Science.gov

Sample records for acid dca trichloroacetic

  1. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  2. Trichloroacetic acid in the environment.

    PubMed

    McCulloch, A

    2002-05-01

    Suppositions that the trichloroacetic acid (TCA, CCl3C(O)OH) found in nature was a consequence solely of the use of chlorinated hydrocarbon solvents prompted this critical review of the literature on its environmental fluxes and occurrences. TCA is widely distributed in forest soils (where it was rarely used as an herbicide) and measurements suggest a soil flux of 160 000 tonnes yr(-1) in European forests alone. TCA is also produced during oxidative water treatment and the global flux could amount to 55 000 tonnes yr(-1) (from pulp and paper manufacture, potable water and cooling water treatments). By contrast, the yields of TCA from chlorinated hydrocarbon solvents are small: from tetrachloroethene 13 600 tonnes yr(-1) and from 1,1,1-trichloroethane 4300 tonnes yr(-1) on a global basis, at the atmospheric burdens and removal rates typical of the late 1990s. TCA is ubiquitous in rainwater and snow. Its concentrations are highly variable and the variations cannot be connected with location or date. However, there is no significant difference between the concentrations found in Chile and in eastern Canada (by the same analysts), or between Malawi and western Canada, or between Antarctica and Switzerland, nor any significant difference globally between the concentrations in cloud, rain and snow (although local enhancement in fog water has been shown). TCA is present in old ice and firn. At the deepest levels, the firn was deposited early in the 19th century, well before the possibility of contamination by industrial production of reactive chlorine, implying a non-industrial background. This proposition is supported by plume measurements from pulp mills in Finland. TCA is ubiquitous in soils; concentrations are very variable but there are some indications that soils under coniferous trees contain higher amounts. The concentrations of TCA found in plant tissue are region-specific and may also be plant-specific, to the extent that conifers seem to contain more than other

  3. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TRICHLOROACETIC ACID

    EPA Science Inventory

    Trichloroacetic acid is a crystalline solid with sharp, pungent odor. It is used as a soil sterilizer; and as a laboratory intermediate or reagent in the synthesis of a variety of medicinal products and organic chemicals. Trichloroacetic acid is also used industrially as an etc...

  4. IRIS Toxicological Review of Trichloroacetic Acid (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroacetic acid (TCA) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  5. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  6. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  7. Treatment of facial molluscum contagiosum with trichloroacetic acid.

    PubMed

    Bard, Susan; Shiman, Michael I; Bellman, Betty; Connelly, Elizabeth Alvarez

    2009-01-01

    Molluscum contagiosum (MC) virus is a common cutaneous infection in the pediatric population, most commonly affecting school-aged children. Spontaneous clearing of lesions usually occurs over time; however, treatment is often sought due to cosmetic significance, pruritus, or concerns of transmission and autoinoculation. Chemical destruction with cantharidin, which is derived from blister beetle extract, is very safe and highly effective, making it the treatment of choice in the pediatric population. However, treatment of facial lesions or those in the diaper area are not recommended with this agent. Trichloroacetic acid is a safe and effective agent frequently utilized in dermatologic practice, most commonly in the treatment of verrucae. We have successfully used topical trichloroacetic acid to treat facial molluscum contagiousum and present the following technique for proper application. PMID:19689517

  8. [Reductive dechlorination of trichloroacetic acid by bioelectrochemically catalytic method].

    PubMed

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2005-07-01

    Direct electrochemical behaviors of hemoglobin (Hb) immobilized on carbon nanotube (CNT) modified carbon paste electrode with adsorption were investigated. Cyclic voltammetry of Hb-CNT-modified electrode showed a pair of well-defined and nearly reversible peaks for HbhemeFe(III) /Fe(II) redox couple in pH = 7 PBS buffers. The electrocatalytic behaviors of Hb-CNT-modified electrode for the reductive dechlorination of trichloroacetic acid (TCA) were studied by cyclic voltammmetry and fixed-potential electrolysis technique, and the reductive mechanism of TCA was discussed by analysis of reduction products. The results showed that Hb-CNT-modified electrode possessed good electro-catalytic activity for reduction of TCA and the dechlorination of TCA was stepwise, following the pathway of trichloroacetic--> dichloroacetic--> monochloroacetic--> acetic. The dechlorination of TCA in waster water was investigated using a two-compartment flow reactor with working electrode compartment packed with Hb-CNT-modified graphite electrode. The conversion of TCA was 40.13% with electrolysis for 180 min at - 0.60V (vs. SCE).

  9. Trichloroethylene, trichloroacetic acid, and dichloroacetic acid: do they affect eye development in the Sprague-Dawley rat?

    PubMed

    Warren, D A; Graeter, L J; Channel, S R; Eggers, J S; Goodyear, C D; Macmahon, K L; Sudberry, G L; Latendresse, J R; Fisher, J W; Baker, W H

    2006-01-01

    Maternal exposure to high doses of trichloroethylene (TCE) and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), has been implicated in eye malformations in fetal rats, primarily micro-/anophthalmia. Subsequent to a cardiac teratology study of these compounds (Fisher et al. 2001, Int. J. Toxicol. 20:257-267), their potential to induce ocular malformations was examined in a subset of the same experimental animals. Pregnant, Sprague-Dawley Crl:CDR BR rats were orally treated on gestation days (GDs) 6 to 15 with bolus doses of either TCE (500 mg/kg/day), TCA (300 mg/kg/day), DCA (300 mg/kg/day), or all-trans retinoic acid (RA; 15 mg/kg/day). The heads of GD 21 fetuses were not only examined grossly for external malformations, but were sectioned using a modified Wilson's technique and subjected to computerized morphometry that allowed for the quantification of lens area, globe area, medial canthus distance, and interocular distance. Gross ocular malformations were essentially absent in all treatment groups except for the RA group in which 26% of fetuses exhibited micro-/anophthalmia. Using the litter as the experimental unit of analysis, lens area, globe area, and interocular distance were statistically significantly reduced in the DCA treatment group. Statistically significant reductions in lens and globe areas also occurred in the RA treatment group, all four ocular measures were reduced in the TCA treatment group but none significantly so, and TCE was without effect. Because DCA, TCA, and RA treatments were associated with significant reductions in fetal body weight (bw), data were also statistically analyzed after bw adjustment. Doing so dramatically altered the results of treatment group comparisons, but the severity of bw reduction and the degree of change in ocular measures did not always correlate. This suggests that bw reduction may not be an adequate explanation for all the changes observed in ocular measures. Thus, it is

  10. Is trichloroacetic acid an insufficient sample quencher of redox reactions?

    PubMed

    Curbo, Sophie; Reiser, Kathrin; Rundlöf, Anna-Klara; Karlsson, Anna; Lundberg, Mathias

    2013-03-01

    The global protein thiol pool has been reported to play a major role in the defense against oxidative stress as a redox buffer similar to glutathione. The present study uses a novel method to visualize cellular changes of the global protein thiol pool in response to induced oxidative stress. Unexpectedly, the results showed an uneven distribution of protein thiols in resting cells with no apparent change in their level or distribution in response to diamide as has been reported previously. Further analysis revealed that thiol pool oxidation is artificially high due to insufficient activity of the widely used sample quencher trichloroacetic acid (TCA). This suggests that previously published articles based on TCA as a quencher should be interpreted with caution as TCA could have caused similar artifacts. Overall, the results presented here question the major role for the global thiol pool in the defense against oxidative stress. Instead our hypothesis is that the fraction of proteins involved in response to oxidative stress is much smaller than previously anticipated in support of a fine-tuned cell signaling by redox regulation.

  11. Pharmacokinetic modeling of trichloroethylene and trichloroacetic acid in humans.

    PubMed

    Allen, B C; Fisher, J W

    1993-02-01

    The development and application of appropriate physiologically based pharmacokinetic (PBPK) models of chemical contaminants will provide a rational basis for risk assessment extrapolation. Trichloroethylene (TCE) is a widespread contaminant found in soil, groundwater, and the atmosphere. Exposures to TCE and its metabolites have been found to be carcinogenic in rodents. In this study, a PBPK model for TCE and its major metabolite, trichloroacetic acid (TCA), is developed for humans. The model parameters, estimated from the relevant published literature on human exposures to TCE and its metabolites, are described. Key parameters describing the metabolism of TCE and the kinetics of TCA were estimated by optimization. The optimization was accomplished by simultaneously matching model predictions to observations of TCE concentrations in blood and exhaled breath, TCA plasma concentrations, and urinary TCA excretion from five published studies. The optimized human PBPK model provides an excellent description of TCE and TCA kinetics. The predictions were especially good for TCA plasma concentrations following repeated TCE inhalation, an exposure scenario similar to that occurring in the workplace. The human PBPK model can be used to estimate dose metrics resulting from TCE exposures and is therefore useful when considering the estimation of human health risks associated with such exposures.

  12. Fluxes of trichloroacetic acid through a conifer forest canopy.

    PubMed

    Stidson, R T; Heal, K V; Dickey, C A; Cape, J N; Heal, M R

    2004-11-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, approximately 1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only approximately 1-2% of above-canopy deposition. On average, approximately 800 microg m(-2) of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of approximately 400 and approximately 300 microg m(-2) for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values ( approximately +/- 50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric

  13. APOPTOSIS AND PROLIFERATION DURING DICHLOROACETIC ACID (DCA) INDUCED HEPTACELLULAR CARCINOGENESIS IN THE F344 MALE RAT

    EPA Science Inventory

    Apoptosis and Proliferation During DicWoroacetic Acid (DCA) Induced Hepatocellular
    Carcinogenesis in the F344 Male Rat

    Chlorine, introduced into public drinking \\\\'ater supplies for disinfection, can react with organic compounds in surface waters to form toxic by-prod...

  14. IRIS Toxicological Review of Trichloroacetic Acid (TCA) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Trichloroacetic Acid (TCA), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development ...

  15. A MULTISTAGE BIOLOGICALLY BASED MATHEMATICAL MODEL FOR MOUSE LIVER TUMORS INDUCED BY DICHLOROACETIC ACID (DCA) - EXPLORATION OF THE MODEL

    EPA Science Inventory

    A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...

  16. EFFECT OF PRETREATMENT WITH DICHLOROACETIC OR TRICHLOROACETIC ACID IN DRINKING WATER ON THE PHARMACOKINETICS OF A SUBSEQUENT CHALLENGE DOSE IN B6C3F1 MICE. (R825954)

    EPA Science Inventory

    h2>Abstract

    Dichloroacetate (DCA) and trichloroacetate (TCA) are prominent by-products of chlorination of drinking water. Both chemicals have been shown to be hepatic carcinogens in mice. Prior work has demonstrated that DCA inhibits its own metabolism in rats and humans. ...

  17. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares.

    PubMed

    Ghorbani, R; Ghasemi, J; Abdollahi, B

    2006-04-17

    A simultaneous conductometric titration method for determination of mixtures of acetic acid, monochloroacetic acid and trichloroacetic acid based on the multivariate calibration partial least squares is proposed. It is possible to obtain an adjustable model to relate squared concentration values of the mixtures used in the calibration range by conductance. The effect of orthogonal signal correction (OSC) as a preprocessing technique used to remove the information unrelated to the target variables is studied. The calibration model was build using conductometric titrations data of 16 mixtures of three acids. The concentration matrix was designed by a orthogonal design. The root mean squares error of prediction (RMSEP) for acetic acid, monochloroacetic acid and trichloroacetic acid with and without OSC were 0.08, 0.30 and 0.08, and 0.15, 0.40 and 0.18, respectively. The results obtained by OSC-PLS are better than the PLS and this indicate the successful application of the OSC filter as a good preprocessing method in multivariate calibration methods. The proposed procedure allows the simultaneous determination of these acids, in the synthetic mixtures.

  18. Effect of trichloroacetic acid on the isolation of tropomyosin from sea urchin lantern muscle.

    PubMed

    Ishimoda-Takagi, T; Ozaki, S

    1983-03-01

    Sea urchin lantern muscle tropomyosin showed two components in sodium dodecyl sulfate (SDS) gel electrophoresis in the presence of 5 M urea, although the molecular weights of these components were apparently identical. One of these components seemed to have been digested with an enzyme such as carboxypeptidase, and the tropomyosin had lost the abilities to polymerize and to bind to actin. A crude extract prepared from the lantern muscle treated with trichloroacetic acid (TCA) contained predominantly tropomyosin. Tropomyosin purified from TCA-treated lantern muscle seemed to be intact and retained the ability to bind to actin.

  19. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    SciTech Connect

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-07-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was {approx} 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities ({approx} 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.

  20. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results. PMID:23530352

  1. GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE

    EPA Science Inventory

    The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...

  2. Predictors of Third Trimester Blood Trihalomethanes and Urinary Trichloroacetic Acid Concentrations among Pregnant Women.

    PubMed

    Zeng, Qiang; Cao, Wen-Cheng; Zhou, Bin; Yang, Pan; Wang, Yi-Xin; Huang, Zhen; Li, Jin; Lu, Wen-Qing

    2016-05-17

    Prenatal exposure to disinfection byproducts (DBPs) has been associated with a variety of adverse birth outcomes. However, little is known about predictors of prenatal biomarkers of exposure to DBPs among pregnant women. We aimed to identify predictors of third trimester blood trihalomethanes (THMs) and urinary trichloroacetic acid (TCAA) concentrations, two biomarkers of exposure to DBPs, among pregnant women. Blood samples, urine samples, and questionnaires on individual characteristics and water-use activities were collected from 893 pregnant women in a Chinese cohort study. Maternal blood THM [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and urinary TCAA concentrations were measured. We used multivariable linear regression to identify the predictors of third trimester blood THM and creatinine-adjusted urinary TCAA concentrations. The geometric mean of blood TTHM (sum of TCM, BDCM, DBCM, and TBM) and creatinine-adjusted urinary TCAA concentrations were 51.90 ng/L and 9.66 μg/g creatinine, respectively. Study city was the strongest significant predictors of blood THM and creatinine-adjusted urinary TCAA concentrations. Prenatal body mass index (BMI) was associated with decreased blood THM and decreased creatinine-adjusted urinary TCAA concentrations. Age was associated with increased blood Br-THM (sum of BDCM, DBCM, and TBM) concentrations. Intake of boiled water and passive smoking were associated with lower blood THM concentrations. The predictors of blood THM and urinary TCAA concentrations identified in this study provide potential health implications on how to reduce DBP exposure during pregnancy. PMID:27095243

  3. Input of trichloroacetic acid into the vegetation of various climate zones--measurements on several continents.

    PubMed

    Weissflog, Ludwig; Krüger, Gert; Elansky, Nikolai; Putz, Erich; Pfennigsdorff, Andrea; Seyfarth, Klaus Ullrich; Nüchter, Matthias; Lange, Christian; Kotte, Karsten

    2003-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) is a phytotoxic chemical. Although TCA salts and derivates were once used as herbicides to combat perennial grasses and weeds, they have since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, the high-volatile C(2)-chlorohydrocarbons tetrachloroethene (TECE, C(2)Cl(4)) and 1,1,1-trichloroethane (TCE, CCl(3)CH(3)) can react under oxidative conditions in the atmosphere to form TCA and other substances. The ongoing industrialisation of Southeast Asia, South Africa and South America means that use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere can be expected to rise. The increasing emissions of this substance--together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the southern hemisphere--could lead to a greater input/formation of TCA in the vegetation located in the lee of these emission sources. By means of biomonitoring studies, the input/formation of TCA in vegetation was detected at various locations in South America, North America, Africa, and Europe. PMID:12738268

  4. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    SciTech Connect

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  5. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions.

    PubMed

    Hanson, Mark L; Sibley, Paul K; Ellis, David A; Fineberg, Neil A; Mabury, Scott A; Solomon, Keith R; Muir, Derek C

    2002-03-01

    Trichloroacetic acid (TCA) has been detected in rain, snow, and river samples throughout the world. It may enter into natural water systems via herbicide use, as a by-product of water disinfection, from emissions of spent bleach liquor of kraft pulp mills, and as a natural fungal product. This compound is phytotoxic and likely to accumulate in aquatic environments. A study to assess the fate of TCA in semi-natural aquatic environments and the toxicity of TCA to rooted aquatic macrophytes was conducted. The experiment involved exposing three replicate 12000 l aquatic microcosms at the University of Guelph Microcosm Facility to 0.05, 0.5, 3, and 10 mg/l of TCA for 35 days in a one-way analysis of variance design. Each microcosm was stocked with 14 individual 5 cm apical shoots of Myriophyllum spicatum and M. sibiricum. The plants were sampled at regular intervals and assessed for the somatic endpoints of plant length, root growth, number of nodes and wet and dry mass and the biochemical endpoints of chlorophyll-a and chlorophyll-b, carotenoid content, and citric acid levels. TCA half-lives in the microcosms ranged from 190 to 296 h depending on the initial concentration of TCA. Myriophyllum spp. results indicate that while there were some statistically significant differences from controls, there were no biologically significant effects of TCA for any of the endpoints examined. These data suggest that TCA does not pose a significant risk to these macrophytes up to 10 mg/l, which typically exceeds environmentally relevant concentrations by several orders of magnitude.

  6. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.

    PubMed

    Dickey, C A; Heal, K V; Stidson, R T; Koren, R; Schröder, P; Cape, J N; Heal, M R

    2004-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health.

  7. Long-term exposure of Sitka spruce seedlings to trichloroacetic acid.

    PubMed

    Cape, J Neil; Reeves, Nicholas M; Schröder, Peter; Heal, Mathew R

    2003-07-01

    Trichloroacetic acid (TCA) has been implicated as an airborne pollutant responsible for adverse effects on forest health. There is considerable debate as to whether TCA observed in trees and forest soils is derived from atmospheric deposition or from in situ production. This experiment reports the results from treating 4-year-old Sitka spruce (Picea sitchensis (Bong.) Carr) plants in a greenhouse over a growing season with TCA supplied either to the soil or to the foliage at concentrations of 10 and 100 ng mL(-1). Similar uptake of TCA by needles was observed for both modes of treatment, with significant accumulation of TCA (300 ng g(-1) dry wt) at the higher concentration. Larger concentrations in stem tissue were seen for the foliar-applied TCA (280 ng g(-1)) than for the soil-applied TCA (70 ng g(-1)), suggesting that direct stem uptake may be important. Six months after treatments stopped, TCA concentrations in the needles of plants exposed to 100 ng mL(-1) TCA were still enhanced, showing that biological degradation of TCA in needles was slow over the winter. By contrast, no significant enhancement of TCA in soil could be detected in the directly treated soils even during the experiment. The protein content of needles treated with the higher concentration of TCA by either route was significantly smaller than for the controls, but there was no effect of TCA on the conjugation of 1-chloro-2,4-dinitrobenzene in roots nor on the conjugation of 1,2-dichloro-4-nitrobenzene in needles.

  8. Fluxes and reservoirs of trichloroacetic acid at a forest and moorland catchment.

    PubMed

    Stidson, R T; Dickey, C A; Cape, J N; Heal, K V; Heal, M R

    2004-03-15

    The concentrations and input/output fluxes of trichloroacetic acid (TCA) were measured in all relevant media for one year at a 0.86 km2 upland conifer plantation and moorland catchment in SW Scotland (n > 380 separate samples analyzed). Annual wet precipitation to the catchment was 2.5 and 0.4 m for rain and cloud, respectively. TCA input to the catchment for the year was 2100 g, predominantly in rainwater (86%), with additional input via cloudwater (13%) and gas plus particle dry deposition (1%). There were no seasonal trends in TCA deposition, and cloudwater concentration was not enhanced over rainwater. TCA in precipitation exceeded concentrations estimated using currently accepted routes of gas-phase oxidation from anthropogenic chlorinated hydrocarbon precursors, in agreement with previous studies. Export of TCA from the catchment in streamwater totalled 1970 g for the year of study. The TCA concentration in streamwater at outflow (median 1.2 microg L(-1)) was significantly greater than that before the stream had passed through the conifer plantation. To well-within measurement uncertainties, the catchment is currently at steady-state with respect to TCA input/output. The catchment reservoir of TCA was dominated by soils (approximately 90%), with the remainder distributed in forest litter (approximately 9%), forest branchwood and stemwood (approximately 0.7%), forest foliage (approximately 0.5%), and moorland foliage (approximately 0.1%). Although TCA is clearly taken up into foliage, which consequently may be important for the vegetation, this was a relatively minor process for TCA at the catchment scale. If it is assumed, on the basis of laboratory extraction experiments, that only approximately 20% of "whole soil" TCA measured in this work was water extractable, then total mass of TCA in the catchment is reduced from approximately 13 to approximately 3.5 kg. Comparing the latter value with the annual flux yields an average steady-state residence time for

  9. Atmospheric concentrations and deposition of trichloroacetic acid in Scotland: results from a 2-year sampling campaign.

    PubMed

    Heal, M R; Reeves, N M; Cape, J N

    2003-06-15

    The first long-term concurrent measurements of trichloroacetic acid (TCA) in rainwater, in cloudwater, and in air (both gas and particle phase) are reported. Measurements were made weekly between June 1998 and April 2000 at a rural forested upland site in SE Scotland. Rainwater TCA concentration did not differ significantly between two elevations (602 and 275 m asl), with precipitation-weighted mean values of 0.77 and 0.70 microg L(-1), respectively (n > 75). The precipitation-weighted mean concentration of TCA in cloudwater at the highest elevation was 0.92 microg L(-1), yielding an average cloudwater enrichment factor of 1.2, considerably lower than for other inorganic ions measured. Rainwater and cloudwater TCA concentrations did not vary systematically with season. Since wet precipitation depth also did not vary systematically with season, the wet deposition fluxes of TCA were likewise invariant (annual fluxes at the highest elevation of 880 and 130 microg m(-2), respectively, for rain and cloud interception to spruce forest). Weekly integrated concentrations of TCA in air (gas and particle) were very low (median 25 pg m(-3), range < LOD-110 pg m(-3)). The estimated upper limit for annual dry deposition of TCA at this site was approximately 20 microg m(-2), assuming a deposition velocity of 2 cm s(-1). Concentrations of TCA in air correlated reasonably strongly with concentrations in rainwater, with a partition ratio approximately equal to the Henry's law coefficient. On average, only about 23% of TCA measured in Edinburgh air was associated with the particle phase. These measurements are consistent with the observed high scavenging ratio of TCA (ratio of concentration in air to concentration in rainwater). Overall, these data confirm that the atmosphere is an important source of TCA to the environment and that precipitation is the dominant transfer mechanism. In line with previous work, the atmospheric deposition flux is greater than expected from the current

  10. Fluxes and reservoirs of trichloroacetic acid at a forest and moorland catchment.

    PubMed

    Stidson, R T; Dickey, C A; Cape, J N; Heal, K V; Heal, M R

    2004-03-15

    The concentrations and input/output fluxes of trichloroacetic acid (TCA) were measured in all relevant media for one year at a 0.86 km2 upland conifer plantation and moorland catchment in SW Scotland (n > 380 separate samples analyzed). Annual wet precipitation to the catchment was 2.5 and 0.4 m for rain and cloud, respectively. TCA input to the catchment for the year was 2100 g, predominantly in rainwater (86%), with additional input via cloudwater (13%) and gas plus particle dry deposition (1%). There were no seasonal trends in TCA deposition, and cloudwater concentration was not enhanced over rainwater. TCA in precipitation exceeded concentrations estimated using currently accepted routes of gas-phase oxidation from anthropogenic chlorinated hydrocarbon precursors, in agreement with previous studies. Export of TCA from the catchment in streamwater totalled 1970 g for the year of study. The TCA concentration in streamwater at outflow (median 1.2 microg L(-1)) was significantly greater than that before the stream had passed through the conifer plantation. To well-within measurement uncertainties, the catchment is currently at steady-state with respect to TCA input/output. The catchment reservoir of TCA was dominated by soils (approximately 90%), with the remainder distributed in forest litter (approximately 9%), forest branchwood and stemwood (approximately 0.7%), forest foliage (approximately 0.5%), and moorland foliage (approximately 0.1%). Although TCA is clearly taken up into foliage, which consequently may be important for the vegetation, this was a relatively minor process for TCA at the catchment scale. If it is assumed, on the basis of laboratory extraction experiments, that only approximately 20% of "whole soil" TCA measured in this work was water extractable, then total mass of TCA in the catchment is reduced from approximately 13 to approximately 3.5 kg. Comparing the latter value with the annual flux yields an average steady-state residence time for

  11. Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) mixture toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosms.

    PubMed

    Hanson, Mark L; Sibley, Paul K; Mabury, Scott A; Solomon, Keith R; Muir, Derek C G

    2002-02-21

    Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) have been detected together in environmental water samples throughout the world. TCA may enter into aquatic systems via rainout as the degradation product of chlorinated solvents, herbicide use, as a by-product of water disinfection and from emissions of spent bleach liquor of kraft pulp mills. Sources of TFA include degradation of hydrofluorocarbons (HFCs) refrigerants and pesticides. These substances are phytotoxic and widely distributed in aquatic environments. A study to assess the risk of a binary mixture of TCA and TFA to macrophytes in aquatic microcosms was conducted as part of a larger study on haloacetic acids. M. spicatum and M. sibiricum were exposed to 0.1, 1, 3 and 10 mg/l of both TCA and TFA (neutralized with sodium hydroxide) in replicate (n = 3) 12000 l aquatic microcosms for 49 days in an one-way analysis of variance design. Each microcosm was stocked with 14 individual apical shoots per species. The plants were sampled at regular intervals and assessed for the somatic endpoints of plant length, root growth, number of nodes and wet and dry mass and the biochemical endpoints of chlorophyll-a, chlorophyll-b, carotenoid content and citric acid levels. Results indicate that there were statistically significant effects of the TCA/TFA mixture on certain pigment concentrations immediately after the start of exposure (2-7 days), but the plants showed no signs of stress thereafter. These data suggest that TCA/TFA mixtures at environmentally relevant concentrations do not pose a significant risk to these aquatic macrophytes.

  12. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    PubMed Central

    Gurel, Mehmet Salih; Gungor, Sule; Tekeli, Omur; Canat, Dilek

    2016-01-01

    Introduction Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA) and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results The healing rates of the group subject to retinoic acid were statistically higher (p < 0.05) compared to patients in the TCA group in the final follow-up visit following the treatment according to the first and second observers. On the other hand, according to the third observer, patients applied with retinoic acid presented with higher healing rates compared to those treated with TCA, however; this rate was not statistically significant (p > 0.05). The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05). As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001) in the quality of life of those patients

  13. THE INDUCTION OF HEPATOCELLULAR NEOPLASIA BY TRICHLOROACETIC ACID ADMINISTERED IN THE DRINKING WATER OF THE MALE B6C3F1 MOUSE

    EPA Science Inventory

    Summary What is the study? The study is a chronic bioassay (2 years) of trichloroacetic acid, a drinking water disinfection by-product, in the male B6C3F1 mouse.
    What is the impact to the field and the Agency?
    The impact of this study will derive from the use of...

  14. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  15. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  16. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-12-23

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  17. Temporal variability in urinary levels of drinking water disinfection byproducts dichloroacetic acid and trichloroacetic acid among men

    SciTech Connect

    Wang, Yi-Xin; Zeng, Qiang; Wang, Le; Huang, Yue-Hui; Lu, Zhi-Wei; Wang, Peng; He, Meng-Jie; Huang, Xin; Lu, Wen-Qing

    2014-11-15

    Urinary haloacetic acids (HAAs), such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), have been suggested as potential biomarkers of exposure to drinking water disinfection byproducts (DBPs). However, variable exposure to and the short elimination half-lives of these biomarkers can result in considerable variability in urinary measurements, leading to exposure misclassification. Here we examined the variability of DCAA and TCAA levels in the urine among eleven men who provided urine samples on 8 days over 3 months. The urinary concentrations of DCAA and TCAA were measured by gas chromatography coupled with electron capture detection. We calculated the intraclass correlation coefficients (ICCs) to characterize the within-person and between-person variances and computed the sensitivity and specificity to assess how well single or multiple urine collections accurately determined personal 3-month average DCAA and TCAA levels. The within-person variance was much higher than the between-person variance for all three sample types (spot, first morning, and 24-h urine samples) for DCAA (ICC=0.08–0.37) and TCAA (ICC=0.09–0.23), regardless of the sampling interval. A single-spot urinary sample predicted high (top 33%) 3-month average DCAA and TCAA levels with high specificity (0.79 and 0.78, respectively) but relatively low sensitivity (0.47 and 0.50, respectively). Collecting two or three urine samples from each participant improved the classification. The poor reproducibility of the measured urinary DCAA and TCAA concentrations indicate that a single measurement may not accurately reflect individual long-term exposure. Collection of multiple urine samples from one person is an option for reducing exposure classification errors in studies exploring the effects of DBP exposure on reproductive health. - Highlights: • We evaluated the variability of DCAA and TCAA levels in the urine among men. • Urinary DCAA and TCAA levels varied greatly over a 3-month

  18. Effects of trichloroacetic acid on the nitrogen metabolism of Pinus sylvestris--a 13C/15N tracer study.

    PubMed

    Hafner, Christoph; Jung, Klaus; Schüürmann, Gerrit

    2002-01-01

    Trichloroacetic acid (TCA) can be found in various environmental compartments like air, rain and plants all over the world. It is assumed that TCA is an atmospheric degradation product of volatile chloroorganic hydrocarbons. The herbicide effect of TCA in higher concentrations is well known, but not much is known about the phytotoxic effects in environmentally relevant concentrations. It can be shown in this study by using the 13C/15N stable isotope tracer technique that [13C]TCA is taken up by roots of two-year-old seedlings of Pinus sylvestris L. and transported into the needles. At the same time the effect of the substance on nitrogen metabolism can be analyzed by measuring the incorporation of 15NO3- into different nitrogen fractions of the plant. The more [13C]TCA incorporation, the higher the synthesis of 15N labelled amino acids and proteins is. These effects on the nitrogen metabolism are probably based on the activation of stress- and detoxification metabolism. It has to be assumed that there is an influence on N metabolism of Pinus sylvestris caused by the deposition of environmentally relevant TCA concentrations.

  19. Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2.

    PubMed

    Shen, Caifei; Zhang, Haoxiang; Wang, Pu; Feng, Ji; Li, Jingwen; Xu, Yin; Zhang, Anran; Shao, Shunzi; Yu, Xiaona; Yan, Wu; Xia, Yiju; Hu, Jiali; Fang, Dianchun

    2016-06-01

    Barrett's esophagus (BE) is essentially a metaplasia in which the normal stratified squamous epithelium is replaced by columnar epithelium. This study focuses on the involvement of OCT4 and SOX2, 2 key cell-reprogramming factors, in the deoxycholic acid (DCA)-induced expression of the intestinal hallmarks Cdx2 and MUC2 using both in vivo and in vitro models. Up-regulated expression of OCT4 and down-regulated expression of SOX2 were observed in BE compared with normal esophagus and esophagitis. Consistent with the data in vivo, DCA induced time-dependent expression of OCT4 at both the mRNA and protein levels and decreased nuclear expression of SOX2 in Het-1A cells. Down-regulation of OCT4 expression by siRNA abrogated DCA-induced expression of Cdx2 and MUC2, whereas siRNA against SOX2 significantly upregulated the expression of both Cdx2 and MUC2. Our data indicate that both OCT4 and SOX2 play important roles in the development of BE triggered by bile acid reflux. PMID:27096226

  20. Green chemistry in urinalysis for trichloroethanol and trichloroacetic acid as markers of exposure to chlorinated hydrocarbon solvents.

    PubMed

    Inoue, Osamu; Ukai, Hirohiko; Ikeda, Masayuki

    2006-01-01

    The aim of the present study was to develop a method of urinalysis for trichloroacetic acid (TCA) and trichloroethanol (TCE), and therefore total trichloro-compounds (TTC) as the sum, with least use of hazardous chemicals, being green in that sense. After acid hydrolysis followed by dilution with an ethanol (EtOH)-methanol (MeOH)-water mixture, capillary gas-choromatography with an electron-capture detector can quantify TCA and TCE in the diluted hydrolyzate. Comparison studies showed that the results were identical among three methods, i.e., 1. the method developed in the present study, 2. a head-space GC with acid hydrolysis of conjugated TCE and methyl-esterification of TCA, and 3. traditional colorimetry with Fujiwara reaction. When applied to exposure-excretion analysis, the three methods gave results reproducible to each other. Over-all evaluation therefore was such that the method developed in the present study is as equally reliable as previously developed methods. It should be further noted that the procedures are very simple, with minimum use of occupationally or environmentally hazardous chemicals. In case the determination of only TCA is requested, it is possible to skip the hydrolysis step so that the treatment prior to the GC analysis is even simpler, i.e., just a 60-fold dilution of the urine sample with the EtOH-MeOH-water mixture. It was also demonstrated that correction of urinary analyte levels for urine density in terms of creatinine or specific gravity did not improve the correlation with the intensity of TRI exposure. PMID:16610561

  1. Use of urinary trichloroacetic acid as an exposure biomarker of disinfection by-products in cancer studies.

    PubMed

    Salas, Lucas A; Gracia-Lavedan, Esther; Goñi, Fernando; Moreno, Victor; Villanueva, Cristina M

    2014-11-01

    Urinary trichloroacetic acid (TCAA) has been proposed as a valid exposure biomarker for ingested disinfection by-products (DBP) for reproductive studies. However, it has never been used in epidemiologic studies on cancer. We investigate the performance of urinary TCAA as a biomarker of DBP exposure in the framework of an epidemiologic study on cancer. We conducted home visits to collect tap water, first morning void urine, and a 48h fluid intake diary among 120 controls from a case-control study of colorectal cancer in Barcelona, Spain. We measured urine TCAA and creatinine, and 9 haloacetic acids and 4 trihalomethanes (THM) in tap water. Lifetime THM exposure was estimated based on residential history since age 18 plus routine monitoring data. Robust linear regressions were used to estimate mean change in urinary TCAA adjusted by covariates. Among the studied group, mean age was 74 years (range 63-85) and 41 (34%) were females. Mean total tap water consumption was 2.2l/48h (standard error, 0.1l/48h). Geometric mean urine TCAA excretion rate was 17.3pmol/min [95%CI: 14.0-21.3], which increased 2% for a 10% increase in TCAA ingestion and decreased with total tap water consumption (-17%/l), water intake outside home (-32%), plasmatic volume (-64%/l), in smokers (-79%), and in users of non-steroidal anti-inflammatory drugs (-50%). Urinary TCAA levels were not associated with lifetime THM exposure. In conclusion, our findings support that urine TCAA is not a valid biomarker in case-control studies of adult cancer given that advanced age, comorbidites and medication use are prevalent and are determinants of urine TCAA levels, apart from ingested TCAA levels. In addition, low TCAA concentrations in drinking water limit the validity of urine TCAA as an exposure biomarker. PMID:25462676

  2. Optimal Concentration of 2,2,2-Trichloroacetic Acid for Protein Precipitation Based on Response Surface Methodology

    PubMed Central

    Ngo, Albert N; Ezoulin, Miezan JM; Youm, Ibrahima; Youan, Bi-Botti C

    2014-01-01

    For low protein concentrations containing biological samples (in proteomics) and for non proteinaceous compound assays (in bioanalysis), there is a critical need for a simple, fast, and cost-effective protein enrichment or precipitation method. However, 2,2,2-trichloroacetic acid (TCA) is traditionally used for protein precipitation at ineffective concentrations for very low protein containing samples. It is hypothesized that response surface methodology, can be used to systematically identify the optimal TCA concentration for protein precipitation in a wider concentration range. To test this hypothesis, a central composite design is used to assess the effects of two factors (X1 = volume of aqueous solution of protein, and X2 = volume of TCA solution 6.1N) on the optical absorbance of the supernatant (Y1), and the percentage of protein precipitated (Y2). Using either bovine serum albumin (BSA) as a model protein or human urine (with 20 ppm protein content), 4% w/v (a saddle point) is the optimal concentration of the TCA solution for protein precipitation that is visualized by SDS-PAGE analysis. At this optimal concentration, the Y2-values range from 76.26 to 92.67% w/w for 0.016 to 2 mg/mL of BSA solution. It is also useful for protein enrichment and xenobiotic analysis in protein-free supernatant as applied to tenofovir (a model HIV microbicide). In these conditions, the limit of detection and limit of quantitation of tenofovir are respectively 0.0014 mg/mL and 0.0042 mg/mL. This optimal concentration of TCA provides optimal condition for protein purification and analysis of any xenobiotic compound like tenofovir. PMID:25750762

  3. Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1

    SciTech Connect

    Hage, J.C.; Hartmans, S.

    1999-06-01

    A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a K{sub m} value below the detection limit of 0.5 {micro}M. Instead of a hydrolytic dehalogenation, as in other DCA utilizers, the first step in DCA degradation in strain DCA1 is an oxidation reaction. Oxygen and NAD(P)H are required for this initial step. Propene was converted to 1,2-epoxypropane by DCA-grown cells and competitively inhibited DCA degradation. The authors concluded that a monooxygenase is responsible for the first step in DCA degradation in strain DCA1. Oxidation of DCA probably results in the formation of the unstable intermediate 1,2-dichloroethanol, which spontaneously releases chloride, yielding chloroacetaldehyde. The DCA degradation pathway is strain DCA1 proceeds from chloroacetaldehyde via chloroacetic acid and presumably glycolic acid, which is similar to degradation routes observed in other DCA-utilizing bacteria.

  4. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid.

    PubMed

    Lock, Edward A; Reed, Celia J; McMillan, Joellyn M; Oatis, John E; Schnellmann, Rick G

    2007-02-12

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3-3mM CH for 3 days or 0.03-3mM CH for 10 days, respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolized CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and three-fold greater capacity than HRPTC to form TCE-OH and TCA, respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days [Lock, E.A., Reed, C.J., 2006. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol. Sci. 19, 313-331] supporting the view that glutathione derived

  5. Effect of chloroacetic acids on the kidneys

    SciTech Connect

    Davis, M.E.

    1986-11-01

    The effects of dichloroacetate (DCA) and trichloroacetate (TCA) administered in drinking water were studied. At high concentrations of either compound, weight loss, or failure to gain weight, was observed. Food consumption was also decreased; both effects were attributed to decreased water consumption. Renal phosphate-dependent glutaminase activity was increased at the highest concentration, and urinary ammonia was also increased. These changes indicated renal adaptation to an acid load. DCA, in pharmacological doses, impairs glucoenogenesis from lactate in part by decreasing lactate availability. Similar tendencies were observed in the present studies; however, female rats showed a biphasic response. At lower DCA concentrations, tissue lactate and plasma glucose concentrations were increased, whereas at higher concentrations of DCA, the expected decreases were observed.

  6. Urinary trichloroacetic acid levels and semen quality: A hospital-based cross-sectional study in Wuhan, China

    SciTech Connect

    Xie, Shao-Hua; Li, Yu-Feng; Tan, Yin-Feng; Zheng, Dan; Liu, Ai-Lin; Xie, Hong; and others

    2011-02-15

    Toxicological studies indicate an association between exposure to disinfection by-products (DBPs) and impaired male reproductive health in animals. However, epidemiological evidence in humans is still limited. We conducted a hospital-based cross-sectional study to investigate the effect of exposure to DBPs on semen quality in humans. Between May 2008 and July 2008, we recruited 418 male partners in sub-fertile couples seeking infertility medical instruction or assisted reproduction services from the Tongji Hospital in Wuhan, China. Major semen parameters analyzed included sperm concentration, motility, and morphology. Exposure to DBPs was estimated by their urinary creatinine-adjusted trichloroacetic (TCAA) concentrations that were measured with the gas chromatography/electron capture detection method. We used linear regression to assess the relationship between exposure to DBPs and semen quality. According to the World Health Organization criteria (<20 million/mL for sperm concentration and <50% motile for sperm motility) and threshold value recommended by Guzick (<9% for sperm morphology), there were 265 men with all parameters at or above the reference values, 33 men below the reference sperm concentration, 151 men below the reference sperm motility, and 6 men below the reference sperm morphology. The mean (median) urinary creatinine-adjusted TCAA concentration was 9.2 (5.1) {mu}g/g creatinine. Linear regression analyses indicated no significant association of sperm concentration, sperm count, and sperm morphology with urinary TCAA levels. Compared with those in the lowest quartile of creatinine-adjusted urinary TCAA concentrations, subjects in the second and third quartiles had a decrease of 5.1% (95% CI: 0.6%, 9.7%) and 4.7% (95% CI: 0.2%, 9.2%) in percent motility, respectively. However, these associations were not significant after adjustment for age, abstinence time, and smoking status. The present study provides suggestive but inconclusive evidence of the

  7. Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part II: salt lakes as novel sources of natural chlorohydrocarbons

    NASA Astrophysics Data System (ADS)

    Weissflog, Ludwig; Elansky, Nikolai; Putz, Erich; Krueger, Gert; Lange, Christian A.; Lisitzina, Lida; Pfennigsdorff, Andrea

    One of the issues provided for by the 1993 existing substances regulation (793/93/EEC) is the assessment of the environmental risk emanating from waste materials. One such material is the highly volatile substance perchloroethene (PER; TECE). PER is produced in large quantities all over the world by the chemical industry. There are many industrial processes in which PER escapes into the environment, especially the atmosphere. It has since been proven that after entering plants via the air/leaf pathway, airborne PER can be metabolised into the phytotoxic substance trichloroacetic acid. However our own studies detected relatively high levels of TCA in environmental compartments in regions far away from industry which cannot be explained by the anthropogenic input of airborne substances into the relevant ecosystems. This indicates that natural PER emittents also exist and must be identified, in order to find out more about the global spread of PER. This paper reports on the findings of related fieldwork in the Kalmykian Steppe. This area of steppe in southern Russia spans an area extending west-to-east from the Black Sea and the Caspian Sea and north-to-south between the Greater Caucasus and Volgograd. The main aim of the experiments in the Kalmykian Steppe was to study water from lakes, rivers and springs with differing levels of salinity. The concentrations of the chlorinated hydrocarbons (VCHCs) chloroform (CHCl 3), tetrachloromethane (CCl 4), 1,1,1-trichloroethane (1,1,1-C 2H 3Cl 3), trichloroethene (TRI; C 2HCl 3), tetrachloroethene (PER; C 2Cl 4) and TCA in these waters were measured, along with the levels of cations and anions and the pH-value of the waters. The measurements indicate that in particular water from salt lakes located in semiarid/arid areas of the study region must be considered as new types of natural emittents of PER and other chlorinated hydrocarbons as well as trichloroacetic acid. Furthermore, attention is drawn to ecological impacts

  8. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    PubMed

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  9. Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene-Cu Foam Electrode via Direct Cathodic Reduction and Atomic H.

    PubMed

    Mao, Ran; Li, Ning; Lan, Huachun; Zhao, Xu; Liu, Huijuan; Qu, Jiuhui; Sun, Meng

    2016-04-01

    A three-dimensional graphene-copper (3D GR-Cu) foam electrode prepared by chemical vapor deposition method exhibited superior electrocatalytic activity toward the dechlorination of trichloroacetic acid (TCAA) as compared to the Cu foam electrode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that GR accelerated the electron transfer from the cathode surface to TCAA. With the applied cathode potential of -1.2 V (vs SCE), 95.3% of TCAA (500 μg/L) was removed within 20 min at pH 6.8. TCAA dechlorination at the Cu foam electrode was enhanced at acidic pH, while a slight pH effect was observed at the GR-Cu foam electrode with a significant inhibition for Cu leaching. The electrocatalytic dechlorination of TCAA was accomplished via a combined stepwise and concerted pathway on both electrodes, whereas the concerted pathway was efficiently promoted on the GR-Cu foam electrode. The direct reduction by electrons was responsible for TCAA dechlorination at Cu foam electrode, while at GR-Cu foam electrode, the surface-adsorbed atomic H* also contributed to TCAA dechlorination owing to the chemical storage of hydrogen in the GR structure. Finally, the potential applicability of GR-Cu foam was revealed by its stability in the electrocatalytic dechlorination over 25 cycles.

  10. Pyridine N-oxide/trichloroacetic acid complex in acetonitrile: FTIR spectra, anharmonic calculations and computations of 1-3D potential surfaces of O-H vibrations.

    PubMed

    Pitsevich, G; Malevich, A; Doroshenko, I; Kozlovskaya, E; Pogorelov, V; Sablinskas, V; Balevicius, V

    2014-01-01

    FTIR spectra of pyridine N-oxide and trichloroacetic acid H-bonded complex in acetonitrile were studied at 20 and 50°C. The calculations of equilibrium configurations of the complex and their IR spectra in harmonic- and anharmonic approximations were carried out at the level of B3LYP/cc-pVTZ/PCM. However both approximations turned out to be incompetent determining the frequency of the O-Н stretching vibration. In order to reveal the causes of essential discrepancies between calculated and experimental data one-, two- and three-dimensional potential energy surfaces (PES) of the O-H…O bridge proton motion in the frame of fixed other atoms in the complex were calculated. The frequencies of O-H…O stretching and bending vibrations were calculated by numerical solution of the Schrödinger equation. It is shown that only the approach of proton motion on the 3D PES allows obtaining a good agreement between the calculated and the experimental values of the frequencies of the О-Н stretching vibrations. PMID:24373980

  11. Split-face comparative study of 1550 nm fractional photothermolysis and trichloroacetic acid 15% chemical peeling for facial melasma in Asian skin.

    PubMed

    Hong, Seung-Phil; Han, Seung-Seog; Choi, Seok-Joo; Kim, Myoung-Shin; Won, Chong-Hyun; Lee, Mi-Woo; Choi, Jee-Ho; Moon, Kee-Chan; Kim, Youn Jin; Chang, Sung-Eun

    2012-04-01

    Fractional photothermolysis (FP) therapy and chemical peels have been reported to be effective in patients with recalcitrant melasma. However, there is little information to compare the efficacy of single treatment session in Asian women. The aim of this study was to examine the efficacy, long-lasting outcomes and safety of a single session of 1550-nm erbium-doped FP in Asian patients, compared with trichloroacetic acid (TCA) peel with a medium depth. Eighteen Korean women (Fitzpatrick skin type III or IV) with moderate-to-severe bilateral melasma were randomly treated with a single session of 1550-nm FP on one cheek, and with a 15% TCA peel on the other cheek. Outcome measures included an objective melasma area severity index and subjective patient-rated overall improvement at 4 and 12 weeks after treatment. Melasma lesions were significantly improved 4 weeks after either treatment, but melasma recurred at 12 weeks. Post-inflammatory hyperpigmentation developed in 28% of patients at 4 weeks but resolved in all but one patient by 12 weeks. There was no difference between FP treatment and TCA peeling with respect to any outcome measure. FP laser and TCA peel treatments were equally effective and safe when used to treat moderate-to-severe melasma, but neither treatment was long-lasting. We suggest that multiple or periodic maintenance treatments and/or supplemental procedures may be required for the successful treatment of melasma in Asian women.

  12. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)-phtalocyanine modified glassy carbon electrode.

    PubMed

    Kurd, Masoumeh; Salimi, Abdollah; Hallaj, Rahman

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized Fe(II)-Pc were calculated as 1.26×10(-10) mol cm(-2) and 28.13 s(-1), respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl3COOH to CH3COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM(-1) cm(-2), respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection.

  13. Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part I. Its formation, uptake and geographical distribution

    NASA Astrophysics Data System (ADS)

    Weissflog, Ludwig; Pfennigsdorff, Andrea; Martinez-Pastur, Guillermo; Puliafito, Enrique; Figueroa, Dante; Elansky, Nikolai; Nikonov, Vyasheslav; Putz, Erich; Krüger, Gert; Kellner, Klaus

    Trichloroacetic acid (TCA; CCl 3COOH) is a phytotoxic chemical. Although TCA salts and derivatives were once deployed as herbicides against perennial grasses and weeds, their use has since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, high-volatile C 2-chlorohydrocarbons tetrachloroethene (TECE, C 2Cl 4) and 1,1,1-trichloroethane (TCE, CCl 3CH 3) can react to TCA and other substances under oxidative conditions here. Owing to further industrialisation of Southeast Asia, South Africa and South America, a rise can be expected in the use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere (SH). The increasing emissions of this substance—together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the SH—will result in the increased input/formation of TCA in the vegetation located on the lee side of these emission sources. By means of biomonitoring studies, inputs/formation of TCA related to the climatic conditions were detected at various locations in South America, Africa, and Europe.

  14. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    PubMed Central

    Jaffary, Fariba; Nilforoushzadeh, Mohammad Ali; Siadat, Amirhossein; Haftbaradaran, Elaheh; Ansari, Nazli; Ahmadi, Elham

    2016-01-01

    Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50%) + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1 ± 2.1 weeks in all patients (range: 2–12 weeks) and 6.8 ± 1.7, 5.2 ± 1.0, and 6.3 ± 3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P = 0.011). Complete improvement was observed in 10 (38.5%), 27 (90%), and 20 (87%) patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P < 0.001). Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis. PMID:27148363

  15. Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.

    PubMed

    Ahlers, Jan; Regelmann, Jürgen; Riedhammer, Caroline

    2003-07-01

    In environmental risk assessments the question has to be answered, whether risk reduction measures are necessary in order to protect the environment. If the combination of natural and anthropogenic sources of a chemical substance leads to an unacceptable risk, the man-made emissions have to be reduced. In this case the proportions of the anthropogenic and natural emissions have to be quantified. Difficulties and possible solutions are discussed in the scope of the OECD- and EU-risk assessments of trichloroacetic acid (TCA) and tetrachloroethylene. In the atmosphere, TCA is formed by photo-oxidative degradation of tetrachloroethylene (PER) and 1,1,1-trichloroethane. The available data on atmospheric chemistry indicate that tetrachloroethylene is the more important pre-cursor. With its high water solubility and low volatility, TCA is adsorbed onto aerosol particles and precipitated during rainfalls. Extended monitoring in rainwater confirmed the global distribution of airborne TCA. TCA reaches soils by dry and wet deposition. In addition formation of TCA from tetrachloroethylene in plants was observed. Consequently, high concentrations were detected in needles, leaves and in forest soil especially in mountain regions. The effect assessment revealed that plants exposed via soil are the most sensitive species compared to other terrestrial organisms. A PNECsoil of 2.4 microg/kg dw was derived from a long-term study with pine and spruce seedlings. When this PNEC is compared with the measured concentrations of TCA in soil, in certain regions a PEC/PNEC ratio >1 is obtained. This clearly indicates a risk to the terrestrial ecosystem, with the consequence that risk reduction measures are deemed necessary. To quantify the causes of the high levels of TCA in certain soils, and to investigate the geographical extent of the problem, intensive and widespread monitoring of soil, air and rainwater for TCA and tetrachloroethylene would be necessary to be able to perform a full mass

  16. Dichloroacetate and Trichloroacetate Toxicity in AML12 Cells: Role of Oxidative Stress.

    PubMed

    Hassoun, Ezdihar; Mettling, Christopher

    2015-11-01

    The toxicity of the drinking water disinfection by products dichloroacetate (DCA) and trichloroacetate (TCA) was studied in the alpha mouse liver (AML12) cells at concentrations ranging between 770 and 4100 ppm and at incubation times ranging from 24 to 72 h. Cellular viability, superoxide anion (SA) and lipid peroxidation (LP) production, as well as superoxide dismutase (SOD) activity were determined. DCA and TCA resulted in time- and concentration-dependent decreases in cellular viability, and also in significant increases in SA and LP production, and in SOD activity at specific concentrations and time points. The effective toxic concentrations of the compounds in these cells were found to be 10-fold higher than those producing similar effects in the mouse liver. It has been concluded that the AML12 is a good screening system to identify toxic concentrations of the halaocetates present in the drinking water that may need further in vivo testing.

  17. The use of trichloroacetic acid imprinted polymer coated quartz crystal microbalance as a screening method for determination of haloacetic acids in drinking water.

    PubMed

    Suedee, Roongnapa; Intakong, Wimon; Dickert, Franz L

    2006-08-15

    An alternative screening method for haloacetic acids (HAAs) disinfection by-products in drinking water is described. The method is based on the use of piezoelectric quartz crystal microbalance (QCM) transducing system, where the electrode is coated with a trichloacetic acid-molecularly imprinted polymer (TCAA-MIP). This MIP comprises a crosslinked poly(ethyleneglycoldimethacrylate-co-4-vinylpyridine). The coated QCM is able to specifically detect the analytes in water samples in terms of the mass change in relation to acid-base interactions of the analytes with the MIP. The TCAA-MIP coated QCM showed high specificity for the determination of TCAA in aqueous solutions containing inorganic anions, but its sensitivity reduced in water samples containing hydrochloric acid due to a mass loss at the sensor surface. Cross-reactivity studies with HAA analogs (dichloro-, monochloro-, tribromo-, dibromo-, and monobromo-acetic acids) and non-structurally related TCAA molecules (acetic acid and malonic acid) indicated that recognition of the structurally related TCAA compounds by the TCAA-MIP-based QCM is due to a carboxylic acid functional group, and probably involves a combination of both size and shape selectivity. The total response time of sensor is in the order of 10min. The achieved limits of detection for HAAs (20-50mugl(-1)) are at present higher than the actual concentrations found in real-life samples, but below the guidelines for the maximum permissible levels (60mugl(-1) for mixed HAAs). Recovery studies with drinking water samples spiked with TCAA or spiked with mixtures of HAAs revealed the reproducibility and precision of the method. The present work has demonstrated that the proposed assay can be a fast, reliable and inexpensive screening method for HAA contaminants in water samples, but further refinement is required to improve the limits of detection.

  18. A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane.

    PubMed

    Marzorati, Massimo; de Ferra, Francesca; Van Raemdonck, Hilde; Borin, Sara; Allifranchini, Elena; Carpani, Giovanna; Serbolisca, Luca; Verstraete, Willy; Boon, Nico; Daffonchio, Daniele

    2007-05-01

    A mixed culture dechlorinating 1,2-dichloroethane (1,2-DCA) to ethene was enriched from groundwater that had been subjected to long-term contamination. In the metagenome of the enrichment, a 7-kb reductive dehalogenase (RD) gene cluster sequence was detected by inverse and direct PCR. The RD gene cluster had four open reading frames (ORF) showing 99% nucleotide identity with pceB, pceC, pceT, and orf1 of Dehalobacter restrictus strain DSMZ 9455(T), a bacterium able to dechlorinate chlorinated ethenes. However, dcaA, the ORF encoding the catalytic subunit, showed only 94% nucleotide and 90% amino acid identity with pceA of strain DSMZ 9455(T). Fifty-three percent of the amino acid differences were localized in two defined regions of the predicted protein. Exposure of the culture to 1,2-DCA and lactate increased the dcaA gene copy number by 2 log units, and under these conditions the dcaA and dcaB genes were actively transcribed. A very similar RD gene cluster with 98% identity in the dcaA gene sequence was identified in Desulfitobacterium dichloroeliminans strain DCA1, the only known isolate that selectively dechlorinates 1,2-DCA but not chlorinated ethenes. The dcaA gene of strain DCA1 possesses the same amino acid motifs as the new dcaA gene. Southern hybridization using total genomic DNA of strain DCA1 with dcaA gene-specific and dcaB- and pceB-targeting probes indicated the presence of two identical or highly similar dehalogenase gene clusters. In conclusion, these data suggest that the newly described RDs are specifically adapted to 1,2-DCA dechlorination.

  19. The Induction of Phagocytic activation by Mixtures of the Water Chlorination By-Products, Dichloroacetate- and Trichloroacetate in Mice after Subchronic Exposure

    PubMed Central

    Hassoun, Ezdihar A.; Cearfoss, Jacquelyn; Musser, Brian; Krispinsky, Sarah; Al-Hassan, Noor; Liu, Ming-Cheh

    2013-01-01

    In this study, groups of B6C3F1 male mice were treated with dichloroacetate (DCA), trichloroacetate (TCA), and mixtures of the compounds (Mix I, Mix II and Mix III) daily by gavage, for 13 weeks. The tested doses were 7.5, 15 and 30 mg DCA/kg/day and 12.5, 25 and 50 mg TCA/kg/day. The DCA: TCA ratios in Mix I, II and III were 7.5:12.5, 15:25 and 30:50 mg/kg/day, respectively. Peritoneal lavage cells were collected at the end of the treatment period and assayed for the biomarkers of phagocytic activation, including superoxide anion and tumor necrosis factor-alpha production, and myeloperoxidase activity. The mixtures produced non-linear effects on the biomarkers of phagocytic activation, with Mix I and II effects were found to be additive, but Mix III effects were found to be less than additive. PMID:23436740

  20. Application of talcum powder, trichloroacetic acid and silver nitrate in female rats for non-surgical sterilization: evaluation of the apoptotic pathway mRNA and miRNA genes

    PubMed Central

    Yumrutas, Onder; Kara, Murat; Atilgan, Remzi; Kavak, Salih Burcin; Bozgeyik, Ibrahim; Sapmaz, Ekrem

    2015-01-01

    There are several methods used for non-surgical sterilization in birth control including quinacrine, trichloroacetic acid (TCA), erythromycin, tetracycline, silver nitrate and talcum powder. Among these, talcum powder, TCA and silver nitrate are the most commonly used. However, the toxic and carcinogenic activities of these chemicals in ovarian tissue have been poorly elucidated. This study demonstrates the expression levels of antioxidant, apoptotic and anti-apoptotic genes after administration of talc powder, TCA and silver nitrate for non-surgical sterilization in female rat models. The expression changes of some microRNAs (miR-15b, miR-21, miR-34a and miR-98) that play key roles in the apoptosis pathway were also included. All expression analyses were evaluated with real-time PCR. The expression levels of all genes appeared to be upregulated in the talcum powder group, but the results were not statistically significant. Increased expression of Gsr and Sod1 genes was statistically significant in the talcum powder group. In TCA and silver nitrate group, expression of all genes was appeared to be elevated but only the Gsr expression was statistically significant in the TCA-administrated group; there were no statistically significant changes in the silver nitrate group. miRNA expression levels were increased in talcum powder and TCA-administrated groups, but these results were not significant. Expression levels of miR-15b, miR-21 and miR-98 in the silver nitrate group were significantly increased. Consequently, these chemicals appear to be non-carcinogenic agents for rat ovarian tissue which do not induce apoptosis. However, talcum powder and TCA can be considered as agents that are toxic to ovarian tissue. PMID:25885949

  1. Application of talcum powder, trichloroacetic acid and silver nitrate in female rats for non-surgical sterilization: evaluation of the apoptotic pathway mRNA and miRNA genes.

    PubMed

    Yumrutas, Onder; Kara, Murat; Atilgan, Remzi; Kavak, Salih Burcin; Bozgeyik, Ibrahim; Sapmaz, Ekrem

    2015-04-01

    There are several methods used for non-surgical sterilization in birth control including quinacrine, trichloroacetic acid (TCA), erythromycin, tetracycline, silver nitrate and talcum powder. Among these, talcum powder, TCA and silver nitrate are the most commonly used. However, the toxic and carcinogenic activities of these chemicals in ovarian tissue have been poorly elucidated. This study demonstrates the expression levels of antioxidant, apoptotic and anti-apoptotic genes after administration of talc powder, TCA and silver nitrate for non-surgical sterilization in female rat models. The expression changes of some microRNAs (miR-15b, miR-21, miR-34a and miR-98) that play key roles in the apoptosis pathway were also included. All expression analyses were evaluated with real-time PCR. The expression levels of all genes appeared to be upregulated in the talcum powder group, but the results were not statistically significant. Increased expression of Gsr and Sod1 genes was statistically significant in the talcum powder group. In TCA and silver nitrate group, expression of all genes was appeared to be elevated but only the Gsr expression was statistically significant in the TCA-administrated group; there were no statistically significant changes in the silver nitrate group. miRNA expression levels were increased in talcum powder and TCA-administrated groups, but these results were not significant. Expression levels of miR-15b, miR-21 and miR-98 in the silver nitrate group were significantly increased. Consequently, these chemicals appear to be non-carcinogenic agents for rat ovarian tissue which do not induce apoptosis. However, talcum powder and TCA can be considered as agents that are toxic to ovarian tissue. PMID:25885949

  2. The Effects of Mixtures of Dichloroacetate and Trichloroacetate on Induction of Oxidative Stress in Livers of Mice after Subchronic Exposure

    PubMed Central

    Hassoun, Ezdihar; Cearfoss, Jacquelyn; Mamada, Sukamto; Al-Hassan, Noor; Brown, Michael; Heimberger, Kevin; Liu, Ming-Cheh

    2014-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) are drinking water chlorination byproducts previously found to induce oxidative stress (OS) in hepatic tissues of B6C3F1 male mice. To assess the effects of mixtures of the compounds on OS, groups of male B6C3F1 mice were treated daily by gavage with DCA at doses of 7.5, 15, or 30 mg/kg/day, TCA at doses of 12.5, 25, or 50 mg/kg/day and three mixtures of DCA and TCA (Mix I, Mix II and Mix III), for 13 weeks. The concentrations of the compounds in Mix I, II and III corresponded to those producing approximately 15, 25 and 35%, respectively, of maximal induction of OS by individual compounds. Livers were assayed for production of superoxide anion (SA), lipid peroxidation (LP) and DNA single strand breaks (SSB). DCA, TCA and the mixtures produced dose-dependent increases in the three tested biomarkers. Mix. I and II effects on the three biomarkers, and Mix. III effect on SA production were found to be additive, while Mix. III effects on LP and DNA-SSB were shown to be greater than additive. Induction of OS in livers of B6C3F1 mice after sub-chronic exposure to DCA and TCA was previously suggested as an important mechanism in chronic hepatotoxicity/hepatocarcinogenicity induced by these compounds. Hence, there may be rise in exposure risk to these compounds as these agents co-exist in drinking water. PMID:24593144

  3. TRAIL restores DCA/metformin-mediated cell death in hypoxia.

    PubMed

    Hong, Sung-Eun; Kim, Chang Soon; An, Sungkwan; Kim, Hyun-Ah; Hwang, Sang-Gu; Song, Jie-Young; Lee, Jin Kyung; Hong, Jungil; Kim, Jong-Il; Noh, Woo Chul; Jin, Hyeon-Ok; Park, In-Chul

    2016-09-23

    Previous studies have shown that hypoxia can reverse DCA/metformin-induced cell death in breast cancer cells. Therefore, targeting hypoxia is necessary for therapies targeting cancer metabolism. In the present study, we found that TRAIL can overcome the effect of hypoxia on the cell death induced by treatment of DCA and metformin in breast cancer cells. Unexpectedly, DR5 is upregulated in the cells treated with DCA/metformin, and sustained under hypoxia. Blocking DR5 by siRNA inhibited DCA/metformin/TRAIL-induced cell death, indicating that DR5 upregulation plays an important role in sensitizing cancer cells to TRAIL-induced cell death. Furthermore, we found that activation of JNK and c-Jun is responsible for upregulation of DR5 induced by DCA/metformin. These findings support the potential application of combining TRAIL and metabolism-targeting drugs in the treatment of cancers under hypoxia. PMID:27569287

  4. The Induction of Tumor Necrosis Factor-alpha , Supeoxide Anion, Myeloperoxidase, and Superoxide Dismutase in the Peritoneal Lavage Cells of Mice after Prolonged Exposure to Dichloroacetate and Trichloroacetate

    PubMed Central

    Spildener, Jessica; Cearfoss, Jacquelyn

    2010-01-01

    The induction of phagocytic activation in response to prolonged treatment with different doses of dichloroacetate (DCA) and trichloroacetate (TCA) has been investigated in mice. Groups of B6C3F1 male mice were administered 7.7, 77, 154 and 410 mg of DCA or TCA/ kg/day , post orally, for 4- and 13-weeks. Peritoneal lavage cells (PLCs) were isolated and assayed for the different biomarkers of phagocytyic activation, including superoxide anion (SA), tumor necrosis factor-alpha (TNF-α), and myeloperoxidase (MPO). In addition, the role of superoxide dismutase (SOD) in the SA production was also assessed. DCA and TCA produced significant and dose-dependent increases in SA and TNF-α production and in MPO activity but the increases in response to the high doses of the compounds (> 77 mg/kg/day) in the 13-week treatment period were less significant than those produced in the 4-week treatment period. Also, dose-dependent increases in SOD activity were observed in both periods of treatments. In general, the results demonstrate significant induction of the biomarkers of phagocytic activation by doses of DCA and TCA that were previously shown to be non carcinogenic, with significantly greater increases observed at the earlier period of exposure, as compared with later period. These findings may argue against the contribution of those mechanisms to the hepatotoxicity/hepatocarcinogenicity of the compounds and suggest them to be early adaptive/ protective mechanisms against their long term effects. PMID:20391627

  5. Spin canting in the 3D anionic dicyanamide structure (SPh(3))Mn(dca)(3) (Ph = phenyl, dca = dicyanamide).

    PubMed

    Schlueter, John A; Manson, Jamie L; Hyzer, Kylee A; Geiser, Urs

    2004-07-12

    Through use of the SPh(3)(+) (Ph = phenyl, C(6)H(5)) cation as a molecular template, a new three-dimensional Mn(dca)(3)(-) [dca = dicyanamide, N(CN)(2)(-)] anionic structure has been crystallized. At room temperature, (SPh(3))Mn(dca)(3) (1) crystallizes in the monoclinic space group P2(1)/c, with a = 11.7079(5) A, b = 12.8554(5) A, c = 16.8605(6) A, beta = 100.666(2) degrees, and V = 2493.8(3) A(3). Magnetic susceptibility measurements indicate that this salt exhibits a spin canted long range antiferromagnetically ordered ground state below 2.5 K.

  6. DCA promotes progression of neuroblastoma tumors in nude mice.

    PubMed

    Feuerecker, Benedikt; Seidl, Christof; Pirsig, Sabine; Bruchelt, Gernot; Senekowitsch-Schmidtke, Reingard

    2015-01-01

    Even in the presence of oxygen most cancer cells convert glucose to lactate via pyruvate instead of performing oxidative phosphorylation (aerobic glycolysis-Warburg effect). Thus, it has been considered to shift pyruvate - the metabolite of aerobic glycolysis - to acetylCoA by activation of pyruvate dehydrogenase (PDH). AcetylCoA will then be metabolized by oxidative phosphorylation. Therefore, the purpose of this study was to shift tumor cells from aerobic glycolysis to oxidative phosphorylation using dichloroacetate (DCA), an inhibitor of PDH-kinase. The effects of DCA were assayed in vitro in Neuro-2a (murine neuroblastoma), Kelly and SK-N-SH (human neuroblastoma) as well as SkBr3 (human breast carcinoma) cell lines. The effects of DCA on tumor development were investigated in vivo using NMRI nu/nu mice bearing subcutaneous Neuro-2a xenografts. For that purpose animals were treated continuously with DCA in the drinking water. Tumor volumes were monitored using caliper measurements and via [18F]-FDG-positron emission tomography. DCA treatment increased viability/proliferation in Neuro-2a and SkBr3 cells, but did not cause significant alterations of PDH activity. However, no significant effects of DCA could be observed in Kelly and SK-N-SH cells. Accordingly, in mice bearing Neuro-2a xenografts, DCA significantly increased tumor proliferation compared to mock-treated mice. Thus, we could demonstrate that DCA - an indicated inhibitor of tumor growth - efficiently promotes tumor growth in Neuro-2a cells in vitro and in vivo. PMID:25973318

  7. Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater.

    PubMed

    Maes, Ann; Van Raemdonck, Hilde; Smith, Katherine; Ossieur, Wendy; Lebbe, Luc; Verstraete, Willy

    2006-09-01

    The transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 in 1,2-dichloroethane (1,2-DCA)-contaminated groundwater have been evaluated through an in situ bioaugmentation test at an industrial site (Belgium). The migration of strain DCA1 was monitored from an injection well toward a monitoring well, and the effect of the imposed groundwater flow on its distribution was assessed by means of transport model MOCDENS3D. The results of the real-time PCR (16S rRNA gene) quantification downstream from the injection point were used to evaluate the bacterial distribution pattern simulated by MOCDENS3D. In the injection well, the 1,2-DCA concentration in the groundwater decreased from 939.8 to 0.9 microM in a 35 day time interval and in the presence of a sodium lactate solution. Moreover, analyses from the monitoring well showed that the cells were still active after transport through the aquifer, although biodegradation occurred to a lesser extent. This study showed that strain DCA1 can be successfully applied for the removal of 1,2-DCA under field conditions and that its limited retardation offers perspectives for large-scale cleanup processes of industrial sites. PMID:16999138

  8. Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater.

    PubMed

    Maes, Ann; Van Raemdonck, Hilde; Smith, Katherine; Ossieur, Wendy; Lebbe, Luc; Verstraete, Willy

    2006-09-01

    The transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 in 1,2-dichloroethane (1,2-DCA)-contaminated groundwater have been evaluated through an in situ bioaugmentation test at an industrial site (Belgium). The migration of strain DCA1 was monitored from an injection well toward a monitoring well, and the effect of the imposed groundwater flow on its distribution was assessed by means of transport model MOCDENS3D. The results of the real-time PCR (16S rRNA gene) quantification downstream from the injection point were used to evaluate the bacterial distribution pattern simulated by MOCDENS3D. In the injection well, the 1,2-DCA concentration in the groundwater decreased from 939.8 to 0.9 microM in a 35 day time interval and in the presence of a sodium lactate solution. Moreover, analyses from the monitoring well showed that the cells were still active after transport through the aquifer, although biodegradation occurred to a lesser extent. This study showed that strain DCA1 can be successfully applied for the removal of 1,2-DCA under field conditions and that its limited retardation offers perspectives for large-scale cleanup processes of industrial sites.

  9. Ionic liquid 1-butyl-3-methylimidazolium cyanamide (bmim [dca]) as a solvent and catalyst for acylation of maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have found a novel method to prepare maltodextrin stearate with DS upto 0.60 in 90% yields from maltodextrin in IL bmim[dca] reacted with vinyl stearate or stearic acid. In this work we have demonstrated that IL could simultaneously act as a solvent and as a catalyst for reaction of maltodextrin...

  10. Efficient Nonnegative Matrix Factorization by DC Programming and DCA.

    PubMed

    Le Thi, Hoai An; Vo, Xuan Thanh; Dinh, Tao Pham

    2016-06-01

    In this letter, we consider the nonnegative matrix factorization (NMF) problem and several NMF variants. Two approaches based on DC (difference of convex functions) programming and DCA (DC algorithm) are developed. The first approach follows the alternating framework that requires solving, at each iteration, two nonnegativity-constrained least squares subproblems for which DCA-based schemes are investigated. The convergence property of the proposed algorithm is carefully studied. We show that with suitable DC decompositions, our algorithm generates most of the standard methods for the NMF problem. The second approach directly applies DCA on the whole NMF problem. Two algorithms-one computing all variables and one deploying a variable selection strategy-are proposed. The proposed methods are then adapted to solve various NMF variants, including the nonnegative factorization, the smooth regularization NMF, the sparse regularization NMF, the multilayer NMF, the convex/convex-hull NMF, and the symmetric NMF. We also show that our algorithms include several existing methods for these NMF variants as special versions. The efficiency of the proposed approaches is empirically demonstrated on both real-world and synthetic data sets. It turns out that our algorithms compete favorably with five state-of-the-art alternating nonnegative least squares algorithms. PMID:27136704

  11. Comparison of haloacetic acids in the environment of the Northern and Southern Hemispheres.

    PubMed

    Scott, B F; Spencer, C; Martin, J W; Barra, R; Bootsma, H A; Jones, K C; Johnston, A E; Muir, D C G

    2005-11-15

    Haloacetic acids (HAAs) are a family of compounds whose environmental concentrations have been extensively studied, primarily in Europe. Depending on the compound, their sources are believed to be both natural and anthropogenic. To better understand possible sources and contribute to the knowledge of the global distribution of these compounds, especially between the Northern and Southern Hemispheres, samples of precipitation, soils, and conifer needles were collected from Canada, Malawi, Chile, and the U.K. Precipitation samples exhibited highest HAA concentrations in collections from Canada, and lowest in those from Malawi. Malawi samples contained measurable levels of monobromoacetic acid (MBA) (56 ng/ L) unlike those from most other locations (< 9 ng/L). Soil HAA concentration levels were highest in the U.K. (e.g., 7.3 ng/g average TCA) and lowest in Malawi (0.8 ng/g average TCA), with Chile having higher levels (4.8 ng/g average TCA) than Canada (3 ng/g average TCA). Malawi soils contained small amounts of MBA (2 ng/g), in common with the two most southern of the 11 Chilean sites. Analysis of soil cores (10-cm depth sliced at 1 cm) from sites in Malawi and Chile showed that trichloroacetic acid (TCA) generally declined with depth while mono- and dichloroacetic acid (MCA and DCA) showed no trend. MCA, DCA, and TCA concentrations in archived U.K. soil samples increased by factors of 2, 4, and 5-fold over 75 years while TFA showed no consistent trend. Monochloroacetic acid (MCA) was detected in pine needles collected from Malawi. U.K. needle samples had the highest concentrations of all chloroacetic acids (CAAs): MCA, 2-18 ng/g; dichloroacetic acid (DCA), 2-38 ng/g; and trichloroacetic acid (TCA), 28-190 ng/g. Conifer needles from Canada and Chile contained CAAs at levels ranging from < 2 to 16 ng/g wet wt. Trifluoroacetic acid concentrations generally declined with increasing elevation in the samples from the Rocky Mountains in western Canada. The results

  12. Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate

    SciTech Connect

    Dhanaraj, P.V.; Rajesh, N.P.; Vinitha, G.; Bhagavannarayana, G.

    2011-05-15

    Research highlights: {yields} Good quality crystals of 2-aminopyridinium trichloroacetate were grown for first time. {yields} 2-Aminopyridinium trichloroacetate crystal belongs to monoclinic crystal system with space group P21/c. {yields} 2-Aminopyridinium trichloroacetate crystal exhibits third order nonlinear optical properties. {yields} 2-Aminopyridinium trichloroacetate is a low dielectric constant material. -- Abstract: 2-Aminopyridinium trichloroacetate, a novel organic optical material has been synthesized and crystals were grown from aqueous solution employing the technique of controlled evaporation. 2-Aminopyridinium trichloroacetate crystallizes in monoclinic system with space group P2{sub 1}/c and the lattice parameters are a = 8.598(5) A, b = 11.336(2) A, c = 11.023(2) A, {beta} = 102.83(1){sup o} and volume = 1047.5(3) A{sup 3}. High-resolution X-ray diffraction measurements were performed to analyze the structural perfection of the grown crystals. Thermal analysis shows a sharp endothermic peak at 124 {sup o}C due to melting reaction of 2-aminopyridinium trichloroacetate. UV-vis-NIR studies reveal that 2-aminopyridinium trichloroacetate has UV cutoff wavelength at 354 nm. Dielectric studies show that dielectric constant and dielectric loss decreases with increasing frequency and finally it becomes almost a constant at higher frequencies for all temperatures. The negative nonlinear optical parameters of 2-aminopyridinium trichloroacetate were derived by the Z-scan technique.

  13. Comparative effects of haloacetic acids in whole embryo culture.

    PubMed

    Hunter, E S; Rogers, E H; Schmid, J E; Richard, A

    1996-08-01

    A major class of disinfection by-products in drinking water are the haloacetic acids. Both dichloro- and trichloroacetic acids are teratogenic when administered to rats throughout organogenesis. However, there is little information regarding the developmental toxicity of other haloacetic acids. Therefore, 3-6 somite staged CD-1 mouse embryos were exposed to acetic acid (AA) or mono- (M), di- (D), and tri- (T) substituted fluoro- (F), chloro- (C), or bromo- (B) acetic acids in whole embryo culture in order to evaluate the effects of these agents on development. A 24 hour exposure to the haloacetic acids produced dysmorphogenesis. Effects on neural tube development ranged from prosencephalic hypoplasia to non-closure defects throughout the cranial region. Exposure to the haloacetic acids affected optic development, produced malpositioned and/or hypoplastic pharyngeal arches, and resulted in perturbation of heart development. In order to determine the relative toxicities of these agents, benchmark concentrations were calculated as the lower 95% confidence interval of the concentration that produced a 5% increase in neural tube defects. The benchmark concentrations occurred over a wide range with DFA (5912.6 microM) and MBA (2.7 microM) at the extremes. Using the benchmark concentrations to compare the chemicals gives a ranking of the agents in order of increasing potency as: DFA < TFA < DCA < AA < TBA < or = TCA < DBA < MCA < MBA. TCA and DCA have demonstrated ability to disrupt development in vivo but were among the least potent haloacetic acids in vitro. Because of the potential for widespread exposure to haloacetic acids in drinking water and the incomplete toxicity profile of these chemicals, further work on their developmental effects is warranted.

  14. Tumorigenic effects of dichloroacetic acid in female F344 rats

    EPA Science Inventory

    Introduction: Dichloroacetic acid (DCA) is a halogenated organic acid produced during oxidant disinfection of drinking water. Prior studies indicate that DCA may increase liver tumors in mice. Here we evaluated the hepatic tumorigenicity of DCA in female rats when given alone ...

  15. Removal of EDB and 1,2-DCA by Abiotic Reaction with Iron(II) Sulfide

    EPA Science Inventory

    Ethylene Dibromide (EDB) and 1,2-Dichloroethane (1,2-DCA) were used as lead scavengers in leaded motor gasoline in the USA until the late 1980s. Leaded gasoline in contact with ground water should produce concentrations of EDB near 1900 µg/L, and concentrations of 1,2-DCA near 3...

  16. Simulations of high-Tc superconductors using the DCA+ algorithm

    NASA Astrophysics Data System (ADS)

    Staar, Peter

    2015-03-01

    For over three decades, the high Tc-cuprates have been a gigantic challenge for condensed matter theory. Even the simplest representation of these materials, i.e. the single band Hubbard model, is hard to solve quantitatively and its phase-diagram is therefore elusive. In this talk, we present the recent algorithmic and implementation advances to the Dynamical Cluster Approximation (DCA). The algorithmic advances allow us to determine self-consistently a continuous self-energy in momentum space, which in turn reduces the cluster-shape dependency of the superconducting transition temperature and thus accelerates the convergence of the latter versus cluster-size. Furthermore, the introduction of the smooth self-energy suppresses artificial correlations and thus reduces the fermionic sign-problem, allowing us to simulate larger clusters at much lower temperatures. By combining these algorithmic improvements with a very efficient GPU accelerated QMC-solver, we are now able to determine the superconducting transition temperature accurately and show that the Cooper-pairs have indeed a d-wave structure, as was predicted by Zhang and Rice.

  17. Detecting phase-transitions in electronic lattice-models with DCA+

    NASA Astrophysics Data System (ADS)

    Staar, Peter; Maier, Thomas; Schulthess, Thomas; Computational Material Science Team

    2014-03-01

    The DCA+ algortihm was recently introduced to extend the dynamic cluster approximation (DCA) by introducing a self-energy with continuous momentum dependence. This removes artificial long-range correlations and thereby reduces the fermion sign problem as well as cluster shape dependencies. Here, we extend the DCA+ algorithm to the calculation of two-particle quantities by introducing irreducible vertex functions with continuous momentum dependence compatible with the DCA+ self-energy. This enables the study of phase transitions within the DCA+ framework in a much more controlled fashion than with the DCA. We validate the new method using a calculation of the superconducting transition temperature Tc in the attractive Hubbard model by reproducing previous high-precision finite size quantum Monte Carlo results. We then calculate Tc in the doped repulsive Hubbard model, for which previous DCA calculations could only access the weak-coupling (U = 4 t) regime for large clusters. We show that the new algorithm provides access to much larger clusters and thus asymptotic converged results for Tc for both the weak (U = 4 t) and intermediate (U = 7 t) coupling regimes, and thereby enables the accurate determination of the exact infinite cluster size result.

  18. ALTERED GENE EXPRESSION IN MOUSE LIVERS AFTER DICHLOROACETIC ACID EXPOSURE

    EPA Science Inventory

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated that DCA exhibits hepatocarcinogenic effects in rodents when administered in drinking water. The mechanism(s) involved in DCA induction of cancer are not clear...

  19. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo

    PubMed Central

    Bonner, Michael Y.; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S.; Vergani, Elisabetta; Arbiser, Jack L.

    2016-01-01

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  20. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo.

    PubMed

    Bonner, Michael Y; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S; Vergani, Elisabetta; Arbiser, Jack L

    2016-03-15

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  1. Targeting HIF-1α is a prerequisite for cell sensitivity to dichloroacetate (DCA) and metformin.

    PubMed

    Hong, Sung-Eun; Jin, Hyeon-Ok; Kim, Hyun-Ah; Seong, Min-Ki; Kim, Eun-Kyu; Ye, Sang-Kyu; Choe, Tae-Boo; Lee, Jin Kyung; Kim, Jong-Il; Park, In-Chul; Noh, Woo Chul

    2016-01-01

    Recently, targeting deregulated energy metabolism is an emerging strategy for cancer therapy. In the present study, combination of DCA and metformin markedly induced cell death, compared with each drug alone. Furthermore, the expression levels of glycolytic enzymes including HK2, LDHA and ENO1 were downregulated by two drugs. Interestingly, HIF-1α activation markedly suppressed DCA/metformin-induced cell death and recovered the expressions of glycolytic enzymes that were decreased by two drugs. Based on these findings, we propose that targeting HIF-1α is necessary for cancer metabolism targeted therapy. PMID:26616058

  2. DETECTION OF EARLY GENE EXPRESSION CHANGES BY DIFFERENTIAL DISPLAY IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    EPA Science Inventory

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in mice when administered in drinking water. The mechanism of DCA carcinogenicity is not clear and we speculate that changes...

  3. Removal of EDB and 1,2-DCA by Abiotic Reaction with Iron (II) Sulfide

    EPA Science Inventory

    To properly evaluate the risk associated with exposure to EDB and 1,2-DCA in ground water from old spills of leaded gasoline, it is necessary to understand the mechanisms that may attenuate concentrations of these compounds in ground water. TCE reacts rapidly with iron (II) sulf...

  4. Reactive modelling of 1,2-DCA and DOC near the shoreline.

    PubMed

    Colombani, N; Pantano, A; Mastrocicco, M; Petitta, M

    2014-11-15

    1,2-Dichloroethane (1,2-DCA) was found to be the most abundant compound among chlorinated hydrocarbons detected in a petrochemical plant in southern Italy. This site is located near the coastline, and it is set above an unconfined coastal aquifer, where seawater intrusion is present. The presence of organic and inorganic contaminants at this site has required the implementation of remediation strategies, consisting of pumping wells (hydraulic barrier) and a horizontal flow barrier. The purpose of this work was to assess the influence of salt water intrusion on the degradation rate of 1,2-DCA. This was done on a three-dimensional domain relative to a limited portion of a well characterized field site, accounting for density-dependent flow and reactive transport modelling of 1,2-DCA and Dissolved Organic Carbon (DOC). The modelling procedure was performed employing SEAWAT-4.0 and PHT3D, to reproduce the complex three-dimensional flow and transport domain. In order to determine the fate of 1,2-DCA, detailed field investigations provided intensive depth profile information. Different, kinetically controlled degradation rates were simulated to explain the observed, selective degradation of pollutants in groundwater. Calibration of the model was accomplished by comparison with the two different sets of measurements obtained from the MLS devices and from pumping wells. With the calibrated model, it was possible to distinguish between dispersive non-reactive processes and bacterially mediated reactions. In the non-reactive model, 1,2-DCA sorption was simulated using linear sorption coefficient determined with field data and 1,2-DCA degradation was simulated using a first order decay coefficient using literature data as initial guess. Finally, on the reactive transport model, where a two-step approach with partial equilibrium approach was implemented, the effects of neglecting the cation exchange capacity, omitting density-dependent flow, and refining the vertical

  5. DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice

    PubMed Central

    Cui, Long-Gang; Shan, Jun-Xiang; Shi, Min; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-01-01

    Natural disasters, including drought and salt stress, seriously threaten food security. In previous work we cloned a key zinc finger transcription factor gene, Drought and Salt Tolerance (DST), a negative regulator of drought and salt tolerance that controls stomatal aperture in rice. However, the exact mechanism by which DST regulates the expression of target genes remains unknown. In the present study, we demonstrated that DST Co-activator 1 (DCA1), a previously unknown CHY zinc finger protein, acts as an interacting co-activator of DST. DST was found to physically interact with itself and to form a heterologous tetramer with DCA1. This transcriptional complex appears to regulate the expression of peroxidase 24 precursor (Prx 24), a gene encoding an H2O2 scavenger that is more highly expressed in guard cells. Downregulation of DCA1 significantly enhanced drought and salt tolerance in rice, and overexpression of DCA1 increased sensitivity to stress treatment. These phenotypes were mainly influenced by DCA1 and negatively regulated stomatal closure through the direct modulation of genes associated with H2O2 homeostasis. Our findings establish a framework for plant drought and salt stress tolerance through the DCA1-DST-Prx24 pathway. Moreover, due to the evolutionary and functional conservation of DCA1 and DST in plants, engineering of this pathway has the potential to improve tolerance to abiotic stress in other important crop species. PMID:26496194

  6. Influence of 3,4-dichloroaniline (3,4-DCA) on benthic invertebrates in indoor experimental streams.

    PubMed

    Schmitz, A; Nagel, R

    1995-02-01

    The influence of 3,4-dichloroaniline (3,4-DCA) on benthic invertebrates has been examined. Acute toxicity tests were carried out with the following species: Pristina longiseta, Aelosoma variegatum (Oligochaeta), Hydrozetes lacustris (Acarina), Planorbarius corneus, and Gyraulus albus (Planorbidae). LC50 values (96 hr) were obtained for Pri. longiseta (2.5 mg/liter) and for Hy. lacustris (4.7 mg/liter). For all other species ranges of toxicity (maximal concentration with 0% dead to minimum concentration with 100% dead) were determined. These ranges were 0.8-20 mg/liter 3,4-DCA for Pri. longiseta, 1.6-20 mg/liter, 3,4-DCA for Hy. lacustris, 10-20 mg/liter 3,4-DCA for G. albus, 50-100 mg/liter 3,4-DCA for Pl. corneus, and 10 mg/liter 3,4-DCA (maximal concentration with 0% dead; minimum concentration with 100% dead was not determined) for Ae. variegatum. In two experimental streams, the recolonization of benthic organisms into defined sample areas was studied. Therefore, a phase without chemical treatment was compared with a following exposure phase. Test concentrations were 0.2 and 1.4 mg/liter 3,4-DCA (nominal concentrations). Significant effects were the complete extinction of Pri. longiseta in 0.2 mg/liter 3,4-DCA within the first 3 weeks of exposure, as well as the reduction of immigrating individuals of another species of Pristina in both test concentrations, and of Hy. lacustris and Stentor sp. in 1.4 mg/liter 3,4-DCA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7540538

  7. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.

  8. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects. PMID:27086143

  9. Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements.

    PubMed

    Stadler, H; Mondon, M; Ziegler, C

    2003-01-01

    Adsorption of the protein bovine serum albumin (BSA) on gold has been tested at various concentrations in aqueous solution by dynamic contact-angle analysis (DCA) and quartz-crystal microbalance (QCM) measurements. With the Wilhelmy plate technique advancing and receding contact angles and the corresponding hysteresis were measured and correlated with the hydrophilicity and the homogeneity of the surface. With electrical admittance measurements of a gold-coated piezoelectrical quartz crystal, layer mass and viscoelastic contributions to the resonator's frequency shift during adsorption could be separated. A correlation was found between the adsorbed mass and the homogeneity and hydrophilicity of the adsorbed film.

  10. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    PubMed

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary.

  11. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    PubMed

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. PMID:27038569

  12. Carryover effects of dichloroacetic acid on hepatic tumorigenesis in mice.

    EPA Science Inventory

    Introduction: Dichloroacetic acid (DCA) is a major by-product of drinking water chlorination. Chronic DCA exposure has been shown to increase liver tumors in mice, although carryover effects and interactions with other promotional agents are not known. Here we evaluated effects...

  13. Synthesis and characterization of amphiphilic glycidol-chitosan-deoxycholic acid nanoparticles as a drug carrier for doxorubicin.

    PubMed

    Zhou, Huofei; Yu, Weiting; Guo, Xin; Liu, Xiudong; Li, Nan; Zhang, Ying; Ma, Xiaojun

    2010-12-13

    Novel amphiphilic chitosan derivatives (glycidol-chitosan-deoxycholic acid, G-CS-DCA) were synthesized by grafting hydrophobic moieties, deoxycholic acid (DCA), and hydrophilic moieties, glycidol, with the purpose of preparing carriers for poorly soluble drugs. Based on self-assembly, G-CS-DCA can form nanoparticles with size ranging from 160 to 210 nm, and G-CS-DCA nanoparticles maintained stable structure for about 3 months when stored in PBS (pH 7.4) at room temperature. The critical aggregation concentration decreased from 0.043 mg/mL to 0.013 mg/mL with the increase of degree of substitution (DS) of DCA. Doxorubicin (DOX) could be easily encapsulated into G-CS-DCA nanoparticles and keep a sustained release manner without burst release when exposed to PBS (pH 7.4) at 37 °C. Antitumor efficacy results showed that DOX-G-CS-DCA have significant antitumor activity when MCF-7 cells were incubated with different concentration of DOX-G-CS-DCA nanoparticles. The fluorescence imaging results indicated DOX-G-CS-DCA nanoparticles could easily be uptaken by MCF-7 cells. These results suggested that G-CS-DCA nanoparticles may be a promising carrier for DOX delivery in cancer therapy.

  14. ASSESSING THE EFFECTS OF DICHLOROACETIC ACID (DCA) USING A MULTI-ENDPOINT MEDAKA ASSAY

    EPA Science Inventory

    In regulating the safety of water, EPA makes decisions on what chemical contaminants to regulate and at what levels. To make these decisions, the EPA needs hazard identification and dose-response information. Current rodent methods for generating required information have limita...

  15. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  16. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have shown that DCA induces liver tumors in rodents when administered in drinking wate...

  17. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  18. DCA++: A case for science driven application development for leadership computing platforms

    SciTech Connect

    Summers, Michael Stuart; Schulthess, Thomas C; Alvarez, Gonzalo; Meredith, Jeremy S; Maier, Thomas A

    2009-01-01

    Abstract. The DCA++ code was one of the early science applications that ran on jaguar at the National Center for Computational Sciences, and the rst application code to sustain a peta op/s under production conditions on a general-purpose supercomputer. The code implements a quantum cluster method with a Quantum Monte Carlo kernel to solve the 2D Hubbard model for high-temperature superconductivity. It is implemented in C++, making heavy use of the generic programming model. In this paper, we discuss how this code was developed, reaching scalability and high ef ciency on the world s fastest supercomputer in only a few years. We show how the use of generic concepts combined with systematic refactoring of codes is a better strategy for computational sciences than a comprehensive upfront design.

  19. DCA++: A case for science driven application development for leadership computing platforms

    NASA Astrophysics Data System (ADS)

    Summers, Michael S.; Alvarez, Gonzalo; Meredith, Jeremy; Maier, Thomas A.; Schulthess, Thomas C.

    2009-07-01

    The DCA++ code was one of the early science applications that ran on jaguar at the National Center for Computational Sciences, and the first application code to sustain a petaflop/s under production conditions on a general-purpose supercomputer. The code implements a quantum cluster method with a Quantum Monte Carlo kernel to solve the 2D Hubbard model for high-temperature superconductivity. It is implemented in C++, making heavy use of the generic programming model. In this paper, we discuss how this code was developed, reaching scalability and high efficiency on the world's fastest supercomputer in only a few years. We show how the use of generic concepts combined with systematic refactoring of codes is a better strategy for computational sciences than a comprehensive upfront design.

  20. A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice

    SciTech Connect

    Keys, Deborah A.; Schultz, Irv R.; Mahle, Deirdre A.; Fisher, Jeffrey W.

    2004-09-16

    Dichloroacetic acid (DCA), a minor metabolite of trichloroethylene (TCE) and water disinfection byproduct, remains an important risk assessment issue because of its carcinogenic potency. DCA has been shown to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta (GSTzeta). To better predict internal dosimetry of DCA, a physiologically based pharmacokinetic (PBPK) model of DCA was developed. Suicide inhibition was described dynamically by varying the rate of maximal GSTzeta mediated metabolism of DCA (Vmax) over time. Resynthesis (zero-order) and degradation (first-order) of metabolic activity were described. Published iv pharmacokinetic studies in native rats were used to estimate an initial Vmax value, with Km set to an in vitro determined value. Degradation and resynthesis rates were set to estimated values from a published immunoreactive GSTzeta protein time course. The first-order inhibition rate, kd, was estimated to this same time course. A secondary, linear non-GSTzeta-mediated metabolic pathway is proposed to fit DCA time courses following treatment with DCA in drinking water. The PBPK model predictions were validated by comparing predicted DCA concentrations to measured concentrations in published studies of rats pretreated with DCA following iv exposure to 0.05 to 20 mg/kg DCA. The same model structure was parameterized to simulate DCA time courses following iv exposure in native and pretreated mice. Blood and liver concentrations during and postexposure to DCA in drinking water were predicted. Comparisons of PBPK model predicted to measured values were favorable, lending support for the further development of this model for application to DCA or TCE human health risk assessment.

  1. A New Perspective on an Old Problem, Natural Attenuation of the Lead Scavengers EDB and DCA in Ground Water

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. If leaded gasoline is spilled to...

  2. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium Trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renuka, N.; Ramesh Babu, R.; Vijayan, N.; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K.

    2015-02-01

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni2+ and Co2+ doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  3. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  4. Superconducting transition temperature in two-dimensional doped repulsive Hubbard model: DCA+ simulations with continuous momentum dependence

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Staar, Peter; Maier, Thomas; Schulthess, Thomas

    2015-03-01

    DCA+ algorithm extends the dynamical cluster approximation (DCA) with continuous lattice self-energy to ensure better convergence with cluster size and delay the occurrence of the severe sign problem. This new algorithm enables a systematic investigation of the phase diagram of 2D Hubbard model relevant to the high temperature superconductors. We calculate the superconducting transition temperature Tc in the 2D repulsive Hubbard model on square lattice with nearest-neighbor hoppings for different doping levels, focussing on the intermediate correlation (U / t = 7) regime. This research was carried out with resources of the Oak Ridge Leadership Computing Facility (OLCF), the Swiss National Supercomputing Center (CSCS), and the Center for Nanophase Materials Sciences (CNMS).

  5. Validation of trichloroacetic acid exposure via drinking water during pregnancy using a urinary TCAA biomarker.

    PubMed

    Smith, Rachel B; Nieuwenhuijsen, Mark J; Wright, John; Raynor, Pauline; Cocker, John; Jones, Kate; Kappaostopoulou-Karadanelli, Maria; Toledano, Mireille B

    2013-10-01

    Disinfection by-product (DBP) exposure during pregnancy may be related to reduced fetal growth, but the evidence is inconclusive and improved DBP exposure assessment is required. The authors conducted a nested exposure study on a subset (n=39) of pregnant women in the Born in Bradford cohort to assess validity of TCAA exposure assessment based on tap water sampling and self-reported water-use; water-use questionnaire validity; and use of a one-time urinary TCAA biomarker. TCAA levels in urine and home tap water supply were quantified, and water use was measured via a questionnaire and 7-day diary, at 28 weeks gestation. Diary and urine measures were repeated later in pregnancy (n=14). TCAA level in home tap water supply was not correlated with urinary TCAA (0.18, P=0.29). Cold unfiltered tap water intake at home measured by questionnaire was correlated with urinary TCAA (0.44, P=0.007), but correlation was stronger still for cold unfiltered tap water intake reported over the 3 days prior to urine sampling (0.60, P<0.001). For unemployed women TCAA ingestion at home, derived from tap water sampling and self-reported water-use, correlated strongly with urinary TCAA (0.78, P<0.001), but for employed women the correlation was weak (0.31, P=0.20). Results suggest individual tap water intake is most influential in determining TCAA exposure variability in this cohort, and that TCAA ingestion at home is a valid proxy for TCAA exposure for unemployed women but less satisfactory for employed women.

  6. TRAPPING AND IDENTIFICATION OF THE DICHLOROACETATE RADICAL FROM THE REDUCTIVE DEHALOGENATION OF TRICHLOROACETATE BY MOUSE AND RAT LIVER MICROSOMES. (R825954)

    EPA Science Inventory

    A key question in the risk assessment of trichloroethylene (TRI) is the extent to which its carcinogenic effects might depend on the formation of dichloroacetate (DCA) as a metabolite. One of the metabolic pathways proposed for the formation of DCA from TRI is by the reductive...

  7. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    PubMed

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  8. Monensin and Dichloroacetamide Influences on Methane and Volatile Fatty Acid Production by Rumen Bacteria In Vitro

    PubMed Central

    Slyter, L. L.

    1979-01-01

    The effect of monensin (0 or 33 μg/g of diet) upon rumen fermentation in the presence and absence of methanogenesis was determined in vitro by using mixed rumen organisms continuously cultured for 17 days. Methane was inhibited by dichloroacetamide (DCA; 32 mg/day) or by a pH of 5.1. Monensin effected a significant decrease in the ratio of acetic to propionic acid in the presence or absence of methanogenesis. In the absence of methanogenesis, the decrease in the ratio of acetic to propionic acid was entirely the result of increased propionic acid, whereas in the presence of methanogenesis the decrease in the ratio was the result of a combination of decreased acetic acid and increased propionic acid. There was a complementary interaction between monensin and DCA on volatile fatty acid production (expressed as millimoles of carbon per day). Addition of monensin to DCA-treated cultures resulted in the production of more acid; however, monensin and DCA had no beneficial effect on total carbon formed as acid and gases as compared with nonsupplemented control cultures. The monensin and DCA also resulted in greater digestion of neutral detergent fiber and less accumulation of formic acid and hydrogen as end products than did DCA alone. l-Lactic acid was produced in small but significantly greater amounts by the low-pH cultures, which also had less volatile fatty acid carbon formed from the fiber fraction of the forage supplied. PMID:16345344

  9. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  10. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity.

    PubMed

    Hayes, Martin A; Li, Xue-Qing; Grönberg, Gunnar; Diczfalusy, Ulf; Andersson, Tommy B

    2016-09-01

    The endogenous bile acid metabolite 1β-hydroxy-deoxycholic acid (1β-OH-DCA) excreted in human urine may be used as a sensitive CYP3A biomarker in drug development reflecting in vivo CYP3A activity. An efficient and stereospecific enzymatic synthesis of 1β-OH-DCA was developed using a Bacillus megaterium (BM3) cytochrome P450 (P450) mutant, and its structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A [(2)H4]-labeled analog of 1β-OH-DCA was also prepared. The major hydroxylated metabolite of deoxycholic acid (DCA) in human liver microsomal incubations was identified as 1β-OH-DCA by comparison with the synthesized reference analyzed by UPLC-HRMS. Its formation was strongly inhibited by CYP3A inhibitor ketoconazole. Screening of 21 recombinant human cytochrome P450 (P450) enzymes showed that, with the exception of extrahepatic CYP46A1, the most abundant liver P450 subfamily CYP3A, including CYP3A4, 3A5, and 3A7, specifically catalyzed 1β-OH-DCA formation. This indicated that 1β-hydroxylation of DCA may be a useful marker reaction for CYP3A activity in vitro. The metabolic pathways of DCA and 1β-OH-DCA in human hepatocytes were predominantly via glycine and, to a lesser extent, via taurine and sulfate conjugation. The potential utility of 1β-hydroxylation of DCA as a urinary CYP3A biomarker was illustrated by comparing the ratio of 1β-OH-DCA:DCA in a pooled spot urine sample from six healthy control subjects to a sample from one patient treated with carbamazepine, a potent CYP3A inducer; 1β-OH-DCA:DCA was considerably higher in the patient versus controls (ratio 2.8 vs. 0.4). Our results highlight the potential of 1β-OH-DCA as a urinary biomarker in clinical CYP3A DDI studies. PMID:27402728

  11. Investigation on growth, structural, optical, thermal, dielectric and mechanical properties of organic L-prolinium trichloroacetate single crystals

    SciTech Connect

    Boopathi, K.; Rajesh, P.; Ramasamy, P.

    2012-09-15

    Graphical abstract: L-Prolinium trichloroacetate is an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that L-PTCA crystallizes in trigonal crystal system. The optical band gab is found to be 4.26 eV. Second harmonic conversion efficiency of L-PTCA has been found to be half that of KDP. Highlights: ► It deals with the synthesis, growth and characterization of L-PTCA an organic NLO crystal. ► Wide optical transparency window between 260 nm and 1100 nm. ► Thermal study reveals that the grown crystal is stable up to 127 °C. ► L-PTCA crystal exhibits the second order nonlinear optical properties. -- Abstract: A new organic nonlinear optical material L-prolinium trichloroacetate (L-PTCA) single crystal has been synthesized and grown by slow solvent evaporation technique at room temperature using water as solvent. Single-crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm lattice parameter. The powder X-ray diffraction pattern of the grown L-PTCA has been indexed. The modes of vibration of different molecular groups present in the sample were identified by the FTIR spectral analysis. The optical transmittance window and the lower cutoff wavelength of the L-PTCA have been identified by UV–vis–NIR studies. Thermal stability of the L-prolinium trichloroacetate was determined by TGA/DTA measurements. Dielectric measurements were carried out at various temperatures at frequency range 10–1 MHz. The mechanical properties of the grown crystals have been analyzed by Vickers microhardness method. The chemical etching studies were carried out on the grown crystals. Its SHG efficiency has been tested by Kurtz powder method.

  12. A TWO-YEAR DOSE-RESPONSE STUDY OF LESION SEQUENCES DURING HEPATOCELLULAR CARCINOGENESIS IN THE MALE B6C3F1 MOUSE GIVEN THE DRINKING WATER CHEMICAL DICHLOROACETIC ACID

    EPA Science Inventory

    ABSTRACT

    Dichloroacetic acid (DCA) is carcinogenic to the B6C3F 1 mouse and the F344 rat. Given the carcinogenic potential of DCA in rodent liver, and the known concentrations of this compound in drinking water, reliable biologically-based models to reduce the uncertai...

  13. [HPTLC densitometric determination of free bile acids in bezoar].

    PubMed

    Zhang, Q; Li, S; Cheng, J; Yan, K; Tian, S

    1990-06-01

    Cholic acid (CA), chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) which are extracted with CH3OH from Bezoar can be separated on HPTLC silica gel plate (made in China) with isooctane-n-butyl acetate-acetic acid (4:2:1), and the three bile acids were determined by TLC densitometry.

  14. Examination of age-related epigenetic changes following early-life exposure to dichloroacetic acid

    EPA Science Inventory

    Recent studies have shown that transient early-life exposure to dichloroacetic acid (DCA), a pyruvate analog and metabolic reprogramming agent, increases liver cancer incidence in older mice. This carcinogenic effect is not associated with direct mutagenicity, persistent cytotoxi...

  15. TH-C-12A-05: Dynamic Couch Motion for Improvement of Radiation Therapy Trajectories in DCA and VMAT

    SciTech Connect

    MacDonald, L; Thomas, Christopher

    2014-06-15

    Purpose: To investigate the potential improvement in dosimetric external beam radiation therapy plan quality using an optimized dynamic gantry and couch motion trajectory which minimizes exposure to the organs at risk. Methods: Patient-specific anatomical information of head-and-neck and cranial cancer patients was used to quantify the geometric overlap between target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocentre as a function of gantry and couch angle. QUANTEC dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a Varian Truebeam linac using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm includes weighting factors which can be used to balance the implementation of absolute minimum values of overlap, with the clinical practicality of largescale couch motion and delivery time. Optimized trajectories were calculated for cranial DCA treatments and for head-and-neck VMAT treatments and compared to conventional DCA and VMAT treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicates a decrease in dose to the organs-at-risk between 4.64% and 6.82% (2.39 and 3.52 Gy) of the prescription dose per patient per organ at risk. Conclusion: Using simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.

  16. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  17. The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    PubMed Central

    Goldman, Aaron; Chen, HwuDauRw; Khan, Mohammad R.; Roesly, Heather; Hill, Kimberly A.; Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A.; Dvorak, Katerina

    2011-01-01

    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis. PMID:21887327

  18. Screening for cholesterol-lowering probiotic based on deoxycholic acid removal pathway and studying its functional mechanisms in vitro.

    PubMed

    Guo, Chun-Feng; Zhang, Lan-Wei; Han, Xue; Yi, Hua-Xi; Li, Jing-Yan; Tuo, Yan-Feng; Zhang, Ying-Chun; Du, Ming; Shan, Yu-Juan; Yang, Lin

    2012-10-01

    Elevated serum cholesterol in humans is generally a risk factor correlated with the development of coronary heart disease (CHD). Reducing deoxycholic acid (DCA) content in the intestine can reduce serum cholesterol levels, which reduce the incidence of CHD. A total of 150 strains of lactic acid bacteria and bifidobacteria were isolated from human fecal samples. The DCA removal ability of these strains was evaluated. Results showed that 9 strains displayed above 10% DCA removal rate. The probiotic potentials of the 9 strains were evaluated. The strain Lactobacillus casei F0822 was screened out due to the stronger adhesion to HT-29 cells and tolerance to bile and acid. DCA removal for this strain resulted from that the S-layer protein locating the cell surface bound DCA. The FTIR spectra showed that the carboxyl group in DCA was the principal group by which DCA was bound to the S-layer protein of L. casei F0822. These findings suggested that L. casei F0822 is a better candidate probiotic strain, which has the potential to reduce human serum cholesterol levels. PMID:22926345

  19. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing

    2014-05-01

    Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.

  20. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer

    PubMed Central

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Watts, Gerald F; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB). The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA), which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA), two microencapsulated formulations were prepared: PB-SA (control) and PB-DCA-SA (test) at a constant ratio (1:30 and 1:3:30, respectively). Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting microcapsule stability. Hence, PB-DCA-SA microcapsules have good rheological and compatibility characteristics and may be suitable for the oral delivery of PB in type 2 diabetes. PMID:25302020

  1. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Watts, Gerald F; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB). The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA), which has good permeation-enhancing properties, and to examine its effect on microcapsules' morphology, rheology, structural and surface characteristics, and excipients' chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors' laboratory. Using the polymer sodium alginate (SA), two microencapsulated formulations were prepared: PB-SA (control) and PB-DCA-SA (test) at a constant ratio (1:30 and 1:3:30, respectively). Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients' compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting microcapsule stability. Hence, PB-DCA-SA microcapsules have good rheological and compatibility characteristics and may be suitable for the oral delivery of PB in type 2 diabetes. PMID:25302020

  2. Role of Temperature and Pressure on the Multisensitive Multiferroic Dicyanamide Framework [TPrA][Mn(dca)3] with Perovskite-like Structure.

    PubMed

    Bermúdez-García, Juan M; Sánchez-Andújar, Manuel; Yáñez-Vilar, Susana; Castro-García, Socorro; Artiaga, Ramón; López-Beceiro, Jorge; Botana, Luis; Alegría, Ángel; Señarís-Rodríguez, María A

    2015-12-21

    A multistimuli response to temperature and pressure is found in the hybrid inorganic-organic perovskite-like [TPrA][Mn(dca)3] compound, which is related to a first-order structural phase transition near room temperature, Tt ≈ 330 K. This phase transition involves a transformation from room temperature polymorph I, with the noncentrosymmetric space group P4̅21c, to the high temperature polymorph II, with the centrosymmetric space group I4/mcm, and it implies ionic displacements, order-disorder phenomena, and a large and anisotropic thermal expansion (specially along the c-axis). As a consequence, [TPrA][Mn(dca)3] exhibits a dielectric anomaly, associated with the change from a cooperative to a noncooperative electric behavior (antiferroelectric (AFE)-paraelectric (PE) transition). The former implies an AFE distribution of electric dipoles in polymorph I, related to the described off-shift of the apolar TPrA cations and the order-disorder of the polar dca ligands mechanisms, that are different from those reported, up to now, for others perovskite-type hybrid compounds. Such cooperative electric order, below Tt ≈ 330 K, coexisting with long-range antiferromagnetic ordering below T = 2.1 K render the [TPrA][Mn(dca)3] a new type-I multiferroic material. In addition, the obtained experimental results reveal that this compound is also a multistimuli-responsive material, with a very large sensitivity toward temperature and applied external pressure, δTt/δP ≈ 24 K kbar(-1), even for small values of pressure (P < 2 kbar). Therefore, this material opens up a potential interest for future technological applications, such as temperature/pressure sensing. PMID:26652059

  3. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    PubMed

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  4. Directional coronary atherectomy (DCA)

    MedlinePlus Videos and Cool Tools

    ... with rotation of the catheter, the balloon can be deflated and re-inflated to cut the blockage ... uniform debulking. A device called a stent may be placed within the coronary artery to keep the ...

  5. Comparative genotoxicity of halogenated acetic acids found in drinking water.

    PubMed

    Giller, S; Le Curieux, F; Erb, F; Marzin, D

    1997-09-01

    Three short-term assays (SOS chromotest, Ames fluctuation test and newt micronucleus test) were performed to detect the genotoxic activity of organohalides, compounds likely to be found in chlorinated and/or ozonated drinking water: monochloro-, dichloro- and trichloroacetic acids and monobromo-, dibromo- and tribromoacetic acids. With the SOS chromotest, only three of the chemicals studied (dichloroacetic acid, dibromo- and tribromoacetic acids) were found to induce primary DNA damage in Escherichia coli PQ 37. In the Ames fluctuation test, all the compounds except monochloroacetic acid showed mutagenic activity in Salmonella typhimurium strain TA100. In these two in vitro tests, a good correlation between increasing number of substituents and decreasing mutagenicity was observed. Namely, the toxicity of brominated and chlorinated acetic acids decreased when the number of substituents increased. The newt micronucleus test detected a weak clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for trichloroacetic acid only.

  6. Nephroprotective effect of date fruit extract against dichloroacetic acid exposure in adult rats.

    PubMed

    El Arem, Amira; Thouri, Amira; Zekri, Mouna; Saafi, Emna Behija; Ghrairi, Fatma; Zakhama, Abdelfattah; Achour, Lotfi

    2014-03-01

    The aim of this study was to investigate the protective effects of aqueous date extract (ADE) on dichloroacetic acid (DCA)-induced nephrotoxicity. In vitro, total phenolic content estimated in the ADE were 417.71mg gallic acid equivalents/100g fresh weights (FW), while total flavonoid and tannins contents were 285.23 and 73.65mg catechin equivalents/100g FW, respectively. The ADE has strong scavenging activity. Ferulic, caffeic and p-coumaric acids are the major's compounds. Nephrotoxicity was induced in male Wistar rats by the administration of 0.5 and 2g/L DCA as drinking water. Some of these rats received also by gavage ADE (4mL/kg) before the administration of DCA. After two months of experiment, DCA administration caused elevated levels of renal MDA, significant depletion of GSH levels, altered the antioxidant enzyme activities and deteriorated the renal functions as assessed by the increased plasma urea, uric acid and creatinine levels compared to control rats. The treatment with the ADE significantly normalized the increased plasma levels of creatinine, urea and uric acid, reduced the elevated MDA levels, significantly normalized the antioxidant enzyme activities and GSH level and restored the altered kidney histology in rats treated with DCA. Therefore, it was speculated that ADE protects rats from kidney damage through its antioxidant capacity.

  7. Mechanism of deoxycholic acid stimulation of the rabbit colon.

    PubMed Central

    Shiff, S J; Soloway, R D; Snape, W J

    1982-01-01

    Previous studies showed that deoxycholic acid (DCA) stimulated migrating action potential complexes (MAPC) in the colon. The aim of this study was to clarify the mechanism of DCA-stimulated colonic motility. Myoelectrical and contractile activity were measured in New Zealand White rabbits from a loop constructed in the proximal colon. During the control period, slow waves were present at a frequency of 10.8 +/- 0.5 cycle/min and there were 1.5 +/- 0.5 MAPC/ h. After adding DCA (16 mM) to the loop the slow wave activity was unchanged. However, MAPC increased to 15.1 +/- 2.4 MAPC/h (P less than 0.001). MAPC activity was not stimulated in the colonic smooth muscle outside the loop. The intraluminal addition of procaine or tetrodotoxin to the colonic loop inhibited the DCA-stimulated increase in MAPC activity (0.2 +/- 0.2 MAPC/h) (P less than 0.005). Intravenous administration of atropine or phentolamine also inhibited MAPC activity that had been stimulated by DCA (P less than 0.005). Pretreatment with 6-hydroxydopamine also inhibited an increase in MAPC activity. Propranolol, trimethaphan camsylate, or hexamethonium had no effect on DCA stimulation of MAPC activity. Although the concentration of bile salt increased in the mesenteric venous outflow from the colonic loop, the intravenous administration of bile salt did not stimulate colonic MAPC activity. These studies suggest: (a) the action of DCA on smooth muscle activity is a local phenomenon, (b) the increase in MAPC activity is dependent on intact cholinergic and alpha adrenergic neurons, and (c) an increase in the concentration of bile salts in the serum is not associated with an increase in colonic MAPC activity. PMID:7076855

  8. Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in faeces.

    PubMed

    Keller, Sylvia; Jahreis, Gerhard

    2004-12-25

    A method for quantification of total faecal sterols and bile acids (BAs) in human stool by using gas chromatography-mass spectrometry-single ion monitoring (GC-MS-SIM) is described. Cholesterol, coprostanol, coprostanone, cholestanol, iso-lithocholic acid (iso-LCA), lithocholic acid (LCA), iso-deoxycholic acid (iso-DCA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), cholic acid (CA), and 12-oxo-deoxycholic acid (12-oxo-DCA) in faeces of 86 healthy subjects were determined. The sample preparation for sterol analysis requires hydrolysis and liquid extraction from matrix, but no derivatisation. The GC-flame ionisation detection (FID) and total ion current (TIC) in GC-MS were not sufficient for sterol and BA determination, whereas selectivity and specificity of the GC-MS-SIM ensured the analysis of sterols and BAs in faeces. PMID:15556534

  9. Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans.

    PubMed

    Wang, Yanwen; Jones, Peter J H; Woollett, Laura A; Buckley, Donna D; Yao, Lihang; Granholm, Norman A; Tolley, Elizabeth A; Heubi, James E

    2006-07-01

    Quantitative and qualitative differences in intralumenal bile acids may affect cholesterol absorption and metabolism. To test this hypothesis, 2 cross-over outpatient studies were conducted in adults with apo-A IV 1/1 or apo-E 3/3 genotypes. Study 1 included 11 subjects 24 to 37 years of age, taking 15 mg/kg/day chenodeoxycholic acid (CDCA) or no bile acid for 20 days while being fed a controlled diet. Study 2 included 9 adults 25 to 38 years of age, taking 15 mg/kg/day deoxycholic acid (DCA) or no bile acid, following the same experimental design and procedures as study 1. CDCA had no effect on plasma lipid concentrations, whereas DCA decreased (P < 0.05) plasma high-density lipoprotein (HDL)-cholesterol and tended to decrease (P = 0.15) low-density lipoprotein (LDL)-cholesterol. CDCA treatment enriched (P < 0.0001) bile with CDCA and increased cholesterol concentration in micelles, whereas meal-stimulated bile acid concentrations were decreased. DCA treatment enriched (P < 0.0001) bile with DCA and tended to increase intralumenal cholesterol solubilized in micelles (P = 0.06). No changes were found in cholesterol absorption, free cholesterol fractional synthetic rate (FSR), or 3-hydroxy-3 methylglutaryl (HMG) CoA reductase and LDL receptor messenger ribonucleic acid (mRNA) levels after CDCA treatment. DCA supplementation tended to decrease cholesterol absorption and reciprocally increase FSR and HMG CoA reductase and LDL receptor mRNA levels. Results of these 2 studies suggest that the solubilization of cholesterol in the intestinal micelles is not a rate-limiting step for its absorption.

  10. The metabolite 3,4,3',4'-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil.

    PubMed

    Xiao, Hongxia; Kuckelkorn, Jochen; Nüßer, Leonie Katharina; Floehr, Tilman; Hennig, Michael Patrick; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2016-05-01

    3,4,3',4'-tetrachloroazobenzene (TCAB) is not commercially manufactured but formed as an unwanted by-product in the manufacturing of 3,4-dichloroaniline (3,4-DCA) or metabolized from the degradation of chloranilide herbicides, like propanil. While a considerable amount of research has been done concerning the toxicological and ecotoxicological effects of propanil and 3,4-DCA, limited information is available on TCAB. Our study examined the toxicity of TCAB in comparison to its parent compounds propanil and 3,4-DCA, using a battery of bioassays including in vitro with aryl hydrocarbon receptor (AhR) mediated activity by the 7-ethoxyresorufin-O-deethylase (EROD) assay and micro-EROD, endocrine-disrupting activity with chemically activated luciferase gene expression (CALUX) as well as in vivo with fish embryo toxicity (FET) assays with Danio rerio. Moreover, the quantitative structure activity response (QSAR) concepts were applied to simulate the binding affinity of TCAB to certain human receptors. It was shown that TCAB has a strong binding affinity to the AhR in EROD and micro-EROD induction assay, with the toxic equivalency factor (TEF) of 8.7×10(-4) and 1.2×10(-5), respectively. TCAB presented to be a weak endocrine disrupting compound with a value of estradiol equivalence factor (EEF) of 6.4×10(-9) and dihydrotestosterone equivalency factor (DEF) of 1.1×10(-10). No acute lethal effects of TCAB were discovered in FET test after 96h of exposure. Major sub-lethal effects detected were heart oedema, yolk malformation, as well as absence of blood flow and tail deformation. QSAR modelling suggested an elevated risk to environment, particularly with respect to binding to the AhR. An adverse effect potentially triggering ERβ, mineralocorticoid, glucocorticoid and progesterone receptor activities might be expected. Altogether, the results obtained suggest that TCAB exerts a higher toxicity than both propanil and 3,4-DCA. This should be considered when assessing the

  11. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study

    PubMed Central

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Al-Sallami, Hesham S; Fang, Zhongxiang; Mukkur, Trilochan; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    Gliclazide (G) is an antidiabetic drug commonly used in type 2 diabetes. It has extrapancreatic hypoglycemic effects, which makes it a good candidate in type 1 diabetes (T1D). In previous studies, we have shown that a gliclazide-bile acid mixture exerted a hypoglycemic effect in a rat model of T1D. We have also shown that a gliclazide-deoxycholic acid (G-DCA) mixture resulted in better G permeation in vivo, but did not produce a hypoglycemic effect. In this study, we aimed to develop a novel microencapsulated formulation of G-DCA with uniform structure, which has the potential to enhance G pharmacokinetic and pharmacodynamic effects in our rat model of T1D. We also aimed to examine the effect that DCA will have when formulated with our new G microcapsules, in terms of morphology, structure, and excipients’ compatibility. Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) at a ratio of 1:30, and G-DCA-SA (test) at a ratio of 1:3:30. Complete characterization of microcapsules was carried out. The new G-DCA-SA formulation was further optimized by the addition of DCA, exhibiting pseudoplastic-thixotropic rheological characteristics. The size of microcapsules remained similar after DCA addition, and these microcapsules showed no chemical interactions between the excipients. This was supported further by the spectral and microscopy studies, suggesting microcapsule stability. The new microencapsulated formulation has good structural properties and may be useful for the oral delivery of G in T1D. PMID:25114507

  12. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Al-Sallami, Hesham S; Fang, Zhongxiang; Mukkur, Trilochan; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    Gliclazide (G) is an antidiabetic drug commonly used in type 2 diabetes. It has extrapancreatic hypoglycemic effects, which makes it a good candidate in type 1 diabetes (T1D). In previous studies, we have shown that a gliclazide-bile acid mixture exerted a hypoglycemic effect in a rat model of T1D. We have also shown that a gliclazide-deoxycholic acid (G-DCA) mixture resulted in better G permeation in vivo, but did not produce a hypoglycemic effect. In this study, we aimed to develop a novel microencapsulated formulation of G-DCA with uniform structure, which has the potential to enhance G pharmacokinetic and pharmacodynamic effects in our rat model of T1D. We also aimed to examine the effect that DCA will have when formulated with our new G microcapsules, in terms of morphology, structure, and excipients' compatibility. Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) at a ratio of 1:30, and G-DCA-SA (test) at a ratio of 1:3:30. Complete characterization of microcapsules was carried out. The new G-DCA-SA formulation was further optimized by the addition of DCA, exhibiting pseudoplastic-thixotropic rheological characteristics. The size of microcapsules remained similar after DCA addition, and these microcapsules showed no chemical interactions between the excipients. This was supported further by the spectral and microscopy studies, suggesting microcapsule stability. The new microencapsulated formulation has good structural properties and may be useful for the oral delivery of G in T1D. PMID:25114507

  13. Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice.

    PubMed

    Zhang, Youcai; Klaassen, Curtis D

    2010-11-01

    An improved ultra performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method was established for the simultaneous analysis of various bile acids (BA) and applied to investigate liver BA content in C57BL/6 mice fed 1% cholic acid (CA), 0.3% deoxycholic acid (DCA), 0.3% chenodeoxycholic acid (CDCA), 0.3% lithocholic acid (LCA), 3% ursodeoxycholic acid (UDCA), or 2% cholestyramine (resin). Results indicate that mice have a remarkable ability to maintain liver BA concentrations. The BA profiles in mouse livers were similar between CA and DCA feedings, as well as between CDCA and LCA feedings. The mRNA expression of Cytochrome P450 7a1 (Cyp7a1) was suppressed by all BA feedings, whereas Cyp7b1 was suppressed only by CA and UDCA feedings. Gender differences in liver BA composition were observed after feeding CA, DCA, CDCA, and LCA, but they were not prominent after feeding UDCA. Sulfation of CA and CDCA was found at the 7-OH position, and it was increased by feeding CA or CDCA more in male than female mice. In contrast, sulfation of LCA and taurolithocholic acid (TLCA) was female-predominant, and it was increased by feeding UDCA and LCA. In summary, the present systematic study on BA metabolism in mice will aid in interpreting BA-mediated gene regulation and hepatotoxicity.

  14. UPTAKE AND ELIMINATION OF DICHLOROACETIC ACID BY RAINBOW TROUT

    EPA Science Inventory

    Dichloroacetic acid (DCA) is a by-product of drinking water chlorination and is a hepatocarcinogen in rodents. Preliminary results of a chronic testing effort with Japanese medaka suggest the possibility of similar effects is fish. Adult rainbow trout were cannulated from the dor...

  15. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  16. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHOLORACETC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid COCA) is a major by-product ofwater disinfection by cWorination. Several
    studies have shown that DCA induces liver tumors in rodents when administered in drinkmg wate...

  17. A MULTISTAGE BIOLOGICALLY BASED MODEL FOR MOUSE LIVER TUMORS RESULTING FROM EXPOSURE TO DICHLOROACETIC ACID

    EPA Science Inventory

    Dichloroacetic Acid (DCA) is a major byproduct of the chlorine disinfection of humic acid containing drinking water sources. It is a hepatocarcinogen in mice and rats at exposure concentrations in drinking water that are at least 4 orders of magnitude above the concentrations in ...

  18. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    PubMed Central

    Couto, Ricardo; Neves, Luísa; Simões, Pedro; Coelhoso, Isabel

    2015-01-01

    In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids. PMID:25594165

  19. Elevated Deoxycholic Acid and Idiopathic Recurrent Acute Pancreatitis: A Case Report With 48 Months of Follow-up

    PubMed Central

    2014-01-01

    Recurrent pancreatitis is a potentially life-threatening condition with a well-established differential diagnosis. In a significant number of cases, no explanation exists. This case report documents one patient with a clear pattern of recurrent acute pancreatitis and no identifiable cause despite great effort. After 7 years of recurrent symptoms, she was found to have marked elevation of fecal deoxycholic acid (DCA), a secondary bile acid used to precipitate pancreatitis in animal models. This report documents cessation of symptoms/hospitalizations with normalization of her fecal DCA levels. This secondary bile acid is easily measured in stool. Needed now is an observational study of fecal DCA levels in patients with recurrent acute pancreatitis. PMID:24891995

  20. Summary of Salient Findings of "Natural Attenuation of the Lead Scavengers 1,2-Dibromoethane (EDB) and 1,2-Dichloroethane (1,2-DCA) at Motor Fuel Release Sites and Implications for Risk Management"

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987 (See Figure 1). To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. These compounds r...

  1. Natural Attenuation of the Lead Scavengers 1,2-Dibromoethane (EDB) and 1.2-Dichloroethane (1,2-DCA) at Motor Fuel Release Sites and Implications for Risk Management

    EPA Science Inventory

    The lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were included along with lead in conventional leaded gasoline used for automobiles in the US prior to 1988. Old spills of leaded gasoline from underground storage tank systems (USTs) at gasoline service...

  2. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  3. Individual bile acids have differential effects on bile acid signaling in mice

    SciTech Connect

    Song, Peizhen Rockwell, Cheryl E. Cui, Julia Yue Klaassen, Curtis D.

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  4. A 2-year dose-response study of lesion sequences during hepatocellular carcinogenesis in the male B6C3F(1) mouse given the drinking water chemical dichloroacetic acid.

    PubMed Central

    Carter, Julia H; Carter, Harry W; Deddens, James A; Hurst, Bernadette M; George, Michael H; DeAngelo, Anthony B

    2003-01-01

    Dichloroacetic acid (DCA) is carcinogenic to the B6C3F(1) mouse and the F344 rat. Given the carcinogenic potential of DCA in rodent liver and the known concentrations of this compound in drinking water, reliable biologically based models to reduce the uncertainty of risk assessment for human exposure to DCA are needed. Development of such models requires identification and quantification of premalignant hepatic lesions, identification of the doses at which these lesions occur, and determination of the likelihood that these lesions will progress to cancer. In this study we determined the dose response of histopathologic changes occurring in the livers of mice exposed to DCA (0.05-3.5 g/L) for 26-100 weeks. Lesions were classified as foci of cellular alteration smaller than one liver lobule (altered hepatic foci; AHF), foci of cellular alteration larger than one liver lobule (large foci of cellular alteration; LFCA), adenomas (ADs), or carcinomas (CAs). Histopathologic analysis of 598 premalignant lesions revealed that (a)) each lesion class had a predominant phenotype; (b)) AHF, LFCA, and AD demonstrated neoplastic progression with time; and (c)) independent of DCA dose and length of exposure effects, some toxic/adaptive changes in non-involved liver were related to this neoplastic progression. A lesion sequence for carcinogenesis in male B6C3F(1) mouse liver has been proposed that will enable development of a biologically based mathematical model for DCA. Because all classes of premalignant lesions and CAs were found at both lower and higher doses, these data are consistent with the conclusion that nongenotoxic mechanisms, such as negative selection, are relevant to DCA carcinogenesis at lower doses where DCA genotoxicity has not been observed. PMID:12515679

  5. Electrodeposition of lustrous tin-lead alloys in acidic electrolytes with organic additives

    SciTech Connect

    Selivanova, G.A.; Maksimenko, S.A.; Tyutina, K.M.

    1994-09-01

    Galvanic coatings based on tin-lead alloys are mainly used in radio-engineering and electronic industries to prepare certain products, including printed-circuit boards, for soldering. To improve ecological safety of the proces, the authors studied a new electrolyte for depositing a tin-lead alloy based on nontoxic and abundant perchloric acid, as well as electrolytes based on mono- and trichloroacetic acids.

  6. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  7. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.

    PubMed

    Sathesh-Prabu, Chandran; Lee, Sung Kuk

    2015-09-23

    Long-chain α,ω-dicarboxylic acids (LDCAs, ≥ C12) are widely used as a raw material for preparing various commodities and polymers. In this study, a CYP450-monooxygenase-mediated ω-oxidation pathway system with high ω-regioselectivity was heterologously expressed in Escherichia coli to produce DCAs from fatty acids. The resulting engineered E. coli produced a maximum of 41 mg/L of C12 DCA and 163 mg/L of C14 DCA from fatty acids (1 g/L), following 20 h of whole cell biotransformation. Addition of a heme precursor and the hydroxyl radical scavenger, thiourea, increased product concentration (159 mg/L of C12 DCA and 410 mg/L of C14 DCA) in a shorter culture duration than that of the corresponding controls. DCAs of various chain lengths were synthesized from coconut oil hydrolysate using the engineered E. coli. This novel synthetic biocatalytic system could be applied to produce high value DCAs in a cost-effective manner from renewable plant oils. PMID:26359801

  8. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling.

    PubMed

    Dossa, Avafia Y; Escobar, Oswaldo; Golden, Jamie; Frey, Mark R; Ford, Henri R; Gayer, Christopher P

    2016-01-15

    Bile acids (BAs) are synthesized in the liver and secreted into the intestine. In the lumen, enteric bacteria metabolize BAs from conjugated, primary forms into more toxic unconjugated, secondary metabolites. Secondary BAs can be injurious to the intestine and may contribute to disease. The epidermal growth factor receptor (EGFR) and the nuclear farnesoid X receptor (FXR) are known to interact with BAs. In this study we examined the effects of BAs on intestinal epithelial cell proliferation and investigated the possible roles for EGFR and FXR in these effects. We report that taurine-conjugated cholic acid (TCA) induced proliferation, while its unconjugated secondary counterpart deoxycholic acid (DCA) inhibited proliferation. TCA stimulated phosphorylation of Src, EGFR, and ERK 1/2. Pharmacological blockade of any of these pathways or genetic ablation of EGFR abrogated TCA-stimulated proliferation. Interestingly, Src or EGFR inhibitors eliminated TCA-induced phosphorylation of both molecules, suggesting that their activation is interdependent. In contrast to TCA, DCA exposure diminished EGFR phosphorylation, and pharmacological or siRNA blockade of FXR abolished DCA-induced inhibition of proliferation. Taken together, these results suggest that TCA induces intestinal cell proliferation via Src, EGFR, and ERK activation. In contrast, DCA inhibits proliferation via an FXR-dependent mechanism that may include downstream inactivation of the EGFR/Src/ERK pathway. Since elevated secondary BA levels are the result of specific bacterial modification, this may provide a mechanism through which an altered microbiota contributes to normal or abnormal intestinal epithelial cell proliferation.

  9. Individual bile acids have differential effects on bile acid signaling in mice.

    PubMed

    Song, Peizhen; Rockwell, Cheryl E; Cui, Julia Yue; Klaassen, Curtis D

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  10. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  11. ACTIVATION AND APOPTOSIS OF CD4+ T CELLS FOLLOWING IN VIVO EXPOSURE TO TWO COMMON ENVIRONMENTAL TOXICANTS, TRICHLOROACETALDEHYDE HYDRATE AND TRICHLOROACETIC ACID. (R829417E02)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells.

    PubMed

    Li, Shu; Chen, Xin; Zhou, Lu; Wang, Bang-Mao

    2015-11-01

    The farnesoid X receptor (FXR) signaling pathway is known to be involved in the metabolism of bile acid, glucose and lipid. In the present study, we demonstrated that 400 µmol/l deoxycholic acid (DCA) stimulation promotes the proliferation of normal human gastric epithelial cells (GES-1). In addition, DCA activated FXR and increased the expression of intestinal metaplasia genes, including caudal-related homeobox transcription factor 2 (Cdx2) and mucin 2 (MUC2). The treatment of FXR agonist GW4064/antagonist guggulsterone (Gug.) significantly increased/decreased the expression levels of FXR, Cdx2 and MUC2 protein in DCA-induced GES-1 cells. GW4064/Gug. also enhanced/reduced the nuclear factor-κB (NF-κB) activity and binding of the Cdx2 promoter region and NF-κB, the most common subunit p50 protein. Taken together, the results indicated that DCA is capable of modulating the expression of Cdx2 and the downstream MUC2 via the nuclear receptor FXR-NF-κB activity in normal gastric epithelial cells. FXR signaling pathway may therefore be involved in the intestinal metaplasia of human gastric mucosa.

  13. Ca2+- and PKC-dependent stimulation of PGE2 synthesis by deoxycholic acid in human colonic fibroblasts.

    PubMed

    Zhu, Yingting; Hua, Ping; Rafiq, Shazia; Waffner, Eric J; Duffey, Michael E; Lance, Peter

    2002-09-01

    We investigated prostanoid biogenesis by human colonic fibroblasts (CCD-18Co cells and nine primary fibroblast cultures) exposed to a primary (cholic, CA) or a secondary (deoxycholic, DCA) bile acid. Basal PGE2 levels in CCD-18Co cultures and fibroblast strains initiated from normal and adenocarcinomatous colon, respectively, were 1.7 +/- 0.3, 4.0 +/- 2.0, and 15.0 +/- 4.8 ng/mg protein. Peak levels 24 h after exposure to DCA (300 microM) rose, respectively, seven-, six- and sevenfold, but CA elicited no such responses. Increases in PGE2 synthesis were preceded by sequential increases in PGH synthase-2 mRNA and protein expression and were fully prevented by a nonselective (indomethacin) or a selective (celecoxib) nonsteroidal anti-inflammatory drug. DCA, but not CA, caused abrupt, transient increases in fibroblast intracellular Ca2+ concentration ([Ca2+]i) approximately 1 min after exposure. Increased [Ca2+]i was required for DCA-mediated induction of PGE2 synthesis, and protein kinase C was a further essential component of this signaling pathway. Colonic fibroblasts may be a major target for prostanoid biogenesis induced by fecal bile acids and, potentially, other noxious actions of these agents. PMID:12181161

  14. ReaxFF molecular dynamics simulations of intermediate species in dicyanamide anion and nitric acid hypergolic combustion

    NASA Astrophysics Data System (ADS)

    Weismiller, Michael R.; Junkermeier, Chad E.; Russo, Michael F., Jr.; Salazar, Michael R.; Bedrov, Dmitry; van Duin, Adri C. T.

    2015-10-01

    Ionic liquids based on the dicyanamide anion (DCA) are of interest as replacements for current hypergolic fuels, which are highly toxic. To better understand the reaction dynamics of these ionic liquid fuels, this study reports the results of molecular dynamics simulations performed for two predicted intermediate compounds in DCA-based ionic liquids/nitric acid (HNO3) combustion, i.e. protonated DCA (DCAH) and nitro-dicyanamide-carbonyl (NDC). Calculations were performed using a ReaxFF reactive force field. Single component simulations show that neat NDC undergo exothermic decomposition and ignition. Simulations with HNO3 were performed at both a low (0.25 g ml-1) and high (1.00 g ml-1) densities, to investigate the reaction in a dense vapor and liquid phase, respectively. Both DCAH and NDC react hypergolically with HNO3, and increased density led to shorter times for the onset of thermal runaway. Contrary to a proposed mechanism for DCA combustion, neither DCAH nor NDC are converted to 1,5-Dinitrobiuret (DNB) before thermal runaway. Details of reaction pathways for these processes are discussed.

  15. Dose-Response of Five Bile Acids on Serum and Liver Bile Acid Concentrations and Hepatotoxicty in Mice

    PubMed Central

    Song, Peizhen; Zhang, Youcai; Klaassen, Curtis D.

    2011-01-01

    Feeding bile acids (BAs) to rodents has been used to study BA signaling and toxicity in vivo. However, little is known about the effect of feeding BAs on the concentrations of BAs in serum and liver as well as the dose of the fed BAs that causes liver toxicity. The present study was designed to investigate the relative hepatotoxicity of individual BAs by feeding mice cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), or ursodeoxycholic acid (UDCA) at concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, or 3% in their diet for 7 days. The data demonstrate that (1) the ability of the fed BAs to produce hepatotoxicity is UDCADCADCA at 0.1%, and LCA at 0.03%; (3) BA feeding results in a dose-dependent increase in the total serum BA concentrations but had little effect on liver total BA concentrations; (4) hepatotoxicity of the fed BAs does not simply depend on the concentration or hydrophobicity of total BAs in the liver; and (5) liver BA-conjugation enzymes are saturated by feeding UDCA at concentrations higher than 0.3%. In conclusion, the findings of the present study provide guidance for choosing the feeding concentrations of BAs in mice and will aid in interpreting BA hepatotoxicity as well as BA-mediated gene regulation. PMID:21747115

  16. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method.

  17. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  18. Effects of bile acids and the bile acid receptor FXR agonist on the respiratory rhythm in the in vitro brainstem medulla slice of neonatal Sprague-Dawley rats.

    PubMed

    Zhao, Cong; Wang, Xianbao; Cong, Yuling; Deng, Yi; Xu, Yijun; Chen, Aihua; Yin, Yanru

    2014-01-01

    Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR) plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR) and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA) was recorded from hypoglossal nerves during the perfusion of modified Krebs solution. Group 1-6 was each given GW4064 and five bile acids of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), cholic acid (CA) as well as ursodeoxycholic acid (UDCA) at different concentrations to identify their specific functions on respiratory rhythm modulations. Group 7 was applied to receive FXR blocker Z-guggulsterone and Z-guggulsterone with the above bile acids separately to explore the role of FXR in the respiratory rhythm modulation. Group 8 was given dimethyl sulfoxide (DMSO) as controls. Apart from UDCA, CDCA, DCA LCA and CA all exerted effects on RRDA recorded from hypoglossal nerves in a concentration-dependent manner. Respiratory cycle (RC), Inspiratory time (TI), Expiratory Time (TE) and Integral Amplitude (IA) were influenced and such effects could be reversed by Z-guggulsterone. FXR may contribute to the effects on the modulation of respiratory rhythm exerted by bile acids.

  19. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    EPA Science Inventory

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  20. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  1. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth. PMID:26037611

  2. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth.

  3. Transcription of exogenous and endogenous deoxyribonucleic acid templates in cold-shocked Bacillus subtilis.

    PubMed Central

    Kuhl, S J; Brown, L R

    1980-01-01

    Ribonucleic acid (RNA) synthesis was examined in cold-shocked Bacillus subtilis cells. The cells were grown to mid-log stage, harvested, and cold shocked. RNA synthesis was monitored by the incorporation of [3H]uridine triphosphate or [alpha 32P]adenosine triphosphate into trichloroacetic acid-precipitable material in the presence of all four nucleoside triphosphates. The inhibition of RNA synthesis in cold-shocked cells by lipiarmycin, ethidium bromide, rifampin. or streptolydigin was analyzed using mutant or wild-type cells. Also examined were the effects of temperature, salt concentration, and the addition of polyamines or highly phosphorylated nucleotides. In ultraviolet-irradiated and cold-shocked cells, RNA wynthesis decreased to low levels. The addition of exogenous phi 29 or TSP-1 template to these cells caused a 13- to 20-fold increase in RNA synthesis, as monitored by trichloroacetic acid-precipitable counts. RNA synthesized in the presence of phi 29 deoxyribonucleic acid (DNA) hybridizes mainly to EcoRI fragments A and C of phi 29 DBA, These two fragments direct transcription by purified RNA polymerase in vitro and hybridize to early phi 29 DNA produced in vivo. Our results with TSP-1 DNA in this system indicated that the RNA produced hybridizes to the same fragments as early RNA produced in vivo. Plasmic pUB110 DNA was not transcribed in this system. Images PMID:6157674

  4. EFFECT OF TRICHLOROETHYLENE AND ITS METABOLITES, DICHLOROACETIC ACID AND TRICHLOROACETIC ACID, ON THE METHYLATION AND EXPRESSION OF C-JUN AND C-MYC PROTOONCOGENES IN MOUSE LIVER: PREVENTION BY METHIONINE. (R825384)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a "dose-response" model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR "dose-dependently" increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum.

  6. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    PubMed

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.

  7. Survey of several methods deproteinizing human plasma before and within the chloroformate-mediated treatment of amino/carboxylic acids quantitated by gas chromatography.

    PubMed

    Hušek, Petr; Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr

    2012-01-01

    Trichloroacetic acid, perchloric acid, phosphotungstic acid, acetonitrile, methanol and some other organic solvents were evaluated for their ability to provide protein and lipid-free plasma supernatants. The residual proteins, total cholesterol and triacylglycerols were assayed in the supernatant on a Beckman Analyzer instrument. The free cholesterol and the neutral lipids were further analyzed by means of high-temperature GC analysis. The conditions for the deproteinizing step were optimized for minimal lipoprotein disruption. A substantial difference regarding contamination by the lipids was found if the plasma supernatant or the whole serum were treated with an alkyl chloroformate reagent. Three plasma sulfur amino acids and the aromatic ones were chosen as model compounds to evaluate compatibility of the precipitation methods with a subsequent methyl chloroformate-mediated derivatization and GC-MS analysis. The results of the total homocysteine assay matched well with that obtained using a commercial immunoassay. Precipitation with trichloroacetic acid has proven to be a method of choice for the analysis of the acido-basic analytes by GC-MS via chloroformates.

  8. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  9. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12. PMID:26669968

  10. Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples

    PubMed Central

    Thomas, L; Veysey, M; French, G; Hylemon, P; Murphy, G; Dowling, R

    2001-01-01

    BACKGROUND—Deoxycholic acid (DCA), implicated in the pathogenesis of gall stones and colorectal cancer, is mainly formed by bacterial deconjugation (cholylglycine hydrolase (CGH)) and 7α-dehydroxylation (7α-dehydroxylase (7α-DH)) of conjugated cholic acid (CA) in the caecum/proximal colon. Despite this, most previous studies of CGH and 7α-DH have been in faeces rather than in caecal contents. In bacteria, CA increases 7α-DH activity by substrate-enzyme induction but little is known about CA concentrations or CA/7α-DH induction in the human colon.
AIMS AND METHODS—Therefore, in fresh "faeces", and in caecal aspirates obtained during colonoscopy from 20 patients, we: (i) compared the activities of CGH and 7α-DH, (ii) measured 7α-DH in patients with "low" and "high" percentages of DCA in fasting serum (less than and greater than the median), (iii) studied CA concentrations in the right and left halves of the colon, and examined the relationships between (iv) 7α-DH activity and CA concentration in caecal samples (evidence of substrate-enzyme induction), and (v) 7α-DH and per cent DCA in serum.
RESULTS—Although mean CGH activity in the proximal colon (18.3 (SEM 4.40) ×10−2 U/mg protein) was comparable with that in "faeces" (16.0 (4.10) ×10− 2 U/mg protein) , mean 7α-DH in the caecum (8.54 (1.08) ×10-4 U/mg protein) was higher (p<0.05) than that in the left colon (5.72 (0.85) ×10-4 U/mg protein). At both sites, 7α-DH was significantly greater in the "high" than in the "low" serum DCA subgroups. CA concentrations in the right colon (0.94 (0.08) µmol/ml) were higher than those in the left (0.09 (0.03) µmol/ml; p<0.001) while in the caecum (but not in the faeces) there was a weak (r=0.58) but significant (p<0.005) linear relationship between 7α-DH and CA concentration. At both sites, 7α-DH was linearly related (p<0.005) to per cent DCA in serum.
INTERPRETATION/SUMMARY—These results: (i) confirm that there are marked regional

  11. A potent tumoricidal co-drug ‘Bet-CA' - an ester derivative of betulinic acid and dichloroacetate selectively and synergistically kills cancer cells

    PubMed Central

    Saha, Suchandrima; Ghosh, Monisankar; Dutta, Samir Kumar

    2015-01-01

    Selective targeting of cancer cells employing multiple combinations as co-drug holds promise for new generation therapeutics. Betulinic acid (BA), a plant secondary metabolite kills cancer cells and Dichloroacetate (DCA) is capable of reversing the Warburg phenotype by inhibiting pyruvate dehydrogenase kinase (PDK). Here, we report synthesis, characterization and tumoricidal potential of a co-drug Bet-CA, where a DCA molecule has been appended on C-3 hydroxyl group of BA to generate an ester derivative for increased solubility and subsequent cleavage by internal esterase(s) to release one unit each of BA and DCA. In vitro studies revealed pronounced synergistic cytotoxicity of Bet-CA against a broad spectrum of cancer cells and it selectively killed them when co-cultured with human fibroblasts. Bet-CA treatment increased reactive oxygen species (ROS) production, significantly altered mitochondrial membrane potential gradient (ΔΨm); followed by the release of cytochrome c (Cyt c) which prompted cells to undergo mitochondria mediated apoptosis. In vivo experimentation expectedly exhibited tumor inhibitory potential of Bet-CA and clinically achievable doses did not produce any apparent toxicity. Taken together, results suggestively raise an important corollary hypothesis stating that Bet-CA selectively and synergistically combats cancer without producing toxic manifestations and emerges to be the prospect for the new generation therapeutics. PMID:25585916

  12. Detection of methylglyoxal as a degradation product of DNA and nucleic acid components treated with strong acid.

    PubMed

    Chaplen, F W; Fahl, W E; Cameron, D C

    1996-05-01

    The 1,2-diaminobenzene derivation assay for methylglyoxal in biological systems involves the use of perchloric acid, both as a deproteinizing agent and to prevent the spontaneous formation of methylglyoxal from glycolytic pathway intermediates. However, while using a modification of the standard literature assay to measure methylglyoxal in Chinese hamster ovary cells, we found that oxidation of nucleic acids and related compounds by perchloric or trichloroacetic acid results in the formation of methylglyoxal. Compounds containing 2-deoxyribose gave higher levels of methylglyoxal than those containing ribose; purine nucleotides and deoxynucleotides gave more methylglyoxal than did the pyrimidines. Nucleic acids were the most susceptible to degradation, with 12-fold more methylglyoxal being formed from DNA than RNA. Oxidation of nucleic acids increased with higher temperatures and with decreasing nucleic acid fragment size. Another product of nucleic acid oxidation was 2,3-butanedione, the 1,2-diaminobenzene derivative of which is sometimes used as an internal standard during methylglyoxal measurement. Unless accounted for during the assay procedure, the generation of methylglyoxal and 2,3-butanedione due to the oxidation of nucleic acids may lead to substantial errors in the determination of methylglyoxal concentrations in biological systems.

  13. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure.

    PubMed

    Yang, Weili; Pollard, Mike; Li-Beisson, Yonghua; Ohlrogge, John

    2016-10-01

    Cutin is an extracellular lipid polymer that contributes to protective cuticle barrier functions against biotic and abiotic stresses in land plants. Glycerol has been reported as a component of cutin, contributing up to 14% by weight of total released monomers. Previous studies using partial hydrolysis of cuticle-enriched preparations established the presence of oligomers with glycerol-aliphatic ester links. Furthermore, glycerol-3-phosphate 2-O-acyltransferases (sn-2-GPATs) are essential for cutin biosynthesis. However, precise roles of glycerol in cutin assembly and structure remain uncertain. Here, a stable isotope-dilution assay was developed for the quantitative analysis of glycerol by GC/MS of triacetin with simultaneous determination of aliphatic monomers. To provide clues about the role of glycerol in dicarboxylic acid (DCA)-rich cutins, this methodology was applied to compare wild-type (WT) Arabidopsis cutin with a series of mutants that are defective in cutin synthesis. The molar ratio of glycerol to total DCAs in WT cutins was 2:1. Even when allowing for a small additional contribution from hydroxy fatty acids, this is a substantially higher glycerol to aliphatic monomer ratio than previously reported for any cutin. Glycerol content was strongly reduced in both stem and leaf cutin from all Arabidopsis mutants analyzed (gpat4/gpat8, att1-2 and lacs2-3). In addition, the molar reduction of glycerol was proportional to the molar reduction of total DCAs. These results suggest "glycerol-DCA-glycerol" may be the dominant motif in DCA-rich cutins. The ramifications and caveats for this hypothesis are presented. PMID:27211345

  14. Taurocholic acid metabolism by gut microbes and colon cancer.

    PubMed

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  15. Activation of the Human Epithelial Sodium Channel (ENaC) by Bile Acids Involves the Degenerin Site.

    PubMed

    Ilyaskin, Alexandr V; Diakov, Alexei; Korbmacher, Christoph; Haerteis, Silke

    2016-09-16

    The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin ion channel family, which also includes the bile acid-sensitive ion channel (BASIC). So far little is known about the effects of bile acids on ENaC function. ENaC is probably a heterotrimer consisting of three well characterized subunits (αβγ). In humans, but not in mice and rats, an additional δ-subunit exists. The aim of this study was to investigate the effects of chenodeoxycholic, cholic, and deoxycholic acid in unconjugated (CDCA, CA, and DCA) and tauro-conjugated (t-CDCA, t-CA, t-DCA) form on human ENaC in its αβγ- and δβγ-configuration. We demonstrated that tauro-conjugated bile acids significantly stimulate ENaC in the αβγ- and in the δβγ-configuration. In contrast, non-conjugated bile acids have a robust stimulatory effect only on δβγENaC. Bile acids stimulate ENaC-mediated currents by increasing the open probability of active channels without recruiting additional near-silent channels known to be activated by proteases. Stimulation of ENaC activity by bile acids is accompanied by a significant reduction of the single-channel current amplitude, indicating an interaction of bile acids with a region close to the channel pore. Analysis of the known ASIC1 (acid-sensing ion channel) crystal structure suggested that bile acids may bind to the pore region at the degenerin site of ENaC. Substitution of a single amino acid residue within the degenerin region of βENaC (N521C or N521A) significantly reduced the stimulatory effect of bile acids on ENaC, suggesting that this site is critical for the functional interaction of bile acids with the channel. PMID:27489102

  16. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    PubMed

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  17. Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis.

    PubMed

    Bhowmik, Shiva; Chiu, Hsien-Po; Jones, David H; Chiu, Hsiu-Ju; Miller, Mitchell D; Xu, Qingping; Farr, Carol L; Ridlon, Jason M; Wells, James E; Elsliger, Marc-André; Wilson, Ian A; Hylemon, Phillip B; Lesley, Scott A

    2016-03-01

    Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway. PMID:26650892

  18. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  19. Simulation of the current distribution in lead-acid batteries to investigate the dynamic charge acceptance in flooded SLI batteries

    NASA Astrophysics Data System (ADS)

    Kowal, Julia; Schulte, Dominik; Sauer, Dirk Uwe; Karden, Eckhard

    Measurements show that the dynamic charge acceptance (DCA) of flooded SLI lead-acid batteries during micro-cycling in conventional and micro-hybrid vehicles is strongly dependent on the short-term history, such as previous charge or discharge, current rate, lowest state of charge in the last 24 h and more. Factors of 10 have been reported. Inhomogeneous current distribution, especially as a result of acid stratification, has been suggested to explain the DCA variability. This hypothesis was investigated by simulation of a two-dimensional macrohomogeneous model. It provides a spatial resolution of three elements in horizontal direction in each electrode and three elements in vertical direction. For an existing set of parameters, different current profiles were analyzed with regard to the current distribution during charging and discharging. In these simulations, a strong impact of the short-term history on current, charge and acid density distribution was found as well as a strong influence of micro-cycles on both charge distribution and acid stratification.

  20. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  1. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    PubMed

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively.

  2. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    PubMed

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. PMID:26188195

  3. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment.

    PubMed Central

    Clewell, H J; Gentry, P R; Covington, T R; Gearhart, J M

    2000-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that provides a comprehensive description of the kinetics of trichloroethylene (TCE) and its metabolites, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA), in the mouse, rat, and human for both oral and inhalation exposure. The model includes descriptions of the three principal target tissues for cancer identified in animal bioassays: liver, lung, and kidney. Cancer dose metrics provided in the model include the area under the concentration curve (AUC) for TCA and DCA in the plasma, the peak concentration and AUC for chloral in the tracheobronchial region of the lung, and the production of a thioacetylating intermediate from dichlorovinylcysteine in the kidney. Additional dose metrics provided for noncancer risk assessment include the peak concentrations and AUCs for TCE and TCOH in the blood, as well as the total metabolism of TCE divided by the body weight. Sensitivity and uncertainty analyses were performed on the model to evaluate its suitability for use in a pharmacokinetic risk assessment for TCE. Model predictions of TCE, TCA, DCA, and TCOH concentrations in rodents and humans are in good agreement with a variety of experimental data, suggesting that the model should provide a useful basis for evaluating cross-species differences in pharmacokinetics for these chemicals. In the case of the lung and kidney target tissues, however, only limited data are available for establishing cross-species pharmacokinetics. As a result, PBPK model calculations of target tissue dose for lung and kidney should be used with caution. PMID:10807559

  4. Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism.

    PubMed

    Zhang, Youcai; Csanaky, Iván L; Selwyn, Felcy Pavithra; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2013-08-01

    Organic anion transporting polypeptides (human: OATPs; rodent: Oatps) were thought to have important functions in bile acid (BA) transport. Oatp1a1, 1a4, and 1b2 are the three major Oatp1 family members in rodent liver. Our previous studies have characterized the BA homeostasis in Oatp1a1-null and Oatp1b2-null mice. The present study investigated the physiological role of Oatp1a4 in BA homeostasis by using Oatp1a4-null mice. Oatp1a4 expression is female-predominant in livers of mice, and thereby it was expected that female Oatp1a4-null mice will have more prominent changes than males. Interestingly, the present study demonstrated that female Oatp1a4-null mice had no significant alterations in BA concentrations in serum or liver, though they had increased mRNA of hepatic BA efflux transporters (Mrp4 and Ostα/β) and ileal BA transporters (Asbt and Ostα/β). In contrast, male Oatp1a4-null mice showed significantly altered BA homeostasis, including increased concentrations of deoxycholic acid (DCA) in serum, liver and intestinal contents. After feeding a DCA-supplemented diet, male but not female Oatp1a4-null mice had higher concentrations of DCA in serum and livers than their WT controls. This suggested that Oatp1a4 is important for intestinal absorption of secondary BAs in male mice. Furthermore, loss of Oatp1a4 function did not decrease BA accumulation in serum or livers of bile-duct-ligated mice, suggesting that Oatp1a4 is not likely a BA uptake transporter. In summary, the present study for the first time demonstrates that Oatp1a4 does not appear to mediate the hepatic uptake of BAs, but plays an important male-predominant role in secondary BA metabolism in mice.

  5. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-01-01

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented. PMID:25811473

  6. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-03-22

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented.

  7. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration

    SciTech Connect

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R.S.; Nickoloff, B.J.; Voorhees, J.J. )

    1990-06-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium (KGM)) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment.

  8. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  9. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay.

    PubMed

    Zhang, Li; Xu, Liang; Zeng, Qiang; Zhang, Shao-Hui; Xie, Hong; Liu, Ai-Lin; Lu, Wen-Qing

    2012-01-24

    Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.

  10. Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling

    SciTech Connect

    Allen, Katryn; Kim, Nam Deuk; Moon, Jeon-OK; Copple, Bryan L.

    2010-02-15

    Cholestasis results when excretion of bile acids from the liver is interrupted. Liver injury occurs during cholestasis, and recent studies showed that inflammation is required for injury. Our previous studies demonstrated that early growth response factor-1 (Egr-1) is required for development of inflammation in liver during cholestasis, and that bile acids upregulate Egr-1 in hepatocytes. What remains unclear is the mechanism by which bile acids upregulate Egr-1. Bile acids modulate gene expression in hepatocytes by activating the farnesoid X receptor (FXR) and through activation of mitogen-activated protein kinase (MAPK) signaling. Accordingly, the hypothesis was tested that bile acids upregulate Egr-1 in hepatocytes by FXR and/or MAPK-dependent mechanisms. Deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) stimulated upregulation of Egr-1 to the same extent in hepatocytes isolated from wild-type mice and FXR knockout mice. Similarly, upregulation of Egr-1 in the livers of bile duct-ligated (BDL) wild-type and FXR knockout mice was not different. Upregulation of Egr-1 in hepatocytes by DCA and CDCA was prevented by the MEK inhibitors U0126 and SL-327. Furthermore, pretreatment of mice with U0126 prevented upregulation of Egr-1 in the liver after BDL. Results from these studies demonstrate that activation of MAPK signaling is required for upregulation of Egr-1 by bile acids in hepatocytes and for upregulation of Egr-1 in the liver during cholestasis. These studies suggest that inhibition of MAPK signaling may be a novel therapy to prevent upregulation of Egr-1 in liver during cholestasis.

  11. Hydrogen bonded supramolecular structures of eight organic salts based on 2,6-diaminopyridine, and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhao, Ying; Liu, Bin; Jin, Xiunan; Zhang, Huan; Wen, Xianhong; Liu, Hui; Jin, Li; Wang, Daqi

    2015-11-01

    Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the organic acids as trichloroacetic acid, 3,5-dinitrobenzoic acid, 5-nitrosalicylic acid, 3,5-dihydroxybenzoic acid, 5-sulfosalicylic acid, m-phthalic acid, naphthalene-1,5-disulfonic acid, and glutaric acid. The eight crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. Except salt 4, all structures adopted the hetero R22(8) supramolecular synthon. There were extensive N-H···O/O-H···O/N-H···N/N-H···S hydrogen bonds as well as CH···O, CH-N, CH-π, NH-π, π-π, C-π, Cl-O, and O-O interactions in the supramolecular architectures. The combination of these weak and strong hydrogen bonding associations in the crystal packing led to the formation of the 2D/3D structures.

  12. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  13. Clustering chlorine reactivity of haloacetic acid precursors in inland lakes.

    PubMed

    Zeng, Teng; Arnold, William A

    2014-01-01

    Dissolved organic matter (DOM) represents the major pool of organic precursors for harmful disinfection byproducts, such as haloacetic acids (HAAs), formed during drinking water chlorination, but much of it remains molecularly uncharacterized. Knowledge of model precursors is thus a prerequisite for understanding the more complex whole water DOM. The utility of HAA formation potential data from model DOM precursors, however, is limited due to the lack of comparability to water samples. In this study, the formation kinetics of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two predominant HAA species, were delineated upon chlorination of seventeen model DOM precursors and sixty-eight inland lake water samples collected from the Upper Midwest region of the United States. Of particular interest was the finding that the DCAA and TCAA formation rate constants could be grouped into four statistically distinct clusters reflecting the core structural features of model DOM precursors (i.e., non-β-diketone aliphatics, β-diketone aliphatics, non-β-diketone phenolics, and β-diketone phenolics). A comparative approach built upon hierarchical cluster analysis was developed to gain further insight into the chlorine reactivity patterns of HAA precursors in inland lake waters as defined by the relative proximity to four model precursor clusters. This work highlights the potential for implementing an integrated kinetic-clustering approach to constrain the chlorine reactivity of DOM in source waters.

  14. Case report: Sodium dichloroacetate (DCA) inhibition of the "Warburg Effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP.

    PubMed

    Strum, Stephen B; Adalsteinsson, Orn; Black, Richard R; Segal, Dmitri; Peress, Nancy L; Waldenfels, James

    2013-06-01

    The uptake of fluorodeoxyglucose Positron Emission Tomography in the tumors of various cancer types demonstrates the key role of glucose in the proliferation of cancer. Dichloroacetate is a 2-carbon molecule having crucial biologic activity in altering the metabolic breakdown of glucose to lactic acid. Human cell line studies show that dichloroacetate switches alter the metabolomics of the cancer cell from one of glycolysis to oxidative phosphorylation, and in doing so restore mitochondrial functions that trigger apoptosis of the cancer cell. Reports of dichloroacetate in human subjects are rare. The authors contacted individuals from Internet forums who had reported outstanding anti-cancer responses to self-medication with dichloroacetate. With informed consent, complete medical records were requested to document response to dichloroacetate, emphasizing the context of monotherapy with dichloroacetate. Of ten patients agreeing to such an evaluation, only one met the criteria of having comprehensive clinic records as well as pathology, imaging and laboratory reports, along with single agent therapy with dichloroacetate. That individual is the focus of this report. In this case report of a man with documented relapse after state-of-the-art chemotherapy for non-Hodgkin's lymphoma, a significant response to dichloroacetate is documented with a complete remission, which remains ongoing after 4 years. Dichloroacetate appears to be a novel therapy warranting further investigation in the treatment of cancer. PMID:23263938

  15. Bile acids reduce the apoptosis-inducing effects of sodium butyrate on human colon adenoma (AA/C1) cells: implications for colon carcinogenesis.

    PubMed

    McMillan, L; Butcher, S; Wallis, Y; Neoptolemos, J P; Lord, J M

    2000-06-24

    Butyrate is produced in the colon by fermentation of dietary fibre and induces apoptosis in colon adenoma and cancer cell lines, which may contribute to the protective effect of a high fibre diet against colorectal cancer (CRC). However, butyrate is present in the colon together with unconjugated bile acids, which are tumour promoters in the colon. We show here that bile acids deoxycholate (DCA) and chenodeoxycholate (CDCA), at levels present in the colon, gave a modest increase in cell proliferation and decreased spontaneous apoptosis in AA/C1 adenoma cells. Bile acids significantly inhibited the induction of apoptosis by butyrate in AA/C1 cells. However, the survival-inducing effects of bile acids on AA/C1 cells could be overcome by increasing the concentration of sodium butyrate. These results suggest that dysregulation of apoptosis in colonic epithelial cells by dietary factors is a key factor in the pathophysiology of CRC.

  16. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Zhou, Bianhong; Meng, Jingjing; Li, Jianjun; Cao, Junji; Xiao, Shun

    2013-12-01

    PM10 aerosols from Xi'an, a mega city of China in winter and summer, 2009 were measured for secondary organic aerosols (SOA) (i.e., dicarboxylic acids (DCA), keto-carboxylic acids, and α-dicarbonyls), water-soluble organic (WSOC) and inorganic carbon (WSIC), elemental carbon (EC) and organic carbon (OC). Molecular compositions of SOA on haze and clean days in both seasons were compared to investigate their sources and formation mechanisms. DCA in the samples were 1843 ± 810 ng m-3 in winter and 1259 ± 781 ng m-3 in summer, respectively, which is similar and even higher than those measured in 2003. Oxalic acid (C2, 1162 ± 570 ng m-3 in winter and 1907 ± 707 ng m-3 in summer) is the predominant species of DCA, followed by t-phthalic (tPh) in winter and phthalic (Ph) in summer. Such a molecular composition is different from those in other Asian cities where succinic acid (C4) or malonic acid (C3) is the second highest species, which is mostly due to significant emissions from household combustion of coal and open burning of waste material in Xi'an. Mass ratios of C2/diacids, diacids/WSOC, WSOC/OC and individual diacid-C/WSOC are higher on the haze days than on the clean days in both seasons, suggesting an enhanced SOA production under the haze condition. We also found that the haze samples are acidic while the clean samples are almost neutral. Such a difference in particle acidity is consistent with the enhanced SOA production, because acid-catalysis is an important aqueous-phase formation pathway of SOA. Gly/mGly mass ratio showed higher values on haze days than on clean day in both seasons. We comprehensively investigated the ratio in literature and found a consistent pattern. Based on our observation results and those documented data we proposed for the first time that concentration ratio of Gly/mGly can be taken as an indicator of aerosol ageing.

  17. Understanding Correlations Between Structure and Redox Properties in Aqueously-Dispersible, Electrically-Conductive, Polymer-Acid-Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob Daniel

    Template synthesis of polyaniline, or PANI, on poly(2-acrylamido-2-methyl-1-propanesulfonic acid), or PAAMPSA, yields aqueously-dispersible PANI-PAAMPSA particles. Through pH-resolved cyclic voltammetry and UV-vis/NIR spectroscopy measurements, PANI-PAAMPSA exhibits stable and reversible transitions to and from PANI's fully oxidized, intermediate, and fully reduced oxidation states of pernigraniline, emeraldine salt, and leucoemeraldine, respectively, in buffer solutions across a pH range of 3-7. Above pH 7, PANI-PAAMPSA exhibits direct transitions between its pernigraniline and leucoemeraldine states. Each of these states possesses unique optical properties, thus imbuing PANI-PAAMPSA with polyelectrochromism without the need to incorporate any comonomers. Transitions between each of PANI's oxidation states approach 95% completion within 10 seconds. Hysteresis, however, is observed in the electrochromic response as the film is subjected to random cycling, a conditioning effect that is attributed to the gradual relaxation of PANI-PAAMPSA particles as the electrostatic interactions between the two polymers is electrochemically moderated. Solvent-annealing PANI-PAAMPSA in dichloroacetic acid (DCA) induces dramatic structural relaxations, resulting in significant enhancements in terms of stability and reversibility in PANI-PAAMPSA's polyelectrochromic response. This DCA treatment equilibrates the structure within PANI-PAAMPSA films, obviating the dynamic relaxation processes that occur during polyelectrochromic switching with untreated films. The influence of internal film structure on PANI-PAAMPSA's polyelectrochromic ability is further investigated as a function of PANI-PAAMPSA particle size by controlling PAAMPSA's molecular characteristics. The kinetics of PANI-PAAMPSA's electrochromic transitions exhibit an inverse relationship between reaction rate and particle size. By modeling the transmission response, analogies are drawn between polymer crystallization

  18. 1-[(4-Chloro­phen­yl)(phen­yl)meth­yl]piperazine-1,4-diium bis­(trichloro­acetate)–trichloro­acetic acid (1/1)

    PubMed Central

    Song, Yanxi; Chidan Kumar, C. S.; Akkurt, Mehmet; Chandraju, S.; Li, Hongqi

    2012-01-01

    In the title salt adduct, C17H21ClN2 2+·2C2Cl3O2 −·C2HCl3O2, the Cl atom of the dication is disordered over two positions in a 0.915 (3):0.085 (3) ratio. The Cl atoms in the trichloroacetate anions and trichloroacetic acid molecule are also disordered, with refined site-occupation factors of 0.59 (3):0.41 (3), 0.503 (12):0.417 (12) and 0.653 (12):0.347 (12). The piperazine ring adopts a chair conformation, with puckering parameters Q T = 0.587 (3) Å, θ = 2.6 (2) and Φ 334 (6)°. In the crystal, neighbouring mol­ecules are linked by N—H⋯O, O—H⋯O, N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three-dimensional network. PMID:22969587

  19. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    PubMed

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation. PMID:25549005

  20. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    PubMed

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.

  1. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection.

    PubMed

    Liu, Yongjian; Mou, Shifen

    2003-05-16

    Disinfection by products of haloacetic acids and perchlorate pose significant health risks, even at low microg/l levels in drinking water. A new method for the simultaneous determination of nine haloacetic acids (HAAs) and perchlorate as well as some common anions in one run with ion chromatography was developed. The HAAs tested included mono-, di-, trichloroacetic acids, mono, di-, tribromoacetic acids, bromochloroacetic acid, dibromochloroacetic acid, and bromodichloroacetic acid. Two high-capacity anion-exchange columns, a carbonate-selective column and a hydroxide-selective hydrophilic one, were used for the investigation. With the carbonate-selective column, the nine HAAs as well as fluoride, chloride, nitrite, nitrate, phosphate and sulfate could be well separated and determined in one run. With the very hydrophilic column and a gradient elution of sodium hydroxide, methanol and deionized water, the nine HAAs, fluoride, chloride, nitrite, nitrate as well as perchlorate could be simultaneously determined in one run within 34 min. The detection limits for HAAs were between 1.11 and 9.32 microg/l. For perchlorate, it was 0.60 microg/l.

  2. Key Role for the 12-Hydroxy Group in the Negative Ion Fragmentation of Unconjugated C24 Bile Acids.

    PubMed

    Lan, Ke; Su, Mingming; Xie, Guoxiang; Ferslew, Brian C; Brouwer, Kim L R; Rajani, Cynthia; Liu, Changxiao; Jia, Wei

    2016-07-19

    Host-gut microbial interactions contribute to human health and disease states and an important manifestation resulting from this cometabolism is a vast diversity of bile acids (BAs). There is increasing interest in using BAs as biomarkers to assess the health status of individuals and, therefore, an increased need for their accurate separation and identification. In this study, the negative ion fragmentation behaviors of C24 BAs were investigated by UPLC-ESI-QTOF-MS. The step-by-step fragmentation analysis revealed a distinct fragmentation mechanism for the unconjugated BAs containing a 12-hydroxyl group. The unconjugated BAs lacking 12-hydroxylation fragmented via dehydration and dehydrogenation. In contrast, the 12-hydroxylated ones, such as deoxycholic acid (DCA) and cholic acid (CA), employed dissociation routes including dehydration, loss of carbon monoxide or carbon dioxide, and dehydrogenation. All fragmentations of the 12-hydroxylated unconjugated BAs, characterized by means of stable isotope labeled standards, were associated with the rotation of the carboxylate side chain and the subsequent rearrangements accompanied by proton transfer between 12-hydroxyl and 24-carboxyl groups. Compared to DCA, CA underwent further cleavages of the steroid skeleton. Accordingly, the effects of stereochemistry on the fragmentation pattern of CA were investigated using its stereoisomers. Based on the knowledge gained from the fragmentation analysis, a novel BA, 3β,7β,12α-trihydroxy-5β-cholanic acid, was identified in the postprandial urine samples of patients with nonalcoholic steatohepatitis. The analyses used in this study may contribute to a better understanding of the chemical diversity of BAs and the molecular basis of human liver diseases that involve BA synthesis, transport, and metabolism. PMID:27322813

  3. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  4. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments.

    PubMed Central

    Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C

    1982-01-01

    Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712

  5. Alteration of membrane fatty acid composition and inositol phosphate metabolism in HT-29 human colon cancer cells.

    PubMed

    Awad, A B; Fink, C S; Horvath, P J

    1993-01-01

    The present study was designed to investigate the role of membrane fatty acid (FA) composition on inositol phosphate (InsP) release by a human colon tumor cell line. Cells were supplemented for five days in culture with 0, 10, 30, or 100 microM sodium stearate (18:0), linoleate [18:2(omega-6)], or linolineate [18:3(omega-3)]. These FAs were supplied as a complex with FA-free bovine serum albumin. InsP release was examined in these cells with or without stimulation with deoxycholic acid (DCA) after they were labeled with [3H]myoinositol. FA enrichment was found to influence inositol incorporation into membrane lipids. Although 18:0 had no effect, 18:2(omega-6) decreased the incorporation. On the other hand, 18:3(omega-3) increased the incorporation of inositol compared with the cells supplemented with the other FAs, but they were not different from control. Basal release of total InsP was elevated only with supplementation of 10 and 30 microM 18:3(omega-3). FA supplementation with 18:0 at 30 microM and 18:2 at 30 and 100 microM resulted in downregulation of bsal release of InsP. Enrichment of HT-29 cell membranes with polyunsaturated FAs resulted in a significant increase in stimulated release of InsP, but this was not seen with saturated FA supplementation. At 10 microM supplementation, 18:2 had the greatest effect on stimulated InsP release. This effect of 18:2 disappeared at 30 microM. However, the increase in the stimulated InsP release caused by 18:3 occurred at 10 and 30 microM. DCA-stimulated release of InsP was not downregulated by any FA supplementation. This study showed that enrichment of the membranes with polyunsaturated FAs increases the response of the phosphatidylinositol cycle to DCA stimulation. In addition, enrichment with 18:3(omega-3) increases the basal turnover of InsP. It is concluded that alteration of membrane FAs has a profound effect on the phosphatidylinositol cycle.

  6. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  7. Changes in the Amino Acid Composition of Bogue (Boops boops) Fish during Storage at Different Temperatures by 1H-NMR Spectroscopy

    PubMed Central

    Ciampa, Alessandra; Picone, Gianfranco; Laghi, Luca; Nikzad, Homa; Capozzi, Francesco

    2012-01-01

    Nuclear magnetic resonance spectroscopy was employed to obtain information about the changes occurring in Bogue (Boops boops) fish during storage. For this purpose, 1H-NMR spectra were recorded at 600 MHz on trichloroacetic acid extracts of fish flesh stored over a 15 days period both at 4 °C and on ice. Such spectra allowed the identification and quantification of amino acids, together with the main organic acids and alcohols. The concentration of acidic and basic free amino acids was generally found to increase and decrease during storage, respectively. These concentration changes were slow during the first days, as a consequence of protein autolysis, and at higher rates afterward, resulting from microbial development. Two of the amino acids that showed the greatest concentration change were alanine and glycine, known to have a key role in determining the individual taste of different fish species. The concentration of serine decreased during storage, as highlighted in the literature for frozen fish samples. Differences in the amino acids concentration trends were found to be related to the different storage temperatures from day 4 onwards. PMID:22822452

  8. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.

    PubMed

    Tang, Hao L; Xie, Yuefeng F

    2016-01-15

    A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools. PMID:26398451

  9. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.

    PubMed

    Tang, Hao L; Xie, Yuefeng F

    2016-01-15

    A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools.

  10. Inhibitory effects of bile acids and synthetic farnesoid X receptor agonists on rotavirus replication.

    PubMed

    Kim, Yunjeong; Chang, Kyeong-Ok

    2011-12-01

    Rotaviruses (group A rotaviruses) are the most important cause of severe gastroenteritis in infants and children worldwide. Currently, an antiviral drug is not available and information on therapeutic targets for antiviral development is limited for rotavirus infection. Previously, it was shown that lipid homeostasis is important in rotavirus replication. Since farnesoid X receptor (FXR) and its natural ligands bile acids (such as chenodeoxycholic acid [CDCA]) play major roles in cholesterol and lipid homeostasis, we examined the effects of bile acids and synthetic FXR agonists on rotavirus replication in association with cellular lipid levels. In a mouse model of rotavirus infection, effects of oral administration of CDCA on fecal rotavirus shedding were investigated. The results demonstrate the following. First, the intracellular contents of triglycerides were significantly increased by rotavirus infection. Second, CDCA, deoxycholic acid (DCA), and other synthetic FXR agonists, such as GW4064, significantly reduced rotavirus replication in cell culture in a dose-dependent manner. The reduction of virus replication correlated positively with activation of the FXR pathway and reduction of cellular triglyceride contents (r(2) = 0.95). Third, oral administration of CDCA significantly reduced fecal virus shedding in mice (P < 0.05). We conclude that bile acids and FXR agonists play important roles in the suppression of rotavirus replication. The inhibition mechanism is proposed to be the downregulation of lipid synthesis induced by rotavirus infection.

  11. Bile Acid Metabolome after an Oral Lipid Tolerance Test by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Schmid, Andreas; Neumann, Hannah; Karrasch, Thomas; Liebisch, Gerhard; Schäffler, Andreas

    2016-01-01

    Context Besides their role in intestinal resorption of lipids, bile acids are regarded as endocrine and metabolic signaling molecules. The detailed profile of bile acid species in peripheral blood after an oral lipid tolerance test (OLTT) is unknown. Objective We quantified the regulation of 18 bile acids after OLTT in healthy individuals. Material and methods 100 volunteers were characterized by anthropometric and laboratory parameters and underwent OLTT. Venous blood was drawn in the fasted state (0 h) and at 2h, 4h, and 6 h after OLTT. Serum concentrations of 18 bile acids were measured by LC-MS/MS. Results All of the 6 taurine-conjugated bile acids (TUDCA, THDCA, TCA, TCDCA, TDCA, TLCA) and all of the 6 glycine-conjugated bile acids (GUDCA, GHDCA, GCA, GCDCA, GDCA, GLCA) rose significantly at 2h and remained elevated during OLTT. Of the primary bile acids, CA remained unchanged, whereas CDCA significantly decreased at 4h. Of the secondary bile acids, DCA, UDCA and HDCA were not altered, whereas LCA decreased. There was a significant positive correlation between the intestinal feed-back regulator of bile acid synthesis FGF-19 and bile acids. This correlation seems to depend on all of the six taurine-conjugated bile acids and on GCA, GDCA, and GCDCA. Females and users of hormonal contraception displayed higher levels of taurine-conjugated bile acids. Conclusions The novelty of the study is based on the identification of single bile acids during OLTT. LC-MS/MS-based quantification of bile acids in serum provides a reliable tool for future investigation of endocrine and metabolic effects of bile acids. PMID:26863103

  12. A convenient and sensitive method for haloacetic acid analysis in tap water by on-line field-amplified sample-stacking CE-ESI-MS.

    PubMed

    Hung, Sih-Hua; Her, Guor-Rong

    2013-11-01

    In this study, we propose a simple strategy based on flow injection and field-amplified sample-stacking CE-ESI-MS/MS to analyze haloacetic acids (HAAs) in tap water. Tap water was passed through a desalination cartridge before field-amplified sample-stacking CE-ESI-MS/MS analysis to reduce sample salinity. With this treatment, the signals of the HAAs increased 300- to 1400-fold. The LODs for tap water analysis were in the range of 10 to 100 ng/L, except for the LOD of monochloroacetic acid (1 μg/L in selected-ion monitoring mode detection). The proposed method is fast, convenient, and sensitive enough to perform on-line analysis of five HAAs in the tap water of Taipei City. Four HAAs, including trichloroacetic acid, dichloroacetic acid, dibromoacetic acid, and monobromoacetic acid, were detected at concentrations of approximately 1.74, 1.15, 0.16, and 0.15 ppb, respectively.

  13. Bioprocess monitoring: minimizing sample matrix effects for total protein quantification with bicinchoninic acid assay.

    PubMed

    Reichelt, Wieland N; Waldschitz, Daniel; Herwig, Christoph; Neutsch, Lukas

    2016-09-01

    Determining total protein content is a routine operation in many laboratories. Despite substantial work on assay optimization interferences, the widely used bicinchoninic acid (BCA) assay remains widely recognized for its robustness. Especially in the field of bioprocess engineering the inaccuracy caused by interfering substances remains hardly predictable and not well understood. Since the introduction of the assay, sample pre-treatment by trichloroacetic acid (TCA) precipitation has been indicated as necessary and sufficient to minimize interferences. However, the sample matrix in cultivation media is not only highly complex but also dynamically changing over process time in terms of qualitative and quantitative composition. A significant misestimation of the total protein concentration of bioprocess samples is often observed when following standard work-up schemes such as TCA precipitation, indicating that this step alone is not an adequate means to avoid measurement bias. Here, we propose a modification of the BCA assay, which is less influenced by sample complexity. The dynamically changing sample matrix composition of bioprocessing samples impairs the conventional approach of compensating for interfering substances via a static offset. Hence, we evaluated the use of a correction factor based on an internal spike measurement for the respective samples. Using protein spikes, the accuracy of the BCA protein quantification could be improved fivefold, taking the BCA protein quantification to a level of accuracy comparable to other, more expensive methods. This will allow reducing expensive iterations in bioprocess development to due inaccurate total protein analytics. PMID:27314233

  14. Analysis of DNA strand breaks induced in rodent liver in vivo, hepatocytes in primary culture, and a human cell line by chlorinated acetic acids and chlorinated acetaldehydes

    SciTech Connect

    Chang, L.W.; Daniel, F.B. ); DeAngelo, A.B. )

    1992-01-01

    An alkaline unwinding assay was used to quantitate the induction of DNA strand breaks (DNA SB) in the livers of rats and mice treated in vivo, in rodent hepatocytes in primary culture, and in CCRF-CEM cells, a human lymphoblastic leukemia cell line, following treatment with tri-(TCA), di-(CA), and mono-(MCA) chloroacetic acid and their corresponding aldehydes, tri-(chloralhydrate, CH), di(DCAA) and mono-(CAA) chloroacetaldehyde. None of the chloracetic acids induced DNA SB in the livers of rats at 4 hr following a single administration of 1-10 mmole/kg. TCA (10 mmole/kg) and DCA (5 and 10 mmole/kg) did produce a small amount of strand breakage in mice (7% at 4hr) but not at 1 hr. N-nitrosodiethylamine (DENA), an established alkylating agent and a rodent hepatocarcinogen, produced DNA SB in the livers of both species. TCA, DCA, and MCA also failed to induce DNA strand breaks in splenocytes and epithelial cells derived from the stomach and duodenum of mice treated in vivo. None of the three chloroacetaldehydes induced DNA SB in either mouse or rat liver. These studies provide further evidence that the chloroacetic acids lack genotoxic activity not only in rodent liver, a tissue in that they induce tumors, but in a variety of other rodent tissues and cultured cell types. Two of the chloroacetaldehydes, DCAA and CAA, are direct acting DNA damaging agents in CCRF-CEM cells, but not in liver or splenocytes in vivo or in cultured hepatocytes. CH showed no activity in any system investigated. 58 refs., 6 figs., 2 tabs.

  15. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems.

    PubMed

    Zhang, Ping; Lapara, Timothy M; Goslan, Emma H; Xie, Yuefeng; Parsons, Simon A; Hozalski, Raymond M

    2009-05-01

    Biodegradation is a potentially important loss process for haloacetic acids (HAAs), a class of chlorination byproducts, in water treatment and distribution systems, but little is known about the organisms involved (i.e., identity, substrate range, biodegradation kinetics). In this research, 10 biomass samples (i.e., tap water, distribution system biofilms, and prechlorinated granular activated carbon filters) from nine drinking water systems were used to inoculate a total of thirty enrichment cultures fed monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), or trichloroacetic (TCAA) as sole carbon and energy source. HAA degraders were successfully enriched from the biofilm samples (GAC and distribution system) but rarely from tap water. Half of the MCAA and DCAA enrichment cultures were positive, whereas only one TCAA culture was positive (two were inconclusive). Eight unique HAA-degrading isolates were obtained including several Afipia spp. and a Methylobacterium sp.; all isolates were members of the phylum Proteobacteria. MCAA, monobromoacetic acid (MBAA), and monoiodoacetic acid (MIAA) were rapidly degraded by all isolates, and DCAA and tribromoacetic (TBAA) were also relatively labile. TCAA and dibromoacetic acid (DBAA)were degraded by only three isolates and degradation lagged behind the other HAAs. Detailed DCAA biodegradation kinetics were obtained for two selected isolates and two enrichment cultures. The maximum biomass-normalized degradation rates (Vm) were 0.27 and 0.97 microg DCAA/ microg protein/h for Methylobacterium fujisawaense strain PAWDI and Afipia felis strain EMD2, respectively, which were comparable to the values obtained for the enrichment cultures from which those organisms were isolated (0.39 and 1.37 microg DCAN/microg protein/h, respectively). The half-saturation constant (Km) values ranged from 4.38 to 77.91 microg DCAA/L and the cell yields ranged from 14.4 to 36.1 mg protein/g DCAA.

  16. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    PubMed

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.

  17. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  18. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  19. Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase.

    PubMed

    Roughan, P G

    1997-10-01

    Concentrations of total CoAs in chloroplasts freshly isolated from spinach and peas were 10-20 microM, assuming a stromal volume of 66 microl per mg of chlorophyll. Acetyl-CoA and CoASH constituted at least 90% of the total CoA in freshly isolated chloroplasts. For a given chloroplast preparation, the concentration of endogenous acetyl-CoA was the same when extractions were performed using HClO4, trichloroacetic acid, propan-2-ol or chloroform/methanol, and the extracts analysed by quantitative HPLC after minimal processing. During fatty acid synthesis from acetate, concentrations of CoASH within spinach and pea chloroplasts varied from less than 0.1 to 5.0 microM. Malonyl-CoA concentrations were also very low (<0.1-3.0 microM) during fatty acid synthesis but could be calculated from radioactivity incorporated from [1-14C]acetate. Concentrations of CoASH in chloroplasts synthesizing fatty acids could be doubled in the presence of Triton X-100, suggesting that the detergent stimulates fatty acid synthesis by increasing the turnover rate of acyl-CoA. However, although taken up, exogenous CoASH (1 microM) did not stimulate fatty acid synthesis by permeabilized spinach chloroplasts. Calculated rates for acetyl-CoA synthetase, acetyl-CoA carboxylase and malonyl-CoA-acyl-carrier protein transacylase reactions at the concentrations of metabolites measured here are < 0.1-4% of the observed rates of fatty acid synthesis from acetate by isolated chloroplasts. The results suggest that CoA and its esters are probably confined within, and channelled through, the initial stages of a fatty acid synthase multienzyme complex.

  20. Amino acids

    MedlinePlus

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  1. Upregulation of bile acid receptor TGR5 and nNOS in gastric myenteric plexus is responsible for delayed gastric emptying after chronic high-fat feeding in rats

    PubMed Central

    Zhou, Hui; Zhou, Shiyi; Gao, Jun; Zhang, Guanpo; Lu, Yuanxu

    2014-01-01

    Chronic high-fat feeding is associated with functional dyspepsia and delayed gastric emptying. We hypothesize that high-fat feeding upregulates gastric neuronal nitric oxide synthase (nNOS) expression, resulting in delayed gastric emptying. We propose this is mediated by increased bile acid action on bile acid receptor 1 (TGR5) located on nNOS gastric neurons. To test this hypothesis, rats were fed regular chow or a high-fat diet for 2 wk. Rats fed the high-fat diet were subjected to concurrent feeding with oral cholestyramine or terminal ileum resection. TGR5 and nNOS expression in gastric tissue was measured by immunohistochemistry, PCR, and Western blot. Gastric motility was assessed by organ bath and solid-phase gastric emptying studies. The 2-wk high-fat diet caused a significant increase in neurons coexpressing nNOS and TGR5 in the gastric myenteric plexus and an increase in nNOS and TGR5 gene expression, 67 and 111%, respectively. Enhanced nonadrenergic, noncholinergic (NANC) relaxation, deoxycholic acid (DCA)-induced inhibition in fundic tissue, and a 26% delay in gastric emptying accompanied these changes. A 24-h incubation of whole-mount gastric fundus with DCA resulted in increased nNOS and TGR5 protein expression, 41 and 37%, respectively. Oral cholestyramine and terminal ileum resection restored the enhanced gastric relaxation, as well as the elevated nNOS and TGR5 expression evoked by high-fat feeding. Cholestyramine also prevented the delay in gastric emptying. We conclude that increased levels of circulatory bile acids induced by high-fat feeding upregulate nNOS and TGR5 expression in the gastric myenteric plexus, resulting in enhanced NANC relaxation and delayed gastric emptying. PMID:25540233

  2. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  3. Acid rain

    SciTech Connect

    Not Available

    1985-01-01

    This report has four parts: they discuss acid rain in relation to acid soils, agriculture, forests, and aquatic ecosystems. Among findings: modern sources of acid deposition from the atmosphere for all the acid soils in the world, nor even chiefly responsible for those of northern U.S. Agriculture has its problems, but acid precipitation is probably not one of them. More research is needed to determine to what extent acid precipitation is responsible for forest declines and for smaller detrimental effects on forest growth where no damage to the foliage is evident. Many lakes and streams are extremely sensitive to added acids.

  4. The nature of human serum insulin-like activity (ILA): characterization of ILA in serum and serum fractions obtained by acid-ethanol extraction and adsorption chromatography

    PubMed Central

    Poffenbarger, Philip L.; Ensinck, John W.; Hepp, Dieter K.; Williams, Robert H.

    1968-01-01

    Studies were undertaken in an attempt to clarify the apparent heterogeneous nature of human serum insulin-like activity. Methods of preparative zone electrophoresis on Pevikon, acid-ethanol extraction of trichloroacetic acid serum protein precipitates, adsorption chromatography on DEAE-cellulose and Dowex 50, gel filtration chromatography, and insulin antiserum immunoreactivity were used. The results establish the presence of a substance in serum with in vitro biological properties similar to insuln but with different physicochemical properties. The major portion of serum ILA measured by bioassay techniques can be attributed to the effects of this substance. Whereas the in vitro biological effects of this substance on muscle and adipose cells were similar to those of crystalline insulin, the substance is distinguished from insulin by: (1) the failure of insulin antiserum to inhibit its in vitro biological effect; (2) a slower electrophoretic mobility (in the gamma-beta globulin zone); and (3) a larger molecular weight, between 40,000 and 50,000 in these studies. It is similar to insulin since both are soluble in acid-ethanol. The results further indicate that previously described insulin-like activity in gamma-beta globulin preparations, the major portion of total serum insulin activity described in acid-ethanol extracts of serum, “bound” insulin, “atypical” insulin, and antibody nonsuppressible insulin-like activity bioassayed in diluted serum are all one and the same substance. PMID:4170389

  5. Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Zhao, Can; Fujii, Yukiko; Yan, Junxia; Harada, Kouji H; Koizumi, Akio

    2015-01-01

    Chlorine is the most widely used disinfectant for control of waterborne diseases in drinking water treatment. It can react with natural organic matter in water and form haloacetic acids (HAAs). For analysis of HAA levels, derivatization with diazomethane is commonly recommended as the standard methodology in Japan. However, diazomethane is a carcinogenic alkylating agent. Therefore, in this study, a safe, simple, and sensitive quantification method was developed to monitor HAAs in drinking water. Pentafluorobenzyl esterification was used for pretreatment. The pentafluorobenzyl-ester derivative was detected by gas chromatography-negative ion chemical ionization-mass spectrometry analysis with very high sensitivity for HAAs analysis. The method has low detection limits (8-94 ng L(-1)) and good recovery rates (89-99%) for HAAs. The method was applied to 30 tap water samples from 15 cities in the Kansai region of Japan. The levels of HAAs detected were in the range 0.54-7.83 μg L(-1). Dichloroacetic acid, trichloroacetic acid, and bromochloroacetic acid were the major HAAs detected in most of the tap water, and accounted for 29%, 20% and 19% of the total HAAs, respectively. This method could be used for routine monitoring of HAAs in drinking water without exposure of workers to occupational hazards.

  6. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Yongjian; Mou, Shifen; Chen, Dengyun

    2004-06-11

    A new method for the determination of nine haloacetic acids (HAAs) with ion chromatography (IC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed. With the very hydrophilic anion-exchange column and steep gradient of sodium hydroxide, the nine HAAs could be well separated in 15 min. After suppression with an ASRS suppressor that was introduced in between IC and ICP-MS, the background was much decreased, the interference caused by sodium ion present in eluent was removed, and the sensitivities of HAAs were greatly improved. The chlorinated and brominated HAAs could be detected as 35ClO and 79Br without interference of the matrix due to the elemental selective ICP-MS. The detection limits for mono-, di-, trichloroacetic acids were between 15.6 and 23.6 microg/l. For the other six bromine-containing HAAs, the detection limits were between 0.34 and 0.99 microg/l. With the pretreatment of OnGuard Ag cartridge to remove high concentration of chloride in sample, the developed method could be applied to the determination of HAAs in many drinking water matrices.

  7. In vitro bioacessibility and transport across Caco-2 monolayers of haloacetic acids in drinking water.

    PubMed

    Melo, A; Faria, M A; Pinto, E; Mansilha, C; Ferreira, I M P L V O

    2016-10-01

    Water disinfection plays a crucial role in water safety but it is also a matter of concern as the use of disinfectants promotes the formation of disinfection by-products (DBPs). Haloacetic acids (HAAs) are one of the major classes of DBPs since they are frequently found in treated water, are ubiquitous, pervasive and have high water solubility, so a great concern emerged about their formation, occurrence and toxicity. Exposure to HAAs is influenced by consumption patterns and diet of individuals thus their bioavailability is an important parameter to the overall toxicity. In the current study the bioacessibility of the most representative HAAs (chloroacetic acid - MCAA, bromoacetic acid - MBAA, dichloroacetic acid - DCAA, dibromoacetic acid - DBAA, and trichloroacetic acid - TCAA) after simulated in vitro digestion (SIVD) in tap water and transport across Caco-2 monolayers was evaluated. Compounds were monitored in 8 points throughout the digestion phases by an optimized LC-MS/MS methodology. MCAA and MBAA were not bioaccessible after SIVD whereas DCAA, DBAA and TCAA are highly bioaccessible (85 ± 4%, 97 ± 4% and 106 ± 7% respectively). Concerning transport assays, DCAA and DBAA were highly permeable throughout the Caco-2 monolayer (apparent permeability and calculated fraction absorbed of 13.62 × 10(-6) cm/s and 90% for DCAA; and 8.82 × 10(-6) cm/s and 84% for DBAA), whereas TCAA showed no relevant permeability. The present results may contribute to efficient risk analysis studies concerning HAAs oral exposure from tap water taking into account the different biological behaviour of these chemically similar substances.

  8. In vitro bioacessibility and transport across Caco-2 monolayers of haloacetic acids in drinking water.

    PubMed

    Melo, A; Faria, M A; Pinto, E; Mansilha, C; Ferreira, I M P L V O

    2016-10-01

    Water disinfection plays a crucial role in water safety but it is also a matter of concern as the use of disinfectants promotes the formation of disinfection by-products (DBPs). Haloacetic acids (HAAs) are one of the major classes of DBPs since they are frequently found in treated water, are ubiquitous, pervasive and have high water solubility, so a great concern emerged about their formation, occurrence and toxicity. Exposure to HAAs is influenced by consumption patterns and diet of individuals thus their bioavailability is an important parameter to the overall toxicity. In the current study the bioacessibility of the most representative HAAs (chloroacetic acid - MCAA, bromoacetic acid - MBAA, dichloroacetic acid - DCAA, dibromoacetic acid - DBAA, and trichloroacetic acid - TCAA) after simulated in vitro digestion (SIVD) in tap water and transport across Caco-2 monolayers was evaluated. Compounds were monitored in 8 points throughout the digestion phases by an optimized LC-MS/MS methodology. MCAA and MBAA were not bioaccessible after SIVD whereas DCAA, DBAA and TCAA are highly bioaccessible (85 ± 4%, 97 ± 4% and 106 ± 7% respectively). Concerning transport assays, DCAA and DBAA were highly permeable throughout the Caco-2 monolayer (apparent permeability and calculated fraction absorbed of 13.62 × 10(-6) cm/s and 90% for DCAA; and 8.82 × 10(-6) cm/s and 84% for DBAA), whereas TCAA showed no relevant permeability. The present results may contribute to efficient risk analysis studies concerning HAAs oral exposure from tap water taking into account the different biological behaviour of these chemically similar substances. PMID:27411032

  9. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  10. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  11. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  12. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  13. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  14. Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats

    SciTech Connect

    Matthews, Jessica L.; Schultz, Irvin R.; Easterling, Michael R.; Melnick, Ronald L.

    2010-04-15

    A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite alpha-halocarboxymethylglutathione (alphaH1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical-and species-specific parameters.

  15. Detection of chlorodifluoroacetic acid in precipitation: A possible product of fluorocarbon degradation

    SciTech Connect

    Martin, J.W.; Franklin, J.; Hanson, M.L.; Solomon, K.R.; Mabury, S.A.; Ellis, D.A.; Scott, B.F.; Muri, D.C.G.

    2000-01-15

    Chlorodiffluoroacetic acid (CDFA) was detected in rain and snow samples from various regions of Canada. Routine quantitative analysis was performed using an in-situ derivatization technique that allowed for the determination of CDFA by GC-MS of the anilide derivative. Validation of environmental CDFA was provided by strong anionic exchange chromatography and detection by {sup 19}F NMR. CDFA concentrations ranges from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations ranged from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations in rain event samples showed a seasonal trend between June and November 1998, peaking in late summer and decreasing in the fall for Guelph and Toronto sites. Preliminary toxicity tests with the aquatic macrophytes Myriophyllum sibiricum and Myriophyllum spicatum suggest that CDFA does not represent a risk of acute toxicity to these aquatic macrophytes at current environmental concentrations. A degradation study suggests that CDFA is recalcitrant to biotic and abiotic degradation relative to dichloroacetic acid (DCA) and may accumulate in the aquatic environment. On the basis of existing experimental data, the authors postulate that CDFA is a degradation product of CFC-113 and, to a lesser extent, HCFC-142b. If CFC-113 is a source, its ozone depletion potential may be lower than previously assumed. Further work is required to identify alternative atmospheric and terrestrial sources of CDFA.

  16. Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats

    PubMed Central

    Matthews, Jessica L.; Schultz, Irvin R.; Easterling, Michael R.; Melnick, Ronald L.

    2010-01-01

    A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite α-halocarboxymethylglutathione (αH1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical- and species-specific parameters. PMID:20045428

  17. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  18. Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography.

    PubMed

    Luo, Ximing; Chen, Liang; Zhao, Yanqing

    2015-09-01

    An ion chromatography method was developed for the simultaneous detection of three soluble herbicides (glyphosate, bentazone and picloram), three chlorine disinfection byproducts (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) and 12 anions in water (Cl(-), Br(-), SO4(2-), CO3(2-), ClO3(-), ClO4(-), BrO3(-), PO4(3-), NO2(-), NO3(-), CH3COO(-) and COO(-)). High linearity (r(2) > 0.996) was observed for all target analytes for each respective concentration range. The limit of detection and limit of quantitation were between 0.21-0.85 and 0.06-25.46 μg/L, respectively. However, the interference effect of Cl(-), NO3(-) , SO4 (2-) and CO3(2-) on some target analytes must be considered during the analysis. Sample pre-treatment by a hydrogen column (H-column) required to reduce the negative effect of CO3(2-). Additionally, sample pre-treatment by a sliver-hydrogen column (Ag-H-column) is required when Cl(-) > 100 mg/L and SO4(2-) < 50 mg/L, and pre-treatment by both a barium column (Ba-column) and an H-column is required when Cl(-) > 100 mg/L and SO4(2-) > 50 mg/L. When Cl(-) > 100 mg/L, SO4(2-) > 50 mg/L and CO3(2-) > 20 mg/L, the sample pre-treatment by either an Ag-H-Ba-column or an Ag-H-column and Ba-column is required to minimize interference.

  19. Effects of indoor drinking water handling on trihalomethanes and haloacetic acids.

    PubMed

    Levesque, Steven; Rodriguez, Manuel J; Serodes, Jean; Beaulieu, Christine; Proulx, François

    2006-08-01

    In this study, different tap water handling strategies were investigated to evaluate the effects on two principal chlorinated DBPs, trihalomethanes (THMs) and haloacetic acids (HAAs). Tap water samples collected in the Quebec City (Canada) distribution system on a spatio-temporal basis were subjected to diverse indoor handling scenarios: storing water in the refrigerator, boiling water followed by storage and, finally, filtering water with a point-of-use commercial pitcher also followed by storage. In the first two cases, the use of covered and uncovered pitchers was investigated separately, while in the last case, both the use of new and used filters was compared. In all cases, maximum storage time was 48h. Results demonstrated that in some cases, water handling scenarios have considerable effect, and in other cases, little or no effect. Removal of THM concentrations by simple storage was high (on average 30%) and very high by boiling and filtering with subsequent storage in the refrigerator (on average, 87% and 92%, respectively). In scenarios where water was stored in uncovered pitchers (with or without previous boiling and filtering), the THM decrease was higher for increased storage times. However, storage did not have any effect on HAAs, whereas boiling decreased levels of trichloroacetic acid (TCAA) (on average 42%) and increased levels of dichloroacetic acid (DCAA) (on average 35%), resulting in unchanged average levels of total HAAs. The use of the filtration pitcher decreased HAA levels dramatically (on average 66%). Percentages of change in chlorinated DBPs in the different scenarios varied according to initial concentrations in tap water (baseline water), that is, according to the spatio-temporal variations of these substances in the distribution system. On the basis of these results, the paper discusses implications regarding public health protection and exposure assessment for epidemiological studies.

  20. Proteomic Retrieval from Nucleic Acid Depleted Space-Flown Human Cells

    NASA Technical Reports Server (NTRS)

    Hammond, D. K.; Elliott, T. F.; Holubec, K.; Baker, T. L.; Allen, P. L.; Hammond, T. G.; Love, J. E.

    2006-01-01

    Compared to experiments utilizing humans in microgravity, cell-based approaches to questions about subsystems of the human system afford multiple advantages, such as crew safety and the ability to achieve statistical significance. To maximize the science return from flight samples, an optimized method was developed to recover protein from samples depleted of nucleic acid. This technique allows multiple analyses on a single cellular sample and when applied to future cellular investigations could accelerate solutions to significant biomedical barriers to human space exploration. Cell cultures grown in American Fluoroseal bags were treated with an RNA stabilizing agent (RNAlater - Ambion), which enabled both RNA and immunoreactive protein analyses. RNA was purified using an RNAqueous(registered TradeMark) kit (Ambion) and the remaining RNA free supernatant was precipitated with 5% trichloroacetic acid. The precipitate was dissolved in SDS running buffer and tested for protein content using a bicinchoninic acid assay (1) (Sigma). Equal loads of protein were placed on SDS-PAGE gels and either stained with CyproOrange (Amersham) or transferred using Western Blotting techniques (2,3,4). Protein recovered from RNAlater-treated cells and stained with protein stain, was measured using Imagequant volume measurements for rectangles of equal size. BSA treated in this way gave quantitative data over the protein range used (Fig 1). Human renal cortical epithelial (HRCE) cells (5,6,7) grown onboard the International Space Station (ISS) during Increment 3 and in ground control cultures exhibited similar immunoreactivity profiles for antibodies to the Vitamin D receptor (VDR) (Fig 2), the beta isoform of protein kinase C (PKC ) (Fig 3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Fig 4). Parallel immunohistochemical studies on formalin-fixed flight and ground control cultures also showed positive immunostaining for VDR and other biomarkers (Fig 5). These results are

  1. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection.

    PubMed

    Ipek, M; Ipek, A; Seker, M; Gul, M K

    2015-03-27

    The purpose of this research was to characterize an olive core collection using some agronomic characters and simple sequence repeat (SSR) markers and to determine SSR markers associated with the content of fatty acids in olive oil. SSR marker analysis demonstrated the presence of a high amount of genetic variation between the olive cultivars analyzed. A UPGMA dendrogram demonstrated that olive cultivars did not cluster on the basis of their geographic origin. Fatty acid components of olive oil in these cultivars were determined. The results also showed that there was a great amount of variation between the olive cultivars in terms of fatty acid composition. For example, oleic acid content ranged from 57.76 to 76.9% with standard deviation of 5.10%. Significant correlations between fatty acids of olive oil were observed. For instance, a very high negative correlation (-0.812) between oleic and linoleic acids was detected. A structured association analysis between the content of fatty acids in olive oil and SSR markers was performed. STRUCTURE analysis assigned olive cultivars to two gene pools (K = 2). Assignment of olive cultivars to these gene pools was not based on geographical origin. Association between fatty acid traits and SSR markers was evaluated using the general linear model of TASSEL. Significant associations were determined between five SSR markers and stearic, oleic, linoleic, and linolenic acids of olive oil. Very high associations (P < 0.001) between ssrOeUA-DCA14 and stearic acid and between GAPU71B and oleic acid indicated that these markers could be used for marker-assisted selection in olive.

  2. HPLC/ELSD analysis of amidated bile acids: an effective and rapid way to assist continuous flow chemistry processes.

    PubMed

    Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Venturoni, Francesco; Natalini, Benedetto

    2012-10-15

    The employment of the flow N-acyl amidation of natural bile acids (BAs) required the in-line connection with suitable analytical tools enabling the determination of reaction yields as well as of the purity grade of the synthesized glyco- and tauro-conjugated derivatives. In this framework, a unique HPLC method was successfully established and validated for ursodeoxycholic (UDCA), chenodeoxycholic (CDCA), deoxycholic (DCA) and cholic (CA) acids, as well as the corresponding glyco- and tauro-conjugated forms. Because of the shared absence of relevant chromophoric moieties in the sample structure, an evaporative light scattering detector (ELSD) was profitably utilized for the analysis of such steroidal species. For each of the investigated compounds, all the runs were contemporarily carried out on the acidic free and the two relative conjugated variants. The different ELSD response of the free and the corresponding conjugated BAs, imposed to build-up separate calibration curves. In all the cases, very good precision (RSD% values ranging from 1.04 to 6.40% in the long-period) and accuracy (Recovery% values ranging from 96.03 to 111.14% in the long-period) values along with appreciably low LOD and LOQ values (the former being within the range 1-27 ng mL(-1) and the latter within the range 2-44 ng mL(-1)) turned out. PMID:23141350

  3. Aspartic acid

    MedlinePlus

    ... Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as soybeans, garbanzo beans, and lentils Peanuts, almonds, walnuts, and flaxseeds Animal ...

  4. Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6.

    PubMed

    Takahashi, Kenji; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Kasai, Daisuke; Katayama, Yoshihiro; Fukuda, Masao; Kajita, Shinya; Masai, Eiji

    2014-09-01

    Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidized to the carboxyl group, first at the B-ring side chain and then at the A-ring side chain. The resultant metabolite was degraded to 5-formylferulate and vanillin through the decarboxylation and the Cα-Cβ cleavage of the A-ring side chain. Based on the DCA catabolic pathway, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes are thought to be involved in the conversion of DCA into an aldehyde intermediate (DCA-L) and the conversion of DCA-L into a carboxylic acid intermediate (DCA-C), respectively. SLG_05620 and SLG_24930, which belong to quinohemoprotein ADH and aryl ADH, respectively, were isolated as the genes responsible for the oxidation of DCA. In addition to these genes, multiple genes similar to SLG_05620 and SLG_24930 were found to confer DCA oxidation activities on Escherichia coli cells. In order to identify the DCA-L dehydrogenase genes, the DCA-L oxidation activities of the SYK-6 gene products of putative twenty-one ALDH genes were examined. Significant activities were observed in the four ALDH gene products, including the SLG_27910 product, which showed the highest activity. The disruption of SLG_27910 caused a decreased conversion of DCA-L, suggesting that SLG_27910 plays an important role in the DCA-L oxidation. In conclusion, no specific gene seems to be solely responsible for the conversion of DCA and DCA-L, however, the multiple genes encoding quinohemoprotein ADH and aryl ADH genes, and four ALDH genes are probably involved in the conversion processes. PMID:24916011

  5. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  6. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  7. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  8. How Acidic Is Carbonic Acid?

    PubMed

    Pines, Dina; Ditkovich, Julia; Mukra, Tzach; Miller, Yifat; Kiefer, Philip M; Daschakraborty, Snehasis; Hynes, James T; Pines, Ehud

    2016-03-10

    Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pK(a) of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pK(a) of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pK(a) units stronger and about 1 pK(a) unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions. PMID:26862781

  9. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax.

    PubMed

    Barrasa, Juan I; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2012-12-01

    A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.

  10. The Marine-Derived Fungus Clonostachys rosea, Source of a Rare Conjugated 4-Me-6E,8E-hexadecadienoic Acid Reducing Viability of MCF-7 Breast Cancer Cells and Gene Expression of Lipogenic Enzymes

    PubMed Central

    Dos Santos Dias, Ana Camila; Ruiz, Nicolas; Couzinet-Mossion, Aurélie; Bertrand, Samuel; Duflos, Muriel; Pouchus, Yves-François; Barnathan, Gilles; Nazih, Hassan; Wielgosz-Collin, Gaetane

    2015-01-01

    A marine-derived strain of Clonostachys rosea isolated from sediments of the river Loire estuary (France) was investigated for its high lipid production. The fungal strain was grown on six different culture media to explore lipid production changes. An original branched conjugated fatty acid, mainly present in triglycerides and mostly produced when grown on DCA (23% of total fatty acid composition). It was identified as 4-Me-6E,8E-hexadecadienoic on the basis of spectroscopic analyses. This fatty acid reduced viability of MCF-7 breast cancer cells in a dose dependent manner (up to 63%) at physiological free fatty acid human plasma concentration (100 μM). Reduction of gene expression of two lipogenic enzymes, the acetyl CoA carboxylase (ACC) and the fatty acid synthase (FAS) was evaluated to explore the mechanisms of action of 4-Me-6E,8E-16:2 acid. At 50 μM, 50% and 35% of mRNA gene expression inhibition were observed for ACC and FAS, respectively. PMID:26258780

  11. The Marine-Derived Fungus Clonostachys rosea, Source of a Rare Conjugated 4-Me-6E,8E-hexadecadienoic Acid Reducing Viability of MCF-7 Breast Cancer Cells and Gene Expression of Lipogenic Enzymes.

    PubMed

    Dias, Ana Camila Dos Santos; Ruiz, Nicolas; Couzinet-Mossion, Aurélie; Bertrand, Samuel; Duflos, Muriel; Pouchus, Yves-François; Barnathan, Gilles; Nazih, Hassan; Wielgosz-Collin, Gaetane

    2015-08-01

    A marine-derived strain of Clonostachys rosea isolated from sediments of the river Loire estuary (France) was investigated for its high lipid production. The fungal strain was grown on six different culture media to explore lipid production changes. An original branched conjugated fatty acid, mainly present in triglycerides and mostly produced when grown on DCA (23% of total fatty acid composition). It was identified as 4-Me-6E,8E-hexadecadienoic on the basis of spectroscopic analyses. This fatty acid reduced viability of MCF-7 breast cancer cells in a dose dependent manner (up to 63%) at physiological free fatty acid human plasma concentration (100 μM). Reduction of gene expression of two lipogenic enzymes, the acetyl CoA carboxylase (ACC) and the fatty acid synthase (FAS) was evaluated to explore the mechanisms of action of 4-Me-6E,8E-16:2 acid. At 50 μM, 50% and 35% of mRNA gene expression inhibition were observed for ACC and FAS, respectively. PMID:26258780

  12. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  13. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  14. Acid rain

    SciTech Connect

    Bess, F.D.

    1980-01-01

    The acid rain problem in the northeastern U.S. has been growing in severity and geographical areas affected. Acid rain has damaged, or will result in damage to visibility, physical structures and materials, aquatic life, timber, crops, and soils. The principal causes of acid rain in the northeastern U.S. are sulfur oxide and nitrogen oxide emissions from large power plants and smelters in the Ohio River Valley. Immediate corrective action and appropriate research are needed to reduce acid precipitation. Short-term programs that will define the rate of environmental deterioration, remaining environmental capacity to resist sudden deterioration, mechanisms of acid rain formation, and costs of various control options must be developed. (3 maps, 13 references, 1 table)

  15. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  16. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    SciTech Connect

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  17. LC-MSMS identification of Arabidopsis thaliana heat-stable seed proteins: enriching for LEA-type proteins by acid treatment.

    PubMed

    Oliveira, E; Amara, I; Bellido, D; Odena, M A; Domínguez, E; Pagès, M; Goday, A

    2007-11-01

    Protein identification in systems containing very highly abundant proteins is not always efficient and usually requires previous enrichment or fractionation steps in order to uncover minor proteins. In plant seeds, identification of late embryogenesis abundant (LEA) proteins is often masked by the presence of the large family of storage proteins. LEA-proteins are predicted to play a role in plant stress tolerance. They are highly hydrophilic proteins, generally heat-stable, and correlate with dehydration in seeds or vegetative tissues. In the present work, we analyze the protein composition of heat-stable Arabidopsis thaliana seed extracts after treatment with trichloroacetic acid (TCA). The composition of the proteins that precipitate and those that remain in solution in 3% TCA was analyzed by two different approaches: 1D SDS-PAGE coupled to LC-ESI-MSMS analysis and a gel-free protocol associated with LC-MALDI-MSMS. Our results indicate that treating total heat-soluble extracts with 3% TCA is an effective procedure to remove storage proteins by selective precipitation and this fractionation step provides a soluble fraction highly enriched in Lea-type proteins. The analysis and determination of protein identities in this acid-soluble fraction by MS technology is a suitable system for large-scale identification of Lea-proteins present in seeds.

  18. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  19. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  20. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  1. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  2. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  3. Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Caldarola, Dario; Onida, Barbara

    2012-11-01

    High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.

  4. Toxicokinetics and Oral Bioavailability of Halogenated Acetic Acids Mixtures in Naive and GSTzeta-Depleted Rats

    SciTech Connect

    Saghir, Shakil A.; Schultz, Irv R.

    2005-04-01

    Pharmacokinetics of halogenated acetic acid (HAA) mixtures in native and GSTzeta depleted rats was investigated. Rats were administered orally or i.v. to Mixture-1 (monobromo- dichloro-, chlorodibromo-, tribromo- acetic acids) or Mixture-2 (bromochloro-, dibromo-, trichloro- bromodichloro- acetic acids) at a dose of 25 ?mol/kg HAA and blood samples collected up to 36 h. GSTzeta depleted rats were also orally dosed with each mixture and euthanized at 0.25, 0.5, 1, 2 and 4 h to determine tissue distribution. In Mixture-1, GSTzeta depletion only affected the pharmacokinetics of DCAA, which increased the elimination t? from 9 min to 1.3 h. After oral administration, DCAA exhibited a complex time-course plasma profile with secondary peaks appearing long after completion of the initial absorption phase. This phenomenon coincided with elevated DCA levels in the lower portion of the GI tract compared to CDBAA and TBAA. For Mixture-2, all di-HAAs were eliminated extremely rapidly from plasma in both na?ve and GSTzeta depleted animals (t? was 4-11 min in na?ve and 11-24 min in GSTzeta depleted rats), t? of BDCAA and TCAA was 3.5 and 12 h in na?ve and 2.3 and 7.5 h in GSTzeta depleted rats. The primary difference in the pharmacokinetics among HAAs when administered as mixture was the total body clearance (Clb) which was reduced compared to after individual administration. These results suggest competitive interactions between tri- and di-HAAs beyond what would be predicted from individual HAA studies. For di-HAAs, the total dose is important as clearance is dose dependent due to competition for GSTzeta. When considering HAAs dosimetry, importance should be placed on both the components of the mixture and prior exposure history to di-HAAs.

  5. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  6. Radioautographic visualization of differences in the pattern of (/sup 3/H)uridine and (/sup 3/H)orotic acid incorporation into the RNA of migrating columnar cells in the rat small intestine

    SciTech Connect

    Uddin, M.; Altmann, G.G.; Leblond, C.P.

    1984-05-01

    The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after (/sup 3/H)uridine injection or by the de novo pathway as shown after (/sup 3/H)orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium - that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either (5-/sup 3/H)uridine or (5-/sup 3/H)orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloroacetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after (/sup 3/H)uridine and 72% after (/sup 3/H)orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A/sup +/ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after (/sup 3/H)uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant.

  7. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites.

    PubMed

    Hack, C Eric; Chiu, Weihsueh A; Jay Zhao, Q; Clewell, Harvey J

    2006-10-01

    Bayesian population analysis of a harmonized physiologically based pharmacokinetic (PBPK) model for trichloroethylene (TCE) and its metabolites was performed. In the Bayesian framework, prior information about the PBPK model parameters is updated using experimental kinetic data to obtain posterior parameter estimates. Experimental kinetic data measured in mice, rats, and humans were available for this analysis, and the resulting posterior model predictions were in better agreement with the kinetic data than prior model predictions. Uncertainty in the prediction of the kinetics of TCE, trichloroacetic acid (TCA), and trichloroethanol (TCOH) was reduced, while the kinetics of other key metabolites dichloroacetic acid (DCA), chloral hydrate (CHL), and dichlorovinyl mercaptan (DCVSH) remain relatively uncertain due to sparse kinetic data for use in this analysis. To help focus future research to further reduce uncertainty in model predictions, a sensitivity analysis was conducted to help identify the parameters that have the greatest impact on various internal dose metric predictions. For application to a risk assessment for TCE, the model provides accurate estimates of TCE, TCA, and TCOH kinetics. This analysis provides an important step toward estimating uncertainty of dose-response relationships in noncancer and cancer risk assessment, improving the extrapolation of toxic TCE doses from experimental animals to humans.

  8. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography.

    PubMed

    Tsai, Ying I; Hsieh, Li-Ying; Weng, Tzu-Hsiang; Ma, Yu-Chien; Kuo, Su-Ching

    2008-09-19

    This paper describes a novel gradient elution ion chromatographic method using a Dionex AS11 system for the determination of low molecular weight dicarboxylic acids (low-M(w) DCAs) in background atmospheric aerosol. Interference with the oxalic acid peak from sulfate in background PM(2.5) aerosol, 15.8 times the oxalic acid concentration, was remedied by removing sulfate using a barium cartridge, whilst interference with the malonic acid peak from carbonate was reduced by using a carbonate removal device. An alternative remedy to sulfate interference was use of an AS14 system using isocratic eluent, and this produced good resolution of oxalic acid from a high sulfate peak. In both the AS11 and the AS14 system, linear correlation coefficients were at all times >0.9990 with excellent linear range, the recoveries ranged from 92.8 to 106%, with relative standard deviation of 3.67-6.30%, whilst method detection limits (MDLs) ranged from 0.36microgL(-1) for malic acid to 3.87microgL(-1) for maleic acid. These data indicate that the analytical methods developed herein produce excellent separation efficiency and good determination of low-M(w) DCAs with satisfactory accuracy, recoveries, and MDLs. Samples left at room temperature (20 degrees C) for 300min in a simulation of the 'waiting time' involved in the proposed IC analysis decayed to between 86% (oxalic acid) and 39% (succinic and malonic acids) of their original concentration, whilst at 4 degrees C concentrations remained at 96-101% of original, indicating that maintaining samples at a low temperature prior to injection into the IC analyzer is vital for obtaining accurate results when analyzing low-M(w) DCAs. Oxalic acid was found to be the most prevalent low-M(w) DCA in background aerosol, comprising 57% of the total low-M(w) DCAs and 0.959% of the PM(2.5) aerosol mass, followed by succinic acid and malonic acid.

  9. Cystathionine γ-lyase, a H2S-generating enzyme, is a GPBAR1-regulated gene and contributes to vasodilation caused by secondary bile acids.

    PubMed

    Renga, Barbara; Bucci, Mariarosaria; Cipriani, Sabrina; Carino, Adriana; Monti, Maria Chiara; Zampella, Angela; Gargiulo, Antonella; d'Emmanuele di Villa Bianca, Roberta; Distrutti, Eleonora; Fiorucci, Stefano

    2015-07-01

    GPBAR1 is a bile acid-activated receptor (BAR) for secondary bile acids, lithocholic (LCA) and deoxycholic acid (DCA), expressed in the enterohepatic tissues and in the vasculature by endothelial and smooth muscle cells. Despite that bile acids cause vasodilation, it is unclear why these effects involve GPBAR1, and the vascular phenotype of GPBAR1 deficient mice remains poorly defined. Previous studies have suggested a role for nitric oxide (NO) in regulatory activity exerted by GPBAR1 in liver endothelial cells. Hydrogen sulfide (H2S) is a vasodilatory agent generated in endothelial cells by cystathionine-γ-lyase (CSE). Here we demonstrate that GPBAR1 null mice had increased levels of primary and secondary bile acids and impaired vasoconstriction to phenylephrine. In aortic ring preparations, vasodilation caused by chenodeoxycholic acid (CDCA), a weak GPBAR1 ligand and farnesoid-x-receptor agonist (FXR), was iberiotoxin-dependent and GPBAR1-independent. In contrast, vasodilation caused by LCA was GPBAR1 dependent and abrogated by propargyl-glycine, a CSE inhibitor, and by 5β-cholanic acid, a GPBAR1 antagonist, but not by N(5)-(1-iminoethyl)-l-ornithine (l-NIO), an endothelial NO synthase inhibitor, or iberiotoxin, a large-conductance calcium-activated potassium (BKCa) channels antagonist. In venular and aortic endothelial (HUVEC and HAEC) cells GPBAR1 activation increases CSE expression/activity and H2S production. Two cAMP response element binding protein (CREB) sites (CREs) were identified in the CSE promoter. In addition, TLCA stimulates CSE phosphorylation on serine residues. In conclusion we demonstrate that GPBAR1 mediates the vasodilatory activity of LCA and regulates the expression/activity of CSE. Vasodilation caused by CDCA involves BKCa channels. The GPBAR1/CSE pathway might contribute to endothelial dysfunction and hyperdynamic circulation in liver cirrhosis.

  10. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  11. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  12. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  13. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  14. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  16. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  17. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  18. [Hyaluronic acid].

    PubMed

    Pomarede, N

    2008-01-01

    Hyaluronic Acid (HA) is now a leader product in esthetic procedures for the treatment of wrinkles and volumes. The structure of HA, its metabolism, its physiological function are foremost breaking down then its use in aesthetic dermatology: steps of injection, possible side effects, benefits and downsides of the use of HA in aesthetic dermatology.

  19. The effects of extracellular citric acid acidosis on the viability, cellular adhesion capacity and protein synthesis of cultured human gingival fibroblasts.

    PubMed

    Lan, W C; Lan, W H; Chan, C P; Hsieh, C C; Chang, M C; Jeng, J H

    1999-06-01

    Root surface demineralization is widely used as an adjunct to periodontal treatment. To clarify the influence of citric acid root conditioning on periodontal wound healing, the effects of citric acid and associated extracellular acidosis on the viability (MTT assay), attachment and protein synthesis ([3H]-proline incorporation into trichloroacetic acid-precipitated proteins) of human gingival fibroblasts (GF) were investigated. A concentration of 47.6 mmol/L of citric acid (pH 2.3) in water led to total cell death within three minutes of incubation. Media containing 23.8 mmol/L and 47.6 mmol/L of citric acid exerted strong cytotoxicity (47 to 90 per cent of cell death) and inhibited protein synthesis (IC50 = 0.28 per cent) of GF within three hours of incubation. Incubation of cells in a medium containing 11.9 mmol/L of citric acid also suppressed the attachment and spreading of fibroblasts on culture plates and Type I collagen, with 58 per cent and 22 per cent of inhibition, respectively. Culture medium supplemented with 11.9, 23.8 and 47.6 mmol/L of citric acid also led to extracellular acidosis by decreasing the pH value from 7.5 to 6.3, 5.2 and 3.8, respectively. In addition, it was confirmed that the toxic effect of media containing citric acid was due to their acidity rather than the citrate content. Most of the citric acid-induced cell death could be prevented by adjusting the pH value of the culture medium to pH 7.5. Sodium citrate, at a concentration of 47.6 mmol/L, also exerted little cytotoxicity. The results suggested that toxicity of citric acid in specific stages of the healing process must be considered prior to its clinical application. Careful management of citric acid in order to avoid contact with tissue or the development of other demineralizing agents is important in enhancing periodontal wound healing.

  20. A novel, simple and inexpensive procedure for the simultaneous determination of iopamidol and p-aminohippuric acid for renal function assessment from plasma samples in awake rats.

    PubMed

    Rodríguez-Romero, Violeta; González-Villalva, Karla I; Reyes, José L; Franco-Bourland, Rebecca E; Guízar-Sahagún, Gabriel; Castañeda-Hernández, Gilberto; Cruz-Antonio, Leticia

    2015-03-25

    The purpose of the current study was to design, validate and implement a novel analytical method for the simultaneous plasma measurement of iopamidol and p-aminohippuric acid (PAH) to estimate renal function in awake rats. A reverse-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous measurement of iopamidol (for glomerular filtration rate estimation, GFR) and PAH (for tubular secretion determination, TS) was designed and validated using a C-18 column, 0.1M acetic acid-10% acetonitrile (90:10, v/v) as mobile phase, at a flow rate of 0.3 ml/min, and UV detection at 270 nm. Iopamidol (244.8 mg/kg) was administered intravenously followed immediately by sodium PAH (100 mg/kg) to healthy female Sprague-Dawley rats. Plasma samples obtained at 2.5, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min after drug administration were deproteinized with 2.5% trichloroacetic acid containing p-aminobenzoic acid as internal standard, and separated by the validated RP-HPLC method described above. The iopamidol and PAH chromatographic data were analyzed using a non-compartmental model. The results demonstrated that the RP-HPLC method was linear in ranges between 15-120 μg/ml and 2.5-120 μg/ml for iopamidol and PAH, respectively. Precision and accuracy were within 15% for both drugs. Recovery of iopamidol and PAH was 92% and 100%, respectively. Plasma iopamidol and PAH clearances in awake rats, estimates for GFR and TS, respectively, were 1.49±0.20 ml/min and 3.73±0.38 ml/min. In conclusion, the method here described is a simple and reliable procedure, for the simultaneous and time-saving determination of GFR and TS from plasma samples in the conscious rat.

  1. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  2. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  3. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  4. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  5. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  6. Chemical peeling.

    PubMed

    Forte, R; Hack, J; Jackson, I T

    1993-01-01

    This article explores the wide range of chemical facial peels, which include phenol, trichloroacetic acid, and alpha-hydroxy acids. The application of these substances will be described in addition to the contraindications to this type of treatment.

  7. THE DISTRIBUTION OF EDB, BENZENE, AND 1,2-DCA AT GASOLINE SPILL SITES

    EPA Science Inventory

    With assistance from the Association of State and Territorial Air and Solid Waste Management Officials (ASTSWMO), the U.S. EPA Office of Underground Storage Tanks (OUST) and the U.S. EPA Office of Research and Development (ORD) conducted a survey to determine the distribution of ...

  8. An Update on the EPA Study of Lead Scavengers (EDB and DCA)

    EPA Science Inventory

    In response to continued concerns about the concentrations of 1,2-dibromoethane (EDB) in ground water from spills of leaded gasoline, OUST formed a Lead Scavengers Team with assistance from ASTSWMO. ASTSWMO and EPA Regions solicited participation from state agencies. Analysis w...

  9. Updates on the EPA Study of Lead Scavengers (EDB and DCA)

    EPA Science Inventory

    In response to continued concerns about the concentrations of 1,2-dibromoethane (EDB) in ground water from spills of leaded gasoline, OUST formed a Lead Scavengers Team with assistance from ASTSWMO. ASTSWMO and EPA Regions solicited participation from state agencies. Analysis w...

  10. Precipitation: its acidic nature.

    PubMed

    Frohliger, J O; Kane, R

    1975-08-01

    A comparison of the free hydrogen ion concentration and the total hydrogen ion concentration of rain samples shows that rain is a weak acid. The weak acid nature of rain casts doubt on the concepts that the acidity of rain is increasing and that these increases are due to strong acids such as sulfuric acid.

  11. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  12. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... Below are symptoms of carbolic acid poisoning in different parts of the ... urine Decreased urine output No urine output EYES, EARS, ...

  13. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel is used to clear the bumps, lesions, and swelling caused by rosacea (a skin disease that ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat acne. Azelaic acid ...

  14. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  15. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  16. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  17. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  18. The hypocholesterolemic and antiatherogenic effects of Cholazol H, a chemically functionalized insoluble fiber with bile acid sequestrant properties in hamsters.

    PubMed

    Wilson, T A; Romano, C; Liang, J; Nicolosi, R J

    1998-08-01

    bile acids (39%, P < .001, and 28%, P < .002, respectively) relative to HCD. Also, there was a 48% (P < .002) and 65% (P < .001) greater fecal concentration of cholic acid (CA) for Cholazol H-treated hamsters compared with HCD- and CSTY-treated hamsters, respectively. Cholazol H also significantly increased fecal concentration of deoxycholic acid (DCA; 56%, P < .02) compared with HCD. In summary, Cholazol H is as effective as CSTY for prevention of diet-induced hypercholesterolemia and early atherosclerosis in hamsters.

  19. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  20. Bioconversions of ferulic acid, an hydroxycinnamic acid.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2006-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and is ester linked to arabinose, in various plant polysaccharides such as arabinoxylans and pectins. It is a precursor to vanillin, one of the most important aromatic flavor compound used in foods, beverages, pharmaceuticals, and perfumes. This article presents an overview of the various biocatalytic routes, focusing on the relevant biotransformations of ferulic acid using plant sources, microorganisms, and enzymes.

  1. Microdermabrasion with chemical peel.

    PubMed

    Kisner, A M

    2001-03-01

    Microdermabrasion is a popular, noninvasive superficial skin treatment. The author describes the benefits of microdermabrasion combined with a trichloroacetic acid peel to improve the appearance of moderately deep rhytids, acne scars, and photodamaged skin.

  2. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  3. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  4. Lactic acid test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  5. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  6. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  7. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  8. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  9. Zoledronic Acid Injection

    MedlinePlus

    ... acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and ... Zoledronic acid (Reclast) is also used to treat osteoporosis in men, and to prevent or treat osteoporosis ...

  10. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  11. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  12. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe ... discusses poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do ...

  13. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  14. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  16. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  17. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  18. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  19. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  20. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  1. Metabolism and Excretion of Trichloroethylene after Inhalation by Human Subjects

    PubMed Central

    Bartoníček, V.

    1962-01-01

    Eight volunteers were exposed to trichloroethylene vapour (1,042 μg./l.) for five hours; 51 to 64% of the inhaled trichloroethylene was retained. The concentration of trichloroethanol and trichloroacetic acid in the urine was studied daily for a three-week period; on the third day both metabolites were determined in faeces, sweat, and saliva. The concentration of trichloroacetic acid in plasma and red blood cells was studied on alternate days. Of the trichloroethylene retained, 38·0 to 49·7% was excreted in the urine as trichloroethanol and 27·4 to 35·7% as trichloroacetic acid. Of both metabolites 8·4% was excreted in the faeces. Sweat collected on the third day of the experiment contained 0·10 to 1·92 mg./100 ml. trichloroethanol and 0·15 to 0·35 mg./100 ml. trichloroacetic acid. In saliva the concentrations were 0·09 to 0·32 mg./100 ml. trichloroethanol and 0·10 to 0·15 mg./100 ml. trichloroacetic acid. The value of the expression trichloroethanol/trichloroacetic acid calculated in the urine within 22 days was within the range 1·15 to 1·81. PMID:13865497

  2. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  7. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  8. [Safety of folic acid].

    PubMed

    Ströhle, Alexander; Wolters, Maike; Hahn, Andreas

    2015-08-01

    Improving dietary folate intake is a central public health goal. However, critical voices have become louder warning of too high intake of folic acid. Safety concerns of a high folic acid exposure are usually limited to synthetic folic acid contained in drugs and food supplements. Against this background, the present article focuses on two matters: (a) How do the absorption and metabolism of synthetic folic acid differ from that of other folates? (b) How has the longterm safety of folic acid to be judged, especially regarding the risk of colorectal cancer, autism, asthma, impaired immune defence, masking vitamin B12 deficiency and interactions with the methotrexate metabolism?

  9. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  10. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  11. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  12. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  13. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  14. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  15. Comparison of Urinary Total Proteins by Four Different Methods.

    PubMed

    Yalamati, Padma; Karra, Madhu Latha; Bhongir, Aparna V

    2016-10-01

    The total proteins in human urine have been compared by sulfosalicylic acid, sulfosalicylic acid with sodium sulphate and trichloroacetic acid methods with pyrogallol red molybdate method as there are no studies found quantifying imprecision and bias components. Fresh urine of 36 patients was analyzed by four methods. Imprecision and inaccuracy were determined by repeated analysis and method comparison studies using correlation plots, Bland and Altman, and Passing and Bablok regression analyses respectively. The coefficient of variation was 5.07 % for pyrogallol red molybdate; 6.84 % for sulfosalicylic acid; 3.97 % for sulfosalicylic acid with sodium sulphate and 5.93 % for trichloroacetic acid methods. Bland and Altman analysis showed a bias of 5.8, 1.7 and -5.4 for pyrogallol red molybdate versus sulfosalicylic acid, sulfosalicylic acid with sodium sulphate and trichloroacetic acid methods respectively. Passing and Bablok regression revealed a constant bias for pyrogallol red molybdate versus all turbidimetric methods but a proportional bias only with trichloroacetic acid method. Sulfosalicylic acid with sodium sulphate method is preferred to sulfosalicylic acid and trichloroacetic acid methods. PMID:27605745

  16. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  17. Well acidizing compositions and methods

    SciTech Connect

    Swanson, B. L.

    1980-12-23

    Gelled acidic compositions suitable for matrix acidizing or fracture acidizing of subterranean formations are provided comprising water, a water-dispersible polymeric viscosifier such as a polymer of acrylamide, an acid, and a polyphenolic material such as lignite.

  18. Bile acids but not acidic acids induce Barrett's esophagus.

    PubMed

    Sun, Dongfeng; Wang, Xiao; Gai, Zhibo; Song, Xiaoming; Jia, Xinyong; Tian, Hui

    2015-01-01

    Barrett's esophagus (BE) is associated with the development of esophageal adenocarcinoma (EAC). Bile acids (BAs) refluxing into the esophagus contribute to esophageal injury, which results in BE and subsequent EAC. We developed two animal models to test the role of BAs in the pathogenesis of BE. We surgically generated BA reflux, with or without gastric acid, in rats. In a second experiment, we fed animals separately with BAs and gastric acid. Pathologic changes were examined and the expression of Muc2 and Cdx2 in BE tissue was tested by immunostaining. Inflammatory factors in the plasma, as well as differentiation genes in BE were examined through highly sensitive ELISA and semi-quantitative RT-PCR techniques. We found that BAs are sufficient for the induction of esophagitis and Barrett's-like metaplasia in the esophagus. Overexpression of inflammatory cells, IL-6, and TNF-α was observed both in animals fed with BAs and surgically generated BA reflux. Furthermore, elevated levels of Cdx2, Muc2, Bmp4, Kit19, and Tff2 (differentiation genes in BE) were found in BA-treated rats. In conclusion, BAs, but not gastric acid, are a major causative factor for BE. We confirmed that BAs contribute to the development of BE by inducing the inflammatory response in the esophagus. Inhibiting BAs may be a promising therapy for BE.

  19. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  20. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  1. Acid-Base Homeostasis.

    PubMed

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  2. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  3. Enzymatic gallic acid esterification.

    PubMed

    Weetal, H H

    1985-02-01

    Gallic acid esters of n-propyl and amyl alcohols have been produced by enzymatic synthesis in organic solvents using immobilized tannase. Studies indicate that maximum esterification of gallic acid occurs with amyl alcohol. The enzyme shows broad alcohol specificity. However, the enzyme exhibits absolute specificity for the acid portion of the ester. Studies were carried out on K(m), V(max), pH, and temperature optima.

  4. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  5. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  6. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  7. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  8. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  9. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  10. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  11. Uric acid - blood

    MedlinePlus

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  12. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  13. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  14. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  15. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  16. Salicylic Acid Topical

    MedlinePlus

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  17. Uric acid and hypertension.

    PubMed

    Feig, Daniel I

    2011-09-01

    A link between serum uric acid and the development of hypertension was first hypothesized in the 1870s. Although numerous epidemiologic studies in the 1980s and 1990s suggested an association, relatively little attention was paid to it until recently. Animal models have suggested a two-step pathogenesis by which uric acid initially activates the renin angiotensin system and suppresses nitric oxide, leading to uric acid-dependent increase in systemic vascular resistance, followed by a uric acid-mediated vasculopathy, involving renal afferent arterioles, resulting in a late sodium-sensitive hypertension. Initial clinical trials in young patients have supported these mechanisms in young patients but do not yet support pharmacologic reduction of serum uric acid as first-line therapy for hypertension.

  18. Biosynthesis of pulcherriminic acid

    PubMed Central

    MacDonald, J. C.

    1965-01-01

    1. Candida pulcherrima was grown on a complex medium to which various compounds had been added to determine their effect on the biosynthesis of pulcherriminic acid. Most of the pulcherriminic acid synthesized by C. pulcherrima PRL2019 was derived from the l-[1-14C]leucine added to the medium. 2. The cyclic dipeptide of l-leucine (cyclo-l-leucyl-l-leucyl) was shown, by trapping experiments involving cycloleucyl-leucyl isomers, to be synthesized by strain PRL2019. Cyclo-l-leucyl-l-leucyl was derived from l-leucine and was converted into pulcherriminic acid. Cyclo-l-leucyl-l-leucyl was a precursor of pulcherriminic acid in strain PRL2007 also. 3. The results supported the hypothesis that pulcherriminic acid is derived from l-leucine and that cyclo-l-leucyl-l-leucyl is an intermediate in the biosynthesis. PMID:5837792

  19. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers. PMID:25321346

  20. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  1. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  2. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  3. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  4. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  5. Understanding Acid Base Disorders.

    PubMed

    Gomez, Hernando; Kellum, John A

    2015-10-01

    The concentration of hydrogen ions is regulated in biologic solutions. There are currently 3 recognized approaches to assess changes in acid base status. First is the traditional Henderson-Hasselbalch approach, also called the physiologic approach, which uses the relationship between HCO3(-) and Pco2; the second is the standard base excess approach based on the Van Slyke equation. The third approach is the quantitative or Stewart approach, which uses the strong ion difference and the total weak acids. This article explores the origins of the current concepts framing the existing methods to analyze acid base balance.

  6. Acid rain and soil.

    PubMed

    vanLoon, G W

    1984-08-01

    A summary of important chemical properties of soil is given and the way in which acid rain may affect these properties is discussed. Acid rain may suppress microbiological decomposition and nitrification processes, thus influencing the nutrient status of soils. It has also been found that soil organic matter is less soluble in more acid solutions. Changed nutrient availability patterns are predicted in a low pH environment and enhanced leaching of essential elements from the soil exchange complex has been observed. Increased solubility of potentially toxic elements such as aluminium may also occur from soils which have been exposed to acidified rainfall.

  7. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  8. Pantothenic acid and biotin

    MedlinePlus

    ... well as other nutrients, are provided in the Dietary Reference Intakes (DRIs) developed by the Food and Nutrition Board ... level that is thought to ensure enough nutrition. Dietary Reference Intakes for pantothenic acid: Age 0 to 6 months: ...

  9. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  10. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  11. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  12. Nitric acid poisoning

    MedlinePlus

    Symptoms from swallowing nitric acid may include: Abdominal pain - severe Burns to skin or mouth Drooling Fever Mouth pain - severe Rapid drop in blood pressure (shock) Throat swelling, which leads to breathing difficulty ...

  13. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated. PMID:27189091

  14. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  15. Hyaluronic acid fillers.

    PubMed

    Monheit, Gary D; Coleman, Kyle M

    2006-01-01

    Although hyaluronic acids are a relatively new treatment for facial lines and wrinkles, they have provided numerous advances in the area of cosmetic surgery. This article discusses the inherent properties of hyaluronic acid fillers that make them ideal for treatment of facial lines. It encompasses a review of the current literature on U.S. Food and Drug Administration-approved hyaluronic acid fillers and the role that each of these fillers currently has in facial cosmetics. This article also discusses the potential pitfalls and adverse effects that can be associated with using hyaluronic acids for filling facial lines. Finally, it serves as an overview of current techniques for clinical assessment of patients as well as administration and treatment of facial lines and wrinkles.

  16. Boric acid poisoning

    MedlinePlus

    Borax poisoning ... The main symptoms of boric acid poisoning are blue-green vomit, diarrhea, and a bright red rash on the skin. Other symptoms may include: Blisters Collapse Coma Convulsions Drowsiness ...

  17. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  18. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  19. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  20. (Acid rain workshop)

    SciTech Connect

    Turner, R.S.

    1990-12-05

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  1. Folic acid in diet

    MedlinePlus

    ... a regular supply of the vitamin in the foods you eat. ... vitamins have been added to the food. Many foods are now fortified with folic acid. Some of these are enriched breads, cereals, flours, ...

  2. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  3. Citric acid urine test

    MedlinePlus

    ... The test is used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The ... level of citric acid may mean renal tubular acidosis and a tendency to form calcium kidney stones. ...

  4. Folic Acid Quiz

    MedlinePlus

    ... more easily than natural food folate. Close × Answer: D CORRECT: Folic acid reduces the risk for spina ... g., orange juice and green vegetables). Close × Answer: D CORRECT: Spina bifida and anencephaly are neural tube ...

  5. Hydrofluoric acid poisoning

    MedlinePlus

    ... your skin or eyes, you may have: Blisters Burns Pain Vision loss Hydrofluoric acid poisoning can have ... urine tests Camera down the throat to see burns in the esophagus and the stomach (endoscopy) Fluids ...

  6. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  7. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  8. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  9. Utilization of acid tars

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Aminov, A.N.

    1987-01-01

    Freshly produced acid tar (FPAT), obtained as refinery waste in treating petroleum oils with sulfuric acid and oleum, contains 80% or more sulfuric acid. Of such tars, pond acid tars, which contain up to 80% neutral petroleum products and sulfonated resins, are more stable, and have found applications in the production of binders for paving materials. In this article the authors are presenting results obtained in a study of the composition and reactivity of FPAT and its stability in storage in blends with asphalts obtained in deasphalting operations, and the possibility of using the FPAT in road construction has been examined. In this work, wastes were used which were obtained in treating the oils T-750, KhF-12, I-8A, and MS-14. Data on the change in group chemical composition of FPAT are shown, and the acidity, viscosity, needle penetration, and softening point of acid tars obtained from different grades of oils are plotted as functions of the storage time. It is also shown that the fresh and hardened FPATs differ in their solubilities in various solvents.

  10. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  11. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  12. Using Mode of Action to Assess Health Risks from Mixtures of Chemical/Physical Agents

    SciTech Connect

    Bull, Richard J.; Lei, Xingye C.; Sasser, Lyle B.

    2003-01-20

    Interactions between tumor promoters with differing mechanisms of action were examined in male B6C3F1 mice treated with mixtures of dichloroacetate (DCA), trichloroacetate (TCA), and tetrachloride (CT), each of which acts by a different mode of action. Mice were initiated by vinyl carbamate (VC), and then promoted by DCA, TCA, CT, or the pair-wised combinations of the three compounds. The effect of each treatment or treatment combination on tumor number/animal and tumor size was individually assessed at 18, 24, 30 or 36 weeks of treatment. Dose-related increases in tumor size were observed with 20 & 50 mg/kg CT, but each produced equal number of tumors at 36 weeks with the main distinction being a decrease in tumor latency at the higher dose. Overall TCA treatment produced dose-related increases in tumor number at 36 weeks of treatment. Thus, the lower doses of CT and TCA treatments apparently affected tumor size rather than number. Results with DCA were not as clear as a true maximum tumor number was not clearly observed within the experimental period. Treatment of mice receiving a high dose of TCA (2 g/L of drinking water) combined with varying doses of DCA (0.1, 0.5 and 2 g/L) produced increased numbers of tumors at 24 weeks and 36 weeks. However, at 36 weeks of treatment DCA produced a dose-related decrease in the size of tumors promoted by TCA. The low dose of TCA (0.1 g/L) decreased the number of tumors produced by a high dose of DCA, however, higher doses of TCA produced the same number as observed with DCA alone. Since these two chemicals produce lesions with differing phenotypes, the combination would have been expected to be additive with respect to number, but this was obviously not the case. These data suggest that the induction of liver cancer from mixtures of solvents may have predictable outcomes. The major conclusion is that these interactions are generally no more than additive. It was most interesting to note that additivity was only observed when

  13. Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol.

    PubMed

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2015-12-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (-)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  14. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    PubMed Central

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  15. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  16. Boric acid catalyzed chemoselective esterification of alpha-hydroxycarboxylic acids.

    PubMed

    Houston, Todd A; Wilkinson, Brendan L; Blanchfield, Joanne T

    2004-03-01

    Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule. [reaction: see text

  17. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  18. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  19. Analysis of Bile Acids

    NASA Astrophysics Data System (ADS)

    Sjövall, Jan; Griffiths, William J.; Setchell, Kenneth D. R.; Mano, Nariyasu; Goto, Junichi

    Bile acids constitute a large family of steroids in vertebrates, normally formed from cholesterol and carrying a carboxyl group in a side-chain of variable length. Bile alcohols, also formed from cholesterol, have similar structures as bile acids, except for the absence of a carboxyl group in the steroid skeleton. The conversion of cholesterol to bile acids and/or bile alcohols is of major importance for maintenance of cholesterol homeostasis, both from quantitative and regulatory points of view (Chiang, 2004; Kalaany and Mangelsdorf, 2006; Moore, Kato, Xie, et al., 2006; Scotti, Gilardi, Godio, et al., 2007). Appropriately conjugated bile acids and bile alcohols (also referred to as bile salts) are secreted in bile and serve vital functions in the absorption of lipids and lipid-soluble compounds (Hofmann, 2007). Reliable analytical methods are required for studies of the functions and pathophysiological importance of the variety of bile acids and bile alcohols present in living organisms. When combined with genetic and proteomic studies, analysis of these small molecules (in today's terminology: metabolomics, steroidomics, sterolomics, cholanoidomics, etc.) will lead to a deeper understanding of the integrated metabolic processes in lipid metabolism.

  20. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  1. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  2. Acid sludge utilization

    SciTech Connect

    Suarez, M.

    1980-09-01

    The Peak Oil Company of Tampa, Florida, in cooperation with the United States Department of Energy, has completed an initial study for the incorporation of acid-sludge derived from the rerefining of used lubricating oil into a useful and salable building material. Both bricks and paving materials have been produced using a formulation developed by Peak. Equipment has been designed and constructed for the specific purpose of preparing emulsions containing the acid-sludge, which is a vital ingredient in the final formulation. Testing of products obtained from these initial efforts shows that the acid in the sludge has been effectively neutralized and that heavy metals are not leached from the bricks or paving material in normal testing. While some properties of the building materials that incorporate the acid-sludge by-product are below standards for clay and shale brick, uses are defined for the product as is, and there is some promise of eventual production of building materials that meet all specifications for competitive materials. Initial cost estimations are encouraging, indicating that a profit can be derived by converting a hazardous and noxious by-product of rerefining to a construction material. Acid-sludge has presented a complex and costly disposal problem to the industry resulting in a serious depletion in the capacity for rerefining used lubricating oil.

  3. Domoic acid epileptic disease.

    PubMed

    Ramsdell, John S; Gulland, Frances M

    2014-03-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  4. Domoic Acid Epileptic Disease

    PubMed Central

    Ramsdell, John S.; Gulland, Frances M.

    2014-01-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  5. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  6. DOCOSAHEXAENOIC ACID AND ARACHIDONIC ACID PREVENT ESSENTIAL FATTY ACID DEFICIENCY AND HEPATIC STEATOSIS

    PubMed Central

    Le, Hau D.; Meisel, Jonathan A.; de Meijer, Vincent E.; Fallon, Erica M.; Gura, Kathleen M.; Nose, Vania; Bistrian, Bruce R.; Puder, Mark

    2012-01-01

    Objectives Essential fatty acids are important for growth, development, and physiologic function. Alpha-linolenic acid and linoleic acid are the precursors of docosahexaenoic and arachidonic acid, respectively, and have traditionally been considered the essential fatty acids. However, we hypothesized that docosahexaenoic acid and arachidonic acid can function as the essential fatty acids. Methods Using a murine model of essential fatty acid deficiency and consequent hepatic steatosis, we provided mice with varying amounts of docosahexaenoic and arachidonic acids to determine whether exclusive supplementation of docosahexaenoic and arachidonic acids could prevent essential fatty acid deficiency and inhibit or attenuate hepatic steatosis. Results Mice supplemented with docosahexaenoic and arachidonic acids at 2.1% or 4.2% of their calories for 19 days had normal liver histology and no biochemical evidence of essential fatty acid deficiency, which persisted when observed after 9 weeks. Conclusion Supplementation of sufficient amounts of docosahexaenoic and arachidonic acids alone without alpha-linolenic and linoleic acids meets essential fatty acid requirements and prevents hepatic steatosis in a murine model. PMID:22038210

  7. Biodegradation of cyanuric acid.

    PubMed

    Saldick, J

    1974-12-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO(2) and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand.

  8. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  9. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  10. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  11. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  12. Acid Precipitation; (USA)

    SciTech Connect

    Rushing, J.W.; Hicks, S.C.

    1991-01-01

    This publication, Acid Precipitation (APC) announces on a monthly basis the current worldwide information on acid precipitation and closely related subjects, including wet and dry deposition, long-range transport, environmental effects, modeling, and socioeconomic factors. Information on the following subjects is included within the scope of this publication, but all subjects may not appear in each issue: Pollution sources and pollution control technology; atmospheric transport and chemistry; terrestrial transport and chemistry; aquatic transport and chemistry; biological effects; corrosive effects; and socioeconomics, policy, and legislation.

  13. Whither acid rain?

    PubMed

    Brimblecombe, P

    2001-04-01

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  14. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  15. Fatty acids of Thiobacillus thiooxidans.

    PubMed

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  16. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  17. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  18. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    PubMed

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  19. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  20. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  1. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  2. Orphenadrinium picrate picric acid

    PubMed Central

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.

    2010-01-01

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, π⋯π inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426

  3. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  4. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  5. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  6. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  7. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  8. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  9. Targeting tumor acidity

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Yana K.; Engelman, Donald M.; Andreev, Oleg A.

    2012-02-01

    One of the main features of solid tumors is extracellular acidity, which correlates with tumor aggressiveness and metastatic potential. We introduced novel approach in targeting of acidic tumors, and translocation of cell-impermeable cargo molecules across cellular membrane. Our approach is based on main principle of insertion and folding of a polypeptide in lipid bilayer of membrane. We have identified family of pH Low Insertion Peptides (pHLIPs), which are capable spontaneous insertion and folding in membrane at mild acidic conditions. The affinity of peptides of pHLIP family to membrane at low pH is several times higher than at neutral pH. The process of peptides folding occurs within milliseconds. The energy released in a result of folding (about 2 kcal/mol) could be used to move polar cargo across a membrane, which is a novel concept in drug delivery. pHLIP peptides could be considered as a pH-sensitive single peptide molecular transporters and conjugated with imaging probes for fluorescence, MR, PET and SPECT imaging, they represent a novel in vivo marker of acidity. The work is supported by NIH grants CA133890 and GM073857 to OAA, DME, YRK.

  10. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  11. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  12. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  13. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  14. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  15. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  16. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  17. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  18. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  19. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  20. Treatment of Bile Acid Amidation Defects with Glycocholic Acid

    PubMed Central

    Heubi, James E.; Setchell, Kenneth D.R.; Jha, Pinky; Buckley, Donna; Zhang, Wujuan; Rosenthal, Philip; Potter, Carol; Horslen, Simon; Suskind, David

    2014-01-01

    Bile acid amidation defects were predicted to present with fat/fat soluble vitamin malabsorption with minimal cholestasis. We identified and treated 5 patients (1 male/4 females) from 4 families with defective bile acid amidation due to a genetically confirmed deficiency in bile acid CoA:amino acid N-acyl transferase (BAAT) with the conjugated bile acid, glycocholic acid (GCA). Fast atom bombardment-mass spectrometry analysis of urine and bile at baseline revealed predominantly unconjugated cholic acid and absence of the usual glycine and taurine conjugated primary bile acids. Treatment with 15 mg/kg GCA resulted in total duodenal bile acid concentrations of 23.3 ± 19.1 mmol/L (mean ± SD) and 63.5 ± 4.0% of the bile acids were secreted in bile in the conjugated form of which GCA represented 59.6 ± 9.3% of the total biliary bile acids. Unconjugated cholic acid continued to be present in high concentrations in bile because of partial intestinal deconjugation of orally administered GCA. Serum total bile acid concentrations did not significantly differ between pretreatment and post-treatment samples and serum contained predominantly unconjugated cholic acid. These findings confirmed efficient intestinal absorption, hepatic extraction and biliary secretion of the administered GCA. Oral tolerance tests for vitamin D2 (1000 IU vitamin D2/kg) and tocopherol (100 IU/kg tocopherol acetate) demonstrated improvement in fat-soluble vitamin absorption after GCA treatment. Growth improved in 3/3 growth-delayed prepubertal patients. Conclusions: Oral glycocholic acid therapy is safe and effective in improving growth and fat-soluble vitamin absorption in children and adolescents with inborn errors of bile acid metabolism due to amidation defects. PMID:25163551

  1. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  2. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  3. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  4. Usnic acid controls the acidity tolerance of lichens.

    PubMed

    Hauck, Markus; Jürgens, Sascha-René

    2008-11-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK(a1) value of usnic acid of 4.4. Below this optimum pH, dissolved SO(2) reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH

  5. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  6. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  7. [Progress in glucaric acid].

    PubMed

    Qiu, Yuying; Fang, Fang; Du, Guocheng; Chen, Jian

    2015-04-01

    Glucaric acid (GA) is derived from glucose and commonly used in chemical industry. It is also considered as one of the "Top value-added chemicals from biomass" as carbohydrate monomers to produce various synthetic polymers and bioenergy. The demand for GA in food manufacture is increasing. GA has also attracted public attentions due to its therapeutic uses such as regulating hormones, increasing the immune function and reducing the risks of cancers. Currently GA is produced by chemical oxidation. Research on production of GA via microbial synthesis is still at preliminary stage. We reviewed the advances of glucaric acid applications, preparation and quantification methods. The prospects on production of GA by microbial fermentation were also discussed. PMID:26380405

  8. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  9. Industrial ecotoxicology "acid rain".

    PubMed

    Astolfi, E; Gotelli, C; Higa, J

    1986-01-01

    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent. PMID:3758667

  10. Industrial ecotoxicology "acid rain".

    PubMed

    Astolfi, E; Gotelli, C; Higa, J

    1986-01-01

    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent.

  11. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  12. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  13. Acid rain in Asia

    SciTech Connect

    Bhatti, N.; Streets, D.G. ); Foell, W.K. )

    1991-01-01

    Acid rain has been an issue of widespread concern in North America and Europe for more than fifteen years. However, there is an emerging feeling that the problem in Europe and North America is nearing solution, largely as a result of existing and newly enacted legislation, decreased energy use due to conservation and efficiency improvements, and/or trends in energy policy away from fossil fuels. The situation in Asia appears much bleaker. Fossil fuels are already used in large quantities, such that local air pollution is becoming a serious problem and high deposition levels are being measured. Emission regulations in most countries (with the notable exception of Japan) are not very stringent. Energy plans in many countries (particularly PRC, India, Thailand, and South Korea) call for very large increases in coal combustion in the future. Finally, there is not presently a strong scientific or public constituency for action to mitigate the potential effects of acid deposition. These factors imply potentially serious problems in the future for long-range transport and deposition of sulfur and nitrogen species and consequent damage to ecosystems and materials. The political ramifications of transboundary environmental pollution in this region are also potentially serious. The purpose of this paper is to provide background information on the acid deposition situation in Asia, with the intention of laying the foundation for the development of a possible research program for this region. 36 refs., 8 figs., 8 tabs.

  14. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  15. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  16. Folic Acid Questions and Answers

    MedlinePlus

    ... swallow large pills. How can I take a vitamin with folic acid? A : These days, multivitamins with folic acid come in chewable chocolate or fruit flavors, liquids, and large oval or smaller round ...

  17. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  18. Acid rain: Reign of controversy

    SciTech Connect

    Kahan, A.M.

    1986-01-01

    Acid Rain is a primer on the science and politics of acid rain. Several introductory chapters describe in simple terms the relevant principles of water chemistry, soil chemistry, and plant physiology and discuss the demonstrated or postulated effects of acid rain on fresh waters and forests as well as on statuary and other exposed objects. There follow discussions on the economic and social implications of acid rain (for example, possible health effects) and on the sources, transport, and distribution of air pollutants.

  19. Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of 'Royal Gala' apple after long-term storage.

    PubMed

    Both, Vanderlei; Thewes, Fabio Rodrigo; Brackmann, Auri; de Oliveira Anese, Rogerio; de Freitas Ferreira, Daniele; Wagner, Roger

    2017-01-15

    The effects of dynamic controlled atmosphere (DCA) storage based on chlorophyll fluorescence (DCA-CF) and respiratory quotient (DCA-RQ) on the quality and volatile profile of 'Royal Gala' apple were evaluated. DCA storage reduces ACC (1-aminocyclopropane-1-carboxylate) oxidase activity, ethylene production and respiration rate of apples stored for 9months at 1.0°C plus 7days at 20°C, resulting in higher flesh firmness, titratable acidity and lesser physiological disorders, and provided a higher proportion of healthy fruit. Storage in a regular controlled atmosphere gave higher levels of key volatiles (butyl acetate, 2-methylbutyl acetate and hexyl acetate), as compared to fruit stored under DCA-CF, but fruit stored under DCA-RQ 1.5 and RQ 2.0 also showed higher amounts of key volatile compounds, with increment in ethanol and ethyl acetate, but far below the odour threshold. Storage in DCA-CF reduces fruit ester production, especially 2-methylbutyl acetate, which is the most important component of 'Royal Gala' apple flavour. PMID:27542502

  20. Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of 'Royal Gala' apple after long-term storage.

    PubMed

    Both, Vanderlei; Thewes, Fabio Rodrigo; Brackmann, Auri; de Oliveira Anese, Rogerio; de Freitas Ferreira, Daniele; Wagner, Roger

    2017-01-15

    The effects of dynamic controlled atmosphere (DCA) storage based on chlorophyll fluorescence (DCA-CF) and respiratory quotient (DCA-RQ) on the quality and volatile profile of 'Royal Gala' apple were evaluated. DCA storage reduces ACC (1-aminocyclopropane-1-carboxylate) oxidase activity, ethylene production and respiration rate of apples stored for 9months at 1.0°C plus 7days at 20°C, resulting in higher flesh firmness, titratable acidity and lesser physiological disorders, and provided a higher proportion of healthy fruit. Storage in a regular controlled atmosphere gave higher levels of key volatiles (butyl acetate, 2-methylbutyl acetate and hexyl acetate), as compared to fruit stored under DCA-CF, but fruit stored under DCA-RQ 1.5 and RQ 2.0 also showed higher amounts of key volatile compounds, with increment in ethanol and ethyl acetate, but far below the odour threshold. Storage in DCA-CF reduces fruit ester production, especially 2-methylbutyl acetate, which is the most important component of 'Royal Gala' apple flavour.

  1. Sedimentation of sulfuric acid in acid tars from current production

    SciTech Connect

    Denisova, T.L.; Frolov, A.F.; Aminov, A.N.; Novosel'tsev, S.P.

    1987-09-01

    Acid tars obtained in treating T-750, KhF-12, and I-8A oils were investigated for purposes of recovering sulfuric acid and asphalt binders from the compositions and of determining the effects of storage time on the recovery. The consumption and sedimentation levels of sulfuric acid during storage for different periods and at different temperatures were assessed. The characteristics of an asphalt binder obtained by neutralizing acid tar with a paste consisting of asphalts from deasphalting operations and slaked lime, followed by oxidation of the mixture with atmospheric air, were determined. The sulfuric acid recovered in the settling process could be burned in order to purify it of organic contaminants.

  2. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-01

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  3. Nervonic acid and demyelinating disease.

    PubMed

    Sargent, J R; Coupland, K; Wilson, R

    1994-04-01

    Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids such as 26:0 stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Long chain monoenoic acids such as erucic acid, 22:1(n-9), can normalise elevated serum levels of 26:0 in ALD by depressing their biosynthesis from shorter chain saturated fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. Increased levels of 26:0 are accompanied by decreased nervonic acid biosynthesis in skin fibroblasts from ALD patients. Sphingolipids from post mortem MS brain have the same decreased 24:1(n-9) and increased 18:0 seen in post mortem ALD brain. The 24:1(n-9) content of sphingomyelin is depressed in erythrocytes from multiple sclerosis (MS) patients. Defects in the microsomal biosynthesis of very long chain fatty acids including 24:1(n-9) in 'jumpy' and 'quaking' mice are accompanied by impaired myelination. An impairment in the provision of nervonic acid in demyelinating diseases is indicated, suggesting that dietary therapy with oils rich in very long chain monenoic acid fatty acids may be beneficial in such conditions.

  4. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  5. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  6. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  7. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  8. Heterogeneous uptake of amines by citric acid and humic acid.

    PubMed

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  9. Composition for nucleic acid sequencing

    SciTech Connect

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  10. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. PMID:19560175

  11. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  12. Microbial transformations of isocupressic acid.

    PubMed

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  13. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  14. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  15. The politics of acid rain

    SciTech Connect

    Wilcher, M.E. )

    1989-01-01

    This work examines and compares the acid rain policies through the different political systems of Canada, Great Britain and the United States. Because the flow of acid rain can transcend national boundaries, acid rain has become a crucial international problem. According to the author, because of differences in governmental institutions and structure, the extent of governmental intervention in the industrial economy, the degree of reliance on coal for power generation, and the extent of acid rain damage, national responses to the acid rain problem have varied.

  16. [A catalogue of fatty acids].

    PubMed

    Canalejo, E; Martín Peña, G; Gómez Molero, L; Ruiz Galiana, J

    1996-01-01

    Fatty acids structure and function is an area of renewed interest because of its effects on plasma lipids, biosynthesis of prostaglandins, leucotrienes and thromboxanes, and the obligatory demands of some fatty acids, especially for the newborn. Fatty acids are identified in three different ways: by the classical nomenclature, by its trivial name, and by the new methods also known as the omega system. These three different methods have created some confusion. The aim of this article is to revise fatty acids chemical structure and to compile a list of nutritional important fatty acids with the three different terminologies.

  17. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  18. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  19. Mycophenolic Acid in Silage

    PubMed Central

    Schneweis, Isabell; Meyer, Karsten; Hörmansdorfer, Stefan; Bauer, Johann

    2000-01-01

    We examined 233 silage samples and found that molds were present in 206 samples with counts between 1 × 103 and 8.9 × 107 (mean, 4.7 × 106) CFU/g. Mycophenolic acid, a metabolite of Penicillium roqueforti, was detected by liquid chromatography-mass spectrometry in 74 (32%) of these samples at levels ranging from 20 to 35,000 (mean, 1,400) μg/kg. This compound has well-known immunosuppressive properties, so feeding with contaminated silage may promote the development of infectious diseases in livestock. PMID:10919834

  20. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  1. Beyond acid rain

    SciTech Connect

    Gaffney, J.S.; Streit, G.E.; Spall, W.D.; Hall, J.H.

    1987-06-01

    This paper discussed the effects of the interactions of soluble oxidants and organic toxins with sulfur dioxide and nitrogen dioxide. It suggested that these chemical reactions in the atmosphere produced a more potent acid rain which was harmful not only because it had a low pH but because it contained oxidants and organic toxins which were harmful to surface vegetation and the organisms found in surface waters. It was stressed that air pollution is a global problem and that is is necessary to develop a better fundamental understanding of how air pollution is causing damage to the streams and forests of the world. 50 references.

  2. Interstellar isothiocyanic acid

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Linke, R. A.; Thaddeus, P.

    1979-01-01

    Isothiocyanic acid (HNCS) has been identified in Sgr B2 from millimeter-wave spectral line observations. We have definitely detected three rotational lines, and have probably detected two others. The rotational temperature of HNCS in Sgr B2 is 14 plus or minus 5 K, its column density is 2.5 plus or minus 1.0 x 10 to the 13th per sq cm, and its abundance relative to HNCO is consistent with the cosmic S/O ratio, 1/42.

  3. 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids and blood pressure.

    PubMed

    McGiff, J C; Quilley, J

    2001-03-01

    The properties of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids, vasoactivity and modulation of ion transport and mediation/modulation of the effects of vasoactive hormones, such as angiotensin II and endothelin, underscore their importance to renal vascular mechanisms and electrolyte excretion. 20-Hydroxyeicosatetraenoic acid is an integral component of renal autoregulation and tubuloglomerular feedback as well as cerebral autoregulation, eliciting vasoconstriction by the inhibition of potassium channels. Nitric oxide inhibits 20-hydroxyeicosatetraenoic acid formation, the removal of which contributes to the vasodilator effect of nitric oxide. In contrast, epoxyeicosatrienoic acids are generally vasodilatory by activating potassium channels and have been proposed as endothelium-derived hyperpolarizing factors. 20-Hydroxyeicosatetraenoic acid modulates ion transport in key nephron segments by influencing the activities of sodium--potassium-ATPase and the sodium--potassium--chloride co-transporter; however, the primacy of the various arachidonate oxygenases that generate products affecting these activities changes with age. The range and diversity of activity of 20-hydroxyeicosatetraenoic acid is influenced by its metabolism by cyclooxygenase to products affecting vasomotion and salt/water excretion. 20-Hydroxyeicosatetraenoic acid is the principal renal eicosanoid that interacts with several hormonal systems that are central to blood pressure regulation. This article reviews the most recent studies that address 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in vascular and renal tubular function and hypertension.

  4. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  5. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  6. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  7. Cryoprotection from lipoteichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  8. Bicyclic glutamic acid derivatives.

    PubMed

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide. PMID:16596563

  9. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification. PMID:24951289

  10. Titration of phosphonic acid derivatives in mixtures.

    PubMed

    Wittmann, Z

    1980-01-01

    An analytical procedure is described for the determination of the weak acids phosphonomethyliminodiacetic acid and phosphonomethyliminoacetic acid in their mixtures, and the dissociation constants of phosphonomethyliminoacetic acid are reported.

  11. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  12. Determination of benzoic acid, chlorobenzoic acids and chlorendic acid in water

    SciTech Connect

    Dietz, E.A.; Cortellucci, N.J.; Singley, K.F. )

    1993-01-01

    To characterize and conduct treatment studies of a landfill leachate an analysis procedure was required to determine concentrations of benzoic acid, the three isomers of chlorobenzoic acid and chlorendic acid. The title compounds were isolated from acidified (pH 1) water by extraction with methyl t-butyl ether. Analytes were concentrated by back-extracting the ether with 0.1 N sodium hydroxide which was separated and acidified. This solution was analyzed by C[sub 18] reversed-phase HPLC with water/acetonitrile/acetic acid eluent and UV detection at 222 nm. The method has detection limits of 200 [mu]g/L for chlorendic acid and 100 [mu]g/L for benzoic acid and each isomer of chlorobenzoic acid. Validation studies with water which was fortified with the analytes at concentrations ranging from one to ten times detection limits resulted in average recoveries of >95%.

  13. Acid rain: Rhetoric and reality

    SciTech Connect

    Park, C.C.

    1987-01-01

    Acid rain is now one of the most serious environmental problems in developed countries. Emissions and fallout were previously extremely localized, but since the introduction of tall stacks policies in both Britain and the US - pardoxically to disperse particulate pollutants and hence reduce local damage - emissions are now lifted into the upper air currents and carried long distances downwind. The acid rain debate now embraces many western countries - including Canada, the US, England, Scotland, Wales, Sweden, Norway, Denmark, West Germany, the Netherlands, Austria, Switzerland - and a growing number of eastern countries - including the Soviet Union, Poland, East Germany, and Czechoslovakia. The problem of acid rain arises, strictly speaking, not so much from the rainfall itself as from its effects on the environment. Runoff affects surface water and groundwater, as well as soils and vegetation. Consequently changes in rainfall acidity can trigger off a range of impacts on the chemistry and ecology of lakes and rivers, soil chemistry and processes, the health and productivity of plants, and building materials, and metallic structures. The most suitable solutions to the problems of acid rain require prevention rather than cure, and there is broad agreement in both the political scientific communities on the need to reduce emissions of sulfur and nitrogen oxides to the atmosphere. Book divisions discuss: the problem of acid rain, the science of acid rain, the technology of acid rain, and the politics of acid rain, in an effort to evaluate this growing global problem of acid rain.

  14. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  15. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  16. Bile acid interactions with cholangiocytes.

    PubMed

    Xia, Xuefeng; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; LeSage, Gene

    2006-06-14

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2) is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3, an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, Ostalpha-Ostbeta. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliary plexus back to hepatocytes for re-secretion into bile. This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines. Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and extracellular signal-regulated protein kinase (ERK) intracellular signals. Bile acids significantly alter cholangiocyte secretion, proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals, and in some instances trigger opposing effects on cholangiocyte

  17. Citric acid production patent review.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G; Kamzolova, Svetlana V; Finogenova, Tatiana V

    2008-01-01

    Current Review article summarizes the developments in citric acid production technologies in East and West last 100 years. Citric acid is commercially produced by large scale fermentation mostly using selected fungal or yeast strains in aerobe bioreactors and still remains one of the runners in industrial production of biotechnological bulk metabolites obtained by microbial fermentation since about 100 years, reflecting the historical development of modern biotechnology and fermentation process technology in East and West. Citric acid fermentation was first found as a fungal product in cultures of Penicillium glaucum on sugar medium by Wehmer in 1893. Citric acid is an important multifunctional organic acid with a broad range of versatile uses in household and industrial applications that has been produced industrially since the beginning of 20(th) century. There is a great worldwide demand for citric acid consumption due to its low toxicity, mainly being used as acidulant in pharmaceutical and food industries. Global citric acid production has reached 1.4 million tones, increasing annually at 3.5-4.0% in demand and consumption. Citric acid production by fungal submerged fermentation is still dominating, however new perspectives like solid-state processes or continuous yeast processes can be attractive for producers to stand in today's strong competition in industry. Further perspectives aiming in the improvement of citric acid production are the improvement of citric acid producing strains by classical and modern mutagenesis and selection as well as downstream processes. Many inexpensive by-products and residues of the agro-industry (e.g. molasses, glycerin etc.) can be economically utilized as substrates in the production of citric acid, especially in solid-state fermentation, enormously reducing production costs and minimizing environmental problems. Alternatively, continuous processes utilizing yeasts which reach 200-250 g/l citric acid can stand in today

  18. Bile acid interactions with cholangiocytes

    PubMed Central

    Xia, Xuefeng; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; LeSage, Gene

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2) is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3, an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, Ostα-Ostβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliary plexus back to hepatocytes for re-secretion into bile. This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5’-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines. Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and extracellular signal-regulated protein kinase (ERK) intracellular signals. Bile acids significantly alter cholangiocyte secretion, proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals, and in some instances trigger opposing effects on cholangiocyte

  19. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Kalita, Dipjyoti; Deka, Himangshu; Samanta, Shyam Sundar; Guchait, Subrata; Baruah, Jubaraj B.

    2011-03-01

    A series of quinoline containing receptors having amide and ester bonds are synthesized and characterised. The relative binding abilities of these receptors with various amino acids, carboxylic acids and mineral acids are determined by monitoring the changes in fluorescence intensity. Among the receptors bis(2-(quinolin-8-yloxy)ethyl) isophthalate shows fluorescence enhancement on addition of amino acids whereas the other receptors shows fluorescence quenching on addition of amino acids. The receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy) propanamide has higher binding affinity for amino acids. However, the receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide having similar structure do not bind to amino acids. This is attributed to the concave structure of the former which is favoured due to the presence of methyl substituent. The receptor bis(2-(quinolin-8-yloxy)ethyl) isophthalate do not bind to hydroxy carboxylic acids, but is a good receptor for dicarboxylic acids. The crystal structure of bromide and perchlorate salts of receptor 2-bromo-N-(quinolin-8-yl)-propanamide are determined. In both the cases the amide groups are not in the plane of quinoline ring. The structure of N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide, N-(2-methoxyphenethyl)-2-(quinolin-8-yloxy)acetamide and their salts with maleic acid as well as fumaric acid are determined. It is observed that the solid state structures are governed by the double bond geometry of these two acid. Maleic acid forms salt in both the cases, whereas fumaric acid forms either salt or co-crystals.

  20. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918