19. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis

    PubMed Central

    Cavalcanti, João Henrique Frota; Esteves-Ferreira, Alberto A.; Quinhones, Carla G.S.; Pereira-Lima, Italo A.; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Araújo, Wagner L.

    2014-01-01

    The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations. PMID:25274566

  20. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction.

  1. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. PMID:26895788

  2. The Non-native Helical Intermediate State May Accumulate at Low pH in the Folding and Aggregation Landscape of the Intestinal Fatty Acid Binding Protein.

    PubMed

    Sarkar-Banerjee, Suparna; Chowdhury, Sourav; Paul, Simanta Sarani; Dutta, Debashis; Ghosh, Anisa; Chattopadhyay, Krishnananda

    2016-08-16

    There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly β-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely β-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein

  3. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  4. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  5. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Anderson, T. R.

    2013-02-01

    MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically-driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. Since the beginning of the industrial era, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background concentration. Simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, therefore requires that both organic and inorganic carbon be afforded a full representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterisations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal hindcast simulation described (1860-2005), to evaluate the biogeochemical performance of the model.

  6. Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle*

    PubMed Central

    Cao, Zhenbo; Tavender, Timothy J.; Roszak, Aleksander W.; Cogdell, Richard J.; Bulleid, Neil J.

    2011-01-01

    Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We have determined the crystal structure of both reduced and disulfide-bonded, as well as a resolving cysteine mutant of human PrxIV. We show that PrxIV has a similar structure to other typical 2-Cys peroxiredoxins and undergoes a conformational change from a fully folded to a locally unfolded form following the formation of a disulfide between the peroxidatic and resolving cysteine residues. Unlike other mammalian typical 2-Cys peroxiredoxins, we show that human PrxIV forms a stable decameric structure even in its disulfide-bonded state. In addition, the structure of a resolving cysteine mutant reveals an intermediate in the reaction cycle that adopts the locally unfolded conformation. Interestingly the peroxidatic cysteine in the crystal structure is sulfenylated rather than sulfinylated or sulfonylated. In addition, the peroxidatic cysteine in the resolving cysteine mutant is resistant to hyper-oxidation following incubation with high concentrations of hydrogen peroxide. These results highlight some unique properties of PrxIV and suggest that the equilibrium between the fully folded and locally unfolded forms favors the locally unfolded conformation upon sulfenylation of the peroxidatic cysteine residue. PMID:21994946

  7. YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway.

    PubMed

    Görke, Boris; Foulquier, Elodie; Galinier, Anne

    2005-11-01

    The HPr-like protein Crh has so far been detected only in the bacillus group of bacteria. In Bacillus subtilis, its gene is part of an operon composed of six ORFs, three of which exhibit strong similarity to genes of unknown function present in many bacteria. The promoter of the operon was determined and found to be constitutively active. A deletion analysis revealed that gene yvcK, encoded by this operon, is essential for growth on Krebs cycle intermediates and on carbon sources metabolized via the pentose phosphate pathway. In addition, cells lacking YvcK acquired media-dependent filamentous or L-shape-like aberrant morphologies. The presence of high magnesium concentrations restored normal growth and cell morphology. Furthermore, suppressor mutants cured from these growth defects appeared spontaneously with a high frequency. Such suppressing mutations were identified in a transposon mutagenesis screen and found to reside in seven different loci. Two of them mapped in genes of central carbon metabolism, including zwf, which encodes glucose-6-phosphate dehydrogenase and cggR, the product of which regulates the synthesis of glyceraldehyde-3-phosphate dehydrogenase. All these results suggest that YvcK has an important role in carbon metabolism, probably in gluconeogenesis required for the synthesis of cell wall precursor molecules. Interestingly, the Escherichia coli homologous protein, YbhK, can substitute for YvcK in B. subtilis, suggesting that the two proteins have been functionally conserved in these different bacteria.

  8. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  9. An investigation of carbon cycle dynamics from the Last Glacial Maximum to the present using an earth system model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Simmons, C. T.; Mysak, L. A.; Matthews, D.

    2011-12-01

    The University of Victoria Earth System Climate Model of intermediate complexity (v. 2.9) is used in this study to investigate carbon cycle dynamics from the Last Glacial Maximum to the present, with a particular emphasis on recreating the Holocene's carbon cycle from 8000-150 years before present (BP). This particular model's strengths are its comprehensive representation of ocean circulation in an ocean GCM (with 1.8° x 3.6° resolution and 19 levels) as well as its ability to perform transient simulations over the entire period between the LGM and the present. Without the explicit representation of peatlands, coral reefs and land use change, the UVic model's natural Holocene carbon cycle produced a decline of 245-254 ppm from 8000 to 150 BP, in contrast to the increase from 260 ppm to 280 ppm actually seen during this period. The effects of deep-ocean calcite compensation (and corresponding lysocline changes) were only a few (1-2) ppm when compared to simulations that had not experienced an ocean chemistry response to thousands of years of post-glacial vegetation uptake. Our experiments thus suggest that, without the contribution of land use, peatland uptake, and coral reefs, a net decline in atmospheric CO2 would have occurred from the mid-Holocene to the beginning of the Industrial era (instead of the 20 ppm increase), regardless of the winds or initial ocean state. However, these findings were discovered to be highly sensitive to the configuration of land ice shelves near Antarctica, with more extensive land ice leading to deeper vertical circulation in the Southern Ocean and a much higher atmospheric CO2 concentration of 260 ppm at 150 BP. Furthermore, simulations forced to follow the observed CO2 trend indicate that 400 PgC would need to be released into the atmosphere by the Earth System in order to account for the 280 ppm seen by the beginning of the Industrial era. Because this would require an improbable release of terrestrial vegetation, the UVic

  10. Novel flowering and fatty acid characters in rapid cycling Brassica napus L. resynthesized by protoplast fusion.

    PubMed

    Hansen, L N; Earle, E D

    1994-12-01

    Novel rapid cycling Brassica napus lines have been produced by protoplast fusion between rapid cycling B. oleracea and rapid cycling B. rapa. Fusion products were selected based on iodoacetate inactivation and regeneration ability. A total of 36 plants was recovered from 3 regenerating calli. All were confirmed as somatic hybrids by morphological features, flow cytometric estimation of nuclear DNA content, RAPD analysis and/or DNA hybridization. Plants from two of the calli contained chloroplasts from B. rapa, and plants from the third contained B. oleracea chloroplasts. Some plants flowered in vitro, but on average flowering was initiated 22 days after transfer to soil. Although seed set was fairly low after self pollination, more seeds were obtained from pollination of open flowers than from pollination of buds. Seeds of the somatic hybrid B. napus showed novel fatty acid compositions, different from the mean of the two parental lines. Flowering was monitored in plants grown from seeds of the somatic hybrids, rapid cycling B. napus (CrGC 5-1) and the two diploid parental genotypes. Progeny of the somatic hybrids flowered faster and were more vigorous than rapid cycling B. napus (CrGC 5-1). The improved lines contain chloroplasts from B. rapa, unlike rapid cycling B. napus (CrGC 5-1), which has B. oleracea chloroplasts. The somatic hybrid lines produced may be useful for genetic studies or further in vitro manipulations.

  11. Pull-in urea cycle for the production of fumaric acid in Escherichia coli.

    PubMed

    Zhang, Ting; Wang, Zening; Deng, Li; Tan, Tianwei; Wang, Fang; Yan, Yajun

    2015-06-01

    Fumaric acid (FA) is an important raw material in the chemical and pharmaceutical industries. In this work, Escherichia coli was metabolically engineered for the production of FA. The fumA, fumB, fumC, and frdABCD genes were deleted to cut off the downstream pathway of FA. In addition, the iclR and arcA genes were also deleted to activate the glyoxylate shunt and to reinforce the oxidative Krebs cycle. To increase the FA yield, this base strain was further engineered to be pulled in the urea cycle by overexpressing the native carAB, argI, and heterologous rocF genes. The metabolites and the proteins of the Krebs cycle and the urea cycle were analyzed to confirm that the induced urea cycle improved the FA accumulation. With the induced urea cycle, the resulting strain ABCDIA-RAC was able to produce 11.38 mmol/L of FA from 83.33 mmol/L of glucose in a flask culture during 24 h of incubation.

  12. The acid-catalyzed decompostion of phenacylcobalamin: evidence for the formation of an enol-Co(III) pi-complex intermediate.

    PubMed

    Brown, K L; Chu, M M; Ingraham, L L

    1976-04-01

    Phenacylcobalamin has been synthesized and characterized by thin-layer chromatography and uv-visible spectroscopy, as well as identification of the cobalt-containing and organic products of its cleavage in acid and base and by aerobic photolysis. The major organic product from all three cleavage reactions is acetophenone and the cobalt-containing product is aquacobalamin (or hydroxocobalamin, its conjugate base). In aqueous acidic solution (pH 0 to 7.3, ionic strength 1.0 M, and 25.0 degrees C), the kinetics of the formation of aquacobalamin are biphasic representing the linear sum of two exponential terms. The pH dependence of the first-order rate constant of both phases shows a first-order dependence on proton concentration but with an inflection point ot pH 3.55 for the faster phase and at pH 4.03 for the slower phase. This behavior is interpreted in terms of the specific acid catalyzed formation of an intermediate from both "base on" and "base off" phenacylcobalamin with different second-order rate constants for each form, followed by an intermediate decompotion step with a similar formal mechanism. The nature of the intermediate is discussed and it is concluded to be a pi-complex between cob(III)alamin and the enol of acetophenone. PMID:4086

  13. On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle.

    PubMed

    Eschenmoser, Albert

    2007-04-01

    Encouraged by observations made on the course of reactions the HCN-tetramer can undergo with acetaldehyde, I delineate a constitutional and potentially generational relationship between HCN and those constituents of the reductive citric acid cycle that are direct precursors of amino acids in contemporary metabolism. In this context, the robustness postulate of classical prebiotic chemistry is questioned, and, by an analysis of the (hypothetical) reaction-tree of a stepwise hydrolysis of the HCN-tetramer, it is shown how such a non-robust chemical reaction platform could harbor the potential for the emergence of autocatalytic cycles. It is concluded that the chemistry of HCN should be revisited by focussing on its non-robust parts in order to demonstrate its full potential as one of the possible roots of prebiotic self-organizing chemical processes.

  14. TRIIODOTHYRONINE INCREASES MYOCARDIAL FUNCTION AND PYRUVATE ENTRY INTO THE CITRIC ACID CYCLE AFTER REPERFUSION IN A MODEL OF INFANT CARDIOPULMONARY BYPASS

    SciTech Connect

    Olson, Aaron; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2012-03-01

    We utilized a translational model of infant CPB to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC) thereby providing the energy support for improved cardiac function after ischemia-reperfusion. Methods and Results: Neonatal piglets received intracoronary [2-13Carbon(13C)]-pyruvate for 40 minutes (8 mM) during control aerobic conditions (Cont) or immediately after reperfusion (IR) from global hypothermic ischemia. A third group (IR-Tr) received T3 (1.2 ug/kg) during reperfusion. We assessed absolute CAC intermediate levels (aCAC) and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC ) and anaplerotic carboxylation (PC; ) using 13C-labeled pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C NMR. Neither IR nor IR-Tr modified aCAC. However, compared to IR, T3 (group IR-Tr) increased cardiac power and oxygen consumption after CPB while elevating both PDC and PC (~ four-fold). T3 inhibited IR induced reductions in CAC intermediate molar percent enrichment (MPE) and oxaloacetate(citrate)/malate MPE ratio; an index of aspartate entry into the CAC. Conclusions: T3 markedly enhances PC and PDC thereby providing substrate for elevated cardiac function and work after reperfusion. The increases in pyruvate flux occur with preservation of the CAC intermediate pool. Additionally, T3 inhibition of reductions in CAC intermediate MPEs indicates that T3 reduces the reliance on amino acids (AA) for anaplerosis after reperfusion. Thus, AA should be more available for other functions such as protein synthesis.

  15. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  16. The C4-dicarboxylic acid pathway of photosynthesis. Identification of intermediates and products and quantitative evidence for the route of carbon flow

    PubMed Central

    Johnson, Hilary S.; Hatch, M. D.

    1969-01-01

    1. When leaves with the C4-dicarboxylic acid pathway of photosynthesis are exposed to 14CO2 the major labelled compounds formed, in order of labelling, are dicarboxylic acids, 3-phosphoglycerate, bexose phosphates and sucrose. During the present studies several quantitatively minor intermediates were identified and their labelling behaviour is described. 2. The pattern of labelling of dihydroxyacetone phosphate, fructose 1,6-diphosphate and ribulose di- and mono-phosphates during radiotracer pulse–chase experiments was consistent with their operation as intermediates in the pathway of carbon dioxide fixation. 3. Serine, glycine, alanine and glutamate had labelling patterns typical of products secondary to the main flow of carbon. 4. The mechanism of the transfer of label from C-4 of dicarboxylic acids to C-1 of 3-phosphoglycerate was also examined. Evidence consistent with pyruvate being derived from C-1, C-2 and C-3 of oxaloacetate, and for a relationship between ribulose 1,5-diphosphate and the acceptor for the C-4 carboxyl group, was obtained. 5. Evidence is provided that, under steady-state conditions, essentially all the label incorporated from 14CO2 into C-1 of 3 phosphoglycerate enters via C-4 of the dicarboxylic acids. These and other studies indicated that the route via dicarboxylic acids is essentially the sole route for entry of carbon into 3-phosphoglycerate. PMID:5810044

  17. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    PubMed

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  18. An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

    PubMed Central

    Singh, Ranji; Lemire, Joseph; Mailloux, Ryan J.; Chénier, Daniel; Hamel, Robert; Appanna, Vasu D.

    2009-01-01

    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions. PMID:19809498

  19. Hypertonic stress regulates amino acid transport and cell cycle proteins in chick embryo hepatocytes.

    PubMed

    Bruscalupi, Giovannella; Massimi, Mara; Spagnuolo, Silvana; Fiore, Anna Maria; Leoni, Silvia

    2012-02-01

    Hyperosmotic stress affects cell growth, decreasing cell volume and increasing the uptake of organic osmolytes. However, the sensitivity of embryonic cells to osmotic treatment remains to be established. We have analysed some aspects of cell-cycle control and amino-acid transport in hypertonic conditions during prenatal life. The effects of hyperosmotic stress on amino-acid uptake mediated by system A, (3)H-thymidine incorporation, and regulation of cell-cycle proteins were analysed in chick embryo hepatocytes. Hypertonic stress increased system A activity and caused cell-cycle delay. Effects on amino-acid transport involved p38 kinase activation and new carrier synthesis. Cyclin D1, cdk4 (cyclin-dependent kinase 4) and PCNA (proliferating-cell nuclear antigen) levels decreased, whereas cyclin E, p21 and p53 levels were unchanged. Incorporation of (3)H-leucine indicated decreased synthesis of cyclin D1. In contrast, analysis of mRNA by qRT-PCR (quantitative real-time PCR) showed a net increase of cyclin D1 transcripts, suggesting post-transcriptional regulation. The data show that chick embryo hepatocytes respond to hyperosmotic conditions by arresting cell growth to prevent DNA damage and increasing osmolyte uptake to regulate cell volume, indicating that the adaptive response to environmental stress exists during prenatal life.

  20. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  1. Regulation of leukocyte tricarboxylic acid cycle in drug-naïve Bipolar Disorder.

    PubMed

    de Sousa, Rafael T; Streck, Emilio L; Forlenza, Orestes V; Brunoni, Andre R; Zanetti, Marcus V; Ferreira, Gabriela K; Diniz, Breno S; Portela, Luis V; Carvalho, André F; Zarate, Carlos A; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-09-25

    Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naïve BD patients in a major depressive episode (n=18) and compared to 24 age-matched healthy controls. Drug-naïve BD patients did not show differences in activities of citrate synthase (p=0.79), malate dehydrogenase (p=0.17), and succinate dehydrogenase (p=0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD. PMID:26297865

  2. Regulation of leukocyte tricarboxylic acid cycle in drug-naïve Bipolar Disorder.

    PubMed

    de Sousa, Rafael T; Streck, Emilio L; Forlenza, Orestes V; Brunoni, Andre R; Zanetti, Marcus V; Ferreira, Gabriela K; Diniz, Breno S; Portela, Luis V; Carvalho, André F; Zarate, Carlos A; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-09-25

    Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naïve BD patients in a major depressive episode (n=18) and compared to 24 age-matched healthy controls. Drug-naïve BD patients did not show differences in activities of citrate synthase (p=0.79), malate dehydrogenase (p=0.17), and succinate dehydrogenase (p=0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD.

  3. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Anderson, T. R.

    2013-10-01

    MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860-2005) is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5).

  4. Toward understanding the dissociation of weak acids in water: 1. Using ir spectroscopy to identify proton-shared hydrogen-bonded ion-pair intermediates.

    PubMed

    Thomas, Vibin; Iftimie, Radu

    2009-04-01

    Cryogenic conditions favor the formation of ion-pair dissociation intermediates in amorphous mixtures of HF and H(2)O, making possible their characterization by means of infrared spectroscopy. The experimental infrared spectra show a structurally rich "continuous" absorption ranging from 1000 to 3400 cm(-1), which, in principle, contains important information regarding the microscopic structure of the aforementioned dissociation intermediates. Herein, we demonstrate that this microscopic information can be extracted by comparing and contrasting experimental spectra with those obtained by means of carefully designed first-principles molecular dynamics calculations. Very good, systematic agreement between theoretical and experimental spectra can be obtained for HF/H(2)O mixtures of various compositions, revealing the presence of proton-shared, dissociation intermediates F(delta-) * * * H * * * (delta+)OH(2). The existence of similar proton-shared, hydrogen-bonded intermediates of ionization, that are stable in solution, but not in the gas phase, has been previously suggested by other groups, using, among other techniques, low temperature NMR data and aprotic, dipolar, solvents. Our investigation reveals that similar structures are also stable in aqueous solutions of HF. We discuss some of the implications of the present findings as far as the mechanism of dissociation of weak acids is concerned.

  5. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  6. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  7. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  8. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  9. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  10. On the role of Ti(IV) as a Lewis acid in the chemistry of titanium zeolites: Formation, structure, reactivity, and aging of Ti-peroxo oxidizing intermediates. A first principles study.

    PubMed

    Spanó, Eleonora; Tabacchi, Gloria; Gamba, Aldo; Fois, Ettore

    2006-11-01

    The ethylene epoxidation cycle in a H2O2/H2O-loaded Ti zeolite has been simulated by a Car-Parrinello approach. Results indicate a process where the zeolitic framework is the active oxygen mediator. The dissociative chemisorption of H2O2 leads, via a transient Ti-hydroperoxo species, to H2O and a Ti-peroxo zeolite intermediate. Transfer of active oxygen to ethylene follows, giving the epoxide and recovering the catalyst. A thorough theoretical characterization indicates that the active oxidizing species is an asymmetric eta2-Ti-peroxo, absorbing in the visible range. The lability of the intermediate is found related to eta2 <--> eta1 interconversions of the Ti-peroxo structure. The interconversions, triggered by water molecules, could account for the experimentally found reduced catalytic activity in aged TS-1 catalysts. The results provide a microscopic picture of the reactivity and dehydration/aging processes of the catalyst fully consistent with experiments and highlight the fundamental role of the Lewis acid character of Ti in the formation, reactivity, and degradation of the active oxidizing species.

  11. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    PubMed

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. PMID:25042691

  12. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.

    PubMed

    Daloso, Danilo M; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B; Reichheld, Jean-Philippe; Araújo, Wagner L; Fernie, Alisdair R

    2015-03-17

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.

  13. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  14. Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes.

    PubMed

    Przybyla-Zawislak, B; Gadde, D M; Ducharme, K; McCammon, M T

    1999-05-01

    The eight enzymes of the tricarboxylic acid (TCA) cycle are encoded by at least 15 different nuclear genes in Saccharomyces cerevisiae. We have constructed a set of yeast strains defective in these genes as part of a comprehensive analysis of the interactions among the TCA cycle proteins. The 15 major TCA cycle genes can be sorted into five phenotypic categories on the basis of their growth on nonfermentable carbon sources. We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH). Null and nonsense idh2 mutants grow poorly on glycerol, but growth can be enhanced by extragenic mutations, termed glycerol suppressors, in the CIT1 gene encoding the TCA cycle citrate synthase and in other genes of oxidative metabolism. The TCA cycle mutant collection was utilized to search for other genes that can suppress idh2 mutants and to identify TCA cycle genes that display a similar suppressible growth phenotype on glycerol. Mutations in 7 TCA cycle genes were capable of functioning as suppressors for growth of idh2 mutants on glycerol. The only other TCA cycle gene to display the glycerol-suppressor-accumulation phenotype was IDH1, which encodes the companion Idh1p subunit of NAD-IDH. These results provide genetic evidence that NAD-IDH plays a unique role in TCA cycle function.

  15. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  16. Mutational Analysis of Deinococcus radiodurans Bacteriophytochrome Reveals Key Amino Acids Necessary for the Photochromicity and Proton Exchange Cycle of Phytochromes*S⃞

    PubMed Central

    Wagner, Jeremiah R.; Zhang, Junrui; von Stetten, David; Günther, Mina; Murgida, Daniel H.; Mroginski, Maria Andrea; Walker, Joseph M.; Forest, Katrina T.; Hildebrandt, Peter; Vierstra, Richard D.

    2008-01-01

    The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IXα (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-Rc-like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion. PMID:18192276

  17. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  18. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    PubMed

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate.

  19. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  20. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass.

    PubMed

    Olson, Aaron K; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des; Portman, Michael A

    2012-03-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-(13)Carbon((13)C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-(13)C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and (13)C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, (13)C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion.

  1. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  2. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  3. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  4. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  5. Abnormalities in the tricarboxylic Acid cycle in Huntington disease and in a Huntington disease mouse model.

    PubMed

    Naseri, Nima N; Xu, Hui; Bonica, Joseph; Vonsattel, Jean Paul G; Cortes, Etty P; Park, Larry C; Arjomand, Jamshid; Gibson, Gary E

    2015-06-01

    Glucose metabolism is reduced in the brains of patients with Huntington disease (HD). The mechanisms underlying this deficit, its link to the pathology of the disease, and the vulnerability of the striatum in HD remain unknown. Abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase complex (PDHC) and the tricarboxylic acid (TCA) cycle, may contribute to these deficits. Here, activities for these enzymes and select protein levels were measured in human postmortem cortex and in striatum and cortex of an HD mouse model (Q175); mRNA levels encoding for these enzymes were also measured in the Q175 mouse cortex. The activities of PDHC and nearly all of the TCA cycle enzymes were dramatically lower (-50% to 90%) in humans than in mice. The activity of succinate dehydrogenase increased with HD in human (35%) and mouse (23%) cortex. No other changes were detected in the human HD cortex or mouse striatum. In Q175 cortex, there were increased activities of PDHC (+12%) and aconitase (+32%). Increased mRNA levels for succinyl thiokinase (+88%) and isocitrate dehydrogenase (+64%) suggested an upregulation of the TCA cycle. These patterns of change differ from those reported in other diseases, which may offer unique metabolic therapeutic opportunities for HD patients.

  6. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea B.; Feng, Sheng; Zhou, Jizhong

    2010-10-26

    It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. In this study, we showed that a fur deletion mutant of the γ-proteobacterium S. oneidensis could utilize TCA compounds. In addition, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and demonstrated its expression experimentally. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. This work delineates an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other γ-proteobacteria.

  7. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea; Feng, Sheng; Zhou, Jizhong

    2010-01-01

    Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the g-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other g-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis.

  8. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients.

    PubMed

    Naseri, Nima N; Bonica, Joseph; Xu, Hui; Park, Larry C; Arjomand, Jamshid; Chen, Zhengming; Gibson, Gary E

    2016-01-01

    Metabolic dysfunction is well-documented in Huntington's disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD. PMID:27611087

  9. Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations.

    PubMed

    Arrivault, Stéphanie; Guenther, Manuela; Ivakov, Alexander; Feil, Regina; Vosloh, Daniel; van Dongen, Joost T; Sulpice, Ronan; Stitt, Mark

    2009-09-01

    A platform using reverse-phase liquid chromatography coupled to tandem mass spectrometry was developed to measure 28 metabolites from photosynthetic metabolism. It was validated by comparison with authentic standards, with a requirement for distinct and clearly separated peaks, high sensitivity and repeatability in Arabidopsis rosette extracts. The recovery of authentic standards added to the plant material before extraction was 80-120%, demonstrating the reliability of the extraction and analytic procedures. Some metabolites could not be reliably measured, and were extracted and determined by other methods. Measurements of 37 metabolites in Arabidopsis rosettes after 15 min of illumination at different CO(2) concentrations showed that most Calvin cycle intermediates remain unaltered, or decrease only slightly (<30%), at compensation point CO(2), whereas dedicated metabolites in end-product synthesis pathways decrease strongly. The inhibition of end-product synthesis allows high levels of metabolites to be retained in the Calvin cycle to support a rapid cycle with photorespiration.

  10. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  11. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    PubMed

    Coelho, Carla R V; Pernollet, Franck; van der Werf, Hayo M G

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  12. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten.

    PubMed

    Rizzello, Carlo Giuseppe; Curiel, José Antonio; Nionelli, Luana; Vincentini, Olimpia; Di Cagno, Raffaella; Silano, Marco; Gobbetti, Marco; Coda, Rossana

    2014-02-01

    This study was aimed at combining the highest degradation of gluten during wheat flour fermentation with good structural and sensory features of the related bread. As estimated by R5-ELISA, the degree of degradation of immune reactive gluten was ca. 28%. Two-dimensional electrophoresis and RP-FPLC analyses showed marked variations of the protein fractions compared to the untreated flour. The comparison was also extended to in vitro effect of the peptic/tryptic-digests towards K562 and T84 cells. The flour with the intermediate content of gluten (ICG) was used for bread making, and compared to whole gluten (WG) bread. The chemical, structural and sensory features of the ICG bread approached those of the bread made with WG flour. The protein digestibility of the ICG bread was higher than that from WG flour. Also the nutritional quality, as estimated by different indexes, was the highest for ICG bread.

  13. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    NASA Astrophysics Data System (ADS)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2015-10-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  14. Spectral and kinetic characterization of intermediates in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase.

    PubMed

    Bruckner, Robert C; Jorns, Marilyn Schuman

    2009-06-01

    The flavoenzyme nikD, a 2-electron acceptor, catalyzes a remarkable aromatization of piperideine-2-carboxylate (P2C) to picolinate, an essential component of nikkomycin antibiotics. Steady-state kinetic data are indicative of a sequential mechanism where oxygen reacts with a reduced enzyme.dihydropicolinate (DHP) complex. The kinetics observed for complex formation with competitive inhibitors are consistent with a one-step binding mechanism. The anaerobic reaction with P2C involves three steps. The first step yields an enzyme.substrate charge transfer complex likely to contain the electron-rich P2C enamine. Calculated rates of formation and dissociation of the nikD.P2C complex are similar to those observed for the enzyme.1-cyclohexenoate complex. Formation of a reduced enzyme.DHP complex, (EH(2).DHP)(ini), occurs in a second step that exhibits a hyperbolic dependence on substrate concentration. The limiting rate of nikD reduction is at least 10-fold faster than the turnover rate observed with unlabeled or [4,4,5,5,6,6-D(6)]-P2C and exhibits a kinetic isotope effect (KIE = 6.4). The observed KIE on K(d apparent) (4.7) indicates that P2C is a sticky substrate. Formation of a final reduced species, (EH(2).DHP)(fin), occurs in a third step that is independent of P2C concentration and equal to the observed turnover rate. The observed KIE (3.3) indicates that the final step involves cleavage of at least one C-H bond. Tautomerization, followed by isomerization, of the initial DHP intermediate can produce an isomer that could be oxidized to picolinate in a reaction that satisfies known steric constraints of flavoenzyme reactions without the need to reposition a covalently tethered flavin or tightly bound intermediate.

  15. Computational estimation of tricarboxylic acid cycle fluxes using noisy NMR data from cardiac biopsies

    PubMed Central

    2013-01-01

    Background The aerobic energy metabolism of cardiac muscle cells is of major importance for the contractile function of the heart. Because energy metabolism is very heterogeneously distributed in heart tissue, especially during coronary disease, a method to quantify metabolic fluxes in small tissue samples is desirable. Taking tissue biopsies after infusion of substrates labeled with stable carbon isotopes makes this possible in animal experiments. However, the appreciable noise level in NMR spectra of extracted tissue samples makes computational estimation of metabolic fluxes challenging and a good method to define confidence regions was not yet available. Results Here we present a computational analysis method for nuclear magnetic resonance (NMR) measurements of tricarboxylic acid (TCA) cycle metabolites. The method was validated using measurements on extracts of single tissue biopsies taken from porcine heart in vivo. Isotopic enrichment of glutamate was measured by NMR spectroscopy in tissue samples taken at a single time point after the timed infusion of 13C labeled substrates for the TCA cycle. The NMR intensities for glutamate were analyzed with a computational model describing carbon transitions in the TCA cycle and carbon exchange with amino acids. The model dynamics depended on five flux parameters, which were optimized to fit the NMR measurements. To determine confidence regions for the estimated fluxes, we used the Metropolis-Hastings algorithm for Markov chain Monte Carlo (MCMC) sampling to generate extensive ensembles of feasible flux combinations that describe the data within measurement precision limits. To validate our method, we compared myocardial oxygen consumption calculated from the TCA cycle flux with in vivo blood gas measurements for 38 hearts under several experimental conditions, e.g. during coronary artery narrowing. Conclusions Despite the appreciable NMR noise level, the oxygen consumption in the tissue samples, estimated from the NMR

  16. Kinetic and product studies of Criegee intermediate reactions with halogenated and non-halogenated carboxylic acids and their implications in the troposphere

    NASA Astrophysics Data System (ADS)

    Chhantyal-Pun, Rabi; Rotavera, Brandon; Eskola, Arkke; Taatjes, Craig; Percival, Carl; Shallcross, Dudley; Orr-Ewing, Andrew

    2016-04-01

    Criegee intermediates are important species formed during the ozonolysis of alkenes. Direct measurement and modelling studies have shown that reactions of stabilized Criegee intermediates with species like SO2 and NO2 may have a significant effect in tropospheric chemistry.[1, 2] Reaction rates of Criegee intermediates with simple carboxylic acids like HCOOH and CH3COOH have been shown to be near the collision limit and may be a significant sink for these otherwise stable species in the atmosphere.[3, 4] Results obtained from our time-resolved Cavity Ring-Down Spectroscopy (CRDS) apparatus[5] for reactions of the Criegee intermediates, CH2OO and (CH3)2COO with various halogenated (CF3COOH, CF3CF2COOH, CClF2COOH and CHCl2COOH) and non-halogenated (HCOOH and CH3COOH) carboxylic acids will be presented, together with Structure Activity Relationship (SAR) based on these observations. Structure characterization of the products from these reactions using the Multiplexed PhotoIonization Mass Spectrometry (MPIMS) apparatus[1,3] as well as implications for Secondary Organic Aerosol (SOA) formation, assessed using the global atmospheric model STOCHEM, will also be discussed. Bibliography 1. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science, 2012, 335, 204-207. 2. C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45-73. 3. O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550. 4. M. D. Hurley, M. P. S. Andersen, T. J. Wallington, D. A. Ellis, J. W. Martin and S. A. Mabury, J. Phys. Chem. A

  17. Development and validation of HPLC method for the resolution of drug intermediates: DL-3-Phenyllactic acid, DL-O-acetyl-3-phenyllactic acid and (+/-)-mexiletine acetamide enantiomers.

    PubMed

    Tekewe, Alemu; Singh, Sawraj; Singh, Manpreet; Mohan, Utpal; Banerjee, U C

    2008-03-15

    Sensitive and specific, high-performance liquid chromatography (HPLC) methods have been developed and validated for linearity, accuracy and precision for the quantification of dl-3-phenyllactic acid, dl-O-acetyl-3-phenyllactic acid and (+/-)-mexiletine acetamide enantiomers. Chromatographic separations were performed on a Chiralcel OJ-H column (0.46 mm x 250 mm, 5 microm, Daicel Chemical Industries, Japan) based on cellulose tris-(4-methyl benzoate) chiral stationary phase. The mobile phase consists of hexane and isopropanol (IPA) in the ratio of 90:10 containing 0.1% trifluoroacetic acid (in case of dl-3-phenyllactic acid and dl-O-acetyl-3-phenyllactic acid) and hexane and IPA (95:5) containing 0.1% triethylamine (in case of (+/-)-mexiletine acetamide) and the flow rate was set at 0.5 ml/min at 25 degrees C. The detection was carried out at 261 nm for dl-3-phenyllactic acid and dl-O-acetyl-3-phenyllactic acid and at 254 nm for (+/-)-mexiletine acetamide. The developed methods were utilized for monitoring the progress of lipase catalyzed enantioselective synthesis of O-acetyl-3-phenyllactic acid and mexiletine acetamide from dl-3-phenyllactic acid and (+/-)-mexiletine, respectively. PMID:18371874

  18. Hybrid character of a large neurofilament protein (NF-M): intermediate filament type sequence followed by a long and acidic carboxy-terminal extension.

    PubMed Central

    Geisler, N; Fischer, S; Vandekerckhove, J; Plessmann, U; Weber, K

    1984-01-01

    The sequence of the amino-terminal 436 residues of porcine neurofilament component NF-M (apparent mol. wt. in gel electrophoresis 160 kd), one of the two high mol. wt. components of mammalian neurofilaments, reveals the typical structural organization of an intermediate filament (IF) protein of the non-epithelial type. A non-alpha-helical arginine-rich headpiece with multiple beta-turns (residues 1-98) precedes a highly alpha-helical rod domain able to form double-stranded coiled-coils (residues 99-412) and a non-alpha-helical tailpiece array starting at residue 413. All extra mass of NF-M forms, as a carboxy-terminal tailpiece extension of approximately 500 residues, an autonomous domain of unique composition. Limited sequence data in the amino-terminal region of this domain document a lysine- and particularly glutamic acid-rich array somewhat reminiscent of the much shorter tailpiece extension of NF-L (apparent mol. wt. 68 kd), the major neurofilament protein. NF-M is therefore a true intermediate filament protein co-polymerized with NF-L via presumptive coiled-coil type interactions and not a peripherally bound associated protein of a filament backbone built exclusively from NF-L. Along the structurally conserved coiled-coil domains the two neurofilament proteins show only approximately 65% sequence identity, a value similar to that seen when NF-L and NF-M are compared with mesenchymal vimentin. The highly charged and acidic tailpiece extensions of all triplet proteins particularly rich in glutamic acid seem unique to the neurofilament type of IFs. They could form extra-filamentous scaffolds suitable for interactions with other neuronal components.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6439558

  19. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  20. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  1. Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella.

    PubMed

    Matsuda, Shoichi; Liu, Huan; Kouzuma, Atsushi; Watanabe, Kazuya; Hashimoto, Kazuhito; Nakanishi, Shuji

    2013-01-01

    Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella, which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.

  2. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  3. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  4. Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays.

    PubMed

    Hassibi, Arjang; Contag, Christopher; Vlad, Marcel O; Hafezi, Maryam; Lee, Thomas H; Davis, Ronald W; Pourmand, Nader

    2005-08-01

    A novel application of bioluminescence for nucleic acid quantification, the bioluminescence regenerative cycle (BRC), is described in theoretical terms and supported by preliminary experimental data. In the BRC system, pyrophosphate (PPi) molecules are released during biopolymerization and are counted and correlated to DNA copy number. The enzymes ATP-sulfurylase and firefly luciferase are employed to generate photons quantitatively from PPi. Enzymatic unity-gain positive feedback is implemented to amplify photon generation and to compensate for decay in light intensity by self-regulation. The cumulative total of photons can be orders of magnitude higher than in typical chemiluminescent processes. A system level theoretical model is developed, taking into account the kinetics of the regenerative cycle, contamination, and detector noise. Data and simulations show that the photon generation process achieves steady state for the time range of experimental measurements. Based on chain reaction theory, computations show that BRC is very sensitive to variations in the efficiencies of the chemical reactions involved and less sensitive to variations in the quantum yield of the process. We show that BRC can detect attomolar quantities of DNA (10(-18) mol), and that the useful dynamic range is five orders of magnitude. Sensitivity is not constrained by detector performance but rather by background bioluminescence caused by contamination by either PPi or ATP (adenosine triphosphate).

  5. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    SciTech Connect

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  6. Extending food deprivation reverses the short-term lipolytic response to fasting: role of the triacylglycerol/fatty acid cycle.

    PubMed

    Weber, Jean-Michel; Reidy, Shannon P

    2012-05-01

    The effects of short-term food deprivation on lipid metabolism are well documented, but little is known about prolonged fasting. This study monitored the kinetics of glycerol (rate of appearance, R(a) glycerol) and non-esterified fatty acids (R(a) NEFA) in fasting rabbits. Our goals were to determine whether lipolysis is stimulated beyond values seen for short-term fasting, and to characterize the roles of primary (intracellular) and secondary (with transit through the circulation) triacylglycerol/fatty acid cycling (TAG/FA cycling) in regulating fatty acid allocation to oxidation or re-esterification. R(a) glycerol (9.62±0.72 to 15.29±0.96 μmol kg(-1) min(-1)) and R(a) NEFA (18.05±2.55 to 31.25±1.93 μmol kg(-1) min(-1)) were stimulated during the first 2 days of fasting, but returned to baseline after 4 days. An initial increase in TAG/FA cycling was followed by a reduction below baseline after 6 days without food, with primary and secondary cycling contributing to these responses. We conclude that the classic activation of lipolysis caused by short-term fasting is abolished when food deprivation is prolonged. High rates of re-esterification may become impossible to sustain, and TAG/FA cycling could decrease to reduce its cost to 3% of total energy expenditure. Throughout prolonged fasting, fatty acid metabolism gradually shifts towards increased oxidation and reduced re-esterification. Survival is achieved by pressing fuel selection towards the fatty acid dominance of energy metabolism and by slowing substrate cycles to assist metabolic suppression. However, TAG/FA cycling remains active even after prolonged fasting, suggesting that re-esterification is a crucial mechanism that cannot be stopped without harmful consequences.

  7. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  8. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  9. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms.

    PubMed

    Palacín, Manuel; Errasti-Murugarren, Ekaitz; Rosell, Albert

    2016-06-15

    Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle.

  10. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  11. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-23

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  12. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  13. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  14. Novel mechanistic aspects on the reaction between low spin Fe(II) Schiff base amino acid complexes and hydrogen peroxide-spectrophotometric tracer of intraperoxo intermediate catalyzed reaction.

    PubMed

    Awad, Aida M; Shaker, Ali Mohamad; Zaki, Ahmad Borhan El-Din; Nassr, Lobna Abdel-Mohsen Ebaid

    2008-12-01

    The kinetics and mechanism of the reaction of hydrogen peroxide with some Fe(II) Schiff base complexes were investigated spectrophotometrically in aqueous solution at pH 8 and 35 degrees C under pseudo-first-order conditions. The used ligands were derived from salicylaldehyde or o-hydroxynaphthaldehyde and some amino acids (l-leucine, l-iso-leucine, l-serine, l-methionine and dl-tryptophan). It was found that the formation of the purple interaperoxo complex appears only above pH 7.5. The reaction consists of two steps. The first step involves reversible formation of the intraperoxo intermediate which renders irreversible at pH 8. The second step consists of inner-sphere electron transfer. The suggested scheme illustrated first-order kinetics at low [H(2)O(2)] and zero-order at high [H(2)O(2)]. Moreover, the activation parameters of the reaction were evaluated. PMID:18394952

  15. Single Turnover Kinetics of Tryptophan Hydroxylase: Evidence for a New Intermediate in the Reaction of the Aromatic Amino Acid Hydroxylases

    PubMed Central

    Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T.; Fitzpatrick, Paul F.

    2010-01-01

    Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH·Fe(II), TrpH·Fe(II)·tryptophan, TrpH·Fe(II)·6MePH4·tryptophan, and TrpH·Fe(II)·6MePH4·phenylalanine complexes with O2 were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH·Fe(II) has a value of 104 M−1s−1 irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH·Fe(II)·6MePH4·tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s−1 of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s−1, matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s−1, and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s−1. All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release. PMID:20687613

  16. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  17. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data.

    PubMed

    Mangiapia, Mary; Scott, Kathleen

    2016-04-01

    The factors driving the dominance of the Calvin-Benson-Bassham cycle (CBB) or reductive citric acid cycle (rCAC) in autotrophic microorganisms in different habitats are debated. Based on costs for synthesizing a few metabolic intermediates, it has been suggested that the CBB poses a disadvantage due to higher metabolic cost. The purpose of this study was to extend this estimate of cost from metabolite synthesis to biomass synthesis. For 12 gammaproteobacteria (CBB) and five epsilonproteobacteria (rCAC), the amount of ATP to synthesize a gram of biomass from CO2 was calculated from genome sequences via metabolic maps. The eleven central carbon metabolites needed to synthesize biomass were all less expensive to synthesize via the rCAC (66%-89% of the ATP needed to synthesize them via CBB). Differences in cell compositions did result in differing demands for metabolites among the organisms, but the differences in cost to synthesize biomass were small among organisms that used a particular pathway (e.g. rCAC), compared to the difference between pathways (rCAC versus CBB). The rCAC autotrophs averaged 0.195 moles ATP per g biomass, while their CBB counterparts averaged 0.238. This is the first in silico estimate of the relative expense of both pathways to generate biomass.

  18. Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process.

    PubMed

    Su, Min; Sun, Hua; Zhao, Yingying; Lu, Aidang; Cao, Xiaohui; Wang, Jingkang

    2016-01-01

    In an effort to promote sustainability and to reduce manufacturing costs, the traditional production process for 6-aminopenicillanic acid (6-APA) has been modified to include less processing units. The objectives of this study are to investigate the degradation kinetics of 6-APA, to propose a reasonable degradation mechanism, and to optimize the manufacturing conditions within this new process. A series of degradation kinetic studies were conducted in the presence of impurities, as well as at various chemical and physical conditions. The concentrations of 6-APA were determined by high-performance liquid chromatography. An Arrhenius-type kinetic model was established to give a more accurate prediction on the degradation rates of 6-APA. A hydrolysis degradation mechanism is shown to be the major pathway for 6-APA. The degradation mechanisms and the kinetic models for 6-APA in the new system enable the design of a good manufacturing process with optimized parameters. PMID:26852849

  19. Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.

    PubMed

    Agrahari, P; Singh, D K

    2013-11-01

    Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September.

  20. Interplay between cell cycle and autophagy induced by boswellic acid analog

    PubMed Central

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  1. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  2. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  3. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  4. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  5. Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes.

    PubMed

    Prentki, Marc; Madiraju, S R Murthy

    2012-04-28

    Pancreatic β-cells secrete insulin in response to fluctuations in blood fuel concentrations, in particular glucose and fatty acids. However, chronic fuel surfeit can overwhelm the metabolic, signaling and secretory capacity of the β-cell leading to its dysfunction and death - often referred to as glucolipotoxicity. In β-cells and many other cells, glucose and lipid metabolic pathways converge into a glycerolipid/free fatty acid (GL/FFA) cycle, which is driven by the substrates, glycerol-3-phosphate and fatty acyl-CoA, derived from glucose and fatty acids, respectively. Although the overall operation of GL/FFA cycle, consisting of lipolysis and lipogenesis, is "futile" in terms of energy expenditure, this metabolic cycle likely plays an indispensable role for various β-cell functions, in particular insulin secretion and excess fuel detoxification. In this review, we discuss the significance of GL/FFA cycle in the β-cell, its regulation and role in generating essential metabolic signals that participate in the lipid amplification arm of glucose stimulated insulin secretion and in β-cell growth. We propose the novel concept that the lipolytic segment of GL/FFA cycle is instrumental in producing signals for insulin secretion, whereas, the lipogenic segment generates signals relevant for β-cell survival/death and growth/proliferation.

  6. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux

    SciTech Connect

    Buxton, D.B.; Schwaiger, M.; Nguyen, A.; Phelps, M.E.; Schelbert, H.R.

    1988-09-01

    The kinetics of (1-14C)acetate oxidation in isolated perfused rat hearts have been determined over a range of perfusion conditions. Effluent measurements demonstrated that 14CO2 cleared biexponentially over 50 minutes after bolus injection of (1-14C)acetate into normoxic hearts perfused with 5 mM glucose and 10 mU/ml insulin. The clearance half-time (t1/2) for the predominant initial clearance phase was 3.1 +/- 0.5 minutes (n = 4). MVO2 was varied over a fourfold range by hypoxia and phenylephrine stimulation (t1/2, 7.2 +/- 1.2 and 2.2 +/- 0.2 minutes, respectively) and in the presence of alternate substrates (lactate, 2 mM; DL-3-hydroxybutyrate, 20 mM; and palmitate, 0.1 mM), which did not modify either tricarboxylic acid (TCA) cycle flux or acetate kinetics. A good correlation (r = 0.93) was observed between k, the rate constant for the initial phase of 14CO2 clearance, and TCA cycle flux, estimated from oxygen consumption. In contrast to results with (1-14C)acetate, lactate (2 mM) increased t1/2 for 14CO2 clearance from a bolus injection of (1-14C)palmitate from 3.0 +/- 0.4 minutes (n = 3) at control to 4.3 +/- 0.2 minutes (n = 3, p less than 0.01). Addition of acetate in nontracer amounts (0.5 or 5 mM) caused significant underestimation of TCA cycle flux when estimated with (1-14C)acetate. 14CO2 clearance accounted for 88-98% of total effluent 14C between 10 and 20 minutes after (1-14C)acetate bolus injection; rate constants for clearance of 14CO2 and total 14C clearance were very similar during this period, and these two rate constants did not differ significantly from each other under any conditions tested.

  7. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  8. DIBROMOACETIC ACID-INDUCED ELEVATIONS IN CIRCULATING ESTRADIOL: EFFECTS IN BOTH CYCLING AND OVARIECTOMIZED/STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    RTD-03-031
    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).

    Abstract

    Oral exposures to high concentrations of th...

  9. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  10. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements.

    PubMed Central

    Gray, N K; Pantopoulos, K; Dandekar, T; Ackrell, B A; Hentze, M W

    1996-01-01

    The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643505

  11. Tricarboxylic acid cycle and one-carbon metabolism pathways are important in Edwardsiella ictaluri virulence.

    PubMed

    Dahal, Neeti; Abdelhamed, Hossam; Lu, Jingjun; Karsi, Attila; Lawrence, Mark L

    2013-01-01

    Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of channel catfish (ESC). The disease causes considerable economic losses in the commercial catfish industry in the United States. Although antibiotics are used as feed additive, vaccination is a better alternative for prevention of the disease. Here we report the development and characterization of novel live attenuated E. ictaluri mutants. To accomplish this, several tricarboxylic acid cycle (sdhC, mdh, and frdA) and one-carbon metabolism genes (gcvP and glyA) were deleted in wild type E. ictaluri strain 93-146 by allelic exchange. Following bioluminescence tagging of the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, ΔgcvP, and ΔglyA mutants, their dissemination, attenuation, and vaccine efficacy were determined in catfish fingerlings by in vivo imaging technology. Immunogenicity of each mutant was also determined in catfish fingerlings. Results indicated that all of the E. ictaluri mutants were attenuated significantly in catfish compared to the parent strain as evidenced by 2,265-fold average reduction in bioluminescence signal from all the mutants at 144 h post-infection. Catfish immunized with the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, and ΔglyA mutants had 100% relative percent survival (RPS), while E. ictaluri ΔgcvP vaccinated catfish had 31.23% RPS after re-challenge with the wild type E. ictaluri.

  12. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid.

    PubMed

    Saliba, Leacady; Gervais, Rachel; Lebeuf, Yolaine; Chouinard, P Yvan

    2014-02-01

    To evaluate the interaction between the levels of dietary concentrate and linseed oil (LO) on milk fatty acid (FA) profile, 24 Holstein cows were used in a randomised complete block design based on days in milk, with a 2×2 factorial arrangement of treatments. Within each block, cows were fed one of four experimental diets containing 30% concentrate (LC) or 70% concentrate (HC), without LO (NLO) or with LO supplemented at 3% of dietary dry matter. Milk FA profiles were analysed with a special emphasis on the intermediates of the predominant trans-11, and a putative trans-13 pathways of ruminal biohydrogenation of cis-9, cis-12, cis-15 18:3. Feeding LO increased the concentrations of cis-9, cis-12, cis-15 18:3 and trans-11, cis-15 18:2 in milk fat, and these increases were of a higher magnitude when LO was added in HC as compared with LC diet (interaction of LO by concentrate). A treatment interaction was also observed for the level of trans-11 18:1 which was higher when feeding LO, but for which the increase was more pronounced with the LC as compared with HC diet. The concentrations of cis-15 18:1 and cis-9, trans-11, cis-15 18:3 were higher in cows fed LO, but feeding HC diets decreased milk fat content of cis-15 18:1 and a tendency for a decrease in cis-9, trans-11, cis-15 18:3 was apparent. Feeding LO increased milk fat content of trans-13 18:1 and cis-9, trans-13 18:2, while the concentrations of these two isomers were not affected by the level of dietary concentrates. The isomer cis-9, trans-13, cis-15 18:3 has not been detected in any of the milk samples. In conclusion, interactions were observed between LO and dietary concentrates on the proportions of some intermediates of the trans-11 biohydrogenation pathway. The presence of trans-13 18:1 and cis-9, trans-13 18:2 supports the existence of a trans-13 pathway, but an 18:3 intermediate with a trans-13 double bond has not been identified.

  13. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  14. Compartmentation of acetyl CoA studied by analysis of tricarboxylic acid cycle acids and 3-hydroxybutyrate in bile of rats given [2,2,2-2H3]ethanol.

    PubMed Central

    Norsten, C; Cronholm, T

    1990-01-01

    Acetate, 3-hydroxybutyrate, pyruvate, lactate, citrate, 2-oxoglutarate, succinate, fumarate and malate were analysed in rat bile by gas chromatography and gas chromatography/mass spectrometry of their O-melthyloxime-t-butyldimethylsilyl derivatives. The concentration of acetate increased to about 1.8 mmol/l after administration of [2,2,2-2H3]ethanol. Acetate was formed from ethanol to an extent of about 82% and retained all of the 2H at C-2, whereas 15% of the 2H had been lost in the tricarboxylic acid cycle intermediates and 24% in 3-hydroxybutyrate. Thus the exchange of 2H for 1H takes place after formation of acetyl CoA. For citrate and 3-hydroxybutyrate, 41% and 11% respectively was formed from [2,2,2-2H3]ethanol. These results indicate that different pools of acetyl CoA are used for the synthesis of ketone bodies and citrate, with the latter being derived from ethanol to a much larger extent. Smaller fractions of 2-oxoglutarate (16%) and succinate (5%) were derived from [2,2,2--2H3]ethanol, indicating significant contributions from amino acids. PMID:2405844

  15. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  16. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  17. Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: Influence of the physiological cycle

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2014-06-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere for several purposes, including in response to metal contamination. Despite this, little is yet known about the exudation of such substances from marsh plants roots in response to metal exposure. This work aimed at assessing the influence of the physiological cycle of marsh plants on the exudation of ALMWOAs in response to Cu contamination. In vitro experiments were carried out with Phragmites australis specimens, collected in different seasons. Plant roots were exposed to freshwater contaminated with two different Cu concentrations (67 μg/L and 6.9 mg/L), being the ALMWOAs released by the roots measured. Significant differences (both qualitative and quantitative) were observed during the Phragmites australis life cycle. At growing stage, Cu stimulated the exudation of oxalic and formic acids but no significant stimulation was observed for citric acid. At developing stage, exposure to Cu caused inhibition of oxalic acid exudation whereas citric acid liberation was stimulated but only in the media spiked with the lowest Cu concentration tested. At the decaying stage, no significant variation on oxalic acid was observed, whereas the citric and formic acids release increased as a consequence of the plant exposure to Cu. The physiological cycle of Phragmites australis, and probably also of other marsh plants, is therefore an important feature conditioning plants response to Cu contamination, in terms of ALMWOAs exudation. Hence this aspect should be considered when conducting studies on rhizodeposition involving marsh plants exposed to metals and in the event of using marsh plants for phytoremediation purposes in contaminated estuarine areas.

  18. Revisiting the GroEL-GroES Reaction Cycle via the Symmetric Intermediate Implied by Novel Aspects of the GroEL(D398A) Mutant*♦

    PubMed Central

    Koike-Takeshita, Ayumi; Yoshida, Masasuke; Taguchi, Hideki

    2008-01-01

    The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists in protein folding with the aid of GroES and ATP. It is believed that GroEL alternates the folding-active rings and that the substrate protein (and GroES) can bind to the open trans-ring only after ATP in the cis-ring is hydrolyzed. However, we found that a substrate protein prebound to the trans-ring remained bound during the first ATP cycle, and this substrate was assisted by GroEL-GroES when the second cycle began. Moreover, a slow ATP-hydrolyzing GroEL mutant (D398A) in the ATP-bound form bound a substrate protein and GroES to the trans-ring. The apparent discrepancy with the results from an earlier study (Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell 97, 325–338) can be explained by the previously unnoticed fact that the ATP-bound form of the D398A mutant exists as a symmetric 1:2 GroEL-GroES complex (the “football”-shaped complex) and that the substrate protein (and GroES) in the medium is incorporated into the complex only after the slow turnover. In light of these results, the current model of the GroEL-GroES reaction cycle via the asymmetric 1:1 GroEL-GroES complex deserves reexamination. PMID:18567584

  19. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    DOE R&D Accomplishments Database

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  20. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    PubMed

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.

  1. Folic acid supplement use and menstrual cycle characteristics: a cross-sectional study of Danish pregnancy planners

    PubMed Central

    Cueto, Heidi T.; Riis, Anders H.; Hatch, Elizabeth E.; Wise, Lauren A.; Rothman, Kenneth J.; Sørensen, Henrik T.; Mikkelsen, Ellen M.

    2015-01-01

    Purpose To examine the association between folic acid (FA) supplementation obtained through either single FA tablets or multivitamins (MVs) and menstrual cycle characteristics among 5,386 women aged 18–40 years, enrolled in an Internet-based study of Danish women attempting pregnancy during 2007–2011. Methods In a cross-sectional study, we used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the associations of FA supplementation with menstrual cycle regularity, short (<27 days), long (30–33 days), and very long (≥34 days) cycle length, and duration and intensity of menstrual bleeding. Results Compared with non-use, FA supplementation was associated with reduced odds of short cycle length [OR=0.80, 95% CI: 0.68–0.94], and a trend towards increased odds of very long cycle length [OR=1.21, 95% CI: 0.87–1.68] compared with cycle length of 27–29 days. The inverse association with short cycle length was stronger among 18–30 year-old women [OR=0.68, 95% CI: 0.53–0.87], nulliparous women [OR=0.66, 95% CI: 0.52–0.84], and women who used both FA and MVs [OR=0.75, 95% CI: 0.60–0.95]. We found no clear association between FA supplementation and cycle regularity and duration and intensity of menstrual bleeding. Conclusion FA supplementation was inversely associated with short menstrual cycle length. This association was strongest among women aged 18–30 years, nulliparous women, and women who used both FA and MVs. PMID:26123570

  2. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated.

  3. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  4. Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during Electrochemical Cycling of LiCoPO4

    PubMed Central

    2014-01-01

    In situ synchrotron diffraction measurements and subsequent Rietveld refinements are used to show that the high energy density cathode material LiCoPO4 (space group Pnma) undergoes two distinct two-phase reactions upon charge and discharge, both occurring via an intermediate Li2/3(Co2+)2/3(Co3+)1/3PO4 phase. Two resonances are observed for Li2/3CoPO4 with intensity ratios of 2:1 and 1:1 in the 31P and 7Li NMR spectra, respectively. An ordering of Co2+/Co3+ oxidation states is proposed within a (a × 3b × c) supercell, and Li+/vacancy ordering is investigated using experimental NMR data in combination with first-principles solid-state DFT calculations. In the lowest energy configuration, both the Co3+ ions and Li vacancies are found to order along the b-axis. Two other low energy Li+/vacancy ordering schemes are found only 5 meV per formula unit higher in energy. All three configurations lie below the LiCoPO4–CoPO4 convex hull and they may be readily interconverted by Li+ hops along the b-direction. PMID:25960604

  5. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    NASA Astrophysics Data System (ADS)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  6. CuII ions and the stilbene-chroman hybrid with a catechol moiety synergistically induced DNA damage, and cell cycle arrest and apoptosis of HepG2 cells: an interesting acid/base-promoted prooxidant reaction.

    PubMed

    Liu, Guo-Yun; Yang, Jie; Dai, Fang; Yan, Wen-Jing; Wang, Qi; Li, Xiu-Zhuang; Ding, De-Jun; Cao, Xiao-Yan; Zhou, Bo

    2012-08-27

    Development of potential cancer treatment strategies by using an exogenous reactive oxygen species (ROS)-generating agent (prooxidant) or redox intervention, has attracted much interest. One effective ROS generation method is to construct a prooxidant system by polyphenolic compounds and Cu(II) ions. This work demonstrates that Cu(II) and the stilbene-chroman hybrid with a catechol moiety could synergistically induce pBR322 plasmid DNA damage, as well as cell cycle arrest and apoptosis of HepG2 cells. Additionally, an interesting acid/base-promoted prooxidant reaction was found. The detailed chemical mechanisms for the reaction of the hybrid with Cu(II) in acid, neutral and base solutions are proposed based on UV/Vis spectral changes and identification of the related oxidative intermediates and products.

  7. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.

    PubMed

    Yokoyama, K; Miyashita, T; Araki, Y; Ito, E

    1986-12-01

    The stepwise formation and characterization of linkage unit intermediates and their functions in ribitol teichoic acid biosynthesis were studied with membranes obtained from Staphylococcus aureus H and Bacillus subtilis W23. The formation of labeled polymer from CDP-[14C]ribitol and CDP-glycerol in each membrane system was markedly stimulated by the addition of N-acetylmannosaminyl(beta 1----4)N-acetylglucosamine (ManNAc-GlcNAc) linked to pyrophosphorylyisoprenol. Whereas incubation of S. aureus membranes with CDP-glycerol and ManNAc-[14C]GlcNAc-PP-prenol led to synthesis of (glycerol phosphate) 1-3-ManNAc-[14C]GlcNAc-PP-prenol, incubation of B. subtilis membranes with the same substrates yielded (glycerol phosphate)1-2-ManNAc-[14C]GlcNAc-PP-prenol. In S. aureus membranes, (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol as well as (glycerol phosphate)3-ManNAc-[14C]GlcNAc-PP-prenol served as an acceptor for ribitol phosphate units, but (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol did not. In B. subtilis W23 membranes, (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol served as a better acceptor for ribitol phosphate units than (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol. In this membrane system (ribitol phosphate)-(glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol was formed from ManNAc-[14C]GlcNAc-PP-prenol, CDP-glycerol and CDP-ribitol. The results indicate that (glycerol phosphate)1-3-ManNAc-GlcNAc-PP-prenol and (glycerol phosphate)1-2-ManNac-GlcNAc-PP-prenol are involved in the pathway for the synthesis of wall ribitol teichoic acids in S. aureus H and B. subtilis W23 respectively.

  8. Evidence for catalytic intermediates involved in generating the chromopyrrolic acid scaffold of rebeccamycin by RebO and RebD.

    PubMed

    Spolitak, Tatyana; Ballou, David P

    2015-05-01

    We provide the first experimental evidence for intermediates being involved in catalysis by RebD in generating the chromopyrrolic acid (CPA) scaffold of rebeccamycin. In the presence of its substrates (indole pyruvate imine - IPAI - and H2O2 both produced by the flavoprotein oxidase RebO that oxidizes tryptophan), RebD reacts as a peroxidase forming two IPAI radicals that recombine as a C-C bond in the CPA. When catalase is included to remove H2O2, CPA can still be formed because the IPAI rapidly reduces RebD, which reacts with O2, utilizing oxidase-peroxidase chemistry to produce CPA. Reduced RebD can also react with H2O2 forming Cpd II directly, which can oxidize IPAI. Stopped-flow spectrophotometric studies demonstrated that during the reaction of RebO and RebD with Trp and oxygen, a species with a red-shifted Soret band at 424.5 nm appeared. This species can react with either guaiacol or ABTS to form ferric RebD, suggesting that it is Cpd II of RebD involved in the formation of CPA. In summary, the studies reveal new and unusual aspects peroxidase and peroxygenase chemistry used by RebD in catalyzing carbon-carbon oxidative coupling reactions that are involved in biosynthesis of indolocarbazoles. PMID:25837855

  9. Use of dynamic simulation to assess the behaviour of linear alkyl benzene sulfonates and their biodegradation intermediates (sulfophenylcarboxylic acids) in estuaries

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; González-Mazo, E.; Forja, J. M.; Gómez-Parra, A.

    2009-02-01

    Dynamic laboratory simulation of processes affecting chemical species in their transit through estuaries is a very useful tool to characterize these littoral systems. To date, laboratory studies concerning biodegradation and sorption (onto suspended particulate matter) of LAS in an estuary are scarce. For this reason, a dynamic automated estuarine simulator has been employed to carry out different experiments in order to assess the biodegradability of linear alkyl benzene sulfonates (LAS) and their biodegradation intermediates (sulfophenylcarboxylic acids, SPCs) using environmentally representative LAS concentrations in estuaries by a continuous injection of LAS into the system. During the experiments, a great affinity of LAS for the solid phase has been found, as well as an increased adsorption in line with increased chain length. On the other hand, the presence of SPCs with chain length between 6 and 13 carbon atoms was detected. Accumulation and persistence of medium chain length SPCs (C 6-C 8) along the experiments show that their degradation constitutes the limiting step for the process of LAS mineralization. In the final zone of the simulated estuarine system, the levels of SPCs were below the limits of detection. Thus, the disappearance of SPCs indicated that LAS biodegradation had been completed along the estuary. Similar results have been described for different Iberian littoral ecosystems. Therefore, the simulator employed in this research appears to be a useful tool to anticipate the behaviour of a xenobiotic chemical in its transit through littoral systems with different salinity gradients.

  10. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. [Phaseolus vulgaris L. ; Spinacia oleracea L

    SciTech Connect

    Saito, Kazumi; Nick, J.A.; Loewus, F.A. )

    1990-11-01

    D-(6-{sup 14}C)Glucosone that had been prepared enzymically from D-(6-{sup 14}C)glucose was used to compare relative efficiencies of these two sugars for L-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, {sup 14}C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from (6-{sup 14}C)glucose underwent considerable redistribution during AA formation, whereas {sup 14}C from (6-{sup 14}C)glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, L-(U-{sup 14}C)sorbosone was found to be equivalent to (6-{sup 14}C)glucose as a source of {sup 14}C for AA. In the presence of 0.1% D-glucosone, conversion of (6-{sup 14}C) glucose into labeled AA was greatly repressed. In a comparable experiment with L-sorbosone replacing D-glucosone, the effect was much less. The experiments described here give substance to the proposal that D-glucosone and L-sorbosone are putative intermediates in the conversion of D-glucose to AA in higher plants.

  11. Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle.

    PubMed

    Butch, Christopher; Cope, Elizabeth D; Pollet, Pamela; Gelbaum, Leslie; Krishnamurthy, Ramanarayanan; Liotta, Charles L

    2013-09-11

    An abiotic formation of meso- and DL-tartrates in 80% yield via the cyanide-catalyzed dimerization of glyoxylate under alkaline conditions is demonstrated. A detailed mechanism for this conversion is proposed, supported by NMR evidence and (13)C-labeled reactions. Simple dehydration of tartrates to oxaloacetate and an ensuing decarboxylation to form pyruvate are known processes that provide a ready feedstock for entry into the citric acid cycle. While glyoxylate and high hydroxide concentration are atypical in the prebiotic literature, there is evidence for natural, abiotic availability of each. It is proposed that this availability, coupled with the remarkable efficiency of tartrate production from glyoxylate, merits consideration of an alternative prebiotic pathway for providing constituents of the citric acid cycle.

  12. Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle

    PubMed Central

    2013-01-01

    An abiotic formation of meso- and dl-tartrates in 80% yield via the cyanide-catalyzed dimerization of glyoxylate under alkaline conditions is demonstrated. A detailed mechanism for this conversion is proposed, supported by NMR evidence and 13C-labeled reactions. Simple dehydration of tartrates to oxaloacetate and an ensuing decarboxylation to form pyruvate are known processes that provide a ready feedstock for entry into the citric acid cycle. While glyoxylate and high hydroxide concentration are atypical in the prebiotic literature, there is evidence for natural, abiotic availability of each. It is proposed that this availability, coupled with the remarkable efficiency of tartrate production from glyoxylate, merits consideration of an alternative prebiotic pathway for providing constituents of the citric acid cycle. PMID:23914725

  13. Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2013-05-17

    During hepatic lipogenesis, the glycerol backbone of acylglycerols originates from one of three sources: glucose, glycerol, or substrates passing through the citric acid cycle via glyceroneogenesis. The relative contribution of each substrate source to glycerol in rat liver acylglycerols was determined using (13)C-enriched substrates and NMR. Animals received a fixed mixture of glucose, glycerol, and lactate; one group received [U-(13)C6]glucose, another received [U-(13)C3]glycerol, and the third received [U-(13)C3]lactate. After 3 h, the livers were harvested to extract fats, and the glycerol moiety from hydrolyzed acylglycerols was analyzed by (13)C NMR. In either fed or fasted animals, glucose and glycerol provided the majority of the glycerol backbone carbons, whereas the contribution of lactate was small. In fed animals, glucose contributed >50% of the total newly synthesized glycerol backbone, and 35% of this contribution occurred after glucose had passed through the citric acid cycle. By comparison, the glycerol contribution was ~40%, and of this, 17% of the exogenous glycerol passed first through the cycle. In fasted animals, exogenous glycerol became the major contributor to acylglycerols. The contribution from exogenous lactate did increase in fasted animals, but its overall contribution remained small. The contributions of glucose and glycerol that had passed through the citric acid cycle first increased in fasted animals from 35 to 71% for glucose and from 17 to 24% for glycerol. Thus, a substantial fraction from both substrate sources passed through the cycle prior to incorporation into the glycerol moiety of acylglycerols in the liver.

  14. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates.

    PubMed

    Lin, Yi-Shiue; Lin, Jain-Shiun; Liao, Yung-Hsuan; Yang, Che-Ming; Kuo, Che-Wei; Lin, Hong-Ping; Fan, Liang-Jen; Yang, Yaw-Wen; Lin, Jong-Liang

    2010-06-01

    The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH(2)COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH(2)COO, CH(3)COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH(2)COOH on Cu(100) at temperatures higher than 230 K are established to be ICH(2)COOH --> CH(2)COO + H + I, CH(2)COO + H --> CH(3)COO, and CH(3)COO --> CCOH. Theoretical calculations suggest that the surface CH(2)COO has the skeletal plane, with delocalized pi electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH(2)COO on Cu(100). The CCOH derived from CH(3)COO decomposition has a CC stretching frequency at 2025 cm(-1), reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H(2), CH(4), H(2)O, CO, CO(2), CH(2)CO, and CH(3)COOH from CH(3)COO decomposition between 500 and 600 K and the formation of H(2) and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH(2)COO and CH(3)COO. CH(3)COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH(2)COOH --> ICH(2)COO + H and ICH(2)COO + H --> CH(3)COO + I (possibly via CH(2)COO), which are different from those

  15. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism.

    PubMed

    Ishii, Yoichi; Imamoto, Yasufumi; Yamamoto, Rie; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2015-04-01

    Achieving high productivity and quality is the final goal of therapeutic antibody development, but the productivity and quality of antibodies are known to be substantially dependent on the nature of the cell lines expressing the antibodies. We characterized two contrasting cell lines that produce trastuzumab, namely cell line A with a high titer and a low aggregate content and cell line B with a low titer and a high aggregate content to identify the causes of the differences. We observed the following differences: cell growth (A > B), proportion of defucosylated oligosaccharides on antibodies (A < B), and proportion of covalent antibody aggregates (A > B). Our results suggest that the high monoclonal antibody (mAb) titers in cell line A is associated with the high proliferation and is not caused by the lactate metabolism shift (switching from lactate production to net lactate consumption). Rather, these differences can be accounted for by the following: levels of tricarboxylic acid cycle intermediates (A > B), ammonium ion levels (A ≤ B), and oxidative stress (A > B). PMID:25449760

  16. The role of the ω-3 fatty acid DHA in the human life cycle.

    PubMed

    Carlson, Sarah J; Fallon, Erica M; Kalish, Brian T; Gura, Kathleen M; Puder, Mark

    2013-01-01

    Dietary consumption of the essential fatty acids linoleic acid (LA; ω-6) and α-linolenic acid (ALA; ω-3) is necessary for human growth and development. In the past 150 years, the average Western diet has changed dramatically such that humans today consume a much higher proportion of ω-6 fatty acids relative to ω-3 fatty acids than ever before. The importance of ω-3 fatty acids in human development has been well established in fetal and neonatal development, with brain and retinal tissues highly dependent on ω-3 fatty acids, specifically docosahexaenoic acid (DHA) for membrane fluidity and signal transduction. In childhood, ω-3s have been shown to contribute to ongoing cognitive development and may be involved in metabolic programming of bone turnover and adipogenesis. ω-3s may also play important roles in adult neurophysiology and disease prevention.

  17. Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution.

    PubMed

    Sun, Meng; Zhang, Gong; Qin, Yinghua; Cao, Meijuan; Liu, Yang; Li, Jinghong; Qu, Jiuhui; Liu, Huijuan

    2015-08-01

    Simultaneous reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) is a promising pretreatment process for the removal of chromium and arsenic from acid aqueous solution. In this work, the synergistic redox conversion of Cr(VI) and As(III) was efficiently achieved in a three-dimensional electrocatalytic reactor with synthesized AuPd/CNTs particles as electrocatalysts. The AuPd/CNTs facilitated the exposure of active Pd{111} facets and possessed an approximate two-electron-transfer pathway of oxygen reduction with the highly efficient formation of H2O2 as end product, resulting in the electrocatalytic reduction of 97.2 ± 2.4% of Cr(VI) and oxidation of 95.7 ± 4% of As(III). The electrocatalytic reduction of Cr(VI) was significantly accelerated prior to the electrocatalytic oxidation of As(III), and the effectiveness of Cr(VI)/As(III) conversion was favored at increased currents from 20 to 150 mA, decreased initial pH from 7 to 1 and concentrations of Cr(VI) and As(III) ranging from 50 to 1 mg/L. The crucial intermediates of Cr(V) and As(IV) and active free radicals HO(•) and O2(•-) were found for the first time, whose roles in the control of Cr(VI)/As(III) redox conversion were proposed. Finally, the potential applicability of AuPd/CNTs was revealed by their stability in electrocatalytic conversion over 10 cycles. PMID:26154110

  18. A new method for assembling metabolic networks, with application to the Krebs citric acid cycle.

    PubMed

    Mittenthal, J E; Clarke, B; Waddell, T G; Fawcett, G

    2001-02-01

    To understand why a molecular network has a particular connectivity one can generate an ensemble of alternative networks, all of which meet the same performance criteria as the real network. We have generated alternatives to the Krebs cycle, allowing group transfers and B(12)-mediated shifts that were excluded in previous work. Our algorithm does not use a reaction list, but determines the reactants and products in generic reactions. It generates networks in order of increasing number of reaction steps. We find that alternatives to the Krebs cycle are very likely to be cycles. Many of the alternatives produce toxic or unstable compounds and use group transfer reactions, which have unfavorable consequences. Although alternatives are better than the Krebs cycle in some respects, the Krebs cycle has the most favorable combination of traits.

  19. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations.

    PubMed

    Pollard, P J; Brière, J J; Alam, N A; Barwell, J; Barclay, E; Wortham, N C; Hunt, T; Mitchell, M; Olpin, S; Moat, S J; Hargreaves, I P; Heales, S J; Chung, Y L; Griffiths, J R; Dalgleish, A; McGrath, J A; Gleeson, M J; Hodgson, S V; Poulsom, R; Rustin, P; Tomlinson, I P M

    2005-08-01

    The nuclear-encoded Krebs cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDHB, -C and -D), act as tumour suppressors. Germline mutations in FH predispose individuals to leiomyomas and renal cell cancer (HLRCC), whereas mutations in SDH cause paragangliomas and phaeochromocytomas (HPGL). In this study, we have shown that FH-deficient cells and tumours accumulate fumarate and, to a lesser extent, succinate. SDH-deficient tumours principally accumulate succinate. In situ analyses showed that these tumours also have over-expression of hypoxia-inducible factor 1alpha (HIF1alpha), activation of HIF1alphatargets (such as vascular endothelial growth factor) and high microvessel density. We found no evidence of increased reactive oxygen species in our cells. Our data provide in vivo evidence to support the hypothesis that increased succinate and/or fumarate causes stabilization of HIF1alpha a plausible mechanism, inhibition of HIF prolyl hydroxylases, has previously been suggested by in vitro studies. The basic mechanism of tumorigenesis in HPGL and HLRCC is likely to be pseudo-hypoxic drive, just as it is in von Hippel-Lindau syndrome.

  20. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  1. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    concentrations of ferrous iron. Experimental design allowed us to measure biological and abiological rates independently. Results indicate a relatively consistent rate of biological iron oxidation between 20-100 ng Fe2+(gm wet sediment)-1 (second)-1 where oxide accumulations occur. Abiological oxidation rates increase significantly with increasing pH, and greatly limit soluble ferrous iron above a pH of 3.5 at high temperatures. Rates of biological iron reduction are typically comparable to oxidation, and can often double oxidation rates when supplemented with organic carbon. Abiological iron reduction rates are inconsequential when the pH is greater than 2, but increase sharply below this point. Results indicate that comparable rates of microbial oxidation and reduction are common in springs where biogenic iron oxide accumulates. It appears that the interplay of temperature, oxygen availability, and supply of organic carbon determines the extent and history of iron oxide accumulation. Taken together, our results show that complete microbial iron redox cycles are active in acidic hot springs wherever biogenic iron oxides accumulate.

  2. Amphipathic β2,2-Amino Acid Derivatives Suppress Infectivity and Disrupt the Intracellular Replication Cycle of Chlamydia pneumoniae

    PubMed Central

    Tiirola, Terttu M.; Strøm, Morten B.; Vuorela, Pia M.

    2016-01-01

    We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the β2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these β2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic β2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen. PMID:27280777

  3. Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: a possible metabolic pathway under the control of the glutathione redox cycle.

    PubMed

    Elskens, M T; Penninckx, M J

    1997-07-01

    A rapid decrease of intracellular glutathione (GSH) was observed when exponentially growing cells of Saccharomyces cerevisiae were treated with sublethal concentrations of either dimethyldithiocarbamic acid or thiram [bis(dimethylthiocarbamoyl) disulfide]. The underlying mechanism of this effect possibly involves the intracellular oxidation of dimethyldithiocarbamate anions to thiram, which in turn oxidizes GSH. Overall, a linear relationship was found between thiram concentrations up to 21 microM and production of oxidized GSH (GSSG). Cytochrome c can serve as the final electron acceptor for dimethyldithiocarbamate reoxidation, and it was demonstrated in vitro that NADPH handles the final electron transfer from GSSG to the fungicide by glutathione reductase. These cycling reactions induce transient alterations in the intracellular redox state of several electron carriers and interfere with the respiration of the yeast. Thiram and dimethyldithiocarbamic acid also inactivate yeast glutathione reductase when the fungicide is present within the cells as the disulfide. Hence, whenever the GSH regeneration rate falls below its oxidation rate, the GSH:GSSG molar ratio drops from 45 to 1. Inhibition of glutathione reductase may be responsible for the saturation kinetics observed in rates of thiram elimination and uptake by the yeast. The data suggest also a leading role for the GSH redox cycle in the control of thiram and dimethyldithiocarbamic acid fungitoxicity. Possible pathways for the handling of thiram and dimethyldithiocarbamic acid by yeast are considered with respect to the physiological status, the GSH content, and the activity of glutathione reductase of the cells.

  4. Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: a possible metabolic pathway under the control of the glutathione redox cycle.

    PubMed Central

    Elskens, M T; Penninckx, M J

    1997-01-01

    A rapid decrease of intracellular glutathione (GSH) was observed when exponentially growing cells of Saccharomyces cerevisiae were treated with sublethal concentrations of either dimethyldithiocarbamic acid or thiram [bis(dimethylthiocarbamoyl) disulfide]. The underlying mechanism of this effect possibly involves the intracellular oxidation of dimethyldithiocarbamate anions to thiram, which in turn oxidizes GSH. Overall, a linear relationship was found between thiram concentrations up to 21 microM and production of oxidized GSH (GSSG). Cytochrome c can serve as the final electron acceptor for dimethyldithiocarbamate reoxidation, and it was demonstrated in vitro that NADPH handles the final electron transfer from GSSG to the fungicide by glutathione reductase. These cycling reactions induce transient alterations in the intracellular redox state of several electron carriers and interfere with the respiration of the yeast. Thiram and dimethyldithiocarbamic acid also inactivate yeast glutathione reductase when the fungicide is present within the cells as the disulfide. Hence, whenever the GSH regeneration rate falls below its oxidation rate, the GSH:GSSG molar ratio drops from 45 to 1. Inhibition of glutathione reductase may be responsible for the saturation kinetics observed in rates of thiram elimination and uptake by the yeast. The data suggest also a leading role for the GSH redox cycle in the control of thiram and dimethyldithiocarbamic acid fungitoxicity. Possible pathways for the handling of thiram and dimethyldithiocarbamic acid by yeast are considered with respect to the physiological status, the GSH content, and the activity of glutathione reductase of the cells. PMID:9212433

  5. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  6. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  7. Annual cycle and spatial trends in fatty acid composition of suspended particulate organic matter across the Beaufort Sea shelf

    NASA Astrophysics Data System (ADS)

    Connelly, Tara L.; Businski, Tara N.; Deibel, Don; Parrish, Christopher C.; Trela, Piotr

    2016-11-01

    Fatty acid profiles of suspended particulate organic matter (POM) were determined over an annual cycle (September 2003 to August 2004) on the Beaufort Sea shelf, Canadian Arctic. Special emphasis was placed on the nutritional quality of the fatty acid pool available to zooplankton by examining spatial and temporal patterns in the proportions of total polyunsaturated fatty acids (PUFA) and the essential fatty acids 22:6n-3 (DHA) and 20:5n-3 (EPA). EPA and DHA were the two most abundant PUFA throughout the study period. A log-ratio multivariate (LRA) analysis revealed strong structure in fatty acid profiles related to season and depth. Dominant fatty acids accounting for the observed trend included 18:5n-3, 18:4n-3, 16:1n-7, 20:5n-3, 18:0 and 20:3n-3. We observed a shift in fatty acid profiles from summer to autumn (e.g., from 16:1n-7 and EPA to 18:5n-3 and 18:4n-3) that likely corresponded to a shift in the relative importance of diatoms versus dinoflagellates, prymnesiophytes and/or prasinophytes to the POM pool. Fatty acid composition during winter was dominated by more refractory saturated fatty acids. A surprising finding was the depth and seasonal trend of 20:3n-3, which was higher in winter, aligned with 18:0 in the LRA, but behaved differently than other n-3 PUFA. We interpret fatty acid profiles during summer to be predominantly driven by phytoplankton inputs, whereas fatty acid profiles in winter were dominated by fatty acids that were left over after consumption and/or were generated by heterotrophs. The highest diatom inputs (EPA, the diatom fatty acid marker), n-3/n-6 ratios, and C16 PUFA index were located in an upwelling region off Cape Bathurst. This study is the first annual time series of fatty acid profiles of POM in Arctic seas, expanding our knowledge of the composition of POM throughout the dark season.

  8. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems.

  9. Imino-Oxy Acetic Acid Dealkylation as Evidence for an Inner-Sphere Alcohol Intermediate in the Reaction Catalyzed by Peptidylglycine α-Hydroxylating Monooxygenase (PHM)

    PubMed Central

    McIntyre, Neil R.; Lowe, Edward W.; Merkler, David J.

    2009-01-01

    Peptidylglycine α-hydroxylating monooxygenase (PHM, EC 1.14.17.3) catalyzes the stereospecific hydroxylation of a glycyl α-carbon in a reaction that requires O2 and ascorbate. Subsequent dealkylation of the α-hydroxyglycine by another enzyme, peptidylamidoglycolate lyase (PAL. EC 4.3.2.5), yields a bioactive amide and glyoxylate. PHM is a non-coupled, type II dicopper monooxygenase which activates O2 at only a single copper atom, CuM. In this study, the PHM mechanism was probed using a non-natural substrate, benzaldehyde imino-oxy acetic acid (BIAA). PHM catalyzes the O-oxidative dealkylation of BIAA to benzaldoxime and glyoxylate with no involvement of PAL. The minimal kinetic mechanism for BIAA was shown to be steady-state ordered using primary deuterium kinetic isotope effects. The D(V/K)APPARENT, BIAA decreased from 14.7 ± 1.0 as [O2] → 0 to 1.0 ± 0.2 as [O2] → ∞ suggesting the dissociation rate constant from the PHM·BIAA complex decreases as [O2] increases; thereby, reducing the steady-state concentration of [PHM]free. BIAA was further used to differentiate between potential oxidative Cu/O species using a QM/MM reaction coordinate simulation to determine which species could yield product O-dealkylation that matched our experimental data. The results of this study provided compelling evidence for the presence of a covalently linked CuII-alkoxide intermediate with a quartet spin state responsible BIAA oxidation. PMID:19569683

  10. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. PMID:24552049

  11. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    PubMed

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  12. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGES

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  13. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  14. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  15. Independent of their localization in protein the hydrophobic amino acid residues have no effect on the molten globule state of apomyoglobin and the disulfide bond on the surface of apomyoglobin stabilizes this intermediate state.

    PubMed

    Melnik, Tatiana N; Majorina, Maria A; Larina, Daria S; Kashparov, Ivan A; Samatova, Ekaterina N; Glukhov, Anatoly S; Melnik, Bogdan S

    2014-01-01

    At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675

  16. gamma-Linolenic acid blocks cell cycle progression by regulating phosphorylation of p27kip1 and p57kip2 and their interactions with other cycle regulators in cancer cells.

    PubMed

    Jiang, W G; Bryce, R P; Horrobin, D F; Mansel, R E

    1998-09-01

    gamma-Linolenic acid (gamma-LA), a n-6 essential fatty acid, has been previously shown to affect cell cycle and growth of cancer cells. This study examined the effects of gamma-LA on the cell cycle and cycle regulators in human colon cancer HT115 and breast cancer MCF7 cells. Brief treatment of cancer cells (<2 h) with gamma-LA resulted in a decrease in the phosphorylation of both cell cycle inhibitors, p27kip1 and p57kip2 as shown by immunoprecipitation and Western blotting. Protein levels of both inhibitors were increased following a prolonged culture of cells with the fatty acid. A co-precipitation study showed that in cells treated with gamma-LA there was an increase in the binding of these inhibitors with CDK4, CDC2, and cyclin E. Flow cytometry study indicated an inhibition of cell cycle progression by gamma-LA (G0/G1 -45.4%, S - 34.6%, G2+M - 20.0% in control, and 70.5%, 21.0%, and 8.5%, respectively, in gamma-LA treated cells). It is concluded that gamma-linolenic acid inhibits cell cycle progression in the cancer cell lines investigated, via its regulation of the phosphorylation and subsequent degradation of p27kip1 and p57kip2 and their interactions with other cycle regulators. PMID:9683802

  17. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells.

    PubMed

    So, Wai Wing; Liu, Wai Nam; Leung, Kwok Nam

    2015-08-18

    Omega-3 (n-3) fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  18. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  19. rre37 Overexpression Alters Gene Expression Related to the Tricarboxylic Acid Cycle and Pyruvate Metabolism in Synechocystis sp. PCC 6803

    PubMed Central

    Iijima, Hiroko; Watanabe, Atsuko; Takanobu, Junko; Hirai, Masami Yokota; Osanai, Takashi

    2014-01-01

    The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1, me, and pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression. The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression. The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium. PMID:25614900

  20. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling.

    PubMed

    Nieman, David C; Shanely, R Andrew; Luo, Beibei; Meaney, Mary Pat; Dew, Dustin A; Pappan, Kirk L

    2014-07-01

    Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate

  1. Photosynthesis in Rhodospirillum rubrum. III. Metabolic Control of Reductive Pentose Phosphate and Tricarboxylic Acid Cycle Enzymes 1

    PubMed Central

    Anderson, Louise; Fuller, R. C.

    1967-01-01

    Enzymes of the reductive pentose phosphate cycle including ribulose-diphosphate carboxylase, ribulose-5-phosphate kinase, ribose-5-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and alkaline fructose-1,6-diphos-phatase were shown to be present in autotrophically grown Rhodospirillum rubrum. Enzyme levels were measured in this organism grown photo- and dark heterotrophically as well. Several, but not all, of these enzymes appeared to be under metabolic control, mediated by exogenous carbon and nitrogen compounds. Light had no effect on the presence or levels of any of these enzymes in this photosynthetic bacterium. The enzymes of the tricarboxylic acid cycle and enolase were shown to be present in R. rubrum cultured aerobically, autotrophically, or photoheterotrophically, both in cultures evolving hydrogen and under conditions where hydrogen evolution is not observed. Light had no clearly demonstrable effect on the presence or levels of any of these enzymes. PMID:6042359

  2. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  3. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  4. Partial Life-Cycle and Acute Toxicity of Perfluoroalkyl Acids to Freshwater Mussels

    EPA Science Inventory

    Freshwater mussels are among the most sensitive aquatic organisms to many contaminants and have complex life-cycles that include several distinct life stages with unique contaminant exposure pathways. Standard acute (24–96 h) and chronic (28 d) toxicity tests with free larva (glo...

  5. Identification of the ortho-benzoquinone intermediate of 5-O-caffeoylquinic acid in vitro and in vivo: comparison of bioactivation under normal and pathological situations.

    PubMed

    Xie, Cen; Zhong, Dafang; Chen, Xiaoyan

    2012-08-01

    5-O-Caffeoylquinic acid (5-CQA) is one of the major bioactive ingredients in some Chinese herbal injections. Occasional anaphylaxis has been reported for these injections during their clinical use, possibly caused by reactive metabolites of 5-CQA. This study aimed at characterizing the bioactivation pathway(s) of 5-CQA and the metabolic enzyme(s) involved. After incubating 5-CQA with GSH and NADPH-supplemented human liver microsomes, two types of GSH conjugates were characterized: one was M1-1 from the 1,4-addition of GSH to ortho-benzoquinone intermediate; the other was M2-1 and M2-2 from the 1,4-addition of GSH directly to the α,β-unsaturated carbonyl group of the parent. The formation of M1-1 was cytochrome P450 (P450)-mediated, with 3A4 and 2E1 as the principal catalyzing enzymes, whereas the formation of M2-1 and M2-2 was independent of NADPH and could be accelerated by cytosolic glutathione transferase. In the presence of cumene hydroperoxide, M1-1 formation increased 6-fold, indicating that 5-CQA can also be bioactivated by P450 peroxidase under oxidizing conditions. Furthermore, M1-1 could be formed by myeloperoxidase in activated human leukocytes, implying that 5-CQA bioactivation is more likely to occur under inflammatory conditions. This finding was supported by experiments on lipopolysaccharide-induced inflammatory rats, where a greater amount of M1-1 was detected. In S-adenosyl methionine- and GSH-supplemented human S9 incubations, M1-1 formation decreased by 80% but increased after tolcapone-inhibited catechol-O-methyltransferase (COMT) activity. In summary, the high reactivities of the ortho-benzoquinone metabolite and α,β-unsaturated carbonyl group of 5-CQA to nucleophiles have been demonstrated. Different pathological situations and COMT activities in patients may alter the bioactivation extent of 5-CQA.

  6. Recent new additives for electric vehicle lead-acid batteries for extending the cycle life and capacity

    SciTech Connect

    Kozawa, A.; Sato, A.; Fujita, K.; Brodd, D.

    1997-12-01

    An electrochemically prepared colloidal graphite was found to be an excellent additive for lead-acid batteries. The new additive extends the capacity and cycle life of new and old batteries and can regenerate old, almost dead, batteries. The colloidal graphite is stable in aqueous solution and the extremely fine particles are adsorbed mainly on the positive electrode. This additive has been given the name, {alpha}-Pholon. The amount required is very small: only 6% to 10% of volume of the {alpha}-Pholon solution (about 2% colloidal graphite in water solution). The beneficial effect of the new additive was demonstrated with motorcycle batteries and forklift batteries.

  7. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K. ); Kagamimori, S.; Naruse, Y. ); Watanabe, M. )

    1988-05-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine, etc. increase in urine. It was reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  8. Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy.

    PubMed

    Sieving, P A; Chaudhry, P; Kondo, M; Provenzano, M; Wu, D; Carlson, T J; Bush, R A; Thompson, D A

    2001-02-13

    Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329-333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534-537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565-1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration. PMID:11172037

  9. Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones.

    PubMed

    Wang, Li-Hsueh; Lee, Hsieh-He; Fang, Lee-Shing; Mayfield, Anderson B; Chen, Chii-Shiarng

    2013-01-01

    Lipids are a source of metabolic energy, as well as essential components of cellular membranes. Although they have been shown to be key players in the regulation of cell proliferation in various eukaryotes, including microalgae, their role in the cell cycle of cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses remains to be elucidated. The present study examined the effects of a lipid synthesis inhibitor, cerulenin, on the cell cycle of both cultured Symbiodinium (clade B) and those engaged in an endosymbiotic association with the sea anemone Aiptasia pulchella. In the former, cerulenin exposure was found to inhibit free fatty acid (FFA) synthesis, as it does in other organisms. Additionally, while it also significantly inhibited the synthesis of phosphatidylethanolamine (PE), it did not affect the production of sterol ester (SE) or phosphatidylcholine (PC). Interestingly, cerulenin also significantly retarded cell division by arresting the cell cycles at the G0/G1 phase. Cerulenin-treated Symbiodinium were found to be taken up by anemone hosts at a significantly depressed quantity in comparison with control Symbiodinium. Furthermore, the uptake of cerulenin-treated Symbiodinium in host tentacles occurred much more slowly than in untreated controls. These results indicate that FFA and PE may play critical roles in the recognition, proliferation, and ultimately the success of endosymbiosis with anemones. PMID:24009685

  10. Fatty Acid and Phospholipid Syntheses Are Prerequisites for the Cell Cycle of Symbiodinium and Their Endosymbiosis within Sea Anemones

    PubMed Central

    Wang, Li-Hsueh; Lee, Hsieh-He; Fang, Lee-Shing; Mayfield, Anderson B.; Chen, Chii-Shiarng

    2013-01-01

    Lipids are a source of metabolic energy, as well as essential components of cellular membranes. Although they have been shown to be key players in the regulation of cell proliferation in various eukaryotes, including microalgae, their role in the cell cycle of cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses remains to be elucidated. The present study examined the effects of a lipid synthesis inhibitor, cerulenin, on the cell cycle of both cultured Symbiodinium (clade B) and those engaged in an endosymbiotic association with the sea anemone Aiptasia pulchella. In the former, cerulenin exposure was found to inhibit free fatty acid (FFA) synthesis, as it does in other organisms. Additionally, while it also significantly inhibited the synthesis of phosphatidylethanolamine (PE), it did not affect the production of sterol ester (SE) or phosphatidylcholine (PC). Interestingly, cerulenin also significantly retarded cell division by arresting the cell cycles at the G0/G1 phase. Cerulenin-treated Symbiodinium were found to be taken up by anemone hosts at a significantly depressed quantity in comparison with control Symbiodinium. Furthermore, the uptake of cerulenin-treated Symbiodinium in host tentacles occurred much more slowly than in untreated controls. These results indicate that FFA and PE may play critical roles in the recognition, proliferation, and ultimately the success of endosymbiosis with anemones. PMID:24009685

  11. Diel cycles of arsenic speciation due to photooxidation in acid mine drainage from the Iberian Pyrite Belt (Sw Spain).

    PubMed

    Sarmiento, Aguasanta M; Oliveira, Vanessa; Gómez-Ariza, José Luis; Nieto, José Miguel; Sánchez-Rodas, Daniel

    2007-01-01

    Twenty four hours diel cycles of arsenic speciation in Acid Mine Drainage (AMD) due to photooxidation have been reported for the first time. AMD samples were taken during 48 h (31st March and 1st April, 2005) at 6 h intervals from the effluent of a massive abandoned polymetallic sulphide mine of the Iberian Pyrite Belt (Sw Spain). Samples were preserved in situ using cationic exchange prior to analysis by coupled high performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS) for arsenic speciation. The results indicated the presence of inorganic arsenic species with daily means of 262mugl(-1) for As(V) and 107 microg l(-1) for As(III). No marked diel trend was observed for As(V). However, a marked diel trend was observed for As(III) in the two studied days, with maximum concentrations during nighttime (141-143 microg l(-1)) and minimum concentrations at daytime (72-77 microg l(-1)). This difference in concentration during daytime and nighttime is ca. 100%. A similar diel cycle was observed for iron. An explanation for the arsenic diel cycles observed is the light induced photooxidation of As(III) and the elimination of As(V) due to its adsorption onto Fe precipitates during the daytime. Furthermore, the diel changes in arsenic speciation emphasize the importance of designing suitable sampling strategies in AMD systems. PMID:16963107

  12. Polymorphisms in Genes of Tricarboxylic Acid Cycle Key Enzymes Are Associated with Early Recurrence of Hepatocellular Carcinoma.

    PubMed

    Wan, Shaogui; Wu, Yousheng; Zhou, Xingchun; Chen, Yibing; An, Jiaze; Yu, Xiaohe; Zhang, Huiqing; Yang, Hushan; Xing, Jinliang

    2015-01-01

    Alterations of activity and expression in tricarboxylic acid (TCA) cycle key enzymes have been indicated in several malignancies, including hepatocellular carcinoma (HCC). They play an important role in the progression of cancer. However, the impact of single nucleotide polymorphisms (SNPs) in genes encoding these key enzymes on the recurrence of HCC has not been investigated. In this study, we genotyped 17 SNPs in genes encoding TCA cycle key enzymes and analyzed their association with recurrence-free survival (RFS) in a cohort of 492 Chinese HCC patients by Cox proportional hazard model and survival tree analysis. We identified 7 SNPs in SDHC, SDHD, FH, and IDH2 genes to be significantly associated with the RFS of HCC patients. Moreover, all these SNPs were associated with the early recurrence (within 2 years after surgery) risk of diseases. Cumulative effect analysis showed that these SNPs exhibited a dose-dependent effect on the overall and early recurrence. Further stratified analysis suggested that number of risk genotypes modified the protective effect on HCC recurrence conferred by transcatheter arterial chemoembolization treatment. Finally, the survival tree analysis revealed that SNP rs10789859 in SDHD gene was the primary factor contributing to HCC recurrence in our population. To the best of our knowledge, we for the first time observed the association between SNPs in genes encoding TCA cycle key enzymes and HCC recurrence risk. Further observational and functional studies are needed to validate our findings and generalize its clinical usage. PMID:25894340

  13. USE OF THE COMPOSITION AND STABLE CARBONIISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (*13C) of individual microbial phospholipid fatty acids (PLFAs) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SOM) cy...

  14. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    NASA Astrophysics Data System (ADS)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  15. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    PubMed

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  16. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington’s Disease Patients

    PubMed Central

    Naseri, Nima N.; Bonica, Joseph; Xu, Hui; Park, Larry C.; Arjomand, Jamshid; Chen, Zhengming; Gibson, Gary E.

    2016-01-01

    Metabolic dysfunction is well-documented in Huntington’s disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD. PMID:27611087

  17. Synthesis of silver nanocubes with controlled size using water-soluble poly(amic acid) salt as the intermediate via a novel ion-exchange self-assembly technique

    NASA Astrophysics Data System (ADS)

    Qi, Shengli; Shen, Xiangyue; Lin, Zhiwei; Tian, Guofeng; Wu, Dezhen; Jin, Riguang

    2013-11-01

    Here, we report for the first time on the successful fabrication of monodispersed silver nanocubes with regular shape and controlled size in the solid phase via a novel ion-exchange self-assembly technique by using water-soluble poly(amic acid) salt as the intermediate and silver nitrate as the metal precursor. By simply altering the annealing times at high temperature, the size of the silver nanocubes could be finely tuned in the range of 90-160 nm in the present case. Further attempts with different metal salts show that the present method is also feasible for other metal species and might be universal.Here, we report for the first time on the successful fabrication of monodispersed silver nanocubes with regular shape and controlled size in the solid phase via a novel ion-exchange self-assembly technique by using water-soluble poly(amic acid) salt as the intermediate and silver nitrate as the metal precursor. By simply altering the annealing times at high temperature, the size of the silver nanocubes could be finely tuned in the range of 90-160 nm in the present case. Further attempts with different metal salts show that the present method is also feasible for other metal species and might be universal. Electronic supplementary information (ESI) available: SEM images for the CuO, NiO and Co3O4 nanocubes prepared by the ion-exchange self-assembly technique by using CuCl2, NiSO4 and Co(NO3)2 as the metal precursors and PMDA/ODA-based water-soluble poly(amic acid) salt as the intermediate (Fig. S1-S3) TGA, DSC and DMTA analyses for the pure poly(amic acid) salt and that loaded with 1 mol% silver(i) (Fig. S4-S6). See DOI: 10.1039/c3nr03212d

  18. Effects of acid rain on mycorrhizal infection and N cycling in forest soils

    SciTech Connect

    Stroo, H.F.

    1986-01-01

    Increasing the acidity of simulated rain from pH 5.6 to 3.0 reduced the number of mycorrhizal roots on white pine seedlings by 20% after 16 weeks of exposure. Mycorrhizal infection of red oaks was 25% less at a rain pH of 3.5 than at pH 5.6. Simulated acid rain also caused increases in the N contents, net photosynthesis, and growth of seedlings, as well as decreases in root:shoot ratios and in the concentration of sucrose in the roots. To measure the effects of acid rain on N mineralization, nitrification, and total inorganic N, columns containing samples from the surface horizons of 12 forest soils were exposed to simulated rain at 3 times ambient deposition rates for 16 weeks. The effects on N mineralization varied between soils, with the greatest inhibitions being observed in soils with low organic matter contents. The apparent protection by organic matter was associated with an increase in short-term buffering capacity. The average amount of N mineralized after exposure was not significantly affected by rain pH. Similarly, nitrification was inhibited during exposure to simulated rain at pH 3.5, but was unaffected after exposure. Enrichments from an acid forest soil failed to show the presence of autotrophic nitrifiers, and the effects of temperature and selective inhibitors indicated that fungi were primarily responsible for nitrification in this soil. A fungus capable of heterotrophic nitrification at pH 4.0 was isolated and identified as Absidia cylindrospora Hagem.

  19. Tricarboxylic acid cycle-sustained oxidative phosphorylation in isolated myelin vesicles.

    PubMed

    Ravera, Silvia; Bartolucci, Martina; Calzia, Daniela; Aluigi, Maria Grazia; Ramoino, Paola; Morelli, Alessandro; Panfoli, Isabella

    2013-11-01

    The Central Nervous System (CNS) function was shown to be fueled exclusively by oxidative phosphorylation (OXPHOS). This is in line with the sensitivity of brain to hypoxia, but less with the scarcity of the mitochondria in CNS. Consistently with the ectopic expression of FoF1-ATP synthase and the electron transfer chain in myelin, we have reported data demonstrating that isolated myelin vesicles (IMV) conduct OXPHOS. It may suggest that myelin sheath could be a site for the whole aerobic degradation of glucose. In this paper, we assayed the functionality of glycolysis and of TCA cycle enzymes in IMV purified from bovine forebrain. We found the presence and activity of all of the glycolytic and TCA cycle enzymes, comparable to those in mitochondria-enriched fractions, in the same experimental conditions. IMV also contain consistent carbonic anhydrase activity. These data suggest that myelin may be a contributor in energy supply for the axon, performing an extra-mitochondrial aerobic OXPHOS. The vision of myelin as the site of aerobic metabolism may shed a new light on many demyelinating pathologies, that cause an a yet unresolved axonal degeneration and whose clinical onset coincides with myelin development completion.

  20. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex [Rh (dppb)]{sup +} (dppb: 1,4-bis(diphenylphosphino)butane)

    SciTech Connect

    Reineri, F.; Aime, S.; Gobetto, R.; Nervi, C.

    2014-03-07

    This study deals with the parahydrogenation of the symmetric substrate acetylene dicarboxylic acid catalyzed by a Rh(I) complex bearing the chelating diphosphine dppb (1,4-bis(diphenylphosphino)butane). The two magnetically equivalent protons of the product yield a hyperpolarized emission signal in the {sup 1}H-NMR spectrum. Their polarization intensity varies upon changing the reaction solvent from methanol to acetone. A detailed analysis of the hydrogenation pathway is carried out by means of density functional theory calculations to assess the structure of hydrogenation intermediates and their stability in the two solvents. The observed polarization effects have been accounted on the basis of the obtained structures. Insights into the lifetime of a short-lived reaction intermediate are also obtained.

  1. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  2. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption.

  3. Measurement of the water cycle in mixed ammonium acid sulfate particles

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Richardson, C. B.

    A single ammonium-hydrogen-sulfate particle is levitated in an evacuated quadrupole trap at room temperature and the temperature of an attached tube containing bulk water is slowly cycled introducing then removing water vapor. With increasing pressure the particle dissolves in stages, then grows as a solution droplet by water absorption. With decreasing pressure the droplet supersaturates, crystallizes, then dehydrates completely to return to its initial state. Particle mass, and thus composition, is measured continuously with an electrostatic balance. Twenty-six cycles were studied as solute composition ranged from ammonium bisulfate through letovicite to ammonium sulfate in roughly equal steps. Composition was changed in situ by reaction with ammonia at low partial pressure. With solute composition characterized by x = [NH 4]/[SO 4], deliquescence was found to occur at water activity aw = 0.394-0.029 ( x- 1) for 1 ⩽ x < 1.5 and aw = 0.710-0.023( x-1.5) for 1.5 ⩽ x < 2. Particle growth occurs at deliquescence and subsequently is in excellent agreement with that predicted in a model proposed by Tang for dissolution of a two-component mixed solute. Water activities of the solution droplets are measured up to aw = 0.9. The results are compared with those predicted by the Zdanovskii-Stokes-Robinson method of interpolation from binary data and with those obtained using the mixing rule of Meissner and Kusik. Particle crystallization from supersaturated solution is analyzed thermodynamically using measured water activities, the Gibbs-Duhem equation, and classical nucleation theory. The specific free energy barrier to crystallization, ΔG/ n, is found to increase from near zero to 0.04 eV as composition ranges from x = 1 to 2, where n is the number of formula units in the critical nucleus. New phase diagrams are presented and used to discuss the dynamics of mixed sulfate particles in the atmosphere.

  4. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  5. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  6. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.

    PubMed

    McCammon, Mark T; Epstein, Charles B; Przybyla-Zawislak, Beata; McAlister-Henn, Lee; Butow, Ronald A

    2003-03-01

    To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.

  7. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  8. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    PubMed Central

    Hug, Katrin; Maher, William A.; Stott, Matthew B.; Krikowa, Frank; Foster, Simon; Moreau, John W.

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55–75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18–25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  9. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  10. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  11. Synthesis of silver nanocubes with controlled size using water-soluble poly(amic acid) salt as the intermediate via a novel ion-exchange self-assembly technique.

    PubMed

    Qi, Shengli; Shen, Xiangyue; Lin, Zhiwei; Tian, GuoFeng; Wu, Dezhen; Jin, Riguang

    2013-12-21

    Here, we report for the first time on the successful fabrication of monodispersed silver nanocubes with regular shape and controlled size in the solid phase via a novel ion-exchange self-assembly technique by using water-soluble poly(amic acid) salt as the intermediate and silver nitrate as the metal precursor. By simply altering the annealing times at high temperature, the size of the silver nanocubes could be finely tuned in the range of 90-160 nm in the present case. Further attempts with different metal salts show that the present method is also feasible for other metal species and might be universal.

  12. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    PubMed

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  13. Cycling of iron and trace metals in the sediments of acidic lakes

    SciTech Connect

    Gubala, C.P.

    1988-01-01

    This study focused on four lakes receiving acidic deposition located in the Adirondack Park, New York, U.S.A. The biogeochemistry of sediments and interstitial water along a depth transect in Big Moose, Lake was examined by chemical analysis of sediment and pore water. Solid phases of iron, manganese, aluminum, lead and zinc were quantified, using a sequential chemical extraction process. {sup 210}Pb dating, and equilibrium and diffusion transport modeling were used to assess the degree of post-depositional reprocessing of these metals. The sediment chemistry of Dart Lake, Lake Rondaxe and South Lake, were compared to the sediment processes observed in Big Moose Lake to assess inter-lake variability.

  14. Prolactin messenger ribonucleic acid levels, prolactin synthesis, and radioimmunoassayable prolactin during the estrous cycle in the Golden Syrian hamster

    SciTech Connect

    Massa, J.S. ); Blask, D.E. )

    1990-01-01

    The purpose of this study was to observe the molecular dynamics of pituitary prolactin (PRL) gene expression during the estrous cycle of the Golden Syrian hamster. PRL messenger ribonucleic acid (mRNA) levels, PRL synthesis were measured in the morning on each day of the cycle. We observed that all of these PRL indices declined or did not change from Day 2 to Day 3 of the cycle. From Day 3 to Day 4 however, PRL mRNA levels increased 33-38% and media {sup 3}H-PRL increased 32-42%, while there were no significant changes in pituitary {sup 3}H-PRL, or RIA-PRL in the media or pituitary. From Day 4 to Day 1 (estrus) there was reciprocal change in the levels of {sup 3}H-PRL in the pituitary vs. the media, with the former increasing 37-50% and the latter decreasing 25-32%. Pituitary RIA-PRL did also increased 45-64% from Day 4 to Day 1 while media RIA-PRL did not change. These data are consistent with the following hypothesis: On the morning of proestrus(Day 4) in the hamster, PRL mRNA levels are elevated compared to those on Day 3, signaling an increase in PRL synthesis. This newly synthesized PRL is shunted into a readily releasable pool on the morning of Day 4 (contributing to the afternoon surge of serum PRL), and into a preferentially stored pool by the morning of Day 1.

  15. Nitrogen cycling in s subarctic Alaskan watershed: the role of lichens and the potential effects of acid deposition

    SciTech Connect

    Gunther, A.J.

    1987-01-01

    It has been hypothesized that the loss of nitrogen-fixing lichens due to stress from air pollution could have adverse effects upon nitrogen availability, and thus primary productivity, in some ecosystems. There is general agreement, however, that the ecological role of these lichens has not been sufficiently well defined to determine whether they are keystone species. The objectives of this study were: (1) to examine the importance of nitrogen-fixing lichens to the nitrogen cycle in the drainage of Brooks Lake, Alaska, a nitrogen-limited nursery lake for the commercially important sockeye salmon (Oncorhychus nerka); and (2) to investigate the sensitivity of nitrogen fixation by lichens in this ecosystem to acid deposition. Biological nitrogen fixation was found to be the major source of new nitrogen to the Brooks Lake drainage. The rate of fixation is approximately 3 kg N/ha-yr, which compares to 0.3 kg N/ha-yr in precipitation and only 0.02 kg N/ha-yr in returning adult salmon. Cyanophillic lichens contribute about 0.21 kg N/ha-yr. The low levels of nitrogen in precipitation, combined with a lack of nitrogen-fixation activity in open lake waters, indicates that nitrogen in tributary streams is the major source of new nitrogen for Brooks Lake. The measurements of nitrogen inputs, along with estimates of other stocks and flows of nitrogen, were used to construct a steady-state box model of the nitrogen cycle in the drainage.

  16. The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.

    PubMed

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-10-24

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [(13)C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia.

  17. Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri.

    PubMed

    Dahal, Neeti; Abdelhamed, Hossam; Karsi, Attila; Lawrence, Mark L

    2014-06-30

    Edwardsiella ictaluri causes enteric septicemia in fish. Recently, we reported construction of E. ictaluri mutants with single and double gene deletions in tricarboxylic acid cycle (TCA) and one-carbon (C-1) metabolism. Here, we report the tissue persistence, virulence, and vaccine efficacy of TCA cycle (EiΔsdhC, EiΔfrdA, and EiΔmdh), C-1 metabolism (EiΔgcvP and EiΔglyA), and combination mutants (EiΔfrdAΔsdhC, EiΔgcvPΔsdhC, EiΔmdhΔsdhC, and EiΔgcvPΔglyA) in channel catfish. The tissue persistence study showed that EiΔsdhC, EiΔfrdA, EiΔfrdAΔsdhC, and EiΔgcvPΔsdhC were able to invade catfish and persist until 11 days post-infection. Vaccination of catfish fingerlings with all nine mutants provided significant (P<0.05) protection against subsequent challenge with the virulent parental strain. Vaccinated catfish fingerlings had 100% survival when subsequently challenged by immersion with wild-type E. ictaluri except for EiΔgcvPΔglyA and EiΔgcvP. Mutant EiΔgcvPΔsdhC was found to be very good at protecting catfish fry, as evidenced by 10-fold higher survival compared to non-vaccinated fish.

  18. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis.

    PubMed

    Dahal, N; Abdelhamed, H; Lu, J; Karsi, A; Lawrence, M L

    2014-02-21

    Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC). We have shown recently that tricarboxylic acid cycle (TCA) and one-carbon (C1) metabolism are involved in E. ictaluri pathogenesis. However, the effect of multiple mutations in these pathways is unknown. Here, we report four novel E. ictaluri mutants carrying double gene mutations in TCA cycle (EiΔmdhΔsdhC, EiΔfrdAΔsdhC), C1 metabolism (EiΔglyAΔgcvP), and both TCA and C1 metabolism pathways (EiΔgcvPΔsdhC). In-frame gene deletions were constructed by allelic exchange and mutants' virulence and vaccine efficacy were evaluated using in vivo bioluminescence imaging (BLI) as well as end point mortality counts in catfish fingerlings. Results indicated that all the double gene mutants were attenuated compared to wild-type (wt) E. ictaluri. There was a 1.39-fold average reduction in bioluminescence, and hence bacterial numbers, from all the mutants except for EiΔfrdAΔsdhC at 144 h post-infection. Vaccination with mutants was very effective in protecting channel catfish against subsequent infection with virulent E. ictaluri 93-146 strain. In particular, immersion vaccination resulted in complete protection. Our results provide further evidence on the importance of TCA and C1 metabolism pathways in bacterial pathogenesis.

  19. Krebs cycle anions in metabolic acidosis.

    PubMed

    Bowling, Francis G; Morgan, Thomas J

    2005-10-05

    For many years it has been apparent from estimates of the anion gap and the strong ion gap that anions of unknown identity can be generated in sepsis and shock states. Evidence is emerging that at least some of these are intermediates of the citric acid cycle. The exact source of this disturbance remains unclear, because a great many metabolic blocks and bottlenecks can disturb the anaplerotic and cataplerotic pathways that enter and leave the cycle. These mechanisms require clarification with the use of tools such as gas chromatography-mass spectrometry.

  20. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor.

    PubMed

    Okajima, Koji; Kashojiya, Sachiko; Tokutomi, Satoru

    2012-11-30

    Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391-3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.

  1. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage

    PubMed Central

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; Ohm, Robin A.; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Lindquist, Erika A.; Pan, Chongle; Hettich, Robert L.; Grigoriev, Igor V.; Singer, Steven W.; Banfield, Jillian F.

    2016-01-01

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches. PMID:26973616

  2. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    DOE PAGES

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; Ohm, Robin A.; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; et al

    2016-03-03

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and inmore » the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. Finally, these findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.« less

  3. Measurement of (15)N enrichment of glutamine and urea cycle amino acids derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Nakamura, Hidehiro; Karakawa, Sachise; Watanabe, Akiko; Kawamata, Yasuko; Kuwahara, Tomomi; Shimbo, Kazutaka; Sakai, Ryosei

    2015-05-01

    6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is an amino acid-specific derivatizing reagent that has been used for sensitive amino acid quantification by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In this study, we aimed to evaluate the ability of this method to measure the isotopic enrichment of amino acids and to determine the positional (15)N enrichment of urea cycle amino acids (i.e., arginine, ornithine, and citrulline) and glutamine. The distribution of the M and M+1 isotopomers of each natural AQC-amino acid was nearly identical to the theoretical distribution. The standard deviation of the (M+1)/M ratio for each amino acid in repeated measurements was approximately 0.1%, and the ratios were stable regardless of the injected amounts. Linearity in the measurements of (15)N enrichment was confirmed by measuring a series of (15)N-labeled arginine standards. The positional (15)N enrichment of urea cycle amino acids and glutamine was estimated from the isotopic distribution of unique fragment ions generated at different collision energies. This method was able to identify their positional (15)N enrichment in the plasma of rats fed (15)N-labeled glutamine. These results suggest the utility of LC-MS/MS detection of AQC-amino acids for the measurement of isotopic enrichment in (15)N-labeled amino acids and indicate that this method is useful for the study of nitrogen metabolism in living organisms.

  4. Protein Vivisection Reveals Elusive Intermediates in Folding

    SciTech Connect

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-05-25

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu {yields} Glu{sup -}) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the {beta}5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  5. Protein vivisection reveals elusive intermediates in folding.

    PubMed

    Zheng, Zhongzhou; Sosnick, Tobin R

    2010-04-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here, we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu-->Glu(-)) to destabilize and unfold a specific region of the protein. We applied this strategy to ubiquitin, reversibly trapping a folding intermediate in which the beta5-strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high-energy states.

  6. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%. PMID:16257208

  7. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  8. Geochronology, geochemistry, and Hf isotopes of Jurassic intermediate-acidic intrusions in the Xing'an Block, northeastern China: Petrogenesis and implications for subduction of the Paleo-Pacific oceanic plate

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Ge, Wen-chun; Yang, Hao; Xu, Wen-liang; Zhang, Yan-long; Bi, Jun-hui; Liu, Xi-wen

    2016-03-01

    Zircon U-Pb dating, whole-rock geochemistry, Hf isotopic compositions, and regional geological observations of Jurassic intermediate-acidic intrusions in the Xing'an Block, northeastern China, are presented to constrain their petrogenesis and the tectonic evolution of the Paleo-Pacific Ocean. Zircon U-Pb age dating indicates that the intrusions were emplaced in three stages: during the Early Jurassic (180-177 Ma), Middle Jurassic (171-170 Ma), and Late Jurassic (∼151 Ma). Despite the wide range in ages of the intrusions, the magmas of Jurassic acidic intrusions were likely derived from a similar or common source and experienced different degrees of magmatic differentiation, as inferred from their geochemical and Hf isotopic characteristics. The Jurassic acidic intrusions are characterized by high SiO2 and total Na2O + K2O, low MgO, and I-type affinities, suggesting that the primary magmas were derived from partial melting of lower crustal material. These findings, combined with their εHf(t) values and two-stage model ages, indicate the primary magmas originated from partial melting of juvenile crustal material accreted during the Neoproterozoic to Phanerozoic. The Middle Jurassic intermediate-acidic rocks (diorites and granodiorites of the TJ pluton) have SiO2 contents of 57.96-69.10 wt.%, MgO contents of 4.48-1.81 wt.%, and high Mg numbers (45-54). They are enriched in large ion lithophile elements (e.g., Rb, Ba, Th, U, and K) and light rare earth elements, depleted in high field strength elements (e.g., Nb, Ta, Zr, Hf, and Ti) and heavy rare earth elements, and have εHf(t) values of +6.5 to +9.1. These data suggest that the magma was derived from partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids. According to these findings and previous studies that focused on contemporaneous magmatic-tectonic activity in northeastern China, we conclude that the generation of Jurassic intermediate-acidic intrusions in the Xing

  9. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.

    PubMed

    Dickey, C A; Heal, K V; Stidson, R T; Koren, R; Schröder, P; Cape, J N; Heal, M R

    2004-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health.

  10. Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates.

    PubMed

    Puntel, Robson Luiz; Roos, Daniel Henrique; Grotto, Denise; Garcia, Solange C; Nogueira, Cristina Wayne; Rocha, Joao Batista Teixeira

    2007-06-13

    A variety of Krebs cycle intermediaries has been shown to possess antioxidant properties in different in vivo and in vitro systems. Here we examined whether citrate, succinate, malate, oxaloacetate, fumarate and alpha-ketoglutarate could modulate malonate-induced thiobarbituric acid-reactive species (TBARS) production in rat brain homogenate. The mechanisms involved in their antioxidant activity were also determined using two analytical methods: 1) a popular spectrophotometric method (Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.) and a high performance liquid chromatographic (HPLC) procedure (Grotto, D., Santa Maria, L. D., Boeira, S., Valentini, J., Charão, M. F., Moro, A. M., Nascimento, P. C., Pomblum, V. J., Garcia, S. C., 2006. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. Journal of Pharmaceutical and Biomedical Analysis 43, 619-624.). Citrate, malate, and oxaloacetate reduced both basal and malonate-induced TBARS production. Their effects were not changed by pre-treatment of rat brain homogenates at 100 degrees C for 10 min. alpha-Ketoglutarate increased basal TBARS without changing malonate-induced TBARS production in fresh and heat-treated homogenates. Succinate reduced basal--without altering malonate-induced TBARS production. Its antioxidant activity was abolished by KCN or heat treatment. Fumarate reduced malonate-induced TBARS production in fresh homogenates; however, its effect was completely abolished by heat treatment. There were minimal differences among the studied methods. Citrate, oxaloacetate, malate, alpha-ketoglutarate and malonate showed iron-chelating activity. We suggest that antioxidant properties of citrate, malate and oxaloacetate were due to their ability to cancel iron redox activity by forming inactive complexes, whereas alpha-ketoglutarate and malonate pro

  11. Krebs Cycle Wordsearch

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2001-04-01

    This puzzle embeds 46 names, terms, abbreviations, and acronyms about the citric acid (Krebs) cycle in a 14- x 17-letter matrix. A descriptive narrative beside it describes important features of the pathway. All the terms a student needs to find are embedded there with the first letter followed by underlined blanks to be completed. Therefore, the students usually must find the terms to know how to spell them, correctly fill in the blanks in the narrative with the terms, and then find and highlight the terms in the letter matrix. When all are found, the 24 unused letters complete a sentence that describes a major feature of this central pathway. The puzzle may be used as homework, an extra-credit project, or a group project in the classroom in any course where basic metabolism is learned. It disguises as fun the hard work needed to learn the names of the intermediates, enzymes, and cofactors.

  12. Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids.

    PubMed

    Gorres, Kelly L; Daigle, Derek; Mohanram, Sudharshan; Miller, George

    2014-07-01

    The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small

  13. The role of the cell cycle in the cellular uptake of folate-modified poly(l-amino acid) micelles in a cell population

    NASA Astrophysics Data System (ADS)

    Tang, Jihui; Liu, Ziwei; Ji, Fenqi; Li, Yao; Liu, Junjie; Song, Jian; Li, Jun; Zhou, Jianping

    2015-12-01

    Nanoparticles are widely recognized as a vehicle for tumor-targeted therapies. There are many factors that can influence the uptake of nanoparticles, such as the size of the nanoparticles, and/or their shape, elasticity, surface charge and even the cell cycle phase. However, the influence of the cell cycle on the active targeting of a drug delivery system has been unknown until now. In this study, we initially investigated the folate receptor α (FR-α) expression in different phases of HeLa cells by flow cytometric and immunocytochemical methods. The results obtained showed that FR-α expression was cell cycle-dependent, i.e. the S cells' folate receptor expression was the highest as the cell progressed through its cycle. Then, we used folate modified poly(l-amino acid) micelles (FA-PM) as an example to investigate the influence of the cell cycle on the active targeting drug delivery system. The results obtained indicated that the uptake of FA-PM by cells was influenced by the cell cycle phase, and the S cells took up the greatest number of folate conjugated nanoparticles. Our findings suggest that future studies on ligand-mediated active targeting preparations should consider the cell cycle, especially when this system is used for a cell cycle-specific drug.

  14. An efficient synthesis of 7α,12α-dihydroxy-4-cholesten-3-one and its biological precursor 7α-hydroxy-4-cholesten-3-one: Key intermediates in bile acid biosynthesis.

    PubMed

    Ogawa, Shoujiro; Zhou, Biao; Kimoto, Yusuke; Omura, Kaoru; Kobayashi, Akiko; Higashi, Tatsuya; Mitamura, Kuniko; Ikegawa, Shigeo; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi

    2013-09-01

    This paper describes a method for the chemical synthesis of 7α,12α-dihydroxy-4-cholesten-3-one (1a) and its biological precursor, 7α-hydroxy-4-cholesten-3-one (1b), both of which are key intermediates in the major pathway of bile acid biosynthesis from cholesterol. The principal reactions involved were (1) building of the cholesterol (iso-octane) side chain by 3-carbon elongation of the cholane (iso-pentane) one, (2) oxidation sequence to transform the 3α-hydroxy group of the steroidal A/B-ring to the desired 4-en-3-one system, and (3) appropriate protection strategy for hydroxy groups in the positions at C-7 and C-12 in the steroid nucleus. The absolute structure of 1a and 1b were confirmed by NMR and X-ray crystallography. The targeted compounds 1a and 1b, prepared in 11 steps from 2a and 2b respectively, should be useful for biochemical studies of bile acid biosynthesis or clinical studies of bile acid metabolism, as plasma levels of 1b (also termed C4) have been shown to correlate highly with the rate of bile acid biosynthesis in man.

  15. Mathematical models for determining metabolic fluxes through the citric acid and the glyoxylate cycles in Saccharomyces cerevisiae by 13C-NMR spectroscopy.

    PubMed

    Tran-Dinh, S; Bouet, F; Huynh, Q T; Herve, M

    1996-12-15

    We propose, first, a practical method for studying the isotopic transformation of glutamate or any other metabolite isotopomers in the citric acid and the glyoxylate cycles; second, two mathematical models, one for evaluating the flux through the citric acid cycle and the other for evaluating the flux through the latter coupled to the glyoxylate cycle in yeast. These models are based on the analysis of 13C-NMR spectra of glutamate obtained from Saccharomyces cerevisiae, NCYC strain, fed with 100% enriched [2-13C]acetate. The population of each glutamate isotopomer, the change in intensity of each multiplet component or the enrichment of any glutamate carbon is expressed by a specific analytical equation from which the flux in the citric acid and the glyoxylate cycles can be deduced. The aerobic metabolism of 100% [2-13C]acetate in acetate-grown S. cerevisiae cells was studied as a function of time using 13C-NMR. 1H-NMR and biochemical techniques. The C1 and C6 doublet and singlet of labeled trehalose increase continuously with time indicating that there is no isotopic transformation between trehalose isotopomers even though the corresponding formation rates are different. By contrast, the glutamate C4 singlet increases then decreases with time. The C4 doublet, which is lower than the singlet for t < 60 min, increases continuously and becomes higher than the singlet for t > 90 min. A similar observation was made for the C2 resonance singlet and doublet. In addition, the glutamate C2 multiplet consists of only seven instead of nine peaks as in random labeling. These results agree well with our models and demonstrate that, in the presence of acetate, anaplerotic carbon sources involved in the synthesis of acetyl-CoA are negligible in yeast. The flux in the citric acid cycle was deduced from a plot of the C4 area versus incubation time, while the flux within the glyoxylate cycle was determined from the relative intensity of the glutamate C4 doublet and singlet. The

  16. Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression

    PubMed Central

    Belin, Sophie; Kaya, Ferdinand; Duisit, Ghislaine; Giacometti, Sarah; Ciccolini, Joseph; Fontés, Michel

    2009-01-01

    Background Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. Methods and Findings Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. Conclusions AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed. PMID:19197388

  17. Diel cycling of zinc in a stream impacted by acid rock drainage: Initial results from a new in situ Zn analyzer

    USGS Publications Warehouse

    Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.

    2007-01-01

    Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.

  18. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: its modulation by clofibrate exposure.

    PubMed

    Lazzara, Raimondo; Fernandes, Denise; Faria, Melissa; López, Jordi F; Tauler, Romà; Porte, Cinta

    2012-08-15

    Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13-24%) followed by docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and palmitoleic acid (16:1n-7). Some individual fatty acids (16:0, 16:2n-4, 18:1n-7, 18:2n-6, 18:3n-4, 18:4n-3, 20:4n-3, 20:5n-3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n-3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%-48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L. PMID:22728965

  19. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  20. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  1. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain).

    PubMed

    Hierro, A; Olías, M; Cánovas, C R; Martín, J E; Bolivar, J P

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.

  2. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

  3. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    SciTech Connect

    Okano, Junko . E-mail: okajun@anat1.med.kyoto-u.ac.jp; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.

  4. Acid deposition: effects on geochemical cycling and biological availability of trace elements. Report for September 1982-January 1985

    SciTech Connect

    Campbell, P.G.C.; Galloway, J.N.; Stokes, P.

    1985-01-01

    Acid deposition is caused by emissions of oxides of sulfur and nitrogen from such high temperature processes as fossil-fuel combustion and ore smelting. The emissions also contain elements present in the environment in trace amounts, for example, silver (Ag), arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), copper (Cu), mercury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), tin (Sn), tellurium (Te), thallium (Th), Vanadium (V), and zinc (Zn). With the exception of mercury, these elements are not naturally present in the atmosphere owing to their characteristically low volatilities. The shift from natural to human control of deposition of trace elements significantly perturbs the biogeochemical cycles of these potentially toxic substances. This report addresses the following: Do elevated rates of their deposition cause changes in aquatic and terrestrial ecosystems. What are the interactions between their deposition and the concurrent acidification of ecosystems. The report focuses on elements generally classified as very toxic and relatively accessible in the environment, i.e. the 17 listed above plus aluminum (Al). A significant bibliography accompanies the report.

  5. Targeting triglyceride/fatty acid cycling in β-cells as a therapy for augmenting glucose-stimulated insulin secretion.

    PubMed

    Cantley, James; Biden, Trevor J

    2010-01-01

    Insulin secretion from pancreatic β-cells is triggered by signals arising from the metabolism of glucose and acting through separate initiation and amplification pathways. Despite decades of investigation, crucial details of this mechanism remain poorly understood, especially those relating to the amplifying pathway(s). Advances in this area are vital if we are to understand why insulin secretion fails in type 2 diabetes and to develop strategies to overcome this failure. Indeed, targeting the amplifying pathway(s) would constitute an attractive therapy for augmenting insulin secretion because it would closely link secretory responsiveness to the prevailing glycaemia. It is therefore noteworthy that the possibility of augmenting the amplification pathway(s) has recently been highlighted by studies investigating a metabolic cycle that links the breakdown of triacylglycerol (TAG), release of fatty acid (FA), and subsequent re-incorporation of that FA into TAG. This work reinvigorates and extends the long-standing idea that partitioning of endogenous lipid metabolism towards esterification products promotes the amplification phase of the secretory response. These conceptual advances, and their possible therapeutic application, will be discussed in the following article.

  6. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  7. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  8. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    PubMed

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  9. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex.

    PubMed

    Zanatta, Angela; Schuck, Patrícia Fernanda; Viegas, Carolina Maso; Knebel, Lisiane Aurélio; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Wajner, Moacir

    2009-11-17

    The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.

  10. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma.

    PubMed

    Hui, K F; Ho, Dona N; Tsang, C M; Middeldorp, Jaap M; Tsao, George S W; Chiang, Alan K S

    2012-10-15

    Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV). We reported that suberoylanilide hydroxamic acid (SAHA) induced EBV lytic cycle in EBV-positive gastric carcinoma cells and mediated enhanced cell death. However, expression of EBV lytic proteins was thought to exert antiapoptotic effect in EBV-infected cells. Here, we examined the in vitro and in vivo effects of SAHA on EBV lytic cycle induction in NPC cells and investigated the cellular consequences. Micromolar concentrations of SAHA significantly induced EBV lytic cycle in EBV-positive NPC cells. Increased apoptosis and proteolytic cleavage of poly(ADP-ribose) polymerase and caspase-3, -7 and -9 in EBV-positive versus EBV-negative NPC cells were observed. More than 85% of NPC cells expressing immediate-early (Zta), early (BMRF1) or late (gp350/220) lytic proteins coexpressed cleaved caspase-3. Tracking of expression of EBV lytic proteins and cleaved caspase-3 over time demonstrated that NPC cells proceeded to apoptosis following EBV lytic cycle induction. Inhibition of EBV DNA replication and late lytic protein expression by phosphonoformic acid did not impact on SAHA's induced cell death in NPC, indicating that early rather than late phase of EBV lytic cycle contributed to the apoptotic effect. In vivo effects of SAHA on EBV lytic cycle induction and tumor growth suppression were also observed in NPC xenografts in nude mice. Taken together, our data indicated that activation of lytic cycle from latent cycle of EBV by SAHA leads to apoptosis and tumor growth suppression of NPC thereby providing experimental evidence for virus-targeted therapy against EBV-positive cancer.

  11. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-06-08

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  12. Treatment of nitric acid-, U(VI)-, and Tc(VII)-contaminated groundwater in intermediate-scale physical models of an in situ biobarrier.

    PubMed

    Michalsen, Mandy M; Peacock, Aaron D; Smithgal, Amanda N; White, David C; Spain, Anne M; Sanchez-Rosario, Yamil; Krumholz, Lee R; Kelly, Shelly D; Kemner, Kenneth M; McKinley, James; Heald, Steve M; Bogle, Mary Anna; Watson, David B; Istok, Jonathan D

    2009-03-15

    Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacywaste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO2)3(PO4)2.4H2O(s), which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.

  13. ECUT: Energy Conversion and utilization Technologies program biocatalysis research activity. Generation of chemical intermediates by catalytic oxidative decarboxylation of dilute organic acids

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Gupta, A.; Ingham, J. D.

    1983-01-01

    A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.

  14. Treatment of nitric acid-, U(VI)-, and TC(VII)-contaminated groundater in intermediate-scale physical models of an in situ biobarrier

    SciTech Connect

    Michalsen, Mandy M.; Peacock, Aaron D.; Smithgal, Amanda N.; White, David C.; Spain, Anne M.; Sanchez-Rosario, Yamil; Krumholz, Lee R.; Kelly, Shelly D; Kemner, Kenneth M; McKinley, James; Heald, Steve M.; Bogle, Mary Anna; Watson, David B; IstokD., Jonathan

    2009-02-01

    Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacy waste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO{sub 2}){sub 3}(PO{sub 4}){sub 2} {center_dot} 4H{sub 2}O{sub (s)}, which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.

  15. Treatment of Nitric Acid-, U(VI)-, and Tc(VII)-Contaminated Groundwater in Intermediate-Scale Physical Models of an In Situ Biobarrier

    SciTech Connect

    Michalsen, Mandy M.; Peacock, Aaron; Smithgal, Amanda N.; White, David C.; Spain, A. M.; Sanchez-Rosario, Yamil; Krumholz, Lee R.; Kelly, Shelly D.; Kemner, Kenneth M.; McKinley, James P.; Heald, Steve M.; bogle, Mary A.; Watson, David; Istok, Jonathan D.

    2009-03-15

    Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacy waste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO2)3(PO4)2·4H2O(s), which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.

  16. [Intermediate phenotype of schizophrenia].

    PubMed

    Hashimoto, Ryota

    2013-04-01

    Genes are major contributors to schizophrenia. The intermediate phenotype concept represents a strategy for identifying risk genes for schizophrenia and for characterizing the neural systems affected by risk gene variants to elucidate quantitative, mechanistic aspects of brain function implicated in schizophrenia. Intermediate phenotypes are defined by being heritable, being able to measure quantitatively; being related to the disorder and its symptoms in the general population; being stable over time; showing increased expression in unaffected relatives of probands; and cosegregation with the disorder in families. Intermediate phenotypes in schizophrenia are neurocognition, neuroimaging, neurophysiology, etc. In this review, we present concept, recent work, and future perspective of intermediate phenotype.

  17. Reproductive cycle and seasonal variations in lipid content and fatty acid composition in gonad of the cockle Fulvia mutica in relation to temperature and food

    NASA Astrophysics Data System (ADS)

    Liu, Wenguang; Li, Qi; Kong, Lingfeng

    2013-09-01

    From March 2004 to February 2005, seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica (Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions ( e.g., temperature and food availability). Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad. Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn, whereas spawning occurred in summer (20.4-24.6°C). The seasonal variation in lipid content was similar to that of the mean oocyte diameter. In both neutral and polar lipids, the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids, and polyunsaturated fatty acids were abundant, with series n-3 as the predominant component. Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle. The Σ(n-3) and Σ(n-6) values were relatively high during January-May, and the associated unsaturation index was significantly higher than that in other months. The results suggest that fatty acids play an important role in the gametogenesis of F. mutica.

  18. Copper(II)-catalyzed room temperature aerobic oxidation of hydroxamic acids and hydrazides to acyl-nitroso and azo intermediates, and their Diels-Alder trapping.

    PubMed

    Chaiyaveij, Duangduan; Cleary, Leah; Batsanov, Andrei S; Marder, Todd B; Shea, Kenneth J; Whiting, Andrew

    2011-07-01

    CuCl(2), in the presence of a 2-ethyl-2-oxazoline ligand, is an effective catalyst for the room temperature, aerobic oxidation of hydroxamic acids and hydrazides, to acyl-nitroso and azo dienophiles respectively, which are efficiently trapped in situ via both inter- and intramolecular hetero-Diels-Alder reactions with dienes. Both inter- and intramolecular variants of the Diels-Alder reaction are suitable under the reaction conditions using a variety of solvents. Under the same conditions, an acyl hydrazide was also oxidized to give an acyl-azo dienophile which was trapped intramolecularly by a diene. PMID:21644530

  19. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  20. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

    PubMed Central

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J.

    2016-01-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  1. Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom.

    PubMed

    de Melo Alves Paiva, Raquel; de Freitas Figueiredo, Raquel; Antonucci, Gilmara Ausech; Paiva, Helder Henrique; de Lourdes Pires Bianchi, Maria; Rodrigues, Kelly C; Lucarini, Rodrigo; Caetano, Renato Cesar; Linhari Rodrigues Pietro, Rosemeire Cristina; Gomes Martins, Carlos Henrique; de Albuquerque, Sérgio; Sampaio, Suely Vilela

    2011-05-01

    The present article describes an l-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host's immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 μg/mL and 50 μg/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. PMID:21300133

  2. Conformational Itinerary of Pseudomonas aeruginosa 1,6-Anhydro-N-acetylmuramic Acid Kinase during Its Catalytic Cycle*

    PubMed Central

    Bacik, John-Paul; Tavassoli, Marjan; Patel, Trushar R.; McKenna, Sean A.; Vocadlo, David J.; Khajehpour, Mazdak; Mark, Brian L.

    2014-01-01

    Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis. PMID:24362022

  3. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation.

    PubMed

    Albino, A P; Juan, G; Traganos, F; Reinhart, L; Connolly, J; Rose, D P; Darzynkiewicz, Z

    2000-08-01

    The incidence of cutaneous malignant melanoma is undergoing a dramatic increase in persons with light-color skin in all parts of the world. The prognosis for individuals with advanced disease is dismal due to the lack of effective treatment options. Thus, there is a need for new approaches to control tumor progression. Epidemiological, experimental, and mechanistic data implicate omega-6 polyunsaturated fatty acids (PUFAs) as stimulators and long-chain omega-3 PUFAs as inhibitors of development and progression of a range of human cancers, including melanoma. The aim of this study was to assess the mechanisms by which docosahexaenoic acid (DHA), an omega-3 PUFA, affects human melanoma cells. Exponentially growing melanoma cell lines were exposed in vitro to DHA and then assessed for (a) inhibition of cell growth; (b) expression of cyclins and cyclin-dependent kinase inhibitors in individual cells by flow cytometry and immunocytochemistry using specific monoclonal antibodies to cyclin D1, cyclin E, p21WAF1/CIP1, or p27(KIP1); and (c) expression of total pRb(T) independent of phosphorylation state and hypophosphorylated pRb(P-) in fixed cells by flow cytometry and immunocytochemistry using specific monoclonal antibodies to pRb(T) or pRb(P-), respectively. After treatment with increasing concentrations of DHA, cell growth in a majority of melanoma cell lines (7 of 12) was inhibited, whereas in 5 of 12 cell lines, cell growth was minimally affected. Two melanoma cell lines were examined in detail, one resistant (SK-Mel-29) and one sensitive (SK-Mel-110) to the inhibitory activity of DHA. SK-Mel-29 cells were unaffected by treatment with up to 2 microg/ml DHA whether grown in the absence or presence of 1% fetal bovine serum (FBS). No appreciable change was observed in cell growth, cell cycle distribution, the status of pRb phosphorylation, cyclin D1 expression, or the levels of the cyclin-dependent kinase inhibitors p21 and p27. In contrast, SK-Mel-110 cell growth was

  4. Microwave detection of a key intermediate in the formation of atmospheric sulfuric acid: The structure of H[sub 2]O-SO[sub 3

    SciTech Connect

    Phillips, J.A.; Canagaratna, M.; Goodfriend, H.; Leopold, K.R. )

    1995-01-12

    The microwave spectra of five isotopically substituted derivatives of H[sub 2]O-SO[sub 3] have been observed by pulsed nozzle Fourier transform microwave spectroscopy. The complex, which has long been regarded as an important precursor to H[sub 2]SO[sub 4] in the atmosphere, has a structure in which the oxygen of the water approaches the sulfur of the SO[sub 3] above its plane, reminiscent of a donor-acceptor complex. The intermolecular S-O bond length is long (2.432 [+-] 0.003 A), and the out-of-plane distortion of the SO[sub 3] is small (2-3[degree]). The C[sub 2] axis of the water forms an angle of 103 [+-] 2[degrees] with the intermolecular bond. For an eclipsed configuration, this structure places the protons 2.67 A from the SO[sub 3] oxygens, indicating that a rather long distance must be traversed in order to transfer a proton to form sulfuric acid. The success of these experiments depended critically on the use of a molecular source in which liquid water was evaporated directly into the supersonic expansion. Such a source should be general for liquids of moderate vapor pressure, and its design is described. 29 refs., 2 figs., 4 tabs.

  5. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids.

    PubMed

    Shen, Liang; Hu, Hongyou; Ji, Hongfang; Cai, Jiyuan; He, Ning; Li, Qingbiao; Wang, Yuanpeng

    2014-08-01

    The two-stage process, coupling volatile fatty acids (VFAs) fermentation and poly(hydroxybutyrate-hydroxyvalerate) (P(HB/HV)) biosynthesis, was investigated for five waste organic materials. The overall conversion efficiencies were glycerol>starch>molasses>waste sludge>protein, meanwhile the maximum P(HB/HV) (1.674 g/L) was obtained from waste starch. Altering the waste type brought more effects on VFAs composition other than the yield in the first stage, which in turn greatly changed the yield in the second stage. Further study showed that even-number carbon VFAs (or odd-number ones) had a good positive linear relationship with P(HB/HV) content of HB (or HV). Additionally, VFA producing microbiota was analyzed by pyrosequencing methods for five wastes, which indicated that specific species (e.g., Lactobacillus for protein; Ethanoligenens for starch; Ruminococcus and Limnobacter for glycerol) were dominant in the community for VFAs production. Potential competition among acidogenic bacteria specially involved to produce some VFA was proposed as well.

  6. Predicted reaction rates of H(x)N(y)O(z) intermediates in the oxidation of hydroxylamine by aqueous nitric acid.

    PubMed

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2008-08-21

    This work reports computed rate coefficients of 90 reactions important in the autocatalytic oxidation of hydroxylamine in aqueous nitric acid. Rate coefficients were calculated using four approaches: Smoluchowski (Stokes-Einstein) diffusion, a solution-phase incarnation of transition state theory based on quantum chemistry calculations, simple Marcus theory for electron-transfer reactions, and a variational TST approach for dissociative isomerization reactions that occur in the solvent cage. Available experimental data were used to test the accuracy of the computations. There were significant discrepancies between the computed and experimental values for some key parameters, indicating a need for improvements in computational methodology. Nonetheless, the 90-reaction mechanism showed the ability to reproduce many of the trends seen in experimental studies of this very complicated kinetic system. This work highlights reactions that may govern the system evolution and branching behavior critical to the stability of the system. We hope that this analysis will guide experimental investigations to reduce the uncertainties in the critical rate coefficients and thermochemistry, allowing an unambiguous determination of the dominant reaction pathways in the system. Advances in efficient and accurate solvation models that effectively separate entropic and enthalpic contributions will most directly benefit solution-phase modeling efforts. Methods for more accurately estimating activity coefficients, including at infinite dilution in multicomponent mixtures, are needed for modeling high ionic strength aqueous systems. A detailed derivation of the solution-phase equilibrium and transition state theory rate expressions in solution is included in the Supporting Information. PMID:18652432

  7. Suppression of the allogeneic response by the anti-allergy drug N-(3,4-dimethoxycinnamonyl) anthranilic acid results from T-cell cycle arrest

    PubMed Central

    Zaher, Sarah S; Coe, David; Chai, Jian-Guo; Larkin, Daniel FP; George, Andrew JT

    2013-01-01

    Previously we have shown that indoleamine 2,3-dioxygenase (IDO) and the tryptophan metabolite, 3-hydroxykynurenine (3HK) can prolong corneal allograft survival. IDO modulates the immune response by depletion of the essential amino acid tryptophan by breakdown to kynurenines, which themselves act directly on T lymphocytes. The tryptophan metabolite analogue N-(3,4-dimethoxycinnamonyl) anthranilic acid (DAA, ‘Tranilast’) shares the anthranilic acid core with 3HK. Systemic administration of DAA to mice receiving a fully MHC-mismatched allograft of cornea or skin resulted in significant delay in rejection (median survival of controls 12 days, 13 days for cornea and skin grafts, respectively, and of treated mice 24 days (P < 0·0001) and 17 days (P < 0·03), respectively). We provide evidence that DAA-induced suppression of the allogeneic response, in contrast to that induced by tryptophan metabolites, was a result of cell cycle arrest rather than T-cell death. Cell cycle arrest was mediated by up-regulation of the cell cycle-specific inhibitors p21 and p15, and associated with a significant reduction in interleukin-2 production, allowing us to characterize a novel mechanism for DAA-induced T-cell anergy. Currently licensed as an anti-allergy drug, the oral bioavailability and safe therapeutic profile of DAA make it a candidate for the prevention of rejection of transplanted cornea and other tissues. PMID:23121382

  8. The effect of the menstrual cycle and of decompression stress on arachidonic acid-induced platelet aggregation and on intrinsic platelet thromboxane production in women compared with men.

    PubMed

    Markham, S M; Dubin, N H; Rock, J A

    1991-12-01

    Menstrual cycle variations in platelet aggregation and thromboxane production in association with sex steroids have been reported. External stimuli such as decompression sickness have been associated with clotting activity changes, specifically, increased platelet aggregation. Differences in response of platelets from women and men, when subjected to such a stress, have been observed. This study evaluated the ability of washed platelets from women in the proliferative and secretory phases of the menstrual cycle to aggregate in response to arachidonic acid and the aggregation difference between washed platelets from women and men in response to decompression stress and arachidonic acid. Additionally, platelet thromboxane production differences between the assessed platelet populations were compared. Our results indicate no difference in platelet aggregability between phases of the menstrual cycle. A significant aggregation difference between platelets from women and men was noted. Platelets from women were more sensitive to arachidonic acid aggregation. These differences were not affected by decompression stress. No difference in thromboxane B2 production was noted between the platelet populations evaluated.

  9. A simple mathematical model and practical approach for evaluating citric acid cycle fluxes in perfused rat hearts by 13C-NMR and 1H-NMR spectroscopy.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Bouet, F; Herve, M

    1997-04-15

    We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C-NMR and 1H-NMR spectroscopy. We demonstrate that 13C-NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments. Wistar rat hearts (five beating and four KCl-arrested hearts) were aerobically perfused with 100% enriched [2-(13)C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 +/- 0.003 min(-1) for beating hearts and 0.0741 +/- 0.004 min(-1) for KCl-arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl-arrested hearts are 1.06 +/- 0.06 micromol x min(-1) x mg(-1) and 0.21 +/- 0.02 micromol x min(-1) x g(-1), respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 +/- 1.7% and 8.8 +/- 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2-oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half-time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species.

  10. Addition of potassium carbonate to continuous cultures of mixed ruminal bacteria shifts volatile fatty acids and daily production of biohydrogenation intermediates.

    PubMed

    Jenkins, T C; Bridges, W C; Harrison, J H; Young, K M

    2014-02-01

    A recent study reported a 0.4 percentage unit increase in milk fat of lactating dairy cattle when dietary K was increased from 1.2 to 2% with potassium carbonate. Because milk fat yield has been associated with ruminal production of certain conjugated linoleic acid (CLA) isomers, 2 studies were conducted to determine if increasing potassium carbonate in the rumen would alter patterns of fermentation and biohydrogenation. In experiment 1, 5 dual-flow continuous fermenters were injected just before each feeding with a 10% (wt/wt) stock potassium carbonate solution to provide the equivalent of 1.1 (K1), 2.2 (K2), and 3.3 (K3) % of diet dry matter (DM) as added K. One of the remaining fermenters received no K (K0) and the last fermenter (NaOH) was injected with adequate NaOH stock solution (10%, wt/wt) to match the pH observed for the K3 treatment. For experiment 2, 6 dual-flow continuous fermenters were used to evaluate 6 treatments arranged in a 2 × 3 factorial to examine 2 levels of soybean oil (0 and 3.64% of diet DM) and added K at 0, 1.6, and 3.3% of diet DM. In both experiments, fermenters were fed 55 to 57 g of DM/d of a typical dairy diet consisting of 1:1 forage (10% alfalfa hay and 90% corn silage) to concentrate mix in 2 equal portions at 0800 and 1630 h, and fed the respective diets for 10-d periods. Potassium carbonate addition increased pH in both experiments. Acetate:propionate ratio and pH in experiment 1 increased linearly for K0 to K3. Acetate:propionate ratio was lower for NaOH compared with K3 but the pH was the same. The trans-11 18:1 and cis-9,trans-11 CLA production rates (mg/d) increased linearly from K0 to K3, but K3 and NaOH did not differ. Production of trans-10 18:1 decreased and that of trans-10,cis-12 tended to decrease from K0 to K3, but production of trans-10,cis-12 CLA remained high for NaOH. Addition of K to the cultures in experiment 2 decreased propionate and increased acetate and acetate:propionate ratio for the 0% fat diet but

  11. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  12. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  13. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  14. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution.

    PubMed

    Meléndez-Hevia, E; Waddell, T G; Cascante, M

    1996-09-01

    The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into a single-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.

  15. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  16. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  17. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies. PMID:27635203

  18. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver.

  19. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. PMID:27432878

  20. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  1. Metabolic bypass of the tricarboxylic acid cycle during lipid mobilization in germinating oilseeds. Regulation Of nad+-dependent isocitrate dehydrogenase versus fumarase

    PubMed

    Falk; Behal; Xiang; Oliver

    1998-06-01

    Biosynthesis of sucrose from triacylglycerol requires the bypass of the CO2-evolving reactions of the tricarboxylic acid (TCA) cycle. The regulation of the TCA cycle bypass during lipid mobilization was examined. Lipid mobilization in Brassica napus was initiated shortly after imbibition of the seed and proceeded until 2 d postimbibition, as measured by in vivo [1-14C]acetate feeding to whole seedlings. The activity of NAD+-isocitrate dehydrogenase (a decarboxylative enzyme) was not detected until 2 d postimbibition. RNA-blot analysis of B. napus seedlings demonstrated that the mRNA for NAD+-isocitrate dehydrogenase was present in dry seeds and that its level increased through the 4 d of the experiment. This suggested that NAD+-isocitrate dehydrogenase activity was regulated by posttranscriptional mechanisms during early seedling development but was controlled by mRNA level after the 2nd or 3rd d. The activity of fumarase (a component of the nonbypassed section of the TCA cycle) was low but detectable in B. napus seedlings at 12 h postimbibition, coincident with germination, and increased for the next 4 d. RNA-blot analysis suggested that fumarase activity was regulated primarily by the level of its mRNA during germination and early seedling development. It is concluded that posttranscriptional regulation of NAD+-isocitrate dehydrogenase activity is one mechanism of restricting carbon flux through the decarboxylative section of the TCA cycle during lipid mobilization in germinating oilseeds.

  2. Amino acid cycling in the Mississippi River Plume and effects from the passage of Hurricanes Isadore and Lili

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Grace, Bryan L.; Carman, Kevin R.; Maulana, Ivan

    2014-08-01

    We present data on the effects of Hurricanes Isadore and Lili on the spatial and temporal variations in concentrations of amino acids, and other bulk dissolved and particulate constituents in surface waters of the Mississippi River Plume (MRP) collected during 3 survey cruises (March 2002, October 2002, and April 2004). Abiotic factors (e.g., particle sorption and sediment resuspension) had the largest contribution in describing DAA and PAA dynamics in the MRP. The range of dissolved organic carbon (DOC) (88.61 to 699.90 μM) and particulate organic carbon (POC) (0.08 to 32.72 μM) values was slightly higher than the range observed for a broader region of the Louisiana shelf, but in general agreed with peak values at the mid-salinity range of the plume. The positive and negative correlations between acidic (e.g., aspartic acid and glutamic acid) and basic (e.g., histidine and arginine) DAA and salinity, respectively, in the MRP, were largely controlled by differential partitioning of amino acids with suspended sediments. Concentrations of β-alanine, γ-aminobutyric acid, and δ-aminovaleric acid were significantly higher during October 2002 compared to spring sampling events, due to resuspension of shelf sediments caused by the recent passage of Hurricane Isadore and the approach of Hurricane Lili, as it entered the Gulf of Mexico during our sampling.

  3. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli.

    PubMed

    Heath, R J; Rock, C O

    1995-11-01

    The role of enoyl-acyl carrier protein (ACP) reductase (E.C. 1.3.1.9), the product of the fabI gene, was investigated in the type II, dissociated, fatty acid synthase system of Escherichia coli. All of the proteins required to catalyze one cycle of fatty acid synthesis from acetyl-CoA plus malonyl-CoA to butyryl-ACP in vitro were purified. These proteins were malonyl-CoA:ACP transacylase (fabD), beta-ketoacyl-ACP synthase III (fabH), beta-ketoacyl-ACP reductase (fabG), beta-hydroxydecanoyl-ACP dehydrase (fabA), and enoyl-ACP reductase (fabI). Unlike the other enzymes in the cycle, FabA did not efficiently convert its substrate beta-hydroxybutyryl-ACP to crotonyl-ACP, but rather the equilibrium favored formation of beta-hydroxybutyryl-ACP over crotonyl-ACP by a ratio of 9:1. The amount of butyryl-ACP formed depended on the amount of FabI protein added to the assay. Extracts from fabI(Ts) mutants accumulated beta-hydroxybutyryl-ACP, and the addition of FabI protein to the fabI(Ts) extract restored both butyryl-ACP and long-chain acyl-ACP synthesis. FabI was verified to be the only enoyl-ACP reductase required for the synthesis of fatty acids by demonstrating that purified FabI was required for the elongation of both long-chain saturated and unsaturated fatty acids. These results were corroborated by analysis of the intracellular ACP pool composition in fabI(Ts) mutants that showed beta-hydroxybutyryl-ACP and crotonyl-ACP accumulated at the nonpermissive temperature in the same ratio found in the fabI(Ts) extracts and in the in vitro reconstruction experiments that lacked FabI. We conclude that FabI is the only enoyl-ACP reductase involved in fatty acid synthesis in E. coli and that the activity of this enzyme plays a determinant role in completing cycles of fatty acid biosynthesis.

  4. High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder

    NASA Astrophysics Data System (ADS)

    Maroni, F.; Gabrielli, S.; Palmieri, A.; Marcantoni, E.; Croce, F.; Nobili, F.

    2016-11-01

    Fe3O4 nanoparticles synthesized by a base catalyzed method are tested as anode material for Li-ion batteries. The pristine nanoparticles are morphologically characterized showing an average size of 11 nm. Electrodes are prepared using high-molecular weight Poly (acrylic acid) as improved binder and ethanol as low cost and environmentally friendly solvent. The evaluation of electrochemical properties shows high specific capacity values of 857 mA hg-1 after 200 cycles at a specific current of 462 mAg-1, as well as an excellent rate capability with specific current values up to 18480 mAg-1. To the best of our knowledge, this is the first report of Fe3O4 nanoparticles cycling with PAA as binder.