Science.gov

Sample records for acid decarboxylase pad

  1. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... aromatic l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... PDF Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  2. Theoretical study of the reaction mechanism of phenolic acid decarboxylase.

    PubMed

    Sheng, Xiang; Lind, Maria E S; Himo, Fahmi

    2015-12-01

    The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes. PMID:26408050

  3. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme.

    PubMed

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C K

    2010-11-01

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site. PMID:21045284

  4. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  5. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.

    PubMed

    Wei, Jiashi; Timler, Jacobe G; Knutson, Carolann M; Barney, Brett M

    2013-09-01

    The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms. In this report, distinct homologs of the L. lactis KDC originally annotated as pyruvate decarboxylases from Psychrobacter cryohalolentis K5 and P. arcticus 273-4 were cloned and characterized, confirming a related activity toward specific branched-chain 2-keto acids derived from branched-chain amino acids. Further, KDC activity was confirmed in intact cells and cell-free extracts of P. cryohalolentis K5 grown on both rich and defined media, indicating that the Ehrlich pathway may also be utilized in some psychrotrophs and psychrophiles. A comparison of the similarities and differences in the P. cryohalolentis K5 and P. arcticus 273-4 KDC activities to other bacterial KDCs is presented. PMID:23826991

  6. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  7. Decarboxylation of Sorbic Acid by Spoilage Yeasts Is Associated with the PAD1 Gene▿

    PubMed Central

    Stratford, Malcolm; Plumridge, Andrew; Archer, David B.

    2007-01-01

    The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Δpad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors. PMID:17766451

  8. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  9. Anti-glutamic acid decarboxylase antibody positive neurological syndromes.

    PubMed

    Tohid, Hassaan

    2016-07-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were calledhyperexcitability disorders. However, collectively, these syndromes should be known as "anti-GAD positive neurological syndromes." An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  10. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  11. Gene therapy for aromatic L-amino acid decarboxylase deficiency.

    PubMed

    Hwu, Wuh-Liang; Muramatsu, Shin-ichi; Tseng, Sheng-Hong; Tzen, Kai-Yuan; Lee, Ni-Chung; Chien, Yin-Hsiu; Snyder, Richard O; Byrne, Barry J; Tai, Chun-Hwei; Wu, Ruey-Meei

    2012-05-16

    Aromatic L-amino acid decarboxylase (AADC) is required for the synthesis of the neurotransmitters dopamine and serotonin. Children with defects in the AADC gene show compromised development, particularly in motor function. Drug therapy has only marginal effects on some of the symptoms and does not change early childhood mortality. Here, we performed adeno-associated viral vector-mediated gene transfer of the human AADC gene bilaterally into the putamen of four patients 4 to 6 years of age. All of the patients showed improvements in motor performance: One patient was able to stand 16 months after gene transfer, and the other three patients achieved supported sitting 6 to 15 months after gene transfer. Choreic dyskinesia was observed in all patients, but this resolved after several months. Positron emission tomography revealed increased uptake by the putamen of 6-[(18)F]fluorodopa, a tracer for AADC. Cerebrospinal fluid analysis showed increased dopamine and serotonin levels after gene transfer. Thus, gene therapy targeting primary AADC deficiency is well tolerated and leads to improved motor function. PMID:22593174

  12. Structural Basis of Enzymatic Activity for the Ferulic Acid Decarboxylase (FADase) from Enterobacter sp. Px6-4

    PubMed Central

    Liang, Lianming; Sun, Yuna; Huang, Jingwen; Li, Xuemei; Cao, Yi; Meng, Zhaohui; Zhang, Ke-Qin

    2011-01-01

    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an “open-closed” mechanism involving a pocket of 8×8×15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer. PMID:21283705

  13. Stimulation of Lysine Decarboxylase Production in Escherichia coli by Amino Acids and Peptides1

    PubMed Central

    Cascieri, T.; Mallette, M. F.

    1973-01-01

    A commercial hydrolysate of casein stimulated production of lysine decarboxylase (EC 4.1.1.18) by Escherichia coli B. Cellulose and gel chromatography of this hydrolysate yielded peptides which were variably effective in this stimulation. Replacement of individual, stimulatory peptides by equivalent amino acids duplicated the enzyme levels attained with those peptides. There was no indication of specific stimulation by any peptide. The peptides were probably taken up by the oligopeptide transport system of E. coli and hydrolyzed intracellularly by peptidases to their constituent amino acids for use in enzyme synthesis. Single omission of amino acids from mixtures was used to screen them for their relative lysine decarboxylase stimulating abilities. Over 100 different mixtures were evaluated in establishing the total amino acid requirements for maximal synthesis of lysine decarboxylase by E. coli B. A mixture containing all of the common amino acids except glutamic acid, aspartic acid, and alanine increased lysine decarboxylase threefold over an equivalent weight of casein hydrolysate. The nine most stimulatory amino acids were methionine, arginine, cystine, leucine, isoleucine, glutamine, threonine, tyrosine, and asparagine. Methionine and arginine quantitatively were the most important. A mixture of these nine was 87% as effective as the complete mixture. Several amino acids were inhibitory at moderate concentrations, and alanine (2.53 mM) was the most effective. Added pyridoxine increased lysine decarboxylase activity 30%, whereas other B vitamins and cyclic adenosine 5′-monophosphate had no effect. PMID:4588201

  14. Paraneoplastic Neurological Syndromes and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Höftberger, Romana; Gresa-Arribas, Nuria; Martínez-Hernandez, Eugenia; Armangue, Thaís; Kruer, Michael C.; Arpa, Javier; Domingo, Julio; Rojc, Bojan; Bataller, Luis; Saiz, Albert; Dalmau, Josep; Graus, Francesc

    2016-01-01

    IMPORTANCE Little is known of glutamic acid decarboxylase antibodies (GAD-abs) in the paraneoplastic context. Clinical recognition of such cases will lead to prompt tumor diagnosis and appropriate treatment. OBJECTIVE To report the clinical and immunological features of patients with paraneoplastic neurological syndromes (PNS) and GAD-abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective case series study and immunological investigations conducted in February 2014 in a center for autoimmune neurological disorders. Fifteen cases with GAD65-abs evaluated between 1995 and 2013 who fulfilled criteria of definite or possible PNS without concomitant onconeural antibodies were included in this study. MAIN OUTCOMES AND MEASURES Analysis of the clinical records of 15 patients and review of 19 previously reported cases. Indirect immunofluorescence with rat hippocampal neuronal cultures and cell-based assays with known neuronal cell-surface antigens were used. One hundred six patients with GAD65-abs and no cancer served as control individuals. RESULTS Eight of the 15 patients with cancer presented as classic paraneoplastic syndromes (5 limbic encephalitis, 1 paraneoplastic encephalomyelitis, 1 paraneoplastic cerebellar degeneration, and 1 opsoclonus-myoclonus syndrome). When compared with the 106 non-PNS cases, those with PNS were older (median age, 60 years vs 48 years; P = .03), more frequently male (60% vs 13%; P < .001), and had more often coexisting neuronal cell-surface antibodies, mainly against γ-aminobutyric acid receptors (53%vs 11%; P < .001). The tumors more frequently involved were lung (n = 6) and thymic neoplasms (n = 4). The risk for an underlying tumor was higher if the presentation was a classic PNS, if it was different from stiff-person syndrome or cerebellar ataxia (odds ratio, 10.5; 95%CI, 3.2–34.5), or if the patient had coexisting neuronal cell-surface antibodies (odds ratio, 6.8; 95%CI, 1.1–40.5). Compared with the current series, the 19 previously

  15. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  16. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

    PubMed

    Romagnoli, Gabriele; Luttik, Marijke A H; Kötter, Peter; Pronk, Jack T; Daran, Jean-Marc

    2012-11-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  17. UDP-Glucuronic Acid Decarboxylases of Bacteroides fragilis and Their Prevalence in Bacteria▿†

    PubMed Central

    Coyne, Michael J.; Fletcher, C. Mark; Reinap, Barbara; Comstock, Laurie E.

    2011-01-01

    Xylose is rarely described as a component of bacterial glycans. UDP-xylose is the nucleotide-activated form necessary for incorporation of xylose into glycans and is synthesized by the decarboxylation of UDP-glucuronic acid (UDP-GlcA). Enzymes with UDP-GlcA decarboxylase activity include those that lead to the formation of UDP-xylose as the end product (Uxs type) and those synthesizing UDP-xylose as an intermediate (ArnA and RsU4kpxs types). In this report, we identify and confirm the activities of two Uxs-type UDP-GlcA decarboxylases of Bacteroides fragilis, designated BfUxs1 and BfUxs2. Bfuxs1 is located in a conserved region of the B. fragilis genome, whereas Bfuxs2 is in the heterogeneous capsular polysaccharide F (PSF) biosynthesis locus. Deletion of either gene separately does not result in the loss of a detectable phenotype, but deletion of both genes abrogates PSF synthesis, strongly suggesting that they are functional paralogs and that the B. fragilis NCTC 9343 PSF repeat unit contains xylose. UDP-GlcA decarboxylases are often annotated incorrectly as NAD-dependent epimerases/dehydratases; therefore, their prevalence in bacteria is underappreciated. Using available structural and mutational data, we devised a sequence pattern to detect bacterial genes encoding UDP-GlcA decarboxylase activity. We identified 826 predicted UDP-GlcA decarboxylase enzymes in diverse bacterial species, with the ArnA and RsU4kpxs types confined largely to proteobacterial species. These data suggest that xylose, or a monosaccharide requiring a UDP-xylose intermediate, is more prevalent in bacterial glycans than previously appreciated. Genes encoding BfUxs1-like enzymes are highly conserved in Bacteroides species, indicating that these abundant intestinal microbes may synthesize a conserved xylose-containing glycan. PMID:21804000

  18. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae.

    PubMed

    Vuralhan, Zeynep; Luttik, Marijke A H; Tai, Siew Leng; Boer, Viktor M; Morais, Marcos A; Schipper, Dick; Almering, Marinka J H; Kötter, Peter; Dickinson, J Richard; Daran, Jean-Marc; Pronk, Jack T

    2005-06-01

    Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK113-7D were grown with different nitrogen sources. Cultures grown with phenylalanine, leucine, or methionine as a nitrogen source contained high levels of the corresponding fusel alcohols and organic acids, indicating activity of the Ehrlich pathway. Also, fusel alcohols derived from the other two amino acids were detected in the supernatant, suggesting the involvement of a common enzyme activity. Transcript level analysis revealed that among the five thiamine-pyrophospate-dependent decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3), only ARO10 was transcriptionally up-regulated when phenylalanine, leucine, or methionine was used as a nitrogen source compared to growth on ammonia, proline, and asparagine. Moreover, 2-oxo acid decarboxylase activity measured in cell extract from CEN.PK113-7D grown with phenylalanine, methionine, or leucine displayed similar broad-substrate 2-oxo acid decarboxylase activity. Constitutive expression of ARO10 in ethanol-limited chemostat cultures in a strain lacking the five thiamine-pyrophosphate-dependent decarboxylases, grown with ammonia as a nitrogen source, led to a measurable decarboxylase activity with phenylalanine-, leucine-, and methionine-derived 2-oxo acids. Moreover, even with ammonia as the nitrogen source, these cultures produced significant amounts of the corresponding fusel alcohols. Nonetheless, the constitutive expression of ARO10 in an isogenic wild-type strain grown in a glucose-limited chemostat with ammonia did not lead to any 2-oxo acid decarboxylase activity. Furthermore, even when ARO10 was constitutively expressed, growth with phenylalanine as the nitrogen source led to increased decarboxylase activities in cell extracts. The results reported here indicate the involvement of posttranscriptional regulation and/or a second protein in the ARO10-dependent, broad-substrate-specificity decarboxylase activity. PMID:15933030

  19. Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens.

    PubMed Central

    Huang, Z; Dostal, L; Rosazza, J P

    1994-01-01

    A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity. Images PMID:7928951

  20. Biochemical Evaluation of the Decarboxylation and Decarboxylation-Deamination Activities of Plant Aromatic Amino Acid Decarboxylases*

    PubMed Central

    Torrens-Spence, Michael P.; Liu, Pingyang; Ding, Haizhen; Harich, Kim; Gillaspy, Glenda; Li, Jianyong

    2013-01-01

    Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site

  1. Apraxia in anti-glutamic acid decarboxylase-associated stiff person syndrome: link to corticobasal degeneration?

    PubMed

    Bowen, Lauren N; Subramony, S H; Heilman, Kenneth M

    2015-01-01

    Corticobasal syndrome (CBS) is associated with asymmetrical rigidity as well as asymmetrical limb-kinetic and ideomotor apraxia. Stiff person syndrome (SPS) is characterized by muscle stiffness and gait difficulties. Whereas patients with CBS have several forms of pathology, many patients with SPS have glutamic acid decarboxylase antibodies (GAD-ab), but these 2 disorders have not been reported to coexist. We report 2 patients with GAD-ab-positive SPS who also had signs suggestive of CBS, including asymmetrical limb rigidity associated with both asymmetrical limb-kinetic and ideomotor apraxia. Future studies should evaluate patients with CBS for GAD-ab and people with SPS for signs of CBS. PMID:25100431

  2. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  3. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Wang, Lingling; Qiu, Limei; Wang, Weilin; Xin, Lusheng; Xu, Jiachao; Wang, Hao; Song, Linsheng

    2016-10-01

    Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter γ-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. PMID:27208883

  4. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGESBeta

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  5. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.

    PubMed

    Ishida, Nobuhiro; Saitoh, Satoshi; Onishi, Toru; Tokuhiro, Kenro; Nagamori, Eiji; Kitamoto, Katsuhiko; Takahashi, Haruo

    2006-05-01

    A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported. PMID:16717415

  6. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae.

    PubMed

    Bhuiya, Mohammad Wadud; Lee, Soon Goo; Jez, Joseph M; Yu, Oliver

    2015-06-15

    The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. PMID:25862228

  7. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae

    PubMed Central

    Bhuiya, Mohammad Wadud; Lee, Soon Goo

    2015-01-01

    The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. PMID:25862228

  8. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.

    PubMed

    Min, Kyoungseon; Kim, Seil; Yum, Taewoo; Kim, Yunje; Sang, Byoung-In; Um, Youngsoon

    2013-06-01

    In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation. PMID:23624707

  9. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production.

    PubMed

    Zhao, Anqi; Hu, Xiaoqing; Li, Ye; Chen, Cheng; Wang, Xiaoyuan

    2016-12-01

    Escherichia coli overexpressing glutamate decarboxylase GadB can produce gamma-aminobutyric acid with addition of monosodium glutamate. The yield and productivity of gamma-aminobutyric acid might be significantly improved if the overexpressed GadB in E. coli cells can be excreted outside, where it can directly transforms monosodium glutamate to gamma-aminobutyric acid. In this study, GadB was fused to signal peptides TorA or PelB, respectively, and overexpressed in E. coli BL21(DE3). It was found that TorA could facilitate GadB secretion much better than PelB. Conditions for GadB secretion and gamma-aminobutyric acid production were optimized in E. coli BL21(DE3)/pET20b-torA-gadB, leading the secretion of more than half of the overexpressed GadB. Fed-batch fermentation for GadB expression and gamma-aminobutyric acid production of BL21(DE3)/pET20b-torA-gadB was sequentially performed in one fermenter; 264.4 and 313.1 g/L gamma-aminobutyric acid were obtained with addition of monosodium glutamate after 36 and 72 h, respectively. PMID:27549808

  10. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    PubMed

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  11. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  12. Cysteine Sulfinic Acid Decarboxylase Regulation: A Role for FXR and SHP in Murine Hepatic Taurine Metabolism

    PubMed Central

    Kerr, Thomas A.; Matsumoto, Yuri; Matsumoto, Hitoshi; Xie, Yan; Hirschberger, Lawrence L.; Stipanuk, Martha H.; Anakk, Sayeepriyadarshini; Moore, David D.; Watanabe, Mitsuhiro; Kennedy, Susan

    2014-01-01

    Background Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor15/19 (FGF15/19). Because bile acid synthesis involves amino acid conjugation, we hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids. Aims To investigate CSAD regulation by bile acids and CSAD regulatory mechanisms. Methods Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To gain mechanistic insight into CSAD regulation, we utilized GW4064 (FXR agonist), FGF19, or T-0901317 (LXR agonist) and Shp−/− mice. Tissue mRNA expression was determined by qRT-PCR. Amino acids were measured by HPLC. Results Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA expression while those receiving cholestyramine exhibited increased hepatic CSAD mRNA expression. Activation of FXR suppressed CSAD mRNA expression whereas hepatic CSAD mRNA expression was increased in Shp−/− mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp−/− mice with a corresponding increase in serum (but not hepatic) taurine-conjugated bile acids. FGF19 administration suppressed hepatic CYP7A1 mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. Conclusion CSAD mRNA expression is physiologically regulated by bile acids in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These novel findings implicate bile acids as regulators of CSAD mRNA via mechanisms shared in part with CYP7A1. PMID:24033844

  13. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  14. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    PubMed Central

    Brandl, M T; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within pyruvate decarboxylases of various fungal and plant species also exhibited considerable homology to portions of this gene. This gene therefore presumably encodes an indolepyruvate decarboxylase (IpdC) which catalyzes the conversion of indole-3-pyruvic acid to indole-3-acetaldehyde. Insertions of Tn3-spice within ipdC abolished the ability of strain 299R to synthesize indole-3-acetaldehyde and tryptophol and reduced its IAA production in tryptophan-supplemented minimal medium by approximately 10-fold, thus providing genetic evidence for the role of the indolepyruvate pathway in IAA synthesis in this strain. An ipdC probe hybridized strongly with the genomic DNA of all E. herbicola strains tested in Southern hybridization studies, suggesting that the indolepyruvate pathway is common in this species. Maximum parsimony analysis revealed that the ipdC gene is highly conserved within this group and that strains of diverse geographic origin were very similar with respect to ipdC. PMID:8900003

  15. Rapid glutamic acid decarboxylase test for identification of Bacteroides and Clostridium spp.

    PubMed Central

    Jilly, B J; Schreckenberger, P C; LeBeau, L J

    1984-01-01

    A rapid 4-h test for glutamic acid decarboxylase is described for the identification of certain anaerobic bacteria. The test substrate consisted of 1.0 g of L-glutamic acid, 0.3 ml of Triton X-155, and 0.05 g of bromcresol green sodium salt in 1 liter of water. The substrate was dispensed in 0.5-ml amounts into test tubes, and a turbid suspension was made with the test organism. The test was then incubated aerobically at 35 degrees C for 4 h. The development of a blue color was considered positive. A total of 345 strains of clinically isolated anaerobic bacteria were tested. All isolates of Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis. Clostridium perfringens, and Clostridium sordellii gave a positive reaction. Some isolates of Bacteroides distasonis and Bacteroides vulgatus were also positive. The use of this rapid test in conjunction with other rapid methods, such as the spot indol test, will enable laboratory workers to report these pathogens on the same day on which an inoculum of pure culture growth on agar is available. PMID:6376535

  16. Non-convulsive status epilepticus associated with glutamic acid decarboxylase antibody.

    PubMed

    Cikrikçili, Ugur; Ulusoy, Canan; Turan, Selin; Yildiz, Senay; Bilgiç, Basar; Hanagasi, Hasmet; Baykan, Betül; Tüzün, Erdem; Gürvit, Hakan

    2013-07-01

    Autoimmune encephalitis associated with glutamic acid decarboxylase antibodies (GAD-Ab) often presents with treatment-resistant partial seizures, as well as other central nervous system symptoms. In contrast to several other well-characterized autoantibodies, GAD-Ab has very rarely been associated with status epilepticus. We report a 63-year-old woman initially admitted with somnolence and psychiatric findings. The EEG findings, of generalized and rhythmical slow spike-wave activity over the posterior regions of both hemispheres, together with the clinical deterioration in responsiveness, led to the diagnosis of non-convulsive status epilepticus. Investigation of a broad panel of autoantibodies, revealed only increased serum GAD-Ab levels. Following methylprednisolone and intravenous immunoglobulin treatments, the patient's neurological symptoms improved, EEG findings disappeared and GAD-Ab levels significantly decreased. GAD-Ab should be added to the list of anti-neuronal antibodies associated with non-convulsive status epilepticus. Disappearance of clinical findings and seroreversion after immunotherapy suggest that GAD-Ab might be involved in seizure pathogenesis.  PMID:23820312

  17. Transcriptional regulation of glutamic acid decarboxylase in the male mouse amygdala by dietary phyto-oestrogens.

    PubMed

    Sandhu, K V; Yanagawa, Y; Stork, O

    2015-04-01

    Phyto-oestrogens are biologically active components of many human and laboratory animal diets. In the present study, we investigated, in adult male mice with C57BL/6 genetic background, the effects of a reduced phyto-oestrogens intake on anxiety-related behaviour and associated gene expression in the amygdala. After 6 weeks on a low-phyto-oestrogen diet (< 20 μg/g cumulative phyto-oestrogen content), animals showed reduced centre exploration in an open-field task compared to their littermates on a soybean-based standard diet (300 μg/g). Freezing behaviour in an auditory fear memory task, in contrast, was not affected. We hypothesised that this mildly increased anxiety may involve changes in the function of GABAergic local circuit neurones in the amygdala. Using GAD67(+/GFP) mice, we could demonstrate reduced transcription of the GAD67 gene in the lateral and basolateral amygdala under the low-phyto-oestrogen diet. Analysis of mRNA levels in microdissected samples confirmed this regulation and demonstrated concomitant changes in expression of the second glutamic acid decarboxylase (GAD) isoform, GAD65, as well as the anxiolytic neuropeptide Y. These molecular and behavioural alterations occurred without apparent changes in circulating oestrogens or testosterone levels. Our data suggest that expression regulation of interneurone-specific gene products in the amygdala may provide a mechanism for the control of anxiety-related behaviour through dietary phyto-oestrogens. PMID:25650988

  18. Effect of retinoic acid on transglutaminase and ornithine decarboxylase activities during liver regeneration.

    PubMed

    Ohtake, Yosuke; Maruko, Akiko; Ohishi, Nao; Kawaguchi, Masasumi; Satoh, Tetsuharu; Ohkubo, Yasuhito

    2008-04-01

    Liver regeneration is regulated by several factors, including growth factors, cytokines, and post-translational modifications of several proteins. It is suggested that transglutaminase 2 (TG2) and ornithine decarboxylase (ODC) are involved in liver regeneration. To investigate the role of TG2 and ODC activities in regenerating liver, we used retinoic acid (RA), an inducer of TG2 and a suppressor of ODC. Regenerating rat liver was prepared by 70% partial hepatectomy (PH). Rats were sacrificed at 1, 2, 3, 4, and 6 days after surgery. RA was intraperitoneally injected immediately after PH. TG2 and ODC activities and products (epsilon-(gamma-glutamyl) lysine isopeptide (Gln-Lys) and polyamines, respectively) were examined at the indicated times. In RA-treated rat, DNA synthesis and ODC activity declined and the peak shifted to 2 days after PH, whereas TG2 activity increased at 1 day after PH. At that time, protein-polyamine, especially the protein-spermidine (SPD) bond, transiently decreased, whereas the formation of the Gln-Lys bond increased after PH. These results suggested that in regenerating liver, enhanced the formation of Gln-Lys bonds catalyzed by TG2 led to reduced DNA synthesis, whereas when ODC produced newly synthesized SPD, the inhibition of Gln-Lys bond production by the preferential formation of protein-SPD bonds led to an increase in DNA synthesis. PMID:18008394

  19. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    PubMed

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling. PMID:25956449

  20. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  1. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed Central

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-01-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032

  2. Role of UDP-Glucuronic Acid Decarboxylase in Xylan Biosynthesis in Arabidopsis.

    PubMed

    Kuang, Beiqing; Zhao, Xianhai; Zhou, Chun; Zeng, Wei; Ren, Junli; Ebert, Berit; Beahan, Cherie T; Deng, Xiaomei; Zeng, Qingyin; Zhou, Gongke; Doblin, Monika S; Heazlewood, Joshua L; Bacic, Antony; Chen, Xiaoyang; Wu, Ai-Min

    2016-08-01

    UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) is irreversibly catalyzed by UDP-glucuronic acid decarboxylase (UXS). Until now, little has been known about the physiological roles of UXS in plants. Here, we report that AtUXS1, AtUXS2, and AtUXS4 are located in the Golgi apparatus whereas AtUXS3, AtUXS5, and AtUXS6 are located in the cytosol. Although all six single AtUXS T-DNA mutants and the uxs1 usx2 uxs4 triple mutant show no obvious phenotype, the uxs3 uxs5 uxs6 triple mutant has an irregular xylem phenotype. Monosaccharide analysis showed that Xyl levels decreased in uxs3 uxs5 uxs6 and linkage analysis confirmed that the xylan content in uxs3 xus5 uxs6 declined, indicating that UDP-Xyl from cytosol AtUXS participates in xylan synthesis. Gel-permeation chromatography showed that the molecular weight of non-cellulosic polysaccharides in the triple mutants, mainly composed of xylans, is lower than that in the wild type, suggesting an effect on the elongation of the xylan backbone. Upon saccharification treatment stems of the uxs3 uxs5 uxs6 triple mutants released monosaccharides with a higher efficiency than those of the wild type. Taken together, our results indicate that the cytosol UXS plays a more important role than the Golgi-localized UXS in xylan biosynthesis. PMID:27179920

  3. Histidine decarboxylase and urinary methylimidazoleacetic acid in gastric neuroendocrine cells and tumours

    PubMed Central

    Tsolakis, Apostolos V; Grimelius, Lars; Granerus, Göran; Stridsberg, Mats; Falkmer, Sture E; Janson, Eva T

    2015-01-01

    AIM: To study histidine decarboxylase (HDC) expression in normal and neoplastic gastric neuroendocrine cells in relationship to the main histamine metabolite. METHODS: Control tissues from fundus (n = 3) and corpus (n = 3) mucosa of six patients undergoing operations for gastric adenocarcinoma, biopsy and/or gastric surgical specimens from 64 patients with primary gastric neuroendocrine tumours (GNETs), as well as metastases from 22 of these patients, were investigated using conventional immunohistochemistry and double immunofluorescence with commercial antibodies vs vesicular monoamine transporter 2 (VMAT-2), HDC and ghrelin. The urinary excretion of the main histamine metabolite methylimidazoleacetic acid (U-MeImAA) was determined using high-performance liquid chromatography in 27 of the 64 patients. RESULTS: In the gastric mucosa of the control tissues, co-localization studies identified neuroendocrine cells that showed immunoreactivity only to VMAT-2 and others with reactivity only to HDC. A third cell population co-expressed both antigens. There was no co-expression of HDC and ghrelin. Similar results were obtained in the foci of neuroendocrine cell hyperplasia associated with chronic atrophic gastritis type A and also in the tumours. The relative incidence of the three aforementioned markers varied in the tumours that were examined using conventional immunohistochemistry. All of these GNETs revealed both VMAT-2 and HDC immunoreactivity, and their metastases showed an immunohistochemical pattern and frequency similar to that of their primary tumours. In four patients, increased U-MeImAA excretion was detected, but only two of the patients exhibited related endocrine symptoms. CONCLUSION: Human enterochromaffin-like cells appear to partially co-express VMAT-2 and HDC. Co-expression of VMAT-2 and HDC might be required for increased histamine production in patients with GNETs. PMID:26715806

  4. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes.

    PubMed

    Khawaja, Ayaz M; Vines, Brannon L; Miller, David W; Szaflarski, Jerzy P; Amara, Amy W

    2016-03-01

    Glutamic acid decarboxylase antibodies (GAD-Abs) have been implicated in refractory epilepsy. The association with refractory status epilepticus in adults has been rarely described. We discuss our experience in managing three adult patients who presented with refractory status epilepticus associated with GAD-Abs. Case series with retrospective chart and literature review. Three patients without pre-existing epilepsy who presented to our institution with generalized seizures between 2013 and 2014 were identified. Seizures proved refractory to first and second-line therapies and persisted beyond 24 hours. Patient 1 was a 22-year-old female who had elevated serum GAD-Ab titres at 0.49 mmol/l (normal: <0.02) and was treated with multiple immuno- and chemotherapies, with eventual partial seizure control. Patient 2 was a 61-year-old black female whose serum GAD-Ab titre was 0.08 mmol/l. EEG showed persistent generalized periodic discharges despite maximized therapy with anticonvulsants but no immunotherapy, resulting in withdrawal of care and discharge to nursing home. Patient 3 was a 50-year-old black female whose serum GAD-Ab titre was 0.08 mmol/l, and was discovered to have pulmonary sarcoidosis. Treatment with steroids and intravenous immunoglobulin resulted in seizure resolution. Due to the responsiveness to immunotherapy, there may be an association between GAD-Abs and refractory seizures, including refractory status epilepticus. Causation cannot be established since GAD-Abs may be elevated secondary to concurrent autoimmune diseases or formed de novo in response to GAD antigen exposure by neuronal injury. Based on this report and available literature, there may be a role for immuno- and chemotherapy in the management of refractory status epilepticus associated with GAD-Abs. PMID:26878120

  5. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease. PMID:26830512

  6. Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa

    PubMed Central

    Kopec, Jolanta; Schnell, Robert; Schneider, Gunter

    2011-01-01

    The ubiX gene (PA4019) of Pseudomonas aeruginosa has been annotated as encoding a putative 3-octaprenyl-4-hydroxybenzoate decarboxylase from the ubiquinone-biosynthesis pathway. Based on a transposon mutagenesis screen, this gene was also implicated as being essential for the survival of this organism. The crystal structure of recombinant UbiX determined to 1.5 Å resolution showed that the protein belongs to the superfamily of homo-oligomeric flavine-containing cysteine decarboxylases. The enzyme assembles into a dodecamer with 23 point symmetry. The subunit displays a typical Rossmann fold and contains one FMN molecule bound at the interface between two subunits. PMID:22102023

  7. Two UDP-glucuronic acid decarboxylases involved in the biosynthesis of a bacterial exopolysaccharide in Paenibacillus elgii.

    PubMed

    Li, Ou; Qian, Chao-Dong; Zheng, Dao-Qiong; Wang, Pin-Mei; Liu, Yu; Jiang, Xin-Hang; Wu, Xue-Chang

    2015-04-01

    Xylose is described as a component of bacterial exopolysaccharides in only a limited number of bacterial strains. A bacterial strain, Paenibacillus elgii, B69 was shown to be efficient in producing a xylose-containing exopolysaccharide. Sequence analysis was performed to identify the genes encoding the uridine diphosphate (UDP)-glucuronic acid decarboxylase required for the synthesis of UDP-xylose, the precursor of the exopolysaccharide. Two sequences, designated as Peuxs1 and Peuxs2, were found as the candidate genes for such enzymes. The activities of the UDP-glucuronic acid decarboxylases were proven by heterologous expression and real-time nuclear magnetic resonance analysis. The intracellular activity and effect of these genes on the synthesis of exopolysaccharide were further investigated by developing a thymidylate synthase based knockout system. This system was used to substitute the conventional antibiotic resistance gene system in P. elgii, a natural multi-antibiotic resistant strain. Results of intracellular nucleotide sugar analysis showed that the intracellular UDP-xylose and UDP-glucuronic acid levels were affected in Peuxs1 or Peuxs2 knockout strains. The knockout of either Peuxs1 or Peuxs2 reduced the polysaccharide production and changed the monosaccharide ratio. No polysaccharide was found in the Peuxs1/Peuxs2 double knockout strain. Our results show that P. elgii can be efficient in forming UDP-xylose, which is then used for the synthesis of xylose-containing exopolysaccharide. PMID:25573472

  8. Possible role for glutamic acid decarboxylase in fibromyalgia symptoms: a conceptual model for chronic pain.

    PubMed

    Fitzgerald, Caris T; Carter, Lawrence P

    2011-09-01

    Fibromyalgia (FM) is a condition of chronic generalized musculoskeletal pain that is thought to be a disorder of central pain sensitization. A number of neurotransmitters in the ascending and descending pain pathways have been implicated in FM including glutamate and GABA. Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme in the conversion of glutamate to GABA and decreased expression or activity of this enzyme could result in an imbalance of excitatory and inhibitory neurotransmission in the ascending and descending pain pathways. Specifically, the expression and activity of the predominant isoform of GAD (GAD65) is influenced by several factors that are associated with FM such as female sex, poor diet, obesity, sedentary lifestyle, and stress. We hypothesize that decreased GAD expression and/or activity plays a role in the development and exacerbation of FM leading to impairments in the three common domains of FM symptomatology: increased pain (hyperalgesia and allodynia), disrupted sleep, and disturbances in mood (anxiety and depression). There are several lines of evidence that appear to support a role of GAD in FM. First, the defining symptom of FM is pain and GAD65 knockout mice have been shown to exhibit supraspinal hyperalgesia. Second, GAD has been implicated in disorders of muscle stiffness and rigidity and morning stiffness is a common symptom of FM. Third, stress, depression, and anxiety, which are often comorbid with FM, decrease GAD activity. Fourth, FM is associated with poor sleep, specifically disrupted non-rapid eye movement (NREM) sleep, and the pharmacological induction of NREM sleep is associated with the activation of GAD-containing neurons in the preoptic hypothalamus. Fifth, FM is more commonly diagnosed in women than men and the activity of GAD is reduced by low levels of its cofactor pyroxidine, which is less well-absorbed by women and can be further lowered by diet, tobacco, and alcohol intake. Sixth, FM patients tend to be

  9. Cholera Toxin B Subunit Linked to Glutamic Acid Decarboxylase Suppresses Dendritic Cell Maturation and Function

    PubMed Central

    Odumosu, Oludare; Nicholas, Dequina; Payne, Kimberly; Langridge, William

    2012-01-01

    Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5 kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD35), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC - GAD35 autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD35 protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD35 alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD35 was capable of arresting PMA + Ionomycin induced DC maturation. Consistant with this finding, CTB-GAD35 mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC

  10. Glutamate Decarboxylase-Dependent Acid Resistance in Brucella spp.: Distribution and Contribution to Fitness under Extremely Acidic Conditions

    PubMed Central

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel

    2014-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative. PMID:25381237

  11. A rare cause of severe diarrhoea diagnosed by urine metabolic screening: aromatic L-amino acid decarboxylase deficiency.

    PubMed

    Lee, L K; Cheung, K M; Cheng, W W; Ko, C H; Lee, Hencher H C; Ching, C K; Mak, Chloe M

    2014-04-01

    A 15-year-old Chinese male with infantile-onset hypotonia, developmental delay, ptosis, and oculogyric episodes presented with a history of chronic diarrhoea since the age of 5 years. At presentation, he had an exacerbation of diarrhoeal symptoms resulting in dehydration and malnutrition with a concurrent severe chest infection. In view of his infantile-onset hypotonia, oculogyric crises, and protracted diarrhoea, an autonomic disturbance related to neurotransmitters was suspected. Urine organic acid profiling was compatible with aromatic L-amino acid decarboxylase deficiency. The diagnosis was confirmed based on cerebrospinal fluid analysis and genetic mutation analysis. The patient was treated with a combination of bromocriptine, selegiline, and pyridoxine; a satisfactory reduction in diarrhoea ensued. Our report highlights the importance of urine organic acid screening in infantile-onset hypotonia, especially when accompanied by oculogyric crises, and severe diarrhoea which could manifest as a result of autonomic disturbance. PMID:24714172

  12. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system. PMID:25547838

  13. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

    PubMed

    ter Schure, E G; Flikweert, M T; van Dijken, J P; Pronk, J T; Verrips, C T

    1998-04-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  14. Chemical fragmentation by o-iodosobenzoic acid of. cap alpha. -chain of histidine decarboxylase from Micrococcus sp. n. at tryptophan residues

    SciTech Connect

    Alekseeva, E.A.; Grebenshchikova, O.G.; Prozorovskii, V.N.

    1987-02-10

    The carboxymethylated ..cap alpha..-chain of histidine decarboxylase from Micrococcus sp. n., which contains four tryptophan residues, was cleaved by o-iodosobenzoic acid. Five fragments were isolated in homogeneous form by means of gel filtration on Sephadex, rechromatography, and high-voltage paper electrophoresis. The molecular weight, amino acid composition, and N-terminal amino acid sequence were determined for all the peptides isolated.

  15. Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species ▿ †

    PubMed Central

    Rude, Mathew A.; Baron, Tarah S.; Brubaker, Shane; Alibhai, Murtaza; Del Cardayre, Stephen B.; Schirmer, Andreas

    2011-01-01

    Terminal olefins (1-alkenes) are natural products that have important industrial applications as both fuels and chemicals. However, their biosynthesis has been largely unexplored. We describe a group of bacteria, Jeotgalicoccus spp., which synthesize terminal olefins, in particular 18-methyl-1-nonadecene and 17-methyl-1-nonadecene. These olefins are derived from intermediates of fatty acid biosynthesis, and the key enzyme in Jeotgalicoccus sp. ATCC 8456 is a terminal olefin-forming fatty acid decarboxylase. This enzyme, Jeotgalicoccus sp. OleT (OleTJE), was identified by purification from cell lysates, and its encoding gene was identified from a draft genome sequence of Jeotgalicoccus sp. ATCC 8456 using reverse genetics. Heterologous expression of the identified gene conferred olefin biosynthesis to Escherichia coli. OleTJE is a P450 from the cyp152 family, which includes bacterial fatty acid hydroxylases. Some cyp152 P450 enzymes have the ability to decarboxylate and to hydroxylate fatty acids (in α- and/or β-position), suggesting a common reaction intermediate in their catalytic mechanism and specific structural determinants that favor one reaction over the other. The discovery of these terminal olefin-forming P450 enzymes represents a third biosynthetic pathway (in addition to alkane and long-chain olefin biosynthesis) to convert fatty acid intermediates into hydrocarbons. Olefin-forming fatty acid decarboxylation is a novel reaction that can now be added to the catalytic repertoire of the versatile cytochrome P450 enzyme family. PMID:21216900

  16. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. PMID:26980143

  17. Gamma-aminobutyric acid production using immobilized glutamate decarboxylase followed by downstream processing with cation exchange chromatography.

    PubMed

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  18. Identification of the Enterobacteriaceae in Montasio cheese and assessment of their amino acid decarboxylase activity.

    PubMed

    Maifreni, Michela; Frigo, Francesca; Bartolomeoli, Ingrid; Innocente, Nadia; Biasutti, Marialuisa; Marino, Marilena

    2013-02-01

    The aim of the study was to identify the species of Enterobacteriaceae present in Montasio cheese and to assess their potential to produce biogenic amines. Plate count methods and an Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) approach, combined with 16S rDNA sequencing, were used to investigate the Enterobacteriaceae community present during the cheesemaking and ripening of 6 batches of Montasio cheese. Additionally, the potential decarboxylation abilities of selected bacterial isolates were qualitatively and quantitatively assessed against tyrosine, histidine, ornithine and lysine. The most predominant species detected during cheese manufacturing and ripening were Enterobacter cloacae, Escherichia coli and Hafnia alvei. The non-limiting physico-chemical conditions (pH, NaCl% and a(w)) during ripening were probably the cause of the presence of detectable levels of Enterobacteriaceae up to 120 d of ripening. The HPLC test showed that cadaverine and putrescine were the amines produced in higher amounts by almost all isolates, indicating that the presence of these amines in cheese can be linked to the presence of high counts of Enterobacteriaceae. 44 isolates produced low amounts of histamine (<300 ppm), and four isolates produced more than 1000 ppm of this amine. Only 9 isolates, belonging to the species Citrobacter freundii, Esch. coli and Raoultella ornithinolytica, appeared to produce tyramine. These data provided new information regarding the decarboxylase activity of some Enterobacteriaceae species, including Pantoea agglomerans, Esch. fergusonii and R. ornithinolytica. PMID:23298547

  19. Biochemical and spectroscopic properties of Brucella microti glutamate decarboxylase, a key component of the glutamate-dependent acid resistance system

    PubMed Central

    Grassini, Gaia; Pennacchietti, Eugenia; Cappadocio, Francesca; Occhialini, Alessandra; De Biase, Daniela

    2015-01-01

    In orally acquired bacteria, the ability to counteract extreme acid stress (pH ⩽ 2.5) ensures survival during transit through the animal host stomach. In several neutralophilic bacteria, the glutamate-dependent acid resistance system (GDAR) is the most efficient molecular system in conferring protection from acid stress. In Escherichia coli its structural components are either of the two glutamate decarboxylase isoforms (GadA, GadB) and the antiporter, GadC, which imports glutamate and exports γ-aminobutyrate, the decarboxylation product. The system works by consuming protons intracellularly, as part of the decarboxylation reaction, and exporting positive charges via the antiporter. Herein, biochemical and spectroscopic properties of GadB from Brucella microti (BmGadB), a Brucella species which possesses GDAR, are described. B. microti belongs to a group of lately described and atypical brucellae that possess functional gadB and gadC genes, unlike the most well-known “classical” Brucella species, which include important human pathogens. BmGadB is hexameric at acidic pH. The pH-dependent spectroscopic properties and activity profile, combined with in silico sequence comparison with E. coli GadB (EcGadB), suggest that BmGadB has the necessary structural requirements for the binding of activating chloride ions at acidic pH and for the closure of its active site at neutral pH. On the contrary, cellular localization analysis, corroborated by sequence inspection, suggests that BmGadB does not undergo membrane recruitment at acidic pH, which was observed in EcGadB. The comparison of GadB from evolutionary distant microorganisms suggests that for this enzyme to be functional in GDAR some structural features must be preserved. PMID:25853037

  20. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase

    PubMed Central

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L−1 glucose and 0.1 mM pyridoxal 5′-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L−1 (0.259 g L−1 h−1) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol−1. PMID:24949255

  1. The thermo-hand method: evaluation of a new indicator pad for acid permeation of chemical protective gloves.

    PubMed

    Vo, Evanly; Nicholson, Jonathan; Gao, Pengfei; Zhuang, Zhenzhen; Berardinelli, Stephen P

    2003-01-01

    The thermo-hand method was developed to evaluate a new indicator pad for acid permeation through chemical protective gloves under in-use conditions (controlled conditions for the hand's skin temperature, hand movements, and relative humidity inside gloves). An indicator pad was used to detect both organic and inorganic acid permeation through glove materials. Breakthrough times for five types of gloves were determined and found to range from 5 to 308 min for propionic acid, from 4 to 293 min for acrylic acid, and from 15 min to >6 hours for HCl. Quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited >99% adsorption (including the volume of acid, which reacted with an indicator to contribute the color change) on the pads at a spiking level of 1.8 micro L for each acid. Acid recovery for the system was calculated for each acid, with results ranging from 52-72% (RSD < or =4.0%) for both acids over the spiking range 0.2-1.8 micro L. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 253-276 and 270-296 micro g/cm(2) for propionic acid and acrylic acid, respectively. The thermo-hand method and a new acid indicator pad together should be useful in detecting, collecting, and quantitatively analyzing acid permeation samples in the workplace. PMID:14674803

  2. Knockout of the p-Coumarate Decarboxylase Gene from Lactobacillus plantarum Reveals the Existence of Two Other Inducible Enzymatic Activities Involved in Phenolic Acid Metabolism

    PubMed Central

    Barthelmebs, Lise; Divies, Charles; Cavin, Jean-François

    2000-01-01

    Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity. PMID:10919793

  3. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production

    PubMed Central

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  4. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production.

    PubMed

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-07-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  5. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase

    PubMed Central

    2014-01-01

    Background Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. Results We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. Conclusions The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE. PMID:24565055

  6. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. PMID:24616376

  7. Removal kinetics of antibodies against glutamic acid decarboxylase by various plasmapheresis modalities in the treatment of neurological disorders.

    PubMed

    Ohkubo, Atsushi; Okado, Tomokazu; Kurashima, Naoki; Maeda, Takuma; Miyamoto, Satoko; Nakamura, Ayako; Seshima, Hiroshi; Iimori, Soichiro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2014-06-01

    Plasmapheresis is one of the acute treatment modalities for neurological disorders associated with antibodies against glutamic acid decarboxylase (anti-GAD). However, there is little information about the removal kinetics of anti-GAD by various plasmapheresis modalities. Here, we investigated the removal rate of anti-GAD and fibrinogen (Fib) by immunoadsorption (IA), plasma exchange using a conventional plasma separator (OP-PE), and plasma exchange using a high cut-off selective membrane plasma separator (EC-PE) in two cases of anti-GAD-associated neurological diseases. In case 1, IA and OP-PE were used, and the percent reductions were as follows: anti-GAD: 38.2% and 69.1% and Fib: 67.7% and 68.2%, respectively. In case 2, OP-PE and EC-PE were used, and the percent reductions were as follows: anti-GAD: 65.8% and 48.5% and Fib: 68.5% and 19.8%, respectively. OP-PE could remove anti-GAD more efficiently than IA. Further, EC-PE could maintain coagulation factors such as Fib better than IA and OP-PE. It is important to select the appropriate plasmapheresis modality on the basis of the removal kinetics. PMID:24965288

  8. IGF2BP2 Alternative Variants Associated with Glutamic Acid Decarboxylase Antibodies Negative Diabetes in Malaysian Subjects

    PubMed Central

    Salem, Sameer D.; Saif-Ali, Riyadh; Ismail, Ikram S.; Al-Hamodi, Zaid; Poh, Rozaida; Muniandy, Sekaran

    2012-01-01

    Background The association of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) common variants (rs4402960 and rs1470579) with type 2 diabetes (T2D) has been performed in different populations. The aim of this study was to evaluate the association of alternative variants of IGF2BP2; rs6777038, rs16860234 and rs7651090 with glutamic acid decarboxylase antibodies (GADA) negative diabetes in Malaysian Subjects. Methods/Principal Findings IGF2BP2; rs6777038, rs16860234 and rs7651090 single nucleotide polymorphisms (SNPs) were genotyped in 1107 GADA negative diabetic patients and 620 control subjects of Asian from Malaysia. The additive genetic model adjusted for age, race, gender and BMI showed that alternative variants; rs6777038, rs16860234 and rs7651090 of IGF2BP2 associated with GADA negative diabetes (OR = 1.21; 1.36; 1.35, P = 0.03; 0.0004; 0.0002, respectively). In addition, the CCG haplotype and diplotype CCG-TCG increased the risk of diabetes (OR = 1.51, P = 0.01; OR = 2.36, P = 0.009, respectively). Conclusions/Significance IGF2BP2 alternative variants were associated with GADA negative diabetes. The IGF2BP2 haplotypes and diplotypes increased the risk of diabetes in Malaysian subject. PMID:23029108

  9. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    PubMed

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  10. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid

    PubMed Central

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  11. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation

    PubMed Central

    Saenko, S V; Jerónimo, M A; Beldade, P

    2012-01-01

    Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration. PMID:22234245

  12. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus

    PubMed Central

    Trigwell, S M; Radford, P M; Page, S R; Loweth, A C; James, R F L; Morgan, N G; Todd, I

    2001-01-01

    The generation of an autoimmune response against islet beta-cells is central to the pathogenesis of type 1 diabetes mellitus, and this response is driven by the stimulation of autoreactive lymphocytes by components of the beta-cells themselves. Reactive oxygen species (ROS) have been implicated in the beta-cell destruction which leads to type 1 diabetes and may modify beta-cell components so as to enhance their immunogenicity. We investigated the effects of oxidation reactions catalysed by copper or iron on the major beta-cell autoantigen glutamic acid decarboxylase (GAD). Lysates of purified rat islets were exposed to copper or iron sulphate with or without hydrogen peroxide or ascorbic acid. Immunostaining showed that these treatments generated high molecular weight covalently linked aggregates containing GAD. These are not formed by intermolecular disulphide bonds between cysteine residues since they cannot be resolved into monomeric form when electrophoresed under extreme reducing conditions. There was no modification of insulin or pro-insulin by ROS. The same oxidative changes to GAD could be induced in viable islet cells treated with copper sulphate and hydrogen peroxide, and thus the modifications are not an artefact of the catalysed oxidation of cell-free lysates. Sera from patients with type 1 diabetes and stiffman syndrome containing GAD antibodies reacted predominantly with the highest molecular weight modified protein band of GAD: normal human sera did not precipitate GAD. Thus, oxidatively modified aggregates of GAD react with serum antibodies of type 1 diabetes patients and some SMS patients: this is consistent with oxidative modifications of autoantigens being relevant to the pathogenesis of type 1 diabetes. PMID:11703367

  13. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus.

    PubMed

    Trigwell, S M; Radford, P M; Page, S R; Loweth, A C; James, R F; Morgan, N G; Todd, I

    2001-11-01

    The generation of an autoimmune response against islet beta-cells is central to the pathogenesis of type 1 diabetes mellitus, and this response is driven by the stimulation of autoreactive lymphocytes by components of the beta-cells themselves. Reactive oxygen species (ROS) have been implicated in the beta-cell destruction which leads to type 1 diabetes and may modify beta-cell components so as to enhance their immunogenicity. We investigated the effects of oxidation reactions catalysed by copper or iron on the major beta-cell autoantigen glutamic acid decarboxylase (GAD). Lysates of purified rat islets were exposed to copper or iron sulphate with or without hydrogen peroxide or ascorbic acid. Immunostaining showed that these treatments generated high molecular weight covalently linked aggregates containing GAD. These are not formed by intermolecular disulphide bonds between cysteine residues since they cannot be resolved into monomeric form when electrophoresed under extreme reducing conditions. There was no modification of insulin or pro-insulin by ROS. The same oxidative changes to GAD could be induced in viable islet cells treated with copper sulphate and hydrogen peroxide, and thus the modifications are not an artefact of the catalysed oxidation of cell-free lysates. Sera from patients with type 1 diabetes and stiffman syndrome containing GAD antibodies reacted predominantly with the highest molecular weight modified protein band of GAD: normal human sera did not precipitate GAD. Thus, oxidatively modified aggregates of GAD react with serum antibodies of type 1 diabetes patients and some SMS patients: this is consistent with oxidative modifications of autoantigens being relevant to the pathogenesis of type 1 diabetes. PMID:11703367

  14. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass. PMID:26059194

  15. Lower Expression of Glutamic Acid Decarboxylase 67 in the Prefrontal Cortex in Schizophrenia: Contribution of Altered Regulation by Zif268

    PubMed Central

    Kimoto, Sohei; Bazmi, H. Holly; Lewis, David A.

    2015-01-01

    Objective Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. Method The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral pre-frontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. Results GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Conclusions Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia. PMID:24874453

  16. POSTTRANSLATIONAL MODIFICATION OF GLUTAMIC ACID DECARBOXYLASE 67 BY INTERMITTENT HYPOXIA: Evidence for the involvement of dopamine D1 receptor signaling$

    PubMed Central

    Raghuraman, Gayatri; Prabhakar, Nanduri R.; Kumar, Ganesh K.

    2010-01-01

    Intermittent hypoxia (IH) associated with sleep apnea leads to cardio-respiratory morbidities. Previous studies have shown that IH alters the synthesis of neurotransmitters including catecholamines and neuropeptides in brainstem regions associated with regulation of cardio-respiratory functions. GABA, a major inhibitory neurotransmitter in the central nervous system, has been implicated in cardio-respiratory control. GABA synthesis is primarily catalyzed by glutamic acid decarboxylase (GAD). Here, we tested the hypothesis that IH like its effect on other transmitters also alters GABA synthesis. The impact of IH on GABA synthesis was investigated in pheochromocytoma 12 (PC12) cells, a neuronal cell line which is known to express active form of GAD67 in the cytosolic fraction and also assessed the underlying mechanisms contributing to IH-evoked response. Exposure of cell cultures to IH decreased GAD67 activity and GABA level. IH-evoked decrease in GAD67 activity was due to increased cAMP - protein kinase A (PKA) - dependent phosphorylation of GAD67, but not as a result of changes in either GAD67 mRNA or protein expression. PKA inhibitor restored GAD67 activity and GABA levels in IH treated cells. PC12 cells express dopamine 1 receptor (D1R), a G-protein coupled receptor whose activation increased adenylyl cyclase (AC) activity. Treatment with either D1R antagonist or AC inhibitor reversed IH-evoked GAD67 inhibition. Silencing D1R expression with siRNA reversed cAMP elevation and GAD67 inhibition by IH. These results provide evidence for the role of D1R-cAMP-PKA signaling in IH mediated inhibition of GAD67 via protein phosphorylation resulting in down regulation of GABA synthesis. PMID:20969567

  17. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65)

    PubMed Central

    Wang, Xiaofeng; Brandsma, Martin; Tremblay, Reynald; Maxwell, Denis; Jevnikar, Anthony M; Huner, Norm; Ma, Shengwu

    2008-01-01

    Background Human glutamic acid decarboxylase 65 (hGAD65) is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution. Results A DNA cassette encoding full-length hGAD65, under the control of the C. reinhardtii chloroplast rbcL promoter and 5'- and 3'-UTRs, was constructed and introduced into the chloroplast genome of C. reinhardtii by particle bombardment. Integration of hGAD65 DNA into the algal chloroplast genome was confirmed by PCR. Transcriptional expression of hGAD65 was demonstrated by RT-PCR. Immunoblotting verified the expression and accumulation of the recombinant protein. The antigenicity of algal-derived hGAD65 was demonstrated with its immunoreactivity to diabetic sera by ELISA and by its ability to induce proliferation of spleen cells from NOD mice. Recombinant hGAD65 accumulated in transgenic algae, accounts for approximately 0.25–0.3% of its total soluble protein. Conclusion Our results demonstrate the potential value of C. reinhardtii chloroplasts as a novel platform for rapid mass production of immunologically active hGAD65. This demonstration opens the future possibility for using algal chloroplasts as novel bioreactors for the production of many other biologically active mammalian therapeutic proteins. PMID:19014643

  18. Assessment of the effects of glutamic acid decarboxylase antibodies and trace elements on cognitive performance in older adults

    PubMed Central

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S

    2015-01-01

    Background Homeostatic imbalance of trace elements such as iron (Fe), copper (Cu), and zinc (Zn) demonstrated adverse effects on brain function among older adults. Objective The present study aimed to investigate the effects of trace elements and the presence of anti-glutamic acid decarboxylase antibodies (GADAs) in human cognitive abilities among healthy older adults. Methods A total of 100 healthy subjects (65 males, 35 females; age range; 64–96 years) were recruited for this study. Based on Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) score, the participants were classified according to cognitive performance into normal (n=45), moderate (n=30), and severe (n=25). Cognitive functioning, leisure-time physical activity (LTPA), serum trace elements – Fe, Cu, Zn, Zn/Cu, and GADAs were assessed using LOTCA battery, pre-validated physical activity (PA) questionnaire, atomic absorption, and immunoassay techniques, respectively. Results Approximately 45% of the study population (n=45) had normal distribution of cognitive function and 55% of the study population (n=55) had abnormal cognitive function; they were classified into moderate (score 62–92) and severe (score 31–62). There was a significant reduction in the level of Zn and Zn/Cu ratio along with an increase in the level of Fe, Cu, and anti-GADAs in subjects of severe (P=0.01) and moderate (P=0.01) cognitive performance. LOTCA-cognitive scores correlated positively with sex, HbA1c, Fe, Cu, Zn, and Zn/Cu ratio, and negatively with age, PA, body mass index, and anti-GADAs. Significant inter-correlation was reported between serum trace element concentrations and anti-GADAs which suggest producing a cognitive decline via oxidative and neural damage mechanism. Conclusion This study found significant associations among trace elements, anti-GADAs, and cognitive function in older adults. The homeostatic balance of trace elements should be recommended among older adults for better cognitive

  19. Germicide wound pad with active, in situ, electrolytically produced hypochlorous acid.

    PubMed

    Rubinsky, L; Patrick, B; Mikus, P; Rubinsky, B

    2016-04-01

    We describe a new wound dressing technology that can actively generate an inorganic germicide agent, in situ, within the wound pad. The technology provides real time control over the quantitative, spatial and temporal delivery of the germicide. The identity of the germicide is hypochlorous acid (HClO). The HClO is produced in a flexible wound pad, made of a composite of thin (micrometer scale) layers of various materials, with different electrochemical properties that enhance HClO production. Active control over the production of HClO is achieved by control of the pH and of the electric potential across the layers. The effectiveness of the Active HClO Pad (AHClOP) concept is demonstrated in a study on sterilization of E. coli in a deep wound contamination simulating gel. The performance of the AHClOP is compared with that of four commercial wound dressings. Results show that the AHClOP can sterilize throughout the gel, while the commercial dressings cannot. PMID:26888442

  20. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    PubMed

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD. PMID:27082660

  1. Improving the acidic stability of Staphylococcus aureus α-acetolactate decarboxylase in Bacillus subtilis by changing basic residues to acidic residues.

    PubMed

    Zhang, Xian; Rao, Zhiming; Li, Jingjing; Zhou, Junping; Yang, Taowei; Xu, Meijuan; Bao, Teng; Zhao, Xiaojing

    2015-04-01

    The α-acetolactate decarboxylase (ALDC) can reduce diacetyl fleetly to promote mature beer. A safe strain Bacillus subtilis WB600 for high-yield production of ALDC was constructed with the ALDC gene saald from Staphylococcus aureus L3-15. SDS-PAGE analysis revealed that S. aureus α-acetolactate decarboxylase (SaALDC) was successfully expressed in recombinant B. siutilis strain. The enzyme SaALDC was purified using Ni-affinity chromatography and showed a maximum activity at 45 °C and pH 6.0. The values of K m and V max were 17.7 μM and 2.06 mM min(-1), respectively. Due to the unstable property of SaALDC at low pH conditions that needed in brewing process, site-directed mutagenesis was proposed for improving the acidic stability of SaALDC. Homology comparative modeling analysis showed that the mutation (K52D) gave rise to the negative-electrostatic potential on the surface of protein while the numbers of hydrogen bonds between the mutation site (N43D) and the around residues increased. Taken together the effect of mutation N43D-K52D, recombinant SaALDCN43D-K52D showed dramatically improved acidic stability with prolonged half-life of 3.5 h (compared to the WT of 1.5 h) at pH 4.0. In a 5-L fermenter, the recombinant B. subtilis strain that could over-express SaALDCN43D-K52D exhibited a high yield of 135.8 U mL(-1) of SaALDC activity, about 320 times higher comparing to 0.42 U mL(-1) of S. aureus L3-15. This work proposed a  strategy for improving the acidic stability of SaALDC in the  B. subtilis host. PMID:25543264

  2. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid.

    PubMed

    Roy, Ajit; Ranjan, Akash

    2016-02-23

    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family. PMID:26818787

  3. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  4. Peripheral Aromatic L-Amino Acids Decarboxylase Inhibitor in Parkinsonism. I. EFFECT ON O-METHYLATED METABOLITES OF L-DOPA-2-14C

    PubMed Central

    Messiha, F. S.; Hsu, T. H.; Bianchine, J. R.

    1972-01-01

    The effects of MK-486, an inhibitor of peripheral aromatic L-amino acids decarboxylase, on the urinary metabolites derived from orally administered L-Dopa-2-14C were studied in three Parkinsonian patients. Treatment with MK-486 before L-Dopa-2-14C markedly reduced radioactivity found in catecholamines fraction by 70-80% during 48 hr, but increased 3-O-methyldopa fraction by threefold, as compared with a nonpretreated base line value. Pretreatment with MK-486 for a period of 1 wk resulted in less inhibition of O-methylated amine and acid metabolite fractions than that measured after a single dose of the inhibitor. PMID:5009125

  5. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  6. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  7. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways. PMID:26620318

  8. Rapid Normalization of High Glutamic Acid Decarboxylase Autoantibody Titers and Preserved Endogenous Insulin Secretion in a Patient with Diabetes Mellitus: A Case Report and Literature Review.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Furukawa, Tatsuo; Koike, Tadashi; Sone, Hirohito; Tanaka, Shoichiro; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-01-01

    A 59-year-old Japanese woman developed diabetes mellitus without ketoacidosis in the presence of glutamic acid decarboxylase autoantibody (GADA) (24.7 U/mL). After the amelioration of her hyperglycemia, the patient had a relatively preserved serum C-peptide level. Her endogenous insulin secretion capacity remained almost unchanged during 5 years of insulin therapy. The patient's GADA titers normalized within 15 months. The islet-related autoantibodies, including GADA, are believed to be produced following the autoimmune destruction of pancreatic beta cells and are predictive markers of type 1 diabetes mellitus. Therefore, the transient appearance of GADA in our patient may have reflected pancreatic autoimmune processes that terminated without progression to insulin deficiency. PMID:26935368

  9. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde

    PubMed Central

    Tieman, Denise; Taylor, Mark; Schauer, Nicolas; Fernie, Alisdair R.; Hanson, Andrew D.; Klee, Harry J.

    2006-01-01

    An important phenylalanine-derived volatile compound produced by plants is 2-phenylethanol. It is a major contributor to flavor in many foods, including fresh fruits, such as tomato, and an insect-attracting scent in roses and many other flowers. Despite the centrality of 2-phenylethanol to flavor and fragrance, the plant genes responsible for its synthesis have not been identified. Here, we describe a biosynthetic pathway for 2-phenylethanol and other phenylalanine-derived volatiles in tomato fruits and a small family of decarboxylases (LeAADC1A, LeAADC1B, and LeAADC2) that can mediate that pathway's first step. These enzymes each catalyze conversion of phenylalanine to phenethylamine and tyrosine to tyramine. Although tyrosine is the preferred substrate in vitro, phenylalanine levels in tomato fruits far exceed those of tyrosine, indicating that phenylalanine is a physiological substrate. Consistent with this view, overexpression of either LeAADC1A or LeAADC2 in transgenic tomato plants resulted in fruits with up to 10-fold increased emissions of the products of the pathway, including 2-phenylacetaldehyde, 2-phenylethanol, and 1-nitro-2-phenylethane. Further, antisense reduction of LeAADC2 significantly reduced emissions of these volatiles. Besides establishing a biosynthetic route, these results show that it is possible to change phenylalanine-based flavor and aroma volatiles in plants by manipulating expression of a single gene. PMID:16698923

  10. Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src.

    PubMed Central

    Crisanti, P; Lorinet, A M; Calothy, G; Pessac, B

    1985-01-01

    Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil. PMID:2992933

  11. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships.

    PubMed

    Ferguson, Kyle L; Arunrattanamook, Nattapol; Marsh, E Neil G

    2016-05-24

    Ferulic acid decarboxylase from Saccharomyces cerevisiae catalyzes the decarboxylation of phenylacrylic acid to form styrene using a newly described prenylated flavin mononucleotide cofactor. A mechanism has been proposed, involving an unprecedented 1,3-dipolar cyclo-addition of the prenylated flavin with the α═β bond of the substrate that serves to activate the substrate toward decarboxylation. We measured a combination of secondary deuterium kinetic isotope effects (KIEs) at the α- and β-positions of phenylacrylic acid together with solvent deuterium KIEs. The solvent KIE is 3.3 on Vmax/KM but is close to unity on Vmax, indicating that proton transfer to the product occurs before the rate-determining step. The secondary KIEs are normal at both the α- and β-positions but vary in magnitude depending on whether the reaction is performed in H2O or D2O. In D2O, the enzyme catalyzed the exchange of deuterium into styrene; this reaction was dependent on the presence of bicarbonate. This observation implies that CO2 release must occur after protonation of the product. Further information was obtained from a linear free-energy analysis of the reaction through the use of a range of para- and meta-substituted phenylacrylic acids. Log(kcat/KM) for the reaction correlated well with the Hammett σ(-) parameter with ρ = -0.39 ± 0.03; r(2) = 0.93. The negative ρ value and secondary isotope effects are consistent with the rate-determining step being the formation of styrene from the prenylated flavin-product adduct through a cyclo-elimination reaction. PMID:27119435

  12. Deficiency of the 65 kDa isoform of glutamic acid decarboxylase impairs extinction of cued but not contextual fear memory.

    PubMed

    Sangha, Susan; Narayanan, Rajeevan T; Bergado-Acosta, Jorge R; Stork, Oliver; Seidenbecher, Thomas; Pape, Hans-Christian

    2009-12-16

    Extinction procedures are clinically relevant for reducing pathological fear, and the mechanisms of fear regulation are a subject of intense research. The amygdala, hippocampus, and prefrontal cortex (PFC) have all been suggested to be key brain areas in extinction of conditioned fear. GABA has particularly been implicated in extinction learning, and the 65 kDa isoform of glutamic acid decarboxylase (GAD65) may be important in elevating GABA levels in response to environmental signals. Extinction of conditioned fear was examined in Gad65(-/-) mice while recording local field potentials from the amygdala, hippocampus, and PFC simultaneously while monitoring behavior. Gad65(-/-) mice showed generalization of cued fear, as reported previously, and impaired extinction of cued fear, such that fear remained high across extinction training. This endurance in cued fear was associated with theta frequency synchronization between the amygdala and hippocampus. Extinction of contextual fear, however, was unaltered in Gad65(-/-) mice when compared with wild-type littermates. The data imply that GAD65 plays a critical role in regulating cued fear responses during extinction learning and that, during this process, GABAergic signaling is involved in modulating synchronized activity between the amygdala and hippocampus. In view of the more pronounced effect on cued versus contextual fear extinction, these influences may rely more on GABAergic mechanisms in the amygdala. PMID:20016086

  13. Therapeutic alteration of insulin-dependent diabetes mellitus progression by T cell tolerance to glutamic acid decarboxylase 65 peptides in vitro and in vivo.

    PubMed

    Wilson, S S; White, T C; DeLuca, D

    2001-07-01

    We have reported previously that nonobese diabetic (NOD) fetal pancreas organ cultures lose the ability to produce insulin when maintained in contact with NOD fetal thymus organ cultures (FTOC). Initial studies indicated that exposure to glutamic acid decarboxylase (GAD65) peptides in utero resulted in delay or transient protection from insulin-dependent diabetes mellitus (IDDM) in NOD mice. We also found that exposure of young adult NOD mice to the same peptides could result in acceleration of the disease. To more closely examine the effects of early and late exposure to diabetogenic Ags on T cells, we applied peptides derived from GAD65 (GAD AA 246-266, 509-528, and 524-543), to our "in vitro IDDM" (ivIDDM) model. T cells derived from NOD FTOC primed during the latter stages of organ culture, when mature T cell phenotypes are present, had the ability to proliferate to GAD peptides. ivIDDM was exacerbated under these conditions, suggesting that GAD responsiveness correlates with the ivIDDM phenotype, and parallels the acceleration of IDDM we had seen in young adult NOD mice. When GAD peptides were present during the initiation of FTOC, GAD proliferative responses were inhibited, and ivIDDM was reduced. This result suggests that tolerance to GAD peptides may reduce the production of diabetogenic T cells or their capacity to respond, as suggested by the in utero therapies studied in NOD mice. PMID:11418696

  14. Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis

    SciTech Connect

    Sumi-Ichinose, Chiho ); Ichinose, Hiroshi; Nagatsu, Toshiharu ); Takahashi, Eiichi; Hori, Tadaaki )

    1992-03-03

    Aromatic L-amino acid decarboxylase (AADC) catalyzes the decarboxylation of both L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are major mammalian neurotransmitters and hormones belonging to catecholamines and indoleamines. This report describes the organization of the human AADC gene. The authors proved that the gene of human AADC consists of 15 exons spanning more than 85 kilobases and exists as a single copy in the haploid genome. The boundaries between exon and intron followed the AG/GT rule. The sizes of exons and introns ranged from 20 to 400 bp and from 1.0 to 17.7 kb, respectively, while the sizes of four introns were not determined. Untranslated regions located in the 5{prime} region of mRNA were encoded by two exons, exons 1 and 2. The transcriptional starting point was determined around G at position {minus}111 by primer extension and S1 mapping. There were no typical TATA box' and CAAT box' within 540 bp from the transcriptional starting point. The human AADC gene was mapped to chromosome band 7p12.1-p12.3 by fluorescence in situ hybridization. This is the first report on the genomic structure and chromosomal localization of the AADC gene in mammals.

  15. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  16. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells. PMID:25765579

  17. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth.

    PubMed

    Toy, Nurten; Özogul, Fatih; Özogul, Yesim

    2015-04-15

    The function of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on tyramine and other biogenic amine production by different food borne-pathogens (FBPs) was investigated in tyrosine decarboxylase broth (TDB) using HPLC. Cell free solutions were prepared from four LAB strains. Two different concentrations which were 50% (5 ml CFS+5 ml medium/1:1) and 25% (2.5 ml CFS+7.5 ml medium/1:3) CFS and the control without CFS were prepared. Both concentration of CFS of Streptococcus thermophilus and 50% CFS of Pediococcus acidophilus inhibited tyramine production up to 98% by Salmonella paratyphi A. Tyramine production by Escherichia coli was also inhibited by 50% CFS of Lactococcus lactis subsp. lactis and 25% CFS of Leuconostoc lactis. subsp. cremoris. The inhibitor effect of 50% CFS of P. acidophilus was the highest on tyramine production (55%) by Listeria monocytogenes, following Lc. lactis subsp. lactis and Leuconostoc mesenteroides subsp. cremoris (20%) whilst 25% CFS of Leu. mes. subsp. cremoris and Lc. lactis subsp. lactis showed stimulator effects (160%). The stimulation effects of 50% CFS of S. thermophilus and Lc. lactis subsp. lactis were more than 70% by Staphylococcus aureus comparing to the control. CFS of LAB strains showed statistically inhibitor effect since lactic acid inhibited microbial growth, decreased pH quickly and reduced the formation of AMN and BAs. Consequently, in order to avoid the formation of high concentrations of biogenic amines in fermented food by bacteria, it is advisable to use CFS for food and food products. PMID:25465993

  18. Neuronal circuit-dependent alterations in expression of two isoforms of glutamic acid decarboxylase in the hippocampus following electroconvulsive shock: A stereology-based study.

    PubMed

    Jinno, Shozo; Kosaka, Toshio

    2009-11-01

    There is an increasing body of evidence suggesting that GABAergic dysfunction is involved in various psychiatric disorders. The goal of our study was to investigate the influences of electroconvulsive therapy (ECT), one of the most effective treatments for depression, on the GABAergic system in the hippocampus. In this stereology-based study, we identified GABAergic neurons by immunostaining for two isoforms of glutamic acid decarboxylase (GAD), GAD65, and GAD67 and estimated the expression changes induced by single or repeated electroconvulsive shock (ECS; an animal model of ECT). The numerical density (ND) of entire population of GABAergic neurons (expressing GAD65 and/or GAD67) was seldom altered by the administration of ECS. GAD67-positive (GAD67(+)) neurons were also rarely affected by ECS. On the other hand, the ND of GAD65(+) neurons was changed in a layer-specific manner. In the CA1 region, the ND of GAD65(+) neurons was increased in the strata radiatum/lacunosum-moleculare (SR/SLM) by repeated ECS. In the CA3 region, the ND of GAD65(+) neurons was decreased in the stratum oriens and SR/SLM after single ECS. The expression ratio of GAD65 in GABAergic neurons was increased specifically in layers receiving afferents from the entorhinal cortex (EC), i.e., SR/SLM of the CA1 region and molecular layer of the dentate gyrus (DG), after repeated ECS administration, whereas the expression ratio of GAD67 in GABAergic neurons was decreased in several layers by the same treatment. These results indicate that the ECS-induced changes in ND of GAD65(+) or GAD67(+) neurons were most likely due to alterations in GAD expression rather than actual increases or decreases in cell numbers. Altogether, the neuronal circuit-dependent alterations in GABA-mediated signaling may play a contributory role in the depression treatment process introduced by ECT. PMID:19283776

  19. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency.

    PubMed

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita

    2016-06-01

    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed. PMID:26994895

  20. Harmonization of Glutamic Acid Decarboxylase and Islet Antigen-2 Autoantibody Assays for National Institute of Diabetes and Digestive and Kidney Diseases Consortia

    PubMed Central

    Bonifacio, Ezio; Yu, Liping; Williams, Alastair K.; Eisenbarth, George S.; Bingley, Polly J.; Marcovina, Santica M.; Adler, Kerstin; Ziegler, Anette G.; Mueller, Patricia W.; Schatz, Desmond A.; Krischer, Jeffrey P.; Steffes, Michael W.; Akolkar, Beena

    2010-01-01

    Background/Rationale: Autoantibodies to islet antigen-2 (IA-2A) and glutamic acid decarboxylase (GADA) are markers for diagnosis, screening, and measuring outcomes in National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) consortia studies. A harmonization program was established to increase comparability of results within and among these studies. Methods: Large volumes of six working calibrators were prepared from pooled sera with GADA 4.8–493 World Health Organization (WHO) units/ml and IA-2A 2–235 WHO units/ml. Harmonized assay protocols for IA-2A and GADA using 35S-methionine-labelled in vitro transcribed and translated antigens were developed based on methods in use in three NIDDK laboratories. Antibody thresholds were defined using sera from patients with recent onset type 1 diabetes and healthy controls. To evaluate the impact of the harmonized assay protocol on concordance of IA-2A and GADA results, two laboratories retested stored TEDDY study sera using the harmonized assays. Results: The harmonized assays gave comparable but not identical results in the three laboratories. For IA-2A, using a common threshold of 5 DK units/ml, 549 of 550 control and patient samples were concordantly scored as positive or negative, specificity was greater than 99% with sensitivity 64% in all laboratories. For GADA, using thresholds equivalent to the 97th percentile of 974 control samples in each laboratory, 1051 (97.9%) of 1074 samples were concordant. On the retested TEDDY samples, discordance decreased from 4 to 1.8% for IA-2A (n = 604 samples; P = 0.02) and from 15.4 to 2.7% for GADA (n = 515 samples; P < 0.0001). Conclusion: Harmonization of GADA and IA-2A is feasible using large volume working calibrators and common protocols and is an effective approach to ensure consistency in autoantibody measurements. PMID:20444913

  1. Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey

    SciTech Connect

    Benson, D.L.; Isackson, P.J.; Hendry, S.H.; Jones, E.G. )

    1991-06-01

    In situ hybridization histochemistry, using cRNA probes, revealed a complementarity in the distributions of cells in the basal ganglia, basal nucleus of Meynert, thalamus, hypothalamus, and rostral part of the midbrain that showed gene expression for glutamic acid decarboxylase (GAD) or the alpha-subunit of type II calcium-calmodulin-dependent protein kinase (CAM II kinase-alpha). Cells in certain nuclei such as the thalamic reticular nucleus, globus pallidus, and pars reticulata of the substantia nigra show GAD gene expression only; others in nuclei such as the basal nucleus of Meynert, medial mamillary nuclei, and ventromedial hypothalamic nuclei show CAM II kinase-alpha gene expression only. A few nuclei, for example, the pars compacta of the substantia nigra and the greater part of the subthalamic nucleus, display gene expression for neither GAD nor CAM II kinase-alpha. In other nuclei, notably those of the dorsal thalamus, and possibly in the striatum, GAD- and CAM II kinase-expressing cells appear to form two separate populations that, in most thalamic nuclei, together account for the total cell population. In situ hybridization reveals large amounts of CAM II kinase-alpha mRNA in the neuropil of most nuclei containing CAM II kinase-alpha-positive cells, suggesting its association with dendritic polyribosomes. The message may thus be translated at those sites, close to the synapses with which the protein is associated. The in situ hybridization results, coupled with those from immunocytochemical staining for CAM II kinase-alpha protein, indicate that CAM II kinase-alpha is commonly found in certain non-GABAergic afferent fiber systems but is not necessarily present in the postsynaptic cells on which they terminate. It appears to be absent from most GABAergic fiber systems but can be present in the cells on which they terminate.

  2. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    SciTech Connect

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  3. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    PubMed

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching. PMID:19763895

  4. From Protease to Decarboxylase: THE MOLECULAR METAMORPHOSIS OF PHOSPHATIDYLSERINE DECARBOXYLASE.

    PubMed

    Choi, Jae-Yeon; Duraisingh, Manoj T; Marti, Matthias; Ben Mamoun, Choukri; Voelker, Dennis R

    2015-04-24

    Phosphatidylserine decarboxylase (PSDs) play a central role in the synthesis of phosphatidylethanolamine in numerous species of prokaryotes and eukaryotes. PSDs are unusual decarboxylase containing a pyruvoyl prosthetic group within the active site. The covalently attached pyruvoyl moiety is formed in a concerted reaction when the PSD proenzyme undergoes an endoproteolytic cleavage into a large β-subunit, and a smaller α-subunit, which harbors the prosthetic group at its N terminus. The mechanism of PSD proenzyme cleavage has long been unclear. Using a coupled in vitro transcription/translation system with the soluble Plasmodium knowlesi enzyme (PkPSD), we demonstrate that the post-translational processing is inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride. Comparison of PSD sequences across multiple phyla reveals a uniquely conserved aspartic acid within an FFXRX6RX12PXD motif, two uniquely conserved histidine residues within a PXXYHXXHXP motif, and a uniquely conserved serine residue within a GS(S/T) motif, suggesting that PSDs belong to the D-H-S serine protease family. The function of the conserved D-H-S residues was probed using site-directed mutagenesis of PkPSD. The results from these mutagenesis experiments reveal that Asp-139, His-198, and Ser-308 are all essential for endoproteolytic processing of PkPSD, which occurs in cis. In addition, within the GS(S/T) motif found in all PSDs, the Gly-307 residue is also essential, but the Ser/Thr-309 is non-essential. These results define the mechanism whereby PSDs begin their biochemical existence as proteases that execute one autoendoproteolytic cleavage reaction to give rise to a mature PSD harboring a pyruvoyl prosthetic group. PMID:25724650

  5. The preparation and characterization of an immobilized l-glutamic decarboxylase and its application for determination of l-glutamic acid.

    PubMed

    Ling; Wu; Wang; Wang; Song

    2000-10-01

    This paper is to study the preparation and characterization of an immobilized L-glutamic decarboxylase (GDC) and develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO(2) electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The dynamic response of Na(2)HPO(4)-citric acid buffer system selected is much better than that of the others, 0.10 M HAc-0.10 M NaAc and 0.10 M sodium citrate-0.10 M citric acid. The initial rate of the enzyme reaction v(0) in this buffer system is 1.76 mol. l(-1) min(-1), moreover, the rate of the enzyme reaction appears linear in the first 4 min. The optimum adsorption equilibrium time is around 6 h. The amount of enzyme adsorbed on CM-CADB resin affects the response to substrate L-glutamic acid, the widest range of linearity is obtained with over 30 mg (GDC)/g(resin). The GDC activity immobilized on CM-CADB reaches a maximum when the immobilization temperature was kept around 40 degrees C. pH was kept at 4.4 when measuring the activity of the immobilized GDC. No variation of the activity of immobilized GDC is observed when the capacity is over 2.5 meq/g.(CM-CADB resin). The properties of the immobilized enzyme on CM-CADB were characterized. No significant improvement can be achieved when the substrate concentration exceeds 12.00 mmol/l, where the activity of immobilized GDC is equal to 1.58 mmol/l.min.g. The optimum pH is found to be 5.2, which changes 0.2 unit, comparing with that of the free GDC (5.0). The optimum temperature is found to be around 48 degrees C, which is lower than that of free GDC (55 degrees C). The critical temperature of the

  6. Clinical and Genetic Characteristics of Non-Insulin-Requiring Glutamic Acid Decarboxylase (GAD) Autoantibody-Positive Diabetes: A Nationwide Survey in Japan

    PubMed Central

    Yasui, Junichi; Kawasaki, Eiji; Tanaka, Shoichiro; Awata, Takuya; Ikegami, Hiroshi; Imagawa, Akihisa; Uchigata, Yasuko; Osawa, Haruhiko; Kajio, Hiroshi; Kawabata, Yumiko; Shimada, Akira; Takahashi, Kazuma; Yasuda, Kazuki; Yasuda, Hisafumi; Hanafusa, Toshiaki; Kobayashi, Tetsuro

    2016-01-01

    Aims Glutamic acid decarboxylase autoantibodies (GADAb) differentiate slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM) from phenotypic type 2 diabetes, but many GADAb-positive patients with diabetes do not progress to insulin-requiring diabetes. To characterize GADAb-positive patients with adult-onset diabetes who do not require insulin therapy for >5 years (NIR-SPIDDM), we conducted a nationwide cross-sectional survey in Japan. Methods We collected 82 GADAb-positive patients who did not require insulin therapy for >5 years (NIR-SPIDDM) and compared them with 63 patients with insulin-requiring SPIDDM (IR-SPIDDM). Clinical and biochemical characteristics, HLA-DRB1-DQB1 haplotypes, and predictive markers for progression to insulin therapy were investigated. Results Compared with the IR-SPIDDM group, the NIR-SPIDDM patients showed later diabetes onset, higher body mass index, longer duration before diagnosis, and less frequent hyperglycemic symptoms at onset. In addition, C-peptide, LDL-cholesterol, and TG were significantly higher in the NIR-SPIDDM compared to IR-SPIDDM patients. The NIR-SPIDDM group had lower frequency of susceptible HLA-DRB1*04:05-DQB1*04:01 and a higher frequency of resistant HLA-DRB1*15:01-DQB1*06:02 haplotype compared to IR-SPIDDM. A multivariable analysis showed that age at diabetes onset (OR = 0.82), duration before diagnosis of GADAb-positive diabetes (OR = 0.82), higher GADAb level (≥10.0 U/ml) (OR = 20.41), and fasting C-peptide at diagnosis (OR = 0.07) were independent predictive markers for progression to insulin-requiring diabetes. An ROC curve analysis showed that the optimal cut-off points for discriminating two groups was the GADAb level of 13.6 U/ml, age of diabetes onset of 47 years, duration before diagnosis of 5 years, and fasting C-peptide of 0.65 ng/ml. Conclusions Clinical, biochemical and genetic characteristics of patients with NIR-SPIDDM are different from those of IR-SPIDDM patients. Age of

  7. Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance.

    PubMed

    Ugrumov, M; Melnikova, V; Ershov, P; Balan, I; Calas, A

    2002-07-01

    This study has evaluated in vivo, ex vivo and in vitro the ontogenesis and functional significance of the neurons of the arcuate nucleus (AN) expressing either individual enzymes of dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC) as well as both of them in rats from the 17th embryonic day (E) till adulthood. Immunocytochemistry, image analysis, confocal microscopy, high performance liquid chromatography with electrochemical detection and radioimmunoassay were used to solve this problem. Monoenzymatic TH-containing neurons were initially observed on E18 located in the ventrolateral AN whereas the neurons expressing only AADC or both AADC and TH first appeared on E20 in the dorsomedial AN. On E21, the monoenzymatic TH- or AADC-expressing neurons comprised more than 99% of the whole neuron population expressing the DA-synthesizing enzymes. In spite of an extremely small number (<1%) of the neurons expressing both enzymes (DArgic neurons), the dissected AN (ex vivo) and its primary cell culture (in vitro) contained a surprisingly high amount of DA and L-dihydroxyphenylalanine (L-DOPA) which were released in response to membrane depolarization. Furthermore, DA production in the AN of fetuses occurred to be sufficient to provide an inhibitory control of prolactin secretion, as in adults. The above data suggest that DA could be synthesized, at least in the AN of fetuses, by monoenzymatic neurons containing either TH or AADC, in co-operation. This hypothesis may be extended to adult animals as their AN contained the same populations of the neurons expressing DA-synthesizing enzymes as in fetuses though the proportion of true DArgic neurons increased up to 38%. During ontogenesis, the monoenzymatic TH- and AADC-containing neurons established axosomatic and axo-axonal junctions that might facilitate the L-DOPA transport from the former to the latter. Moreover, the monoenzymatic AADC-expressing neurons project their axons to

  8. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients.

    PubMed

    Gabbay, M Andrade Lima; Sato, M N; Duarte, A J S; Dib, S A

    2012-04-01

    Several studies correlated genetic background and pancreatic islet-cell autoantibody status (type and number) in type 1A diabetes mellitus (T1AD), but there are no data evaluating the relationship among these markers with serum cytokines, regulatory T cells and β cell function. This characterization has a potential importance with regard to T1AD patients' stratification and follow-up in therapeutic prevention. In this study we showed that peripheral sera cytokines [interleukin (IL)-12, IL-6, II-1β, tumour necrosis factor (TNF)-α, IL-10] and chemokines (CXCL10, CXCL8, CXCL9, CCL2) measured were significantly higher in newly diagnosed T1AD patients when compared to healthy controls (P < 0·001). Among T1AD, we found a positive correlation between CXCL10 and CCL-2 (r = 0·80; P = 0·000), IL-8 and TNF-α (r = 0·60; P = 0·000); IL-8 and IL-12 (r = 0·57; P = 0·001) and TNF-α and IL-12 (r = 0·93; P = 0·000). Glutamic acid decarboxylase-65 (GAD-65) autoantibodies (GADA) were associated negatively with CXCL10 (r = -0·45; P = 0·011) and CCL2 (r = -0·65; P = 0·000), while IA-2A showed a negative correlation with IL-10 (r = -0·38; P = 0·027). Human leucocyte antigen (HLA) DR3, DR4 or DR3/DR4 and PTPN22 polymorphism did not show any association with pancreatic islet cell antibodies or cytokines studied. In summary, our results revealed that T1AD have a proinflammatory cytokine profile compared to healthy controls and that IA-2A sera titres seem to be associated with a more inflammatory peripheral cytokine/chemokine profile than GADA. A confirmation of these data in the pre-T1AD phase could help to explain the mechanistic of the well-known role of IA-2A as a more specific marker of beta-cell damage than GADA during the natural history of T1AD. PMID:22385239

  9. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.

    PubMed

    Vuralhan, Zeynep; Morais, Marcos A; Tai, Siew-Leng; Piper, Matthew D W; Pronk, Jack T

    2003-08-01

    Catabolism of amino acids via the Ehrlich pathway involves transamination to the corresponding alpha-keto acids, followed by decarboxylation to an aldehyde and then reduction to an alcohol. Alternatively, the aldehyde may be oxidized to an acid. This pathway is functional in Saccharomyces cerevisiae, since during growth in glucose-limited chemostat cultures with phenylalanine as the sole nitrogen source, phenylethanol and phenylacetate were produced in quantities that accounted for all of the phenylalanine consumed. Our objective was to identify the structural gene(s) required for the decarboxylation of phenylpyruvate to phenylacetaldehyde, the first specific step in the Ehrlich pathway. S. cerevisiae possesses five candidate genes with sequence similarity to genes encoding thiamine diphosphate-dependent decarboxylases that could encode this activity: YDR380w/ARO10, YDL080C/THI3, PDC1, PDC5, and PDC6. Phenylpyruvate decarboxylase activity was present in cultures grown with phenylalanine as the sole nitrogen source but was absent from ammonia-grown cultures. Furthermore, the transcript level of one candidate gene (ARO10) increased 30-fold when phenylalanine replaced ammonia as the sole nitrogen source. Analyses of phenylalanine catabolite production and phenylpyruvate decarboxylase enzyme assays indicated that ARO10 was sufficient to encode phenylpyruvate decarboxylase activity in the absence of the four other candidate genes. There was also an alternative activity with a higher capacity but lower affinity for phenylpyruvate. The candidate gene THI3 did not itself encode an active phenylpyruvate decarboxylase but was required along with one or more pyruvate decarboxylase genes (PDC1, PDC5, and PDC6) for the alternative activity. The K(m) and V(max) values of the two activities differed, showing that Aro10p is the physiologically relevant phenylpyruvate decarboxylase in wild-type cells. Modifications to this gene could therefore be important for metabolic engineering

  10. Chemical mechanical planarization of Ge2Sb2Te5 using IC1010 and Politex reg pads in acidic slurry

    NASA Astrophysics Data System (ADS)

    He, Ao-Dong; Liu, Bo; Song, Zhi-Tang; Wang, Liang-Yong; Liu, Wei-Li; Feng, Gao-Ming; Feng, Song-Lin

    2014-08-01

    In the paper, chemical mechanical planarization (CMP) of Ge2Sb2Te5 (GST) is investigated using IC1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.

  11. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  12. Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483.

    PubMed

    Bolat, Irina; Romagnoli, Gabriele; Zhu, Feibai; Pronk, Jack T; Daran, Jean-Marc

    2013-09-01

    The hybrid genomes of Saccharomyces pastorianus consist of subgenomes similar to those of S. cerevisiae and S. eubayanus, and impact of the genome structure on flavour production and its regulation is poorly understood. This study focuses on ARO10, a 2-oxo-acid decarboxylase involved in production of higher alcohols. In S. pastorianus CBS1483, four ARO10 copies were identified, three resembled S. cerevisiae ARO10 and one S. eubayanus ARO10. Substrate specificities of lager strain (Lg)ScAro10 and LgSeubAro10 were compared by individually expressing them in a pdc1Δ-pdc5Δ-pdc6Δ-aro10Δ-thi3Δ S. cerevisiae strain. Both isoenzymes catalysed decarboxylation of the 2-oxo-acids derived from branched-chain, sulphur-containing amino acids and preferably phenylpyruvate. Expression of both alleles was induced by phenylalanine, however in contrast to the S. cerevisiae strain, the two genes were not induced by leucine. Additionally, LgSeubARO10 showed higher basal expression levels during growth with ammonia. ARO80, which encodes ARO10 transcriptional activator, is located on CHRIV and counts three Sc-like and one Seub-like copies. Deletion of LgSeubARO80 did not affect LgSeubARO10 phenylalanine induction, revealing 'trans' regulation across the subgenomes. ARO10 transcript levels showed a poor correlation with decarboxylase activities. These results provide insights into flavour formation in S. pastorianus and illustrate the complexity of functional characterization in aneuploid strains. PMID:23692465

  13. Pad TPC

    SciTech Connect

    Hilke, H.J.

    1984-01-01

    A new kind of TPC is described, in which no sense wires exist but gas amplification is obtained from a single parallel gap. A mesh separates the drift volume from the amplifying gap. The anode is segmented into circular rows of narrow pads for rphi measurement by centroid finding and into wide circular pads for dE/dx sampling. The expected advantages of this technique are: better, track angle independent rphi resolution (no need for wire pulse height corrections); better two-track separation if more electronic channels can be afforded; less dead space from frame structures; reduced positive feedback and slower chamber deterioration by deposit formation on the anode. Very tight construction tolerances are the principle drawback. The properties of the Pad TPC are discussed in view of large scale construction and first test results are presented.

  14. Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster.

    PubMed Central

    Hirsh, J; Davidson, N

    1981-01-01

    We have isolated chromosomal deoxyribonucleic acid clones containing the Drosophila dopa decarboxylase gene. We describe an isolation procedure which can be applied to other nonabundantly expressed Drosophila genes. The dopa decarboxylase gene lies within or very near polytene chromosome band 37C1-2. The gene is interrupted by at least one intron, and the primary mode of regulation is pretranslational. At least two additional sequences hybridized by in vivo ribonucleic acid-derived probes are found within a 35-kilobase region surrounding the gene. The developmental profile of ribonucleic acid transcribed from one of these regions differs from that of the dopa decarboxylase transcript. Images PMID:6086012

  15. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    PubMed

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism. PMID:20407462

  16. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  17. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    PubMed

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  18. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea.

    PubMed Central

    Hsieh, Y J; Kolattukudy, P E

    1994-01-01

    Malonyl-coenzyme A (malonyl-CoA) decarboxylase is widely distributed in prokaryotes and eukaryotes. However, the biological function of this enzyme has not been established in any organism. To elucidate the structure and function of this enzyme, the malonyl-CoA decarboxylase gene from Saccharopolyspora erythraea (formerly Streptomyces erythreaus) was cloned and sequenced. This gene would encode a polypeptide of 417 amino acids. The deduced amino acid sequence matched the experimentally determined amino acid sequences of 25 N-terminal residues each of the enzyme and of an internal peptide obtained by proteolysis of the purified enzyme. This decarboxylase showed homology with aminoglycoside N6'-acetyltransferases of Pseudomonas aeruginosa, Serratia marcescens, and Klebsiella pneumoniae. Northern (RNA) blot analysis revealed a single transcript. The transcription initiation site was 220 bp upstream of the start codon. When expressed in Escherichia coli, the S. erythraea malonyl-CoA decarboxylase gene yielded a protein that cross-reacted with antiserum prepared against S. erythraea malonyl-CoA decarboxylase and catalyzed decarboxylation of [3-14C]malonyl-CoA to acetyl-CoA and 14CO2. The S. erythraea malonyl-CoA decarboxylase gene was disrupted by homologous recombination using an integrating vector pWHM3. The gene-disrupted transformant did not produce immunologically cross-reacting 45-kDa decarboxylase, lacked malonyl-CoA decarboxylase activity, and could not produce erythromycin. Exogenous propionate restored the ability to produce erythromycin. These results strongly suggest that the decarboxylase provides propionyl-CoA for erythromycin synthesis probably via decarboxylation of methylmalonyl-CoA derived from succinyl-CoA, and therefore the malonyl-CoA decarboxylase gene is designated eryM. The gene disrupted mutants also did not produce pigments. Images PMID:8300527

  19. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  20. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  1. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  2. Activation of PAD4 in NET formation.

    PubMed

    Rohrbach, Amanda S; Slade, Daniel J; Thompson, Paul R; Mowen, Kerri A

    2012-01-01

    Peptidylarginine deiminases, or PADs, convert arginine residues to the non-ribosomally encoded amino acid citrulline in a variety of protein substrates. PAD4 is expressed in granulocytes and is essential for the formation of neutrophil extracellular traps (NETs) via PAD4-mediated histone citrullination. Citrullination of histones is thought to promote NET formation by inducing chromatin decondensation and facilitating the expulsion of chromosomal DNA that is coated with antimicrobial molecules. Numerous stimuli have been reported to lead to PAD4 activation and NET formation. However, how this signaling process proceeds and how PAD4 becomes activated in cells is largely unknown. Herein, we describe the various stimuli and signaling pathways that have been implicated in PAD4 activation and NET formation, including the role of reactive oxygen species generation. To provide a foundation for the above discussion, we first describe PAD4 structure and function, and how these studies led to the development of PAD-specific inhibitors. A comprehensive survey of the receptors and signaling pathways that regulate PAD4 activation will be important for our understanding of innate immunity, and the identification of signaling intermediates in PAD4 activation may also lead to the generation of pharmaceuticals to target NET-related pathogenesis. PMID:23264775

  3. Assessment of CD4+ T Cell Responses to Glutamic Acid Decarboxylase 65 Using DQ8 Tetramers Reveals a Pathogenic Role of GAD65 121–140 and GAD65 250–266 in T1D Development

    PubMed Central

    Chow, I-Ting; Yang, Junbao; Gates, Theresa J.; James, Eddie A.; Mai, Duy T.; Greenbaum, Carla; Kwok, William W.

    2014-01-01

    Susceptibility to type 1 diabetes (T1D) is strongly associated with MHC class II molecules, particularly HLA-DQ8 (DQ8: DQA1*03:01/DQB1*03:02). Monitoring T1D-specific T cell responses to DQ8-restricted epitopes may be key to understanding the immunopathology of the disease. In this study, we examined DQ8-restricted T cell responses to glutamic acid decarboxylase 65 (GAD65) using DQ8 tetramers. We demonstrated that GAD65121–140 and GAD65250–266 elicited responses from DQ8+ subjects. Circulating CD4+ T cells specific for these epitopes were detected significantly more often in T1D patients than in healthy individuals after in vitro expansion. T cell clones specific for GAD65121–140 and GAD65250–266 carried a Th1-dominant phenotype, with some of the GAD65121–140-specific T cell clones producing IL-17. GAD65250–266-specific CD4+ T cells could also be detected by direct ex vivo staining. Analysis of unmanipulated peripheral blood mononuclear cells (PBMCs) revealed that GAD65250–266-specific T cells could be found in both healthy and diabetic individuals but the frequencies of specific T cells were higher in subjects with type 1 diabetes. Taken together, our results suggest a proinflammatory role for T cells specific for DQ8-restricted GAD65121–140 and GAD65250–266 epitopes and implicate their possible contribution to the progression of T1D. PMID:25405480

  4. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter

    PubMed Central

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P.; Geller, Alfred I.

    2009-01-01

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an ∼9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported ∼90 % glutamatergic neuron-specific expression. The GAD67 promoter supported ∼90 % GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine a glutamatergic or GABAergic

  5. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  6. A new case of malonyl-CoA decarboxylase deficiency with mild clinical features.

    PubMed

    Liu, Huan; Tan, Dongqiong; Han, Lianshu; Ye, Jun; Qiu, Wenjuan; Gu, Xuefan; Zhang, Huiwen

    2016-05-01

    Malonyl-CoA decarboxylase deficiency is an extremely rare autosomal recessive inborn error of fatty acid metabolism. It usually follows a severe disease course and presents poor prognosis without treatment. Here, we report an affected female juvenile with a mild clinical and biochemical phenotype who mainly featured poor schooling without cardiomyopathy and metabolic acidosis. She was suspected of malonyl-CoA decarboxylase deficiency due to a 57-kb deletion in 16q23.3 encompassing the MLCYD gene revealed by chromosome microarray. Malonyl-CoA decarboxylase deficiency was then confirmed by acylcarnitine analysis and organic acid analysis. Real-time PCR analysis of the patient revealed the first three exon deletion of the MLYCD gene, which was maternally inherited. DNA sequencing of the MLYCD gene of the patient identified a novel heterozygous mutation (c.911G>A, p.G304E) in exon 4 that was paternally inherited. The patient urine malonic acid dissolved and had a better school record in 6 month after initiation of fat-limited diet. At 1 year post treatment, the blood malonylcarnitine level decreased remarkably. Our result expands the phenotype of malonyl-CoA decarboxylase deficiency and suggests attentions should be paid to the mild form of disorders, for example, malonyl-CoA decarboxylase deficiency, which usually present a severe disease course. © 2016 Wiley Periodicals, Inc. PMID:26858006

  7. Peripheral Artery Disease (PAD)

    MedlinePlus

    ... changes and medication . View an animation of atherosclerosis Atherosclerosis and PAD Atherosclerosis is a disease in which plaque builds up ... of an artery. PAD is usually caused by atherosclerosis in the peripheral arteries (or outer regions away ...

  8. Volatile and biogenic amines, microbiological counts, and bacterial amino acid decarboxylase activity throughout the salt-ripening process of anchovies (Engraulis encrasicholus).

    PubMed

    Pons-Sánchez-Cascado, S; Veciana-Nogués, M T; Bover-Cid, S; Mariné-Font, A; Vidal-Carou, M C

    2005-08-01

    Chemical and microbiological parameters were studied during the industrial production of salt-ripened anchovies (Engraulis encrasicholus). Gradual acidification and increases in the proteolysis index and in total volatile basic nitrogen were observed. At the end of the maturing process, the values reached pH 5.55 +/- 0.03, 21.33 +/- 5.82%, and 44.06 +/- 12.47 mg/ 100 g, respectively. In the three studied anchovy batches, the biogenic amines tyramine, histamine, putrescine, cadaverine, and agmatine increased during ripening. The highest values were found in the batch where initial microbial load was highest (batch 1), especially for enterobacteria and enterococci. Tyramine was the most abundant amine, reaching values from nondetectable to 90 mg/kg, whereas histamine did not surpass 20 mg/kg. Among the microorganisms isolated, Enterobacter cloacae, Aerococcus viridans, Kocuria varians, and Staphylococcus chromogenes were able to decarboxylate amino acids and produce biogenic amines in vitro. Most (70.59%) of the microorganisms identified were able to produce histamine, 23.53% were able to produce the diamines putrescine and cadaverine, and only 11.76% were able to produce tyramine, although this substance was the major biogenic amine found in anchovy samples. PMID:21132979

  9. Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli

    SciTech Connect

    Petersen, D.J.; Bennett, G.N. )

    1990-11-01

    In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia coli. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was screened by plaque hybridization, using oligodeoxynucleotide probes derived from the N-terminal amino acid sequence obtained from the purified protein. Phage DNA from positive plaques was analyzed by Southern hybridization. Restriction mapping and subsequent subcloning of DNA fragments hybridizing to the probes localized the gene within an {approximately}2.1-kb EcoRI/BglII fragment. A polypeptide with a molecular weight of {approximately}28,000 corresponding to that of the purified acetoacetate decarboxylase was observed in both Western blots (immunoblots) and maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. Although the expression of the gene is tightly regulated in C. acetobutylicum, it was well expressed in E. coli, although from a promoter sequence of clostridial origin.

  10. Glutamic Acid Decarboxylase 65 and Islet Cell Antigen 512/IA-2 Autoantibodies in Relation to Human Leukocyte Antigen Class II DR and DQ Alleles and Haplotypes in Type 1 Diabetes Mellitus ▿

    PubMed Central

    Stayoussef, Mouna; Benmansour, Jihen; Al-Jenaidi, Fayza A.; Said, Hichem B.; Rayana, Chiheb B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2011-01-01

    The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D. PMID:21490167

  11. Glutamic acid decarboxylase 65 and islet cell antigen 512/IA-2 autoantibodies in relation to human leukocyte antigen class II DR and DQ alleles and haplotypes in type 1 diabetes mellitus.

    PubMed

    Stayoussef, Mouna; Benmansour, Jihen; Al-Jenaidi, Fayza A; Said, Hichem B; Rayana, Chiheb B; Mahjoub, Touhami; Almawi, Wassim Y

    2011-06-01

    The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D. PMID:21490167

  12. Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase gene therapy prevents development of motor complications in parkinsonian rats after chronic intermittent L-3,4-dihydroxyphenylalanine administration.

    PubMed

    Lee, Won Yong; Lee, Eun Ah; Jeon, Mi Young; Kang, Ho Young; Park, Yong Gu

    2006-01-01

    Motor complications after chronic L-3,4-dihydroxyphenylalanine (L-DOPA) therapy occur partly because of the sensitization to dopaminergic agents resulting from pulsatile dopaminergic stimulation. The loss of presynaptic storage contributes to short duration of action by dopamine. Vesicular monoamine transporter-2 (VMAT-2) controls intraneuronal dopamine storage by packaging dopamine into synaptic vesicles, thereby allowing exocytotic release of dopamine. Using primary fibroblast doubly transduced with VMAT-2 and aromatic L-amino acid decarboxylase (AADC) genes, we previously demonstrated the beneficial effects of such double gene transduction in the production, storage, and gradual release of dopamine in vitro and in vivo. In this study, we further evaluate the effect of achieving sustained level of dopamine within the striata by VMAT-2 gene on behavioral response of parkinsonian rats after chronic intermittent L-DOPA administration. Primary fibroblast (PF) cells were genetically modified with AADC and VMAT-2 genes. We grafted primary fibroblast cells, PF with AADC (PFAADC), or doubly transduced PF with AADC and VMAT-2 (PFVMAA) (n = 6 for each group) into parkinsonian rat striata and administered L-DOPA (25 mg/kg/day) intermittently for 4 weeks. For behavioral study, we employed a model of akinesia using forepaw adjusting steps (FAS) that have been well characterized to reflect the effect of the lesion and the antiparkinsonian effect of dopaminergic drugs and transplants. The duration of FAS response to L-DOPA was sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. In PFVMAA-grafted animals, prolonged duration of FAS responses to L-DOPA was sustained even 6 weeks after discontinuation of 4-week intermittent L-DOPA treatment. These findings suggest that the restoration of dopamine storage capacity could enhance the efficacy of L-DOPA therapy and attenuate the motor fluctuations

  13. STEREOLOGICAL ESTIMATES OF THE BASAL FOREBRAIN CELL POPULATION IN THE RAT, INCLUDING NEURONS CONTAINING CHOLINE ACETYLTRANSFERASE (ChAT), GLUTAMIC ACID DECARBOXYLASE (GAD) OR PHOSPHATE-ACTIVATED GLUTAMINASE (PAG) AND COLOCALIZING VESICULAR GLUTAMATE TRANSPORTERS (VGluTs)

    PubMed Central

    GRITTI, I.; HENNY, P.; GALLONI, F.; MAINVILLE, L.; MARIOTTI, M.; JONES, B. E.

    2006-01-01

    The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and are comprised by GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as ~355,000 and the numbers of ChAT-immuno-positive (+) as ~22,000, GAD+ ~119,000 and PAG+ ~316,000, corresponding to ~5%, ~35% and ~90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also have the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, VGluT3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or

  14. Arginase, Arginine Decarboxylase, Ornithine Decarboxylase, and Polyamines in Tomato Ovaries (Changes in Unpollinated Ovaries and Parthenocarpic Fruits Induced by Auxin or Gibberellin).

    PubMed Central

    Alabadi, D.; Aguero, M. S.; Perez-Amador, M. A.; Carbonell, J.

    1996-01-01

    Arginase (EC 3.5.3.1) activity has been found in the ovaries and Young fruits of tomato (Lycopersicon esculentum Mill. cv Rutgers).Changes in arginase, arginine decarboxylase (EC 4.1.1.19), and ornithine decarboxylase activity (EC 4.1.1.17) and levels of free and conjugated putrescine, spermidine, and spermine were determined in unpollinated ovaries and in parthenocarpic fruits during the early stages of development induced by 2,4-dichlorophenoxyacetic acid (2,4-D) or gibberellic acid (GA3). Levels of arginase, free spermine, and conjugates of the three polyamines were constant in unpollinated ovaries and characteristic of a presenescent step. A marked decrease in arginase activity, free spermine, and polyamine conjugates was associated with the initiation of fruit growth due to cell division, and when cell expansion was initiated, the absence of arginase indicated a redirection of nitrogen metabolism to the synthesis of arginine. A transient increase in arginine decarboxylase and ornithine decarboxylase was also observed in 2,4-D-induced fruits. In general, 2,4-D treatments produced faster changes than GA3, and without treatment, unpollinated ovaries developed only slightly and senescence was hardly visible. Sensitivity to 2,4-D and GA3 treatment remained for at least 2 weeks postanthesis. PMID:12226441

  15. 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE (MPTP)-INDUCED ASTROGLIOSIS DOES NOT REQUIRE ACTIVATION OF ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    Mechanical injury to the brain results in enhanced immunostaining for glial fibrillary acidic protein (GFAP) that is markedly inhibited by difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. n the current study, systemic exposure of mice to the d...

  16. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). y either the oral or the subcutaneous routes, AIA produced a long-lasting induction (30 to 4O hours) of hepatic ODC activity. hree analogs o...

  17. PAD_AUDIT -- PAD Auditing Package

    NASA Astrophysics Data System (ADS)

    Clayton, C. A.

    The PAD (Packet Assembler Disassembler) utility is the part of the VAX/VMS Coloured Book Software (CBS) which allows a user to log onto remote computers from a local VAX. Unfortunately, logging into a computer via either the Packet SwitchStream (PSS) or the International Packet SwitchStream (IPSS) costs real money. Some users either do not appreciate this or do not care and have been known to clock up rather large quarterly bills. This software package allows a system manager to determine who has used PAD to call where and (most importantly) how much it has cost. The system manager can then take appropriate action - either charging the individuals, warning them to use the facility with more care or even denying access to a greedy user to one or more sites.

  18. Pad 39B Deconstruction

    NASA Video Gallery

    A time-lapse video of the deconstruction of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The fixed service structure and rotating service structure were removed. Both structures were b...

  19. The ornithine decarboxylase gene of Caenorhabditis elegans: Cloning, mapping and mutagenesis

    SciTech Connect

    Macrae, M.; Coffino, P.; Plasterk, R.H.A.

    1995-06-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 442 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5{prime} RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. 37 refs., 6 figs., 1 tab.

  20. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  1. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  2. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  3. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  4. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  5. 2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM TOP OF BERM. - NIKE Missile Base C-84, Acid Fueling Station, North of Launch Area Entrance Drive, eastern central portion of base, Barrington, Cook County, IL

  6. About Peripheral Artery Disease (PAD)

    MedlinePlus

    ... changes and medication . View an animation of atherosclerosis Atherosclerosis and PAD Atherosclerosis is a disease in which plaque builds up ... of an artery. PAD is usually caused by atherosclerosis in the peripheral arteries (or outer regions away ...

  7. Treating P.A.D.

    MedlinePlus

    ... Home Current Issue Past Issues Special Section Treating P.A.D. Past Issues / Summer 2008 Table of ... is diminished. Illustration courtesy of NHLBI Treatment for P.A.D. is designed to reduce a patient's ...

  8. Treating P.A.D.

    MedlinePlus

    ... Issue Past Issues Special Section Treating P.A.D. Past Issues / Summer 2008 Table of Contents For ... Illustration courtesy of NHLBI Treatment for P.A.D. is designed to reduce a patient's symptoms, prevent ...

  9. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4.

    PubMed

    Twahir, Umar T; Stedwell, Corey N; Lee, Cory T; Richards, Nigel G J; Polfer, Nicolas C; Angerhofer, Alexander

    2015-03-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  10. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  11. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1.

    PubMed

    Fedorov, D N; Doronina, N V; Trotsenko, Yu A

    2010-12-01

    For the first time for methylotrophic bacteria an enzyme of phytohormone indole-3-acetic acid (IAA) biosynthesis, indole-3-pyruvate decarboxylase (EC 4.1.1.74), has been found. An open reading frame (ORF) was identified in the genome of facultative methylotroph Methylobacterium extorquens AM1 using BLAST. This ORF encodes thiamine diphosphate-dependent 2-keto acid decarboxylase and has similarity with indole-3-pyruvate decarboxylases, which are key enzymes of IAA biosynthesis. The ORF of the gene, named ipdC, was cloned into overexpression vector pET-22b(+). Recombinant enzyme IpdC was purified from Escherichia coli BL21(DE3) and characterized. The enzyme showed the highest k(cat) value for benzoylformate, albeit the indolepyruvate was decarboxylated with the highest catalytic efficiency (k(cat)/K(m)). The molecular mass of the holoenzyme determined using gel-permeation chromatography corresponds to a 245-kDa homotetramer. An ipdC-knockout mutant of M. extorquens grown in the presence of tryptophan had decreased IAA level (46% of wild type strain). Complementation of the mutation resulted in 6.3-fold increase of IAA concentration in the culture medium compared to that of the mutant strain. Thus involvement of IpdC in IAA biosynthesis in M. extorquens was shown. PMID:21314613

  12. Purification and properties of diaminopimelate decarboxylase from Escherichia coli

    PubMed Central

    White, P. J.; Kelly, Bridget

    1965-01-01

    1. Diaminopimelate decarboxylase from a soluble extract of Escherichia coli A.T.C.C. 9637 was purified 200-fold by precipitation of nucleic acids, fractionation with acetone and then with ammonium sulphate, adsorption on calcium phosphate gel and chromatography on DEAE-cellulose or DEAE-Sephadex. 2. The purified enzyme showed only one component in the ultracentrifuge, with a sedimentation coefficient of 5·4s. One major peak and three much smaller peaks were observed on electrophoresis of the enzyme at pH8·9. 3. The mol.wt. of the enzyme was approx. 200000. The catalytic constant was 2000mol. of meso-diaminopimelic acid decomposed/min./mol. of enzyme, at 37°. The relative rates of decarboxylation at 25°, 37° and 45° were 0·17:1·0:1·6. At 37° the Michaelis constant was 1·7mm and the optimum pH was 6·7–6·8. 4. There was an excess of acidic amino acids over basic amino acids in the enzyme, which was bound only on basic cellulose derivatives at pH6·8. 5. The enzyme had an absolute requirement for pyridoxal phosphate as a cofactor; no other derivative of pyridoxine had activity. A thiol compound (of which 2,3-dimercaptopropan-1-ol was the most effective) was also needed as an activator. 6. In the presence of 2,3-dimercaptopropan-1-ol (1mm), heavy-metal ions (Cu2+, Hg2+) did not inhibit the enzyme, but there was inhibition by several amino acids with analogous structures to diaminopimelate, generally at high concentrations relative to the substrate. Penicillamine was inhibitory at relatively low concentrations; its action was prevented by pyridoxal phosphate. PMID:14343156

  13. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition

    PubMed Central

    Payne, Karl A.P.; White, Mark D.; Fisher, Karl; Khara, Basile; Bailey, Samuel S.; Parker, David; Rattray, Nicholas J.W.; Trivedi, Drupad K.; Goodacre, Royston; Beveridge, Rebecca; Barran, Perdita; Rigby, Stephen E.J.; Scrutton, Nigel S.; Hay, Sam; Leys, David

    2016-01-01

    The ubiD/ubiX or the homologous fdc/pad genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis1–3 or microbial biodegradation of aromatic compounds4–6 respectively. Despite biochemical studies on individual gene products, the composition and co-factor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7–9. We show Fdc is solely responsible for (de)carboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesised by the associated UbiX/Pad10. Atomic resolution crystal structures reveal two distinct isomers of the oxidized cofactor can be observed: an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with drastically altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. While 1,3-dipolar cycloaddition is commonly used in organic chemistry11–12, we propose this presents the first example of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation. PMID:26083754

  14. Coexpression of Tyrosine Hydroxylase, GTP Cyclohydrolase I, Aromatic Amino Acid Decarboxylase, and Vesicular Monoamine Transporter 2 from a Helper Virus-Free Herpes Simplex Virus Type 1 Vector Supports High-Level, Long-Term Biochemical and Behavioral Correction of a Rat Model of Parkinson’s Disease

    PubMed Central

    SUN, MEI; KONG, LINGXIN; WANG, XIAODAN; HOLMES, COURTNEY; GAO, QINGSHENG; ZHANG, GUO-RONG; PFEILSCHIFTER, JOSEF; GOLDSTEIN, DAVID S.; GELLER, ALFRED I.

    2006-01-01

    Parkinson’s disease is due to the selective loss of nigrostriatal dopaminergic neurons. Consequently, many therapeutic strategies have focused on restoring striatal dopamine levels, including direct gene transfer to striatal cells, using viral vectors that express specific dopamine biosynthetic enzymes. The central hypothesis of this study is that coexpression of four dopamine biosynthetic and transporter genes in striatal neurons can support the efficient production and regulated, vesicular release of dopamine: tyrosine hydroxylase (TH) converts tyrosine to l-3,4-dihydroxyphenylalanine (l -DOPA), GTP cyclohydrolase I (GTP CH I) is the rate-limiting enzyme in the biosynthesis of the cofactor for TH, aromatic amino acid decarboxylase (AADC) converts l -DOPA to dopamine, and a vesicular monoamine transporter (VMAT-2) transports dopamine into synaptic vesicles, thereby supporting regulated, vesicular release of dopamine and relieving feedback inhibition of TH by dopamine. Helper virus-free herpes simplex virus type 1 vectors that coexpress the three dopamine biosynthetic enzymes (TH, GTP CH I, and AADC; 3-gene-vector) or these three dopamine biosynthetic enzymes and the vesicular monoamine transporter (TH, GTP CH I, AADC, and VMAT-2; 4-gene-vector) were compared. Both vectors supported production of dopamine in cultured fibroblasts. These vectors were microinjected into the striatum of 6-hydroxydopamine-lesioned rats. These vectors carry a modified neurofilament gene promoter, and γ-aminobutyric acid (GABA)-ergic neuron-specific gene expression was maintained for 14 months after gene transfer. The 4-gene-vector supported higher levels of correction of apomorphine-induced rotational behavior than did the 3-gene-vector, and this correction was maintained for 6 months. Proximal to the injection sites, the 4-gene-vector, but not the 3-gene-vector, supported extracellular levels of dopamine and dihydroxyphenylacetic acid (DOPAC) that were similar to those observed in

  15. Dopa decarboxylase activity of the living human brain

    SciTech Connect

    Gjedde, A.; Reith, J.; Dyve, S.; Leger, G.; Guttman, M.; Diksic, M.; Evans, A.; Kuwabara, H. )

    1991-04-01

    Monoaminergic neurons use dopa decarboxylase to form dopamine from L-3,4-dihydroxyphenylalanine (L-dopa). We measured regional dopa decarboxylase activity in brains of six healthy volunteers with 6-({sup 18}F)fluoro-L-dopa and positron emission tomography. We calculated the enzyme activity, relative to its Km, with a kinetic model that yielded the relative rate of conversion of 6-({sup 18}F)fluoro-L-dopa to ({sup 18}F)fluorodopamine. Regional values of relative dopa decarboxylase activity ranged from nil in occipital cortex to 1.9 h-1 in caudate nucleus and putamen, in agreement with values obtained in vitro.

  16. Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis.

    PubMed Central

    Diderichsen, B; Wedsted, U; Hedegaard, L; Jensen, B R; Sjøholm, C

    1990-01-01

    A gene for alpha-acetolactate decarboxylase (ALDC) was cloned from Bacillus brevis in Escherichia coli and in Bacillus subtilis. The 1.3-kilobase-pair nucleotide sequence of the gene, aldB, encoding ALDC and its flanking regions was determined. An open reading frame of 285 amino acids included a typical N-terminal signal peptide of 24 or 27 amino acids. A B. subtilis strain harboring the aldB gene on a recombinant plasmid processed and secreted ALDC. In contrast, a similar enzyme from Enterobacter aerogenes is intracellular. Images PMID:2198252

  17. EPR Spin Trapping of an Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction

    PubMed Central

    Imaram, Witcha; Saylor, Benjamin T.; Centonze, Christopher P.; Richards, Nigel G. J.; Angerhofer, Alexander

    2011-01-01

    EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly 13C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution. PMID:21277974

  18. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    SciTech Connect

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J.

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  19. Perturbation of the Monomer–Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    PubMed Central

    2015-01-01

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ∼450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC. PMID:24956165

  20. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  1. A kinetic analysis of Drosophila melanogaster dopa decarboxylase.

    PubMed

    Black, B C; Smarrelli, J

    1986-03-01

    The kinetic mechanism of dopa decarboxylase (3,4-dihydroxy-L-phenylalanine carboxy-lyase, EC 4.1.1.28) was investigated in Drosophila melanogaster. Based on initial velocity and product inhibition studies, an ordered reaction is proposed for dopa decarboxylase. This kinetic mechanism is interpreted in the context of measured enzyme activities and the catecholamine pools in Drosophila. The 1(2)amd gene is immediately adjacent to the gene coding for dopa decarboxylase (Ddc) and determines hypersensitivity to alpha-methyldopa in Drosophila. Dopa decarboxylase does not decarboxylate alpha-methyldopa and hence does not generate a toxic product capable of inhibiting 1(2)amd gene function. We propose that the 1(2)amd gene is involved with an unknown catecholamine pathway involving dopa but not dopamine. PMID:3081033

  2. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  3. Dimerization of Bacterial Diaminopimelate Decarboxylase Is Essential for Catalysis.

    PubMed

    Peverelli, Martin G; Soares da Costa, Tatiana P; Kirby, Nigel; Perugini, Matthew A

    2016-04-29

    Diaminopimelate decarboxylase (DAPDC) catalyzes the final step in the diaminopimelate biosynthesis pathway of bacteria. The product of the reaction is the essential amino acid l-lysine, which is an important precursor for the synthesis of the peptidoglycan cell wall, housekeeping proteins, and virulence factors of bacteria. Accordingly, the enzyme is a promising antibacterial target. Previous structural studies demonstrate that DAPDC exists as monomers, dimers, and tetramers in the crystal state. However, the active oligomeric form has not yet been determined. We show using analytical ultracentrifugation, small angle x-ray scattering, and enzyme kinetic analyses in solution that the active form of DAPDC from Bacillus anthracis, Escherichia coli, Mycobacterium tuberculosis, and Vibrio cholerae is a dimer. The importance of dimerization was probed further by generating dimerization interface mutants (N381A and R385A) of V. cholerae DAPDC. Our studies indicate that N381A and R385A are significantly attenuated in catalytic activity, thus confirming that dimerization of DAPDC is essential for function. These findings provide scope for the development of new antibacterial agents that prevent DAPDC dimerization. PMID:26921318

  4. Improved Helmet-Padding Material

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.; Weiss, Fred R.; Eck, John D.

    1994-01-01

    Polyimide foamed into lightweight padding material for use in helmets. Exhibits increased resistance to ignition, combustion, and impact, and it outgasses less. Foam satisfies offgassing and toxicity requirements of NASA/JSC criteria (NHB80601B). Helmets containing this improved padding material used by firefighters, police, offshore drilling technicians, construction workers, miners, and race-car drivers.

  5. [Neurochemical study of effects of the new anxiolytic drugs afobazol and ladasten on the synthesis and metabolism of monoamines and their metabolites in the brain structures of Wistar rat on the model of monoamine synthesis blockade induced by aromatic amino acid decarboxylase inhibitor NSD-1015].

    PubMed

    Davydova, A I; Klodt, P M; Kudrin, V S; Kuznetsova, E A; Narkevich, V B

    2010-03-01

    Results of a neurochemical study of the effects of the new anxiolytic drugs afobazole and ladasten on the synthesis and metabolism of monoamines and their metabolites determined by HPLC on the model of monoamine synthesis blockade induced by NSD-1015 (aromatic L-amino acid decarboxylase) in the brain structures of Wistar rats are reported. A decrease in the levels of DOPAC in hypothalamus and HVA in striatum after afobazole injection may be evidence of an inhibitory action of this drug on the activity of monoamine oxidase (MAO-A), which is the main enzyme involved in dopamine biodegradation. Afobazole was also found to increase the content of serotonin (5-HT) as well as its precursor (5-OTP) and its main metabolite (5-HIAA) in hypothalamus by up to 50, 60 and 50%, respectively, which confirms a hypothesis that this anxiolytic drug can modulate the activity of tryptophan hydroxylase (5-OTP synthesis enzyme). In contrast to afobazole, ladasten demonstrated the ability to increase the level of L-DOPA (a dopamine precursor) in virtually all functional structures of the brain (except for hippocamp), which may support the hypothesis suggestion concerning a predominant action of this drug on the activity of tyrosine hydroxylase. Ladasten exhibited selectivity with respect to the dopaminergic system and affected only parameters of the dopamine metabolism, in particular, by increasing the HVA content in nucleus accumbens and decreasing it in the hypothalamus. The drug also affected the dopamine turnover parameters, producing an increase in both HVA/dopamine ratio in nucleus accumbens and DOPAC/dopamine ratio in hippocamp. PMID:20408420

  6. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  7. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  8. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. PMID:25164030

  9. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  10. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  11. Air-cushion lift pad

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Dane, D. H.

    1969-01-01

    Mathematical model is formulated for an air pad which is capable of lifting a structure to a height of 0.125 inch. Design is superior to conventional air cushion devices because it eliminates flutter, vibration, heaving, and pitching.

  12. Teaching with iPads

    NASA Astrophysics Data System (ADS)

    Maj, Hubert

    2015-04-01

    Bilingual students in high school with bilingual units in Boguchwała have received iPads for learning English and a few subjects using CLIL (biology, basics of entrepreneurship, geography, IT and mathematics). Lessons with iPads are interesting for students for several reasons. First of all, teenagers like new technologies and using iPads for teaching helps students to learn by fun. Secondly, iPads give new possibilities of looking for knowledge about each theme. Moreover, teaching with iPads develops students' engagement. They have a chance to choose a few among over 65 000 applications for gathering and then presenting information about the lesson topic. They can easily prepare presentations, movies, cartoons, mind maps or whatever they like. Teaching students, thanks to the iPads, makes it their initiative, and the teacher can inspire them to look for the knowledge rather than disciplining pupils. But teaching with iPads is connected with many problems. For instance, there are not any examples on how to teach using these tools. It is very up-to-date technology and teachers firstly must learn the possibilities of iPads and look for new applications. It takes much time, especially at the beginning, and is difficult especially for inexperienced teachers. In addition, it is almost impossible to maintain control of the iPads for all of the students during the lesson. They can use their iPads for something unconnected with the topic of the lesson. Thirdly is lack of time - active methods (with iPads as well) are more time-consuming and it could be that they do not finish the whole program. And of course the last, but not at least, is the problem of money. Some of the applications must be paid for, and it is usually obligatory to possess a credit card. Fortunately, it is not expensive - applications usually cost a few euros and many of them are free and really good.

  13. Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis.

    PubMed Central

    Schmitt, H D; Zimmermann, F K

    1982-01-01

    Six different pyruvate decarboxylase mutants of Saccharomyces cerevisiae were isolated. They belong to two unlinked complementation groups. Evidence is presented that one group is affected in a structural gene. The fact that five of the six mutants had residual pyruvate decarboxylase activity provided the opportunity for an intensive physiological characterization. It was shown that the loss of enzyme activity in vitro is reflected in a lower fermentation rate, an increased pyruvate secretion, and slower growth on a 2% glucose medium. The different effects of antimycin A on leaky mutants grown on ethanol versus the same mutants grown on glucose support the view that glucose induces some of the glycolytic enzymes, especially pyruvate decarboxylase. PMID:7050079

  14. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda

    PubMed Central

    Phillips, John D.; Bergonia, Hector A.; Reilly, Christopher A.; Franklin, Michael R.; Kushner, James P.

    2007-01-01

    Porphyria cutanea tarda (PCT), the most common form of porphyria in humans, is due to reduced activity of uroporphyrinogen decarboxylase (URO-D) in the liver. Previous studies have demonstrated that protein levels of URO-D do not change when catalytic activity is reduced, suggesting that an inhibitor of URO-D is generated in hepatocytes. Here, we describe the identification and characterization of an inhibitor of URO-D in liver cytosolic extracts from two murine models of PCT: wild-type mice treated with iron, δ-aminolevulinic acid, and polychlorinated biphenyls; and mice with one null allele of Uro-d and two null alleles of the hemochromatosis gene (Uro-d+/−, Hfe−/−) that develop PCT with no treatments. In both models, we identified an inhibitor of recombinant human URO-D (rhURO-D). The inhibitor was characterized by solid-phase extraction, chromatography, UV-visible spectroscopy, and mass spectroscopy and proved to be uroporphomethene, a compound in which one bridge carbon in the uroporphyrinogen macrocycle is oxidized. We synthesized uroporphomethene by photooxidation of enzymatically generated uroporphyrinogen I or III. Both uroporphomethenes inhibited rhURO-D, but the III isomer porphomethene was a more potent inhibitor. Finally, we detected an inhibitor of rhURO-D in cytosolic extracts of liver biopsy samples of patients with PCT. These studies define the mechanism underlying clinical expression of the PCT phenotype, namely oxidation of uroporphyrinogen to uroporphomethene, a competitive inhibitor of URO-D. The oxidation reaction is iron-dependent. PMID:17360334

  15. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.

    PubMed Central

    Goupil-Feuillerat, N; Cocaign-Bousquet, M; Godon, J J; Ehrlich, S D; Renault, P

    1997-01-01

    The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway. PMID:9335274

  16. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  17. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    PubMed Central

    Han, Qian; Ding, Haizhen; Robinson, Howard; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    Background 3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. Principal Findings In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. Conclusions The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins. PMID:20098687

  18. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine.

    PubMed

    Maycock, A L; Aster, S D; Patchett, A A

    1980-02-19

    2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine [alpha-FM-Dopa (I)] causes rapid, time-dependent, stereospecific, and irreversible inhibition of hog kidney aromatic amino acid (Dopa) decarboxylase. The inactivation occurs with loss of both the carboxyl carbon and fluoride from I and results in the stoichimetric formation of a covalent enzyme-inhibitor adduct. The data are consistent with I being a suicide inactivator of the enzyme, and a plausible mechanism for the inactivation process is presented. The inactivation is highly efficient in that there is essentially no enzymatic turnover of I to produce the corresponding amine, 1-(fluoromethyl)-2-(3,4-dihydroxyphenyl)ethylamine [alpha-FM-dopamine (II)]. Amine II is also a potent inactivator of the enzyme. In vivo compound I is found to inactivate both brain and peripheral (liver) Dopa decarboxylase activity. The possible significance of these data with respect to the known antihypertensive effect of I is discussed. PMID:7356954

  19. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad

    NASA Astrophysics Data System (ADS)

    Aodong, He; Bo, Liu; Zhitang, Song; Yegang, Lü; Juntao, Li; Weili, Liu; Songlin, Feng; Guanping, Wu

    2013-07-01

    Chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) is investigated using two typical soft pads (politex REG and AT) in acidic slurry. After CMP, it is found that the removal rate (RR) of a-GST increases with an increase of runs number for both pads. However, it achieves the higher RR and better surface quality of a-GST for an AT pad. The in-situ sheet resistance (Rs) measure shows the higher Rs of a-GST polishing can be gained after CMP using both pads and the high Rs is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads, the surface morphology and characteristics of both new and used pads are analyzed, it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad, and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST, which results in the high RR of a-GST due to enhanced chemical reaction.

  20. MIREX INDUCES ORNITHINE DECARBOXYLASE ACTIVITY IN FEMALE RAT LIVER

    EPA Science Inventory

    Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, was significantly induced in female rat liver following oral administration of the pesticide, mirex. fter dual oral exposure (120 mg/kg; 21 and 4 hrs prior to sacrifice) induction of ODC activity in r...

  1. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    PubMed Central

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45°C, respectively. Immobilized P. dacunhael-aspartate β-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM α-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate β-decarboxylase activity was observed over a 31-day period. PMID:16346636

  2. Air Bearing Lift Pad (ABLP)

    NASA Technical Reports Server (NTRS)

    Dane, Dan H.; Blaise, Herman T.

    1968-01-01

    Typical air bearings float on air films of only a few thousandths of an inch and so will only operate above very smooth, even surfaces. For the mechanical simulation of space, the small drag of the bladder type air pads is much more than can be coped with, and the practicality of large floor areas being machined for precision air bearings is nonexistent. To enable operation above surfaces that undulate slightly or feature cracks and discontinuities, an ABLP has been developed. It consists of a rigid pad beneath which an inflatable bladder is mounted. The bladder is inflated with air which then escapes through passages into a cavity in the center of the bladder to produce the lifting energy. As the air escapes about the perimeter of the bladder, a certain degree of balance and equilibrium is imparted to the pad as it is able to move a limited weight across slightly uneven surfaces.

  3. Expression, immobilization and enzymatic properties of glutamate decarboxylase fused to a cellulose-binding domain.

    PubMed

    Park, Hyemin; Ahn, Jungoh; Lee, Juwhan; Lee, Hyeokwon; Kim, Chunsuk; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2012-01-01

    Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamic acid to gamma-aminobutyric acid (GABA), was fused to the cellulose-binding domain (CBD) and a linker of Trichoderma harzianum endoglucanase II. To prevent proteolysis of the fusion protein, the native linker was replaced with a S(3)N(10) peptide known to be completely resistant to E. coli endopeptidase. The CBD-GAD expressed in E. coli was successfully immobilized on Avicel, a crystalline cellulose, with binding capacity of 33 ± 2 nmol(CBD-GAD)/g(Avicel) and the immobilized enzymes retained 60% of their initial activities after 10 uses. The results of this report provide a feasible alternative to produce GABA using immobilized GAD through fusion to CBD. PMID:22312257

  4. Pyridoxal phosphate-sensitized photoinactivation of glutamate decarboxylase from Clostridium perfringens

    PubMed Central

    Cozzani, Ivo; Santoni, Costantino; Jori, Giulio; Gennari, Giorgio; Tamburro, Antonio Mario

    1974-01-01

    1. l-Glutamate decarboxylase (EC 4.1.1.15) from Clostridium perfringens was inactivated by exposure to visible light at pH6.2. 2. Inactivation does not occur at pH4.6 or in the absence of bound pyridoxal phosphate. 3. On prolonged photo-oxidation six histidine residues per molecule of enzyme were destroyed. 4. The loss of six cysteine residues per molecule occurred both in irradiated samples and in controls oxygenated in the dark. 5. This dark-oxidation of cysteine residues is apparently required before the photo-oxidation process. 6. The absorbance, fluorescence and circular-dichroism properties of the enzyme as well as its elution volume during Sephadex gel-filtration were unaffected by prolonged irradiation. 7. However, an apparently homogeneous product of photo-oxidation could be separated from the control enzyme by ion-exchange chromatography. 8. The Km for l-glutamate was unchanged in an irradiated sample retaining 22% of control activity. 9. These data and the catalytic role of imidazole residues at the active sites of amino acid decarboxylases are discussed. PMID:4375980

  5. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  6. Studies of Vehicular Padding Materials

    PubMed Central

    Sances, Anthony; Carlin, Fred H.; Herbst, Brian; Forrest, Steve; Meyer, Steve; Khadilkar, Anil; Friedman, Keith; Bish, Jack

    2000-01-01

    The Federal Motor Vehicle Safety Standard 571.201 discusses occupant protection with interior impacts of vehicles. Rule making by the National Highway Traffic Safety Administration (NHTSA) has identified padding for potential injury reduction in vehicles. In these studies, head injury mitigation with padding on vehicular roll bars and brush bars was evaluated. Studies were conducted with free falling Hybrid 50% male head form drops on the fore head and side of the head and a 5% female head. Marked reductions in angular acceleration, as well as Head Injury Criterions (HIC), were observed when compared to unpadded roll bars and brush bars. PMID:11558079

  7. A Second 5-Carboxyvanillate Decarboxylase Gene, ligW2, Is Important for Lignin-Related Biphenyl Catabolism in Sphingomonas paucimobilis SYK-6

    PubMed Central

    Peng, Xue; Masai, Eiji; Kasai, Daisuke; Miyauchi, Keisuke; Katayama, Yoshihiro; Fukuda, Masao

    2005-01-01

    A lignin-related biphenyl compound, 5,5′-dehydrodivanillate (DDVA), is degraded to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by DDVA O-demethylase (LigX), meta-cleavage oxygenase (LigZ), and meta-cleavage compound hydrolase (LigY) in Sphingomonas paucimobilis SYK-6. 5CVA is then transformed to vanillate by a nonoxidative 5CVA decarboxylase and is further degraded through the protocatechuate 4,5-cleavage pathway. A 5CVA decarboxylase gene, ligW, was isolated from SYK-6 (X. Peng, E. Masai, H. Kitayama, K. Harada, Y, Katayama, and M. Fukuda, Appl. Environ. Microbiol. 68:4407-4415, 2002). However, disruption of ligW slightly affected the 5CVA decarboxylase activity and the growth rate on DDVA of the mutant, suggesting the presence of an alternative 5CVA decarboxylase gene. Here we isolated a second 5CVA decarboxylase gene, ligW2, which consists of a 1,050-bp open reading frame encoding a polypeptide with a molecular mass of 39,379 Da. The deduced amino acid sequence encoded by ligW2 exhibits 37% identity with the sequence encoded by ligW. Based on a gas chromatography-mass spectrometry analysis of the reaction product from 5CVA catalyzed by LigW2 in the presence of deuterium oxide, LigW2 was indicated to be a nonoxidative decarboxylase of 5CVA, like LigW. After disruption of ligW2, both the growth rate on DDVA and the 5CVA decarboxylase activity of the mutant were decreased to approximately 30% of the wild-type levels. The ligW ligW2 double mutant lost both the ability to grow on DDVA and the 5CVA decarboxylase activity. These results indicate that both ligW and ligW2 contribute to 5CVA degradation, although ligW2 plays the more important role in the growth of SYK-6 cells on DDVA. PMID:16151081

  8. CE-LIF determination of salivary cadaverine and lysine concentration ratio as an indicator of lysine decarboxylase enzyme activity.

    PubMed

    Tábi, Tamás; Lohinai, Zsolt; Pálfi, Melinda; Levine, Martin; Szöko, Eva

    2008-05-01

    Salivary bacteria produce the enzyme lysine decarboxylase which converts lysine to cadaverine. In the absence of appropriate oral hygiene, overgrowth of these bacteria depletes lysine. This may contribute to gingival inflammation, while cadaverine contributes to oral malodor. A selective and sensitive capillary electrophoresis method with laser-induced fluorescence detection has been developed for the determination of cadaverine and lysine in saliva, as an indicator of lysine decarboxylase enzyme activity. The diamino compounds were separated in acidic background electrolyte in their mono-labeled form after derivatization with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F). Linearity and reproducibility of the method in the range 1-50 μmol L(-1) have been demonstrated using saliva samples. The method was applied for the measurement of cadaverine and lysine in the saliva of healthy volunteers with or without proper oral hygiene. In the absence of oral hygiene, the mol fraction of cadaverine to cadaverine plus lysine in saliva increased significantly (0.65 ± 0.13 vs. 0.39 ± 0.18, P < 0.001), indicating the presence of higher amount of bacterial lysine decarboxylase, that may contribute to periodontal diseases. PMID:18389226

  9. Sbi00515, a Protein of Unknown Function from Streptomyces bingchenggensis, Highlights the Functional Versatility of the Acetoacetate Decarboxylase Scaffold.

    PubMed

    Mueller, Lisa S; Hoppe, Robert W; Ochsenwald, Jenna M; Berndt, Robert T; Severin, Geoffrey B; Schwabacher, Alan W; Silvaggi, Nicholas R

    2015-06-30

    The acetoacetate decarboxylase-like superfamily (ADCSF) is a group of ~4000 enzymes that, until recently, was thought to be homogeneous in terms of the reaction catalyzed. Bioinformatic analysis shows that the ADCSF consists of up to seven families that differ primarily in their active site architectures. The soil-dwelling bacterium Streptomyces bingchenggensis BCW-1 produces an ADCSF enzyme of unknown function that shares a low level of sequence identity (~20%) with known acetoacetate decarboxylases (ADCs). This enzyme, Sbi00515, belongs to the MppR-like family of the ADCSF because of its similarity to the mannopeptimycin biosynthetic protein MppR from Streptomyces hygroscopicus. Herein, we present steady state kinetic data that show Sbi00515 does not catalyze the decarboxylation of any α- or β-keto acid tested. Rather, we show that Sbi00515 catalyzes the condensation of pyruvate with a number of aldehydes, followed by dehydration of the presumed aldol intermediate. Thus, Sbi00515 is a pyruvate aldolase-dehydratase and not an acetoacetate decarboxylase. We have also determined the X-ray crystal structures of Sbi00515 in complexes with formate and pyruvate. The structures show that the overall fold of Sbi00515 is nearly identical to those of both ADC and MppR. The pyruvate complex is trapped as the Schiff base, providing evidence that the Schiff base chemistry that drives the acetoacetate decarboxylases has been co-opted to perform a new function, and that this core chemistry may be conserved across the superfamily. The structures also suggest possible catalytic roles for several active site residues. PMID:26039798

  10. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  11. Hump behind the shoulders (Dorsocervical fat pad)

    MedlinePlus

    Buffalo hump; Dorsocervical fat pad ... Cause of dorsocervical fat pad includes any of the following: Certain medicines used to treat HIV or AIDS Long-term use of certain glucocorticoid medicines, ...

  12. Your P.A.D. Checklist

    MedlinePlus

    ... on. Feature: Peripheral Artery Disease Your P.A.D. Checklist Past Issues / Fall 2011 Table of Contents ... your risk of peripheral artery disease (P.A.D.). That can start by making sure you “know ...

  13. Your P.A.D. Checklist

    MedlinePlus

    ... Home Current Issue Past Issues Special Section Your P.A.D. Checklist Past Issues / Summer 2008 Table ... and reduce your risk of peripheral arterial disease (P.A.D.). That can start by making sure ...

  14. Your P.A.D. Checklist

    MedlinePlus

    ... Issue Past Issues Special Section Your P.A.D. Checklist Past Issues / Summer 2008 Table of Contents ... your risk of peripheral arterial disease (P.A.D.). That can start by making sure you "know ...

  15. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  16. 21 CFR 878.4440 - Eye pad.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Eye pad. 878.4440 Section 878.4440 Food and Drugs... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4440 Eye pad. (a) Identification. An eye pad is... use as a bandage over the eye for protection or absorption of secretions. (b) Classification. Class...

  17. 21 CFR 878.4440 - Eye pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye pad. 878.4440 Section 878.4440 Food and Drugs... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4440 Eye pad. (a) Identification. An eye pad is... use as a bandage over the eye for protection or absorption of secretions. (b) Classification. Class...

  18. Peripheral Arterial Disease (P.A.D.)

    MedlinePlus

    ... turn Javascript on. Peripheral Artery Disease (P.A.D.) What is P.A.D.? Arteries Clogged With Plaque Peripheral arterial disease (P. ... button on your keyboard.) Why Is P.A.D. Dangerous? Click for more information Blocked blood flow ...

  19. 21 CFR 878.4440 - Eye pad.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Eye pad. 878.4440 Section 878.4440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4440 Eye pad. (a) Identification. An eye pad...

  20. 21 CFR 878.4440 - Eye pad.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Eye pad. 878.4440 Section 878.4440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4440 Eye pad. (a) Identification. An eye pad...

  1. 21 CFR 878.4440 - Eye pad.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Eye pad. 878.4440 Section 878.4440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4440 Eye pad. (a) Identification. An eye pad...

  2. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  3. The crystal structure and mechanism of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Appleby, T C; Kinsland, C; Begley, T P; Ealick, S E

    2000-02-29

    The crystal structure of Bacillus subtilis orotidine 5'-monophosphate (OMP) decarboxylase with bound uridine 5'-monophosphate has been determined by multiple wavelength anomalous diffraction phasing techniques and refined to an R-factor of 19.3% at 2.4 A resolution. OMP decarboxylase is a dimer of two identical subunits. Each monomer consists of a triosephosphate isomerase barrel and contains an active site that is located across one end of the barrel and near the dimer interface. For each active site, most of the residues are contributed by one monomer with a few residues contributed from the adjacent monomer. The most highly conserved residues are located in the active site and suggest a novel catalytic mechanism for decarboxylation that is different from any previously proposed OMP decarboxylase mechanism. The uridine 5'-monophosphate molecule is bound to the active site such that the phosphate group is most exposed and the C5-C6 edge of the pyrimidine base is most buried. In the proposed catalytic mechanism, the ground state of the substrate is destabilized by electrostatic repulsion between the carboxylate of the substrate and the carboxylate of Asp60. This repulsion is reduced in the transition state by shifting negative charge from the carboxylate to C6 of the pyrimidine, which is close to the protonated amine of Lys62. We propose that the decarboxylation of OMP proceeds by an electrophilic substitution mechanism in which decarboxylation and carbon-carbon bond protonation by Lys62 occur in a concerted reaction. PMID:10681442

  4. Molecular cloning and sequence analysis of the cDNA encoding rat liver cysteine sulfinate decarboxylase (CSD).

    PubMed

    Reymond, I; Sergeant, A; Tappaz, M

    1996-06-01

    The taurine biosynthesis enzyme, cysteine sulfinate decarboxylase (CSD), was purified to homogeneity from rat liver. Three CSD peptides generated by tryptic cleavage were isolated and partially sequenced. Two of them showed a marked homology with glutamate decarboxylase and their respective position on the CSD amino acid sequence was postulated accordingly. Using appropriate degenerated primers derived from these two peptides, a PCR amplified DNA fragment was generated from liver poly(A)+ mRNA, cloned and used as a probe to screen a rat liver cDNA library. Three cDNAs, length around 1800 bp, were isolated which all contained an open reading frame (ORF) encoding a 493 amino acid protein with a calculated molecular mass of 55.2 kDa close to the experimental values for CSD. The encoded protein contained the sequence of the three peptides isolated from homogenous liver CSD. Our data confirm and significantly extend those recently published (Kaisaki et al. (1995) Biochim. Biophys. Acta 1262, 79-82). Indeed, an additional base pair found 1371 bp downstream from the initiation codon led to a shift in the open reading frame which extended the carboxy-terminal end by 15 amino acid residues and altogether modified 36 amino acids. The validity of this correction is supported by the finding that the corrected reading frame encoded a peptide issued from CSD tryptic cleavage that was not encoded anywhere in the CSD sequence previously reported. PMID:8679699

  5. STS-120 on Launch Pad

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A photographer used a fisheye lens attached to an electronic still camera to record a series of photos of the Space Shuttle Discovery at the launch pad while the STS-120 crew was at Kennedy Space Center for the Terminal Countdown Demonstration Test in October 2007. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007. The crew included Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). Major objectives included the installation of the P6 solar array of the port truss and delivery and installment of Harmony, the Italian-built U.S. Node 2 on the International Space Station (ISS).

  6. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  7. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  8. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  9. Gastric protection by meciadanol. A new synthetic flavonoid inhibiting histidine decarboxylase.

    PubMed

    Konturek, S J; Kitler, M E; Brzozowski, T; Radecki, T

    1986-08-01

    Flavonoids reportedly inhibit histidine decarboxylase and reduce gastric mucosal histamine content. We studied the effects of acute and chronic intragastric administration to rats of meciadanol, a new synthetic flavonoid (Zyma S.A., Nyon, Switzerland). The action of meciadanol was compared to that of 16,16-dimethyl PGE2. Meciadanol did not affect acid or pepsin output at any dose used. High doses of 16,16-dimethyl PGE2 reduced both acid and pepsin output. Meciadanol partially prevented aspirin-induced lesions but the prevention required chronic administration of meciadanol. In contrast, a single dose of meciadanol completely prevented ethanol-induced lesions. Chronic administration of meciadanol also completely prevented ethanol-induced lesions. 16,16-Dimethyl PGE2 prevented both aspirin-induced and ethanol-induced lesions in doses that did not affect acid or pepsin output. Meciadanol did not influence the effect that either aspirin or ethanol had on endogenous mucosal PGI2. Thus, the dose range of meciadanol that protected against ulcerogens did not affect either gastric acid secretion or pepsin output. Therefore, we conclude that meciadanol's action represents true cytoprotection, which was previously attributed only to prostaglandins. PMID:3525045

  10. [Cloning, prokaryotic expression and characterization of lysine decarboxylase gene from Huperzia serrata].

    PubMed

    Di, Ci; Li, Jing; Tang, Yuntao; Peng, Qingzhong

    2014-08-01

    Huperzine A is a promising drug to treat Alzheimer's disease (AD). To date, its biosynthetic pathway is still unknown. Lysine decarboxylase (LDC) has been proposed to catalyze the first-step of the biosynthesis of huperzine A. To identify and characterize LDCs from Huperzia serrata, we isolated two LDC fragments (LDC1 and LDC2) from leaves of H. serrata by RT-PCR and then cloned them into pMD 19-T vector. Sequence analysis showed that LDC1 and LDC2 genes shared 95.3% identity and encoded the protein of 212 and 202 amino acid residues respectively. Thus, we ligated LDC genes into pET-32a(+) to obtain recombinant expressing vectors pET-32a(+)/LDC1 and pET-32a(+)/LDC2 respectively. We further introduced two expression vectors into Escherichia coli BL21(DE3) and cultured positive colonies of E. coli in liquid LB medium. After inducing for 4 hours with 260 μg/mL IPTG at 30 degrees C, soluble recombinant Trx-LDC1 and Trx-LDC2 were obtained and isolated for purification using a Ni-NTA affinity chromatography. We incubated purified recombinant proteins with L-lysine in the enzyme reaction buffer at 37 degrees C and then derived the reaction products using dansyl chloride. It was found that both Trx-LDC1 and Trx-LDC2 had decarboxylase activity, could convert L-lysine into cadaverine by way of thin layer chromatography assay. Further, bioinformatics analysis indicated that deduced LDC1 and LDC2 had different physicochemical properties, but similar secondary and three-dimensional structures. PMID:25423760

  11. [Cloning, prokaryotic expression and characterization of lysine decarboxylase gene from Huperzia serrata].

    PubMed

    Di, Ci; Li, Jing; Tang, Yuntao; Peng, Qingzhong

    2014-08-01

    Huperzine A is a promising drug to treat Alzheimer's disease (AD). To date, its biosynthetic pathway is still unknown. Lysine decarboxylase (LDC) has been proposed to catalyze the first-step of the biosynthesis of huperzine A. To identify and characterize LDCs from Huperzia serrata, we isolated two LDC fragments (LDC1 and LDC2) from leaves of H. serrata by RT-PCR and then cloned them into pMD 19-T vector. Sequence analysis showed that LDC1 and LDC2 genes shared 95.3% identity and encoded the protein of 212 and 202 amino acid residues respectively. Thus, we ligated LDC genes into pET-32a(+) to obtain recombinant expressing vectors pET-32a(+)/LDC1 and pET-32a(+)/LDC2 respectively. We further introduced two expression vectors into Escherichia coli BL21(DE3) and cultured positive colonies of E. coli in liquid LB medium. After inducing for 4 hours with 260 μg/mL IPTG at 30 degrees C, soluble recombinant Trx-LDC1 and Trx-LDC2 were obtained and isolated for purification using a Ni-NTA affinity chromatography. We incubated purified recombinant proteins with L-lysine in the enzyme reaction buffer at 37 degrees C and then derived the reaction products using dansyl chloride. It was found that both Trx-LDC1 and Trx-LDC2 had decarboxylase activity, could convert L-lysine into cadaverine by way of thin layer chromatography assay. Further, bioinformatics analysis indicated that deduced LDC1 and LDC2 had different physicochemical properties, but similar secondary and three-dimensional structures. PMID:25507483

  12. Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica.

    PubMed

    Méndez, Lorena Pérez; Flores, Fidel Tejera; Martín, Jacinto Darias; Rodríguez Rodríguez, Elena M; Díaz Romero, Carlos

    2015-12-01

    Physicochemical characteristics (weight, length, width, thickness, moisture, Brix degree, total fiber, protein, ash, pH, acidity, ascorbic acid, total phenolic compounds, P, Na, K, Ca, Mg, Fe, Cu, Zn, Mn and Cr) were determined in cactus pads from Opuntia dillenii and Opuntia ficus indica. The physicochemical characteristics of both species were clearly different. There were important differences between the orange and green fruit pulp of O. ficus indica; the cactus pads of O. dillenii could be differentiated according to the region (North and South). Consumption of cactus pads contributes to the intake of dietary fiber, total phenolic compounds, K, Mg, Mn and Cr. Applying factor and/or discriminant analysis, the cactus pad samples were clearly differentiated according to the species, the fruit pulp color and production region. PMID:26041209

  13. PAD in women: the ischemic continuum.

    PubMed

    Pollak, Amy West

    2015-06-01

    Lower extremity peripheral arterial disease (PAD) is part of the ischemic continuum of atherosclerotic vascular disease and is associated with an increased risk of myocardial infarction, stroke, and cardiovascular death. Compared to men, women with PAD are more likely to have asymptomatic disease or atypical symptoms. PAD in women is associated with decreased exercise capacity, reduced quality of life, increased risk of depression, as well as a greater risk of acute cardiovascular events and cardiovascular mortality than male counterparts. Ensuring an appropriate diagnosis of women with PAD offers an opportunity to begin risk factor modification therapy, improve walking capacity and make a timely referral for revascularization if needed. It is critical to highlight the sex-based disparities in lower extremity PAD so that we may work to improve outcomes for women with PAD. PMID:25939674

  14. Cantilever mounted resilient pad gas bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I. (Inventor)

    1978-01-01

    A gas-lubricated bearing is described, employing at least one pad mounted on a rectangular cantilever beam to produce a lubricating wedge between the face of the pad and a moving surface. The load-carrying and stiffness characteristics of the pad are related to the dimensions and modulus of elasticity of the beam. The bearing is applicable to a wide variety of types of hydrodynamic bearings.

  15. Characterization of ornithine decarboxylase of tobacco cells and tomato ovaries.

    PubMed Central

    Heimer, Y M; Mizrahi, Y

    1982-01-01

    Some characteristics of L-ornithine decarboxylase of tomato ovaries and tobacco cells are described. The enzyme has a pH optimum of 8.0. It requires pyridoxal phosphate and thiol reagent (dithiothreitol) for activity. It is specific for L-ornithine and has an apparent Km of 1.4 X 10-4 M. It has an apparent molecular weight of 107000. Putrescine inhibited the activity in vitro. Spermidine and spermine also inhibit the enzyme, but less effectively. It is concluded that the enzyme is similar to that of mammalian origin and likewise fulfils a function related to cell proliferation. PMID:7082296

  16. Molecular and biochemical characterisation of ornithine decarboxylases in the sheep abomasal nematode parasites Teladorsagia circumcincta and Haemonchus contortus.

    PubMed

    Umair, Saleh; Knight, Jacqueline S; Simpson, Heather V

    2013-06-01

    Full length cDNA encoding ornithine decarboxylases (ODC; EC 4.1.1.17) were cloned from the sheep abomasal nematode parasites Teladorsagia circumcincta (TcODC) and Haemonchus contortus (HcODC). The TcODC (1272 bp) and HcODC cDNA (1266 bp) encoded 424 and 422 amino acid proteins respectively. The predicted TcODC amino acid sequence showed 87% identity with HcODC and 65% and 64% with Caenorhabditis elegans and Caenorhabditis briggsae ODC respectively. All binding sites and active regions were completely conserved in both proteins. Soluble N-terminal His-tagged ODC proteins were expressed in Escherichia coli strain BL21, purified and characterised. The recombinant TcODC and HcODC had very similar kinetic properties: K(m) ornithine was 0.2-0.25 mM, optimum [PLP] was 0.3 mM and the pH optima were pH 8. No enzyme activity was detected when arginine was used as substrate. One millimolar difluoromethylornithine (DFMO) completely inhibited TcODC and HcODC activity, whereas 2 mM agmatine did not inhibit activity. The present study showed that ODC is a separate enzyme from arginine decarboxylase and strictly uses ornithine as substrate. PMID:23499950

  17. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  18. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  19. Evolution of a novel lysine decarboxylase in siderophore biosynthesis.

    PubMed

    Burrell, Matthew; Hanfrey, Colin C; Kinch, Lisa N; Elliott, Katherine A; Michael, Anthony J

    2012-10-01

    Structural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l-2,4-aminobutyrate aminotransferase (DABA AT), to synthesize 1,3-diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3-diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis. PMID:22906379

  20. Learning Chinese Idioms through iPads

    ERIC Educational Resources Information Center

    Yang, Chunsheng; Xie, Ying

    2013-01-01

    This paper reports on an action research study using iPads during the teaching of Chinese idioms to heritage learners. A class of 12 second-year Chinese learners were engaged in a self-generated learning process focused on learning abstract and concrete idioms using iPads. Students' short-term and long-term learning was measured; feedback…

  1. STS-135 Launch Pad Lightning Strike

    NASA Video Gallery

    A pair of lightning strikes occurred near launch pad 39-A at NASA's Kennedy Space Center at 12:31 p.m. and 12:40 p.m. EDT on July 7. The first struck the water tower 515 feet from the pad and the s...

  2. Taking the iPad's Measure

    ERIC Educational Resources Information Center

    Raths, David

    2012-01-01

    Soon after the iPad's release in 2010, several universities decided to issue the devices to all incoming freshmen. At the time, critics scoffed at the moves as little more than marketing gimmicks designed to attract students. In truth, few of the schools required instructors to design curriculum around the iPad or had specific plans to measure…

  3. First Graders with iPads?

    ERIC Educational Resources Information Center

    Getting, Sara; Swainey, Karin

    2012-01-01

    Giving iPads to first graders is a leap of faith that many teachers are understandably hesitant to take, especially if their students need immediate reading intervention and school leaders want guaranteed results. This article discusses how the authors took on the challenge of improving elementary reading using iPads, found surprising success for…

  4. Using iPads to Your Advantage

    ERIC Educational Resources Information Center

    Zakrzewski, Jennifer L.

    2016-01-01

    In this article, middle school mathematics teacher Jennifer Zakrzewski describes how she successfully incorporated iPads and Apple TV (for projection of iPad screens) into her classroom while having her students solve a problem about mangoes. As Zakrzewski began a unit on multiplying and dividing fractions, she chose to start with the Mangoes…

  5. Redstone Missile on Launch Pad

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  6. Lateral pharyngeal fat pad pressure during breathing.

    PubMed

    Winter, W C; Gampper, T; Gay, S B; Suratt, P M

    1996-12-01

    The purpose of this study was to test whether pressure in tissue lateral to the upper airway, the lateral pharyngeal fat pad, differs from atmospheric and pharyngeal pressure and whether it changes with breathing. We studied five male pigs by inserting a transducer-tipped catheter into their fat pad space using computed tomography (CT) scan guidance. We measured airflow with a pneumotachograph attached to a face mask and pharyngeal pressure with a balloon catheter. Fat pad pressure correlated positively with airflow and with pharyngeal pressure, decreasing during inspiration and increasing during expiration. Pressure in the fat pad differed from atmospheric pressure, generally exceeding it, and from pharyngeal pressure. We conclude that lateral pharyngeal fat pad pressure differs from atmospheric and pharyngeal pressure and that it changes with breathing. PMID:9085504

  7. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan. PMID:26657583

  8. Auxins Induce Tryptophan Decarboxylase Activity in Radicles of Catharanthus Seedlings 1

    PubMed Central

    Aerts, Rob J.; Alarco, Anne-Marie; De Luca, Vincenzo

    1992-01-01

    Germinating seedlings of Catharanthus roseus produce monoterpenoid indole alkaloids as a result of a transient increase of tryptophan decarboxylase (TDC) activity. The influence of auxins on this transient rise of TDC activity was studied. External application of indolebutyric acid or 2,4-dichlorophenoxyacetic acid at a concentration of 20 to 40 μm enhanced and prolonged the rise in TDC activity in developing seedlings. Auxin treatment also influenced the morphology of the seedlings; it induced a shortening and thickening of the hypocotyl and the radicle and promoted the initiation of lateral roots in the radicle. During development, the radicles of auxin-treated seedlings displayed a gradual increase in TDC activity that was absent in the radicles of untreated controls. Examination of immunoblots revealed anti-TDC reactive proteins in extracts from radicles of auxin-treated seedlings, but none in extracts from radicles of control seedlings. In contrast, TDC activity and immunoreactive protein levels in the aerial parts of controls and auxin-treated seedlings were comparable. Our results indicate that externally applied auxins induce both abnormal development and TDC activity in the radicles of Catharanthus seedlings. Although auxins slightly delayed the light-mediated induction of the cotyledon-specific last step in vindoline biosynthesis (i.e. acetylcoenzyme A: deacetylvindolin-O-acetyltransferase activity), seedlings still synthesized vindoline, one of the major alkaloid end products. Images Figure 2 PMID:16653009

  9. Formation of Hexacoordinate Mn(III) in Bacillus subtilis Oxalate Decarboxylase Requires Catalytic Turnover.

    PubMed

    Zhu, Wen; Wilcoxen, Jarett; Britt, R David; Richards, Nigel G J

    2016-01-26

    Oxalate decarboxylase (OxDC) catalyzes the disproportionation of oxalic acid monoanion into CO2 and formate. The enzyme has long been hypothesized to utilize dioxygen to form mononuclear Mn(III) or Mn(IV) in the catalytic site during turnover. Recombinant OxDC, however, contains only tightly bound Mn(II), and direct spectroscopic detection of the metal in higher oxidation states under optimal catalytic conditions (pH 4.2) has not yet been reported. Using parallel mode electron paramagnetic resonance spectroscopy, we now show that substantial amounts of Mn(III) are indeed formed in OxDC, but only in the presence of oxalate and dioxygen under acidic conditions. These observations provide the first direct support for proposals in which Mn(III) removes an electron from the substrate to yield a radical intermediate in which the barrier to C-C bond cleavage is significantly decreased. Thus, OxDC joins a small list of enzymes capable of stabilizing and controlling the reactivity of the powerful oxidizing species Mn(III). PMID:26744902

  10. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    SciTech Connect

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado . E-mail: motta@biof.ufrj.br

    2006-05-05

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.

  11. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  12. A Liquid-Based Colorimetric Assay of Lysine Decarboxylase and Its Application to Enzymatic Assay.

    PubMed

    Kim, Yong Hyun; Sathiyanarayanan, Ganesan; Kim, Hyun Joong; Bhatia, Shashi Kant; Seo, Hyung-Min; Kim, Jung-Ho; Song, Hun-Seok; Kim, Yun-Gon; Park, Kyungmoon; Yang, Yung-Hun

    2015-12-28

    A liquid-based colorimetric assay using a pH indicator was introduced for high-throughput monitoring of lysine decarboxylase activity. The assay is based on the color change of bromocresol purple, measured at 595 nm in liquid reaction mixture, due to an increase of pH by the production of cadaverine. Bromocresol purple was selected as the indicator because it has higher sensitivity than bromothymol blue and pheonol red within a broad range and shows good linearity within the applied pH. We applied this for simple determination of lysine decarboxylase reusability using 96-well plates, and optimization of conditions for enzyme overexpression with different concentrations of IPTG on lysine decarboxylase. This assay is expected to be applied for monitoring and quantifying the liquid-based enzyme reaction in biotransformation of decarboxylase in a high-throughput way. PMID:26282689

  13. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  14. Blue Origin Conducts Pad Escape Test

    NASA Video Gallery

    Blue Origin conducted a successful pad escape test Oct. 19 at the company's West Texas launch site, firing its pusher escape motor and launching a full-scale suborbital crew capsule from a simulate...

  15. Traumatic herniation of the buccal fat pad.

    PubMed

    Iehara, Tomoko; Tomoyasu, Chihiro; Nakajima, Hisakazu; Osamura, Toshio; Hosoi, Hajime

    2016-07-01

    Traumatic herniation of the buccal fat pad is a rare traumatic disease. Treatment consists of either excision or replacement. We herein report the first case in which a traumatic herniation of the buccal fat pad healed naturally. It was necessary to differentiate the disease from lipoblastoma. A 17-month-old boy was admitted to a clinic with an intraoral tumor that had suddenly increased in size. The tumor was diagnosed as herniation of the buccal fat pad on pathology of a biopsy specimen. In the present case, the escaped buccal fat body returned naturally and engrafted without dysfunction or facial defects. Given that young children may easily fall down with various objects in their mouth, care is required to prevent traumatic accidents. Traumatic herniation of the buccal fat pad should be considered in the differentiation of tumors of the oral cavity in young children. PMID:26892590

  16. Alining Solder Pads on a Solar Cell

    NASA Technical Reports Server (NTRS)

    Lazzery, A. G.

    1984-01-01

    Mechanism consisting of stylus and hand-operated lever incorporated into screening machine to precisely register front and back solder pads during solar-cell assembly. Technique may interest those assembling solar cells manually for research or prototype work.

  17. The Road to Pad Abort 1

    NASA Video Gallery

    At the White Sands Missile Range in Las Cruces, N.M., engineers and technicians are preparing for the Pad Abort 1 flight test. The Launch Abort System is a sophisticated new rocket tower designed t...

  18. Soyuz Rolled to Launch Pad in Kazakhstan

    NASA Video Gallery

    The Soyuz rocket is rolled out to the launch pad by train on Tuesday, March 26, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for March 29 and will send Ex...

  19. Expedition 30 Soyuz Moves to Launch Pad

    NASA Video Gallery

    On Dec. 19, the Soyuz TMA-03M spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan for final preparations before launch to the International Space Statio...

  20. Knuckle pads – a rare finding

    PubMed Central

    Gengenbacher, Michael; Bianchi, Stefano

    2012-01-01

    Knuckle pads are rare harmless subcutaneous nodules that must be differentiated from joint disease of the proximal interphalangeal or rarely of the metacarpophalangeal joints as well as from other masses of the paraarticular tissues. We present a case of an otherwise healthy 36-year-old woman presenting with bilateral knuckle pads located at the dorsal aspect of the proximal interphalangeal joints. No predisposition to a specific musculoskeletal disorder was noted. Ultrasound revealed well-delimited subcutaneous hypoechoic masses without internal flow signals at color Doppler. Histology showed proliferation of myofibroblasts with a decrease of elastic filaments in the deep dermis. The clinical picture, the family history in addition to the histology allowed us to make the diagnosis of knuckle pads. We present the ultrasound findings of knuckle pads and discuss the differential diagnosis of a “swelling” in the dorsal region of proximal interphalangeal joints and metacarpophalangeal joints. PMID:26672439

  1. Gel pad application for automated breast sonography.

    PubMed

    Kim, Yun Ju; Kim, Sung Hun; Jeh, Su Kyung; Choi, Jae Jeong; Kang, Bong Joo; Song, Byung Joo

    2015-04-01

    The purpose of this study was to describe the technical aspects of gel pad application for automated breast sonography and to show its effects on pain relief, scan coverage, and image quality. Twenty patients underwent 2 sets of automated breast sonography with and without gel pad application and were then asked to provide feedback on the examination-related pain. Scan coverage and image quality were compared quantitatively and qualitatively. The degree of pain was significantly decreased after gel pad application (P < .0001). The scan coverage was expanded particularly at the mid-portion of the breast. Image quality was satisfactory without significant differences between the sets. Gel pad application for automated breast sonography is easy and provides significant pain relief. The scan coverage was expanded, while the image quality was maintained. PMID:25792588

  2. IT Does Not Love iPads

    ERIC Educational Resources Information Center

    Fredette, Michelle

    2013-01-01

    On many campuses, iPads have taken over the hearts and minds of everyone. Everyone, that is, except the IT department. These sexy tablets might be the apple of faculty and students' eyes, but for IT directors and their staffs, working with iPads in an enterprise network environment is not the stuff of a love affair. To state the problem…

  3. Enter the iPad (or Not?)

    ERIC Educational Resources Information Center

    Waters, John K.

    2010-01-01

    Few computing devices have sparked the burning gizmo lust ignited by the iPad. Apple's latest entry into the tablet PC market didn't generate much heat when it was first unveiled in January, but by April 3, the day of the official release, feverish customers were mobbing Apple stores. The company claims to have sold 300,000 iPads by midnight on…

  4. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    SciTech Connect

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  5. Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.

    PubMed

    Selvaraj, Brinda; Buckel, Wolfgang; Golding, Bernard T; Ullmann, G Matthias; Martins, Berta M

    2016-01-01

    4-Hydroxyphenylacetate decarboxylase (4Hpad) is the prototype of a new class of Fe-S cluster-dependent glycyl radical enzymes (Fe-S GREs) acting on aromatic compounds. The two-enzyme component system comprises a decarboxylase responsible for substrate conversion and a dedicated activating enzyme (4Hpad-AE). The decarboxylase uses a glycyl/thiyl radical dyad to convert 4-hydroxyphenylacetate into p-cresol (4-methylphenol) by a biologically unprecedented Kolbe-type decarboxylation. In addition to the radical dyad prosthetic group, the decarboxylase unit contains two [4Fe-4S] clusters coordinated by an extra small subunit of unknown function. 4Hpad-AE reductively cleaves S-adenosylmethionine (SAM or AdoMet) at a site-differentiated [4Fe-4S]2+/+ cluster (RS cluster) generating a transient 5'-deoxyadenosyl radical that produces a stable glycyl radical in the decarboxylase by the abstraction of a hydrogen atom. 4Hpad-AE binds up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert that is C-terminal to the RS cluster-binding motif. The ferredoxin-like domain with its two auxiliary clusters is not vital for SAM-dependent glycyl radical formation in the decarboxylase, but facilitates a longer lifetime for the radical. This review describes the 4Hpad and cognate AE families and focuses on the recent advances and open questions concerning the structure, function and mechanism of this novel Fe-S-dependent class of GREs. PMID:26959876

  6. 21 CFR 884.5435 - Unscented menstrual pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Unscented menstrual pad. 884.5435 Section 884.5435... § 884.5435 Unscented menstrual pad. (a) Identification. An unscented menstrual pad is a device that is a pad made of cellulosic or synthetic material which is used to absorb menstrual or other...

  7. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance.

    PubMed

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2015-10-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG. PMID:26149542

  8. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes

    PubMed Central

    2013-01-01

    Background The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. Results We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Conclusions Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes. PMID:23617694

  9. New fertilizer-producing system installed at Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A recently installed fertilizer-producing system sits near Launch Pad 39A. Using a 'scrubber,' the system captures nitrogen tetroxide vapor that develops as a by-product when it is transferred from ground storage tanks into the Shuttle storage tanks. Nitrogen tetroxide is used as the oxidizer for the hypergolic propellant in the Shuttle's on-orbit reaction control system. The scrubber then uses hydrogen peroxide to produce nitric acid, which, after adding potassium hydroxide, converts to potassium nitrate, a commercial fertilizer. Plans call for the resulting fertilizer to be used on the orange groves that KSC leases to outside companies.

  10. Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy

    PubMed Central

    Fredberg, Ulrich; Kjær, Søren G.; Quistorff, Bjørn; Langberg, Henning; Hansen, Jacob B.

    2015-01-01

    Background Achilles tendinopathy is a painful inflammatory condition characterized by swelling, stiffness and reduced function of the Achilles tendon. Kager’s fat pad is an adipose tissue located in the area anterior to the Achilles tendon. Observations reveal a close physical interplay between Kager’s fat pad and its surrounding structures during movement of the ankle, suggesting that Kager’s fat pad may stabilize and protect the mechanical function of the ankle joint. Aim The aim of this study was to characterize whether Achilles tendinopathy was accompanied by changes in expression of inflammatory markers and metabolic enzymes in Kager’s fat pad. Methods A biopsy was taken from Kager’s fat pad from 31 patients with chronic Achilles tendinopathy and from 13 healthy individuals. Gene expression was measured by reverse transcription-quantitative PCR. Focus was on genes related to inflammation and lipid metabolism. Results Expression of the majority of analyzed inflammatory marker genes was increased in patients with Achilles tendinopathy compared to that in healthy controls. Expression patterns of the patient group were consistent with reduced lipolysis and increased fatty acid β-oxidation. In the fat pad, the pain-signaling neuropeptide substance P was found to be present in one third of the subjects in the Achilles tendinopathy group but in none of the healthy controls. Conclusion Gene expression changes in Achilles tendinopathy patient samples were consistent with Kager’s fat pad being more inflamed than in the healthy control group. Additionally, the results indicate an altered lipid metabolism in Kager’s fat pad of Achilles tendinopathy patients. PMID:25996876

  11. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  12. Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua

    PubMed Central

    Liu, Sisi; Wang, Mo; Li, Xianchun

    2015-01-01

    Melanism has been found in a wide range of species, but the molecular mechanisms involved remain largely elusive. In this study, we studied the molecular mechanisms of the pupal melanism in Spodoptera exigua. The full length cDNA sequences of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), two key enzymes in the biosynthesis pathway of melanin, were cloned, and their temporal expression patterns in the integument were compared during the larval-pupal metamorphosis process of the S. exigua wild type (SEW) and melanic mutant (SEM) strains. No amino acid change in the protein sequence of TH and DDC was found between the two strains. Both DDC and TH were significantly over-expressed in the integument of the SEM strain at late-prepupa and 0 h pupa, respectively, compared with those of the SEW strain. Feeding 5th instar larvae of SEM with diets incorporated with 1 mg/g of the DDC inhibitor L-α-Methyl-DOPA and 0.75 mg/g of the TH inhibitor 3-iodo-tyrosine (3-IT) resulted in 20% pupae with partially-rescued phenotype and 68.2% of pupae with partially- or fully-rescued phenotype, respectively. These results indicate that overexpressions of TH and DDC are involved in the pupal melanization of S. exigua. PMID:26084938

  13. Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua.

    PubMed

    Liu, Sisi; Wang, Mo; Li, Xianchun

    2015-01-01

    Melanism has been found in a wide range of species, but the molecular mechanisms involved remain largely elusive. In this study, we studied the molecular mechanisms of the pupal melanism in Spodoptera exigua. The full length cDNA sequences of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), two key enzymes in the biosynthesis pathway of melanin, were cloned, and their temporal expression patterns in the integument were compared during the larval-pupal metamorphosis process of the S. exigua wild type (SEW) and melanic mutant (SEM) strains. No amino acid change in the protein sequence of TH and DDC was found between the two strains. Both DDC and TH were significantly over-expressed in the integument of the SEM strain at late-prepupa and 0 h pupa, respectively, compared with those of the SEW strain. Feeding 5(th) instar larvae of SEM with diets incorporated with 1 mg/g of the DDC inhibitor L-α-Methyl-DOPA and 0.75 mg/g of the TH inhibitor 3-iodo-tyrosine (3-IT) resulted in 20% pupae with partially-rescued phenotype and 68.2% of pupae with partially- or fully-rescued phenotype, respectively. These results indicate that overexpressions of TH and DDC are involved in the pupal melanization of S. exigua. PMID:26084938

  14. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  15. Reliability Investigations on SnAg Bumps on Substrate Pads with Different Pad Finish

    SciTech Connect

    Bauer, R.; Ebersberger, B.; Kupfer, C.; Alexa, L.

    2006-02-07

    SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP) finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.

  16. Multiple roles of the active site lysine of Dopa decarboxylase.

    PubMed

    Bertoldi, Mariarita; Voltattorni, Carla Borri

    2009-08-15

    The pyridoxal 5'-phosphate dependent-enzyme Dopa decarboxylase, responsible for the irreversible conversion of l-Dopa to dopamine, is an attractive drug target. The contribution of the pyridoxal-Lys303 to the catalytic mechanisms of decarboxylation and oxidative deamination is analyzed. The K303A variant binds the coenzyme with a 100-fold decreased apparent equilibrium binding affinity with respect to the wild-type enzyme. Unlike the wild-type, K303A in the presence of l-Dopa displays a parallel progress course of formation of both dopamine and 3,4-dihydroxyphenylacetaldehyde (plus ammonia) with a burst followed by a linear phase. Moreover, the finding that the catalytic efficiencies of decarboxylation and of oxidative deamination display a decrease of 1500- and 17-fold, respectively, with respect to the wild-type, is indicative of a different impact of Lys303 mutation on these reactions. Kinetic analyses reveal that Lys303 is involved in external aldimine formation and hydrolysis as well as in product release which affects the rate-determining step of decarboxylation. PMID:19580779

  17. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  18. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice.

    PubMed

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC(-/-) mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC(-/-) mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC(-/-) mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  19. Chloroform induction of ornithine decarboxylase activity in rats.

    PubMed Central

    Savage, R E; Westrich, C; Guion, C; Pereira, M A

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-dependent increase of hepatic ODC with an apparent threshold at 100 mg/kg body weight. Female rats were two to four times more susceptible to to chloroform. Upon daily dosing of chloroform for 7 days the liver became less susceptible, with the last dose of chloroform resulting in only 10% of the activity observed after a single dose. Nuclear RNA polymerase I activity was also induced by chloroform. Chloroform, rather than increasing the activity of renal ODC, resulted in a 35% reduction. The induction by chloroform of hepatic ODC activity might be associated with regenerative hyperplasia while the renal carcinogenicity of chloroform could not be demonstrated to be associated with ODC induction. PMID:7151757

  20. Cysteine-dependent inactivation of hepatic ornithine decarboxylase.

    PubMed Central

    Murakami, Y; Kameji, T; Hayashi, S

    1984-01-01

    When rat liver homogenate or its postmitochondrial supernatant was incubated with L-cysteine, but not D-cysteine, ornithine decarboxylase (ODC) lost more than half of its catalytic activity within 30 min and, at a slower rate, its immunoreactivity. The inactivation correlated with production of H2S during the incubation. These changes did not occur in liver homogenates from vitamin B6-deficient rats. A heat-stable inactivating factor was found in both dialysed cytosol and washed microsomes obtained from the postmitochondrial supernatant incubated with cysteine. The microsomal inactivating factor was solubilized into Tris/HCl buffer, pH 7.4, containing dithiothreitol. Its absorption spectrum in the visible region resembled that of Fe2+ X dithiothreitol in Tris/HCl buffer. On the other hand FeSO4 inactivated partially purified ODC in a similar manner to the present inactivating factor. During the incubation of postmitochondrial supernatant with cysteine, there was a marked increase in the contents of Fe2+ loosely bound to cytosolic and microsomal macromolecules. Furthermore, the content of such reactive iron in the inactivating factor preparations was enough to account for their inactivating activity. These data suggested that H2S produced from cysteine by some vitamin B6-dependent enzyme(s) converted cytosolic and microsomal iron into a reactive loosely bound form that inactivated ODC. PMID:6696745

  1. Accumulation of ornithine decarboxylase-antizyme complex in HMOA cells.

    PubMed Central

    Murakami, Y; Fujita, K; Kameji, T; Hayashi, S

    1985-01-01

    A new method was developed for the assay of ornithine decarboxylase (ODC)-antizyme complex, in which alpha-difluoromethylornithine (DFMO)-inactivated ODC was used to release active ODC competitively from the complex. ODC-antizyme complex was present in the extracts of hepatoma tissue-culture (HTC) cells and of ODC-stabilized variant HMOA cells, in much larger amounts in the latter. Cellular amounts of the complex fluctuated after a change of medium in a similar manner in HTC and HMOA cells, increasing during the period of ODC decay. After treatment with cycloheximide, the decay of ODC-antizyme complex in HMOA cells was more rapid than the decay of free ODC, but it was much slower than the decay of free ODC or complexed ODC in HTC cells. Administration of putrescine caused a rapid increase in the amount of ODC-antizyme complex in both HTC and HMOA cells, but nevertheless the decay of total ODC (free ODC plus ODC-antizyme complex) was more rapid with putrescine than with cycloheximide. These results suggested the possibility that ODC is degraded through complex-formation with antizyme. In contrast with complexed antizyme, free antizyme was not stabilized in HMOA cells. PMID:3919709

  2. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  3. Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1.

    PubMed

    Horvath, Susanne E; Böttinger, Lena; Vögtle, F-Nora; Wiedemann, Nils; Meisinger, Chris; Becker, Thomas; Daum, Günther

    2012-10-26

    The inner mitochondrial membrane plays a crucial role in cellular lipid homeostasis through biosynthesis of the non-bilayer-forming lipids phosphatidylethanolamine and cardiolipin. In the yeast Saccharomyces cerevisiae, the majority of cellular phosphatidylethanolamine is synthesized by the mitochondrial phosphatidylserine decarboxylase 1 (Psd1). The biogenesis of Psd1 involves several processing steps. It was speculated that the Psd1 precursor is sorted into the inner membrane and is subsequently released into the intermembrane space by proteolytic removal of a hydrophobic sorting signal. However, components involved in the maturation of the Psd1 precursor have not been identified. We show that processing of Psd1 involves the action of the mitochondrial processing peptidase and Oct1 and an autocatalytic cleavage at a highly conserved LGST motif yielding the α- and β-subunit of the enzyme. The Psd1 β-subunit (Psd1β) forms the membrane anchor, which binds the intermembrane space-localized α-subunit (Psd1α). Deletion of a transmembrane segment in the β-subunit results in mislocalization of Psd1 and reduced enzymatic activity. Surprisingly, autocatalytic cleavage does not depend on proper localization to the inner mitochondrial membrane. In summary, membrane integration of Psd1 is crucial for its functionality and for maintenance of mitochondrial lipid homeostasis. PMID:22984266

  4. Processing and Topology of the Yeast Mitochondrial Phosphatidylserine Decarboxylase 1*

    PubMed Central

    Horvath, Susanne E.; Böttinger, Lena; Vögtle, F.-Nora; Wiedemann, Nils; Meisinger, Chris; Becker, Thomas; Daum, Günther

    2012-01-01

    The inner mitochondrial membrane plays a crucial role in cellular lipid homeostasis through biosynthesis of the non-bilayer-forming lipids phosphatidylethanolamine and cardiolipin. In the yeast Saccharomyces cerevisiae, the majority of cellular phosphatidylethanolamine is synthesized by the mitochondrial phosphatidylserine decarboxylase 1 (Psd1). The biogenesis of Psd1 involves several processing steps. It was speculated that the Psd1 precursor is sorted into the inner membrane and is subsequently released into the intermembrane space by proteolytic removal of a hydrophobic sorting signal. However, components involved in the maturation of the Psd1 precursor have not been identified. We show that processing of Psd1 involves the action of the mitochondrial processing peptidase and Oct1 and an autocatalytic cleavage at a highly conserved LGST motif yielding the α- and β-subunit of the enzyme. The Psd1 β-subunit (Psd1β) forms the membrane anchor, which binds the intermembrane space-localized α-subunit (Psd1α). Deletion of a transmembrane segment in the β-subunit results in mislocalization of Psd1 and reduced enzymatic activity. Surprisingly, autocatalytic cleavage does not depend on proper localization to the inner mitochondrial membrane. In summary, membrane integration of Psd1 is crucial for its functionality and for maintenance of mitochondrial lipid homeostasis. PMID:22984266

  5. Ethanolic fermentation in transgenic tobacco expressing Zymomonas mobilis pyruvate decarboxylase.

    PubMed Central

    Bucher, M; Brändle, R; Kuhlemeier, C

    1994-01-01

    During oxygen limitation in higher plants, energy metabolism switches from respiration to fermentation. As part of this anaerobic response the expression of genes encoding pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) is strongly induced. In addition there is ample evidence for post-translational regulation. In order to understand this multi-level regulation of the anaerobic response, we provided tobacco with the constitutive capacity of ethanolic fermentation by expressing a PDC gene derived from the obligate anaerobe Zymomonas mobilis. The protein accumulated to high levels and was active in an in vitro assay. During the first 2-4 h of anoxia, acetaldehyde accumulated to 10- to 35-fold and ethanol to 8- to 20-fold higher levels than in wild-type. Under normoxic conditions no accumulation of acetaldehyde and ethanol could be measured. Instead, the two products may be immediately re-metabolized in tobacco leaf tissue. We show that aerobic fermentation takes place when the respiratory system is inhibited. Although these conditions enhance ethanolic fermentation under normoxia, they fail to increase ADH transcript levels. These results indicate that anaerobic transcription is triggered not by the metabolic consequences of oxygen limitation, but directly through an oxygen-sensing system. Images PMID:8026460

  6. Pad testing in incontinent women: a review.

    PubMed

    Ryhammer, A M; Djurhuus, J C; Laurberg, S

    1999-01-01

    This article reviews the literature on pad-weighing tests used for objectifying and quantifying incontinence in urinary incontinent women. The patients wear pads weighed before and after the test period. A weight gain is taken as a measure of the amount of urine loss. The tests are in principle of two different types: short-term office tests and long-term home tests, and measure different aspects of urinary control and dysfunction. Both have an inherent large intra- and interindividual variability. Pad weight gains obtained from patients referred for incontinence and those from self-reported continent controls overlap to a certain degree, and it is not possible to identify distinct numerical cut-off values separating continence from incontinence. This suggests that incontinence is a complex condition in which the amount of leakage, other sources of weight gain, and differences in the individual patients' personal characteristics influence the identification and quantification of the problem. In spite of the shortcomings the pad tests remain a valuable tool for both the clinician and the researcher. The home pad tests are superior to the office tests in terms of authenticity, and should be performed with a concomitant systematic registration of the participant's voidings, fluid intake and episodes of incontinence. PMID:10384973

  7. Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase1[W

    PubMed Central

    Chakraborty, Niranjan; Ghosh, Rajgourab; Ghosh, Sudip; Narula, Kanika; Tayal, Rajul; Datta, Asis; Chakraborty, Subhra

    2013-01-01

    The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value. PMID:23482874

  8. Phytoalexin-Deficient Mutants of Arabidopsis Reveal That Pad4 Encodes a Regulatory Factor and That Four Pad Genes Contribute to Downy Mildew Resistance

    PubMed Central

    Glazebrook, J.; Zook, M.; Mert, F.; Kagan, I.; Rogers, E. E.; Crute, I. R.; Holub, E. B.; Hammerschmidt, R.; Ausubel, F. M.

    1997-01-01

    We are working to determine the role of the Arabidopsis phytoalexin, camalexin, in protecting the plant from pathogen attack by isolating phytoalexin-deficient (pad) mutants in the accession Columbia (Col-0) and examining their response to pathogens. Mutations in PAD1, PAD2, and PAD4 caused enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. maculicola strain ES4326 (PsmES4326), while mutations in PAD3 or PAD5 did not. Camalexin was not detected in any of the double mutants pad1-1 pad2-1, pad1-1 pad3-1 or pad2-1 pad3-1. Growth of PsmES4326 in pad1-1 pad2-1 was greater than that in pad1-1 or pad2-1 plants, while growth in pad1-1 pad3-1 and pad2-1 pad3-1 plants was similar to that in pad1-1 and pad2-1 plants, respectively. The pad4-1 mutation caused reduced camalexin synthesis in response to PsmES4326 infection, but not in response to Cochliobolus carbonum infection, indicating that PAD4 has a regulatory function. PAD1, PAD2, PAD3 and PAD4 are all required for resistance to the eukaryotic biotroph Peronospora parasitica. The pad4-1 mutation caused the most dramatic change, exhibiting full susceptibility to four of six Col-incompatible parasite isolates. Interestingly, each combination of double mutants between pad1-1, pad2-1 and pad3-1 exhibited additive shifts to moderate or full susceptibility to most of the isolates. PMID:9136026

  9. Functional Roles of the Dimer-Interface Residues in Human Ornithine Decarboxylase

    PubMed Central

    Lee, Chien-Yun; Liu, Yi-Liang; Lin, Chih-Li; Liu, Guang-Yaw; Hung, Hui-Chih

    2014-01-01

    Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the Kd value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis. PMID:25140796

  10. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models.

    PubMed

    Lee, B; Lee, H; Nam, Y R; Oh, J H; Cho, Y H; Chang, J W

    2005-08-01

    In this study, we report the amelioration of parkinsonian symptoms in rat Parkinson's disease (PD) models, as a result of the expression of glutamate decarboxylase (GAD) 65 with a modified cytomegalovirus (CMV) promoter. The transfer of the gene for gamma-amino butryic acid (GAD), the rate-limiting enzyme in gama-amino butrylic acid (GABA) production, has been investigated as a means to increase inhibitory synaptic activity. Electrophysiological evidence suggests that the transfer of the GAD65 gene to the subthalamic nucleus (STN) can change the excitatory output of this nucleus to inhibitory output. Our in vitro results also demonstrated higher GAD65 expression in cells transfected with the JDK promoter, as compared to cells transfected with the CMV promoter. Also, a rat PD model in which recombinant adeno-associated virus-2 (rAAV2)-JDK-GAD65 was delivered into the STN exhibited significant behavioral improvements, as compared to the saline-injected group. Interestingly, we observed that these behavioral improvements were more obvious in rat PD models in which rAAV2-JDK-GAD65 was injected into the STN than in rat PD models in which rAAV2-CMV-GAD65 was injected into the STN. Moreover, according to electrophysiological data, the rAAV2-JDK-GAD65-injected group exhibited more constant improvements in firing rates than did the rAAV2-CMV-GAD65-injected group. These data indicate that the JDK promoter, when coupled with GAD65 expression, is more effective with regard to parkinsonian symptoms than is the CMV promoter. PMID:15829994

  11. Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae.

    PubMed

    Choi, Soon-Yong; Park, Hee Yun; Paek, Aron; Kim, Gil Seob; Jeong, Seong Eun

    2009-12-31

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system. PMID:19937472

  12. Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats.

    PubMed

    Salazar, Patricia; Tapia, Ricardo

    2015-10-01

    Glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, requires pyridoxal phosphate (PLP) as a cofactor. Thiosemicarbazide (TSC) and γ-glutamyl-hydrazone (PLPGH) inhibit the free PLP-dependent isoform (GAD65) activity after systemic administration, leading to epilepsy in mice and in young, but not in adult rats. However, the competitive GAD inhibitor 3-mercaptopropionic acid (MPA) induces convulsions in both immature and adult rats. In the present study we tested comparatively the epileptogenic and neurotoxic effects of PLPGH, TSC and MPA, administered by microdialysis in the hippocampus of adult awake rats. Cortical EEG and motor behavior were analyzed during the next 2h, and aspartate, glutamate and GABA were measured by HPLC in the microdialysis-collected fractions. Twenty-four hours after drug administration rats were fixed for histological analysis of the hippocampus. PLPGH or TSC did not affect the motor behavior, EEG or cellular morphology, although the extracellular concentration of GABA was decreased. In contrast, MPA produced intense wet-dog shakes, EEG epileptiform discharges, a >75% reduction of extracellular GABA levels and remarkable neurodegeneration of the CA1 region, with >80% neuronal loss. The systemic administration of the NMDA glutamate receptor antagonist MK-801 30 min before MPA did not prevent the MPA-induced epilepsy but significantly protected against its neurotoxic effect, reducing neuronal loss to <30%. We conclude that in adult awake rats, drugs acting on PLP availability have only a weak effect on GABA neurotransmission, whereas direct GAD inhibition produced by MPA induces hyperexcitation leading to epilepsy and hippocampal neurodegeneration. Because this degeneration was prevented by the blockade of NMDA receptors, we conclude that it is due to glutamate-mediated excitotoxicity consequent to disinhibition of the hippocampal excitatory circuits. PMID:26354164

  13. Spacecraft factory-to-pad testing concept

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1975-01-01

    It is noted that the concept of factory-to-pad testing is based on the shipment of a flight-ready spacecraft to the launch base and can be achieved by thorough and comprehensive factory testing of the spacecraft. The principal objectives and results of this approach are shown to be significant cost reductions, increased test effectiveness, and fewer flight problems. Key elements for this concept's success are discussed, including factory-to-pad commonality of support equipment, test requirements and procedures, test teams, and computer programs. Applications of this approach in the space-shuttle era are considered, and a preliminary factory-to-pad concept for the Large Space Telescope spacecraft is presented.

  14. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    SciTech Connect

    Rosen, C.F.; Gajic, D.; Drucker, D.J. )

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  15. Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yoshikawa-Takahashi, Miwako; Yano, Yutaka

    2008-08-15

    In order to analyze the genes related to the histamine production, a strain of histamine producing halophilic bacteria, referred to as strain H, was isolated using enrichment culture and dilution-to-extinction methods with histidine broth inoculated from the fish sauce mashes. The two Japanese fish sauce mashes used, accumulate over 1000 mg/l of histamine. Phenotypic and 16 S rRNA gene sequence analyses identified strain H as Tetragenococcus halophilus, the predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR and Southern blot) of the histamine producing strain confirmed that the strain harbored a 30 kbp plasmid (pHDC) encoding a single copy of the pyruvoyl dependent histidine decarboxylase gene (hdc). A comparison of hdcA that is a structural gene of histidine decarboxylase among strain H, Lactobacillus hilgardii 0006, L. sakei LTH2076, Oenococcus oeni 9204, T. halophilus and T. muriaticus JCM10006 (T) indicated >99% sequence similarity. The hdc gene cluster consisted of 4 ORFs, hdcP, hdcA, hdcB, and hdcRS, and were almost identical to that of L. hilgardii 0006 with 99% sequence similarity including the structural hdc spacer region. However, the approximately 500 bp regions upstream and downstream of the hdc gene were different between that of strain H and L. hilgardii 0006. The complete sequence of pHDC revealed 29,924 nucleotides including 28 ORFs, two pairs of IR (inverted repeat), similar sequence of plasmid conjugative elements, and a theta-type replicon. These results suggested that hdc could be encoded on transformable elements among lactic acid bacteria. PMID:18573560

  16. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion.

    PubMed Central

    Diefenbach, R J; Duggleby, R G

    1991-01-01

    To study the mechanism of re-activation of Zymomonas mobilis pyruvate decarboxylase apoenzyme by its cofactors thiamin diphosphate and Mg2+, cofactor-free enzyme was prepared by dialysis against 1 mM-dipicolinic acid at pH 8.2. This apoenzyme was then used in a series of experiments that included determination of: (a) the affinity towards one cofactor when the other was present at saturating concentrations; (b) cofactor-binding rates by measuring the quenching of tryptophan fluorescence on the apoenzyme; (c) the effect of replacement of cofactors with various analogues; (d) the stoichiometry of bound cofactors in holoenzyme; and (e) the molecular mass of apoenzyme by gel filtration. The results of these experiments form the basis for a proposed model for the re-activation of Z. mobilis pyruvate decarboxylase apoenzyme by its cofactors. In this model there exists two alterative but equivalent pathways for cofactor binding. In each pathway the first step is an independent reversible binding of either thiamin diphosphate (Kd 187 microM) or Mg2+ (Kd 1.31 mM) to free apoenzyme. When both cofactors are present, the second cofactor-binding step to form active holoenzyme is a slow quasi-irreversible step. This second binding step is a co-operative process for both thiamin diphosphate (Kd 0.353 microM) and Mg2+ (Kd 2.47 microM). Both the apo- and the holo-enzyme have a tetrameric subunit structure, with cofactors binding in a 1:1 ratio with each subunit. PMID:2049073

  17. Electrostatic Evaluation of the SRB Velostat(Trademark) Pads

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.; Calle, Carlos I.

    2007-01-01

    During RSRM Grain inspection, pads constructed of Velostat are grounded and installed in the RSRM bore enabling inspectors to move throughout the bore during the inspection. Velostat pads are installed by grounding the first pad installed and subsequent pads are installed overlapping the previously installed pad maintaining a conductive path to facility ground. Pads are removed upon completion of the inspection in a reverse fashion. As the pads are removed scanning of propellant surfaces is performed per OMRS. During PPICI Audit of B5308.006 (Forward Segment Grain Inspection) in October 07 one audit finding noted that electrostatic scanning of propellant surfaces was being performed during removal of conductive pads following grain inspection. ATK does not perform electrostatic scanning of propellant surfaces during pad removal following final inspection at the plant. The integrated team consisting of NASA SE, USA SE, USA QE, ATK LSS, ATK Systems Safety and ATK DE concurred that electrostatic scanning of propellant surfaces was unnecessary as the conductive pads are grounded. Additional time spent in bore performing scanning presents itself as additional risk. Technicians reported that they have never seen any voltage readings while scanning propellant surfaces during pad removal. USA Systems engineering has written KB 17530 in response to the finding which will delete the requirement (item 2 B47GEN.ll0) to scan propellant surfaces during pad removal. As a result of an E3 panel discussion on December 13, 2007, it was decided that verification of the electrical grounding of the Velostat pads be verified.

  18. CYP71B15 (PAD3) Catalyzes the Final Step in Camalexin Biosynthesis1

    PubMed Central

    Schuhegger, Regina; Nafisi, Majse; Mansourova, Madina; Petersen, Bent Larsen; Olsen, Carl Erik; Svatoš, Aleš; Halkier, Barbara Ann; Glawischnig, Erich

    2006-01-01

    Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis. PMID:16766671

  19. Chromosomal Integration and Expression of Two Bacterial α-Acetolactate Decarboxylase Genes in Brewer's Yeast

    PubMed Central

    Blomqvist, K.; Suihko, M.-L.; Knowles, J.; Penttilä, M.

    1991-01-01

    A bacterial gene encoding α-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the α-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the α-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer. Images PMID:16348559

  20. Padé approximations and diophantine geometry

    PubMed Central

    Chudnovsky, D. V.; Chudnovsky, G. V.

    1985-01-01

    Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves. PMID:16593552

  1. Momument at Pad 14 honoring Project Mercury

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Momument at Pad 14 honoring Project Mercury. The Arabic number 7 represents the seven original astronauts. The other figure is the astronomical symbol of the Planet Mercury. In background is the Gemini 12 Agena Target Docking Vehicle atop its Atlas launch vehicle at Cape Kennedy, Florida.

  2. Hemangioma of the buccal fat pad

    PubMed Central

    Hassani, Ali; Saadat, Sarang; Moshiri, Roya; Shahmirzadi, Solaleh

    2014-01-01

    Hemangiomas are benign vascular neoplasms characterized by an abnormal proliferation of blood vessels. Buccal fat pad (BFP) is a rare place for hemangioma. In this report, clinical, radiographic, and histopathological findings are described in a rare case of hemangioma with phleboliths involving the BFP, and a review is made of the international literature on this subject. PMID:24963256

  3. Antares Rolls Out to Wallops Launch Pad

    NASA Video Gallery

    Orbital Sciences Corporation’s Antares rocket rolls out to the launch pad at NASA’s Wallops Flight Facility on the morning of Oct. 1, 2012. Over the next several months, Orbital plans a hot-fir...

  4. Cutting a Tapered Edge on Padding Material

    NASA Technical Reports Server (NTRS)

    Mitchell, M. J.

    1982-01-01

    Resilience and flexibility of felt, rubber, or other padding materials allow them to be clamped in form block, cut straight down, and then released to produce straight clean tapered edge. With material held in slanted position, edge can be cut straight down; hence cut depth is minimum.

  5. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  6. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  7. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  8. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    PubMed

    Gamat, Melissa; Malinowski, Rita L; Parkhurst, Linnea J; Steinke, Laura M; Marker, Paul C

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  9. Multivariate Padé Approximations For Solving Nonlinear Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Turut, V.

    2015-11-01

    In this paper, multivariate Padé approximation is applied to power series solutions of nonlinear diffusion equations. As it is seen from tables, multivariate Padé approximation (MPA) gives reliable solutions and numerical results.

  10. Prevent P.A.D.: Know Your Numbers

    MedlinePlus

    ... Issue Past Issues Special Section Prevent P.A.D.: Know Your Numbers Past Issues / Summer 2008 Table ... Best "Timely detection and treatment of P.A.D. are critical," says Dr. Patrice Desvigne-Nickens of ...

  11. Phosphorylation of ornithine decarboxylase by a polyamine-dependent protein kinase.

    PubMed Central

    Atmar, V J; Kuehn, G D

    1981-01-01

    This paper presents evidence that a polyamine-dependent protein kinase (EC 2.7.1.37) purified from nuclei of the slime mold Physarum polycephalum catalyzes phosphorylation of ornithine decarboxylase (OrnDCase; L-ornithine carboxy-lyase, EC 4.1.1.17). The protein kinase had properties similar to OrnDCase antizyme. Phosphocellulose chromatography of nuclear preparations from P. polycephalum yielded the polyamine-dependent protein kinase of subunit Mr 26,000 that was resolved from a second fraction in which the protein kinase copurified with a phosphate-acceptor protein of subunit Mr 70,000. At Na+ concentrations less than approximately 150 mM, a complex formed between the protein kinase and the phosphate-acceptor protein. The complex did not demonstrate protein kinase or OrnDCase activity. The complex was dissociated by greater than 150 mM Na+ into its constituent proteins. The dissociated complex catalyzed phosphorylation of the Mr 70,000 component in the presence of spermidine and spermine, and it also demonstrated OrnDCase activity. The purified Mr 70,000 component from the complex and authentic OrnDCase, purified by procedures previously reported, were virtually identical with respect to OrnDCase activity, capacity to be phosphorylated by the polyamine-dependent protein kinase, amino acid composition, and immunological crossreactivity. Phosphorylation of OrnDCase by the polyamine-dependent protein kinase sharply inhibited OrnDCase activity. Thus, this is an example of posttranslational covalent modification of OrnDCase with concurrent alteration of its catalytic function. It is also an unusual example of control of the first enzyme in a biosynthetic pathway by a protein kinase that is, in turn, modulated by the immediate end products of the pathway. Images PMID:6946489

  12. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  13. Biomechanical Comparison of Shorts With Different Pads

    PubMed Central

    Marcolin, Giuseppe; Petrone, Nicola; Reggiani, Carlo; Panizzolo, Fausto A.; Paoli, Antonio

    2015-01-01

    Abstract An intensive use of the bicycle may increase the risk of erectile dysfunction and the compression of the perineal area has been showed to be a major mechanism leading to sexual alterations compromising the quality of life. Manufacturers claim that pads contribute to increase cyclists perineal protection ensuring a high level of comfort. To investigate the influence of various cycling pads with regard to perineal protection and level of comfort. Nine club road cyclists rode 20 min on a drum simulator, located at the Nutrition and Exercise Physiology Laboratory, at a constant speed and gear ratio wearing the shorts with 3 cycling pads of different design and thickness: basic (BAS), intermediate (INT), and endurance (END). Kinematics and pressure data were recorded at min 5, 15, and 20 of the test using a motion capture system and a pressure sensor mat. The variables of interest were: 3-dimensional pelvis excursions, peak pressure, mean pressure, and vertical force. The comfort level was assessed with a ranking order based on the subjects’ perception after the 20-min trials and measuring the vertical ground reaction force under the anterior wheel as well as the length of the center of pressure (COP) trajectory on the saddle. Results showed that the vertical force and the average value of mean pressure on the saddle significantly decreased during the 20-min period of testing for BAS and END. Mean peak pressure on the corresponding perineal cyclist area significantly increased only for BAS during the 20-min period. Interestingly objective comfort indexes measured did not match cyclists subjective comfort evaluation. The lower capacity of BAS to reduce the peak pressure on the corresponding perineal area after 20 min of testing, together with its positive comfort evaluation, suggest that a balance between protection and perceived comfort should be taken into account in the choice of the pad. Hence, the quantitative approach of objective comfort indexes

  14. Rotor stability estimation with competing tilting pad bearing models

    NASA Astrophysics Data System (ADS)

    Cloud, C. Hunter; Maslen, Eric H.; Barrett, Lloyd E.

    2012-05-01

    When predicting the stability of rotors supported by tilting pad journal bearings, it is currently debated whether or not the bearings should be represented with frequency dependent dynamics. Using an experimental apparatus, measurements of pad temperatures, unbalance response and stability are compared with modeling predictions for two tilting pad bearing designs. Predictions based on frequency dependent tilting pad bearing dynamics exhibited significantly better correlation with the stability measurements than those assuming frequency independent dynamics.

  15. 21 CFR 880.5270 - Neonatal eye pad.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neonatal eye pad. 880.5270 Section 880.5270 Food... § 880.5270 Neonatal eye pad. (a) Identification. A neonatal eye pad is an opaque device used to cover and protect the eye of an infant during therapeutic procedures, such as phototherapy....

  16. 21 CFR 880.5270 - Neonatal eye pad.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neonatal eye pad. 880.5270 Section 880.5270 Food... § 880.5270 Neonatal eye pad. (a) Identification. A neonatal eye pad is an opaque device used to cover and protect the eye of an infant during therapeutic procedures, such as phototherapy....

  17. 21 CFR 880.5270 - Neonatal eye pad.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neonatal eye pad. 880.5270 Section 880.5270 Food... § 880.5270 Neonatal eye pad. (a) Identification. A neonatal eye pad is an opaque device used to cover and protect the eye of an infant during therapeutic procedures, such as phototherapy....

  18. 21 CFR 880.5270 - Neonatal eye pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neonatal eye pad. 880.5270 Section 880.5270 Food... § 880.5270 Neonatal eye pad. (a) Identification. A neonatal eye pad is an opaque device used to cover and protect the eye of an infant during therapeutic procedures, such as phototherapy....

  19. 21 CFR 880.5270 - Neonatal eye pad.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neonatal eye pad. 880.5270 Section 880.5270 Food... § 880.5270 Neonatal eye pad. (a) Identification. A neonatal eye pad is an opaque device used to cover and protect the eye of an infant during therapeutic procedures, such as phototherapy....

  20. A fluopol-ABPP HTS assay to identify PAD inhibitors.

    PubMed

    Knuckley, Bryan; Jones, Justin E; Bachovchin, Daniel A; Slack, Jessica; Causey, Corey P; Brown, Steven J; Rosen, Hugh; Cravatt, Benjamin F; Thompson, Paul R

    2010-10-14

    Protein Arginine Deiminase (PAD) activity is dysregulated in numerous diseases, e.g., Rheumatoid Arthritis. Herein we describe the development of a fluorescence polarization-Activity Based Protein Profiling (fluopol-ABPP) based high throughput screening assay that can be used to identify PAD-selective inhibitors. Using this assay, streptonigrin was identified as a potent, selective, and irreversible PAD4 inactivator. PMID:20740228

  1. iPads in Higher Education--Hype and Hope

    ERIC Educational Resources Information Center

    Nguyen, Lemai; Barton, Siew Mee; Nguyen, Linh Thuy

    2015-01-01

    This paper systematically reviews current research on using iPads in the higher education sector. Since the release of iPads by Apple in 2010, this new technology has been quickly adopted everywhere, especially by the younger generation and professionals. We were motivated to find out how iPads have been adopted for use in the higher education…

  2. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  3. Characterization of continuous B-cell epitopes in the N-terminus of glutamate decarboxylase67 using monoclonal antibodies.

    PubMed

    Agca, Selin; Houen, Gunnar; Trier, Nicole Hartwig

    2014-12-01

    Glutamate decarboxylase (GAD) is an autoantigen associated with the autoimmune disorders Type-1 diabetes (T1D) and stiff-person syndrome (SPS). The protein, being an essential enzyme involved in the production of the inhibitory neurotransmitter γ-aminobutyric acid, exists in two isoforms, GAD67 and GAD65. Both isoforms may be targeted by autoantibodies in SPS and T1D patients, although SPS primarily is associated with the presence of GAD67 autoantibodies, whereas T1D mainly is associated with the presence of GAD65 autoantibodies. In this study, we describe antibody reactivity to overlapping GAD67 peptides covering the complete protein sequence by modified peptide enzyme-linked immunosorbent assay in order to identify potential GAD67 epitopes using two monoclonal antibodies (mAbs). Both GAD67 mAbs showed reactivity to linear epitopes located at the N-terminal end of GAD67. The epitopes of GAD mAb 1 and 2 were identified as the amino acid sequences NAGADPNTTN and TETDFSNLF, respectively, corresponding to amino acids 14-23 and 91-99. Fine mapping of the epitopes revealed that antibody reactivity was related to amino acid side-chain functionality, rather than amino acid side-chain specificity. Additionally, results suggested that non-contact amino acids in the epitope structure were essential for antibody reactivity. The exact role of these amino acids remains to be determined, but they are thought to be involved in backbone hydrogen bonds or stabilization of the epitope structure. As only limited knowledge is available in relation to antigenic regions of GAD67, this study contributes to characterization of GAD67 epitopes and may be a first step in the development of peptide-based therapeutics against SPS. PMID:25358241

  4. Genetics Home Reference: malonyl-CoA decarboxylase deficiency

    MedlinePlus

    ... A shortage of this enzyme disrupts the normal balance of fatty acid formation and breakdown in the body. As a result, fatty acids cannot be converted to energy, which can lead to characteristic features of this ...

  5. Inhibition of human ornithine decarboxylase activity by enantiomers of difluoromethylornithine.

    PubMed Central

    Qu, Ning; Ignatenko, Natalia A; Yamauchi, Phillip; Stringer, David E; Levenson, Corey; Shannon, Patrick; Perrin, Scott; Gerner, Eugene W

    2003-01-01

    Racemic difluoromethylornithine (D/L-DFMO) is an inhibitor of ODC (ornithine decarboxylase), the first enzyme in eukaryotic polyamine biosynthesis. D/L-DFMO is an effective anti-parasitic agent and inhibitor of mammalian cell growth and development. Purified human ODC-catalysed ornithine decarboxylation is highly stereospecific. However, both DFMO enantiomers suppressed ODC activity in a time- and concentration-dependent manner. ODC activity failed to recover after treatment with either L- or D-DFMO and dialysis to remove free inhibitor. The inhibitor dissociation constant (K(D)) values for the formation of enzyme-inhibitor complexes were 28.3+/-3.4, 1.3+/-0.3 and 2.2+/-0.4 microM respectively for D-, L- and D/L-DFMO. The differences in these K(D) values were statistically significant ( P <0.05). The inhibitor inactivation constants (K(inact)) for the irreversible step were 0.25+/-0.03, 0.15+/-0.03 and 0.15+/-0.03 min(-1) respectively for D-, L- and D/L-DFMO. These latter values were not statistically significantly different ( P >0.1). D-DFMO was a more potent inhibitor (IC50 approximately 7.5 microM) when compared with D-ornithine (IC50 approximately 1.5 mM) of ODC-catalysed L-ornithine decarboxylation. Treatment of human colon tumour-derived HCT116 cells with either L- or D-DFMO decreased the cellular polyamine contents in a concentration-dependent manner. These results show that both enantiomers of DFMO irreversibly inactivate ODC and suggest that this inactivation occurs by a common mechanism. Both enantiomers form enzyme-inhibitor complexes with ODC, but the probability of formation of these complexes is 20 times greater for L-DFMO when compared with D-DFMO. The rate of the irreversible reaction in ODC inactivation is similar for the L- and D-enantiomer. This unexpected similarity between DFMO enantiomers, in contrast with the high degree of stereospecificity of the substrate ornithine, appears to be due to the alpha-substituent of the inhibitor. The D

  6. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation. PMID:26004805

  7. An inhibitor of ornithine decarboxylase in the thymus and spleen of dexamethasone-treated rats.

    PubMed Central

    Bishop, P B; Young, J; Peng, T; Richards, J F

    1985-01-01

    A marked decrease in activity of ornithine decarboxylase in thymus and spleen occurs soon after treatment of rats with a glucocorticoid. In the present study, evidence was obtained that extracts of these tissues prepared 5 h after administration of dexamethasone, when the enzyme activity is very low, contain an inhibitor of ornithine decarboxylase. The inhibitor is also present at 12 h after treatment and, in lesser amount, at 2.5 h, but was not evident at 24 h. The inhibitory activity was destroyed by treatment with heat or with trypsin, and was not lost on dialysis of the extract. Preliminary experiments indicate that the Mr of the inhibitor is greater than 50 000, which differentiates it from antizyme, an inhibitor of ornithine decarboxylase found in several other cell types. The inhibitor seems to act by a non-catalytic and non-competitive mechanism. The inhibition is dependent on the amount of inhibitor and does not change with time. Since inhibition is not changed by dialysis of the inhibitory extract, its activity apparently does not require small-Mr substances. This differentiates it from inhibitors which inactivate ornithine decarboxylase by covalent modification, such as the polyamine-dependent protein kinase or transglutaminase. The formation of this inhibitor is an early event in lymphoid tissues in response to dexamethasone and may be important in causing the inhibition of cell division which precedes the destruction of lymphocytes. PMID:3977859

  8. Miniature tilting pad gas lubricated bearing

    SciTech Connect

    Sixsmith, H.; Swift, W.L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  9. A miniature tilting pad gas lubricated bearing

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.; Swift, W. L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  10. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  11. Inflammation of the infrapatellar fat pad.

    PubMed

    Eymard, Florent; Chevalier, Xavier

    2016-07-01

    The infrapatellar fat pad (IFP) of Hoffa's fat pad is the main adipose structure within the knee joint. It is located between the joint capsule and the synovial membrane, which lines its posterior aspect. The IFP is composed chiefly of adipocytes and receives an abundant supply of blood vessels and nerves. Immune cells can infiltrate the IFP, which can become a major source of numerous proinflammatory mediators (cytokines and adipokines). The physiological role for the IFP remains unclear but may involve shock absorption and the protection of adjacent tissues. Hoffa's disease is characterized by inflammation, hypertrophy, and fibrosis of the pad in response to repetitive trauma. Anterior knee pain is the most common symptom. In advanced forms, metaplasia of the IFP may result in the development of a sometimes sizable osteochondroma. The IFP may also contribute to the pathophysiology of knee osteoarthritis, in particular via procatabolic and proinflammatory effects on its synovial lining. Finally, in patients with knee osteoarthritis, inflammation of the IFP may be a source of pain. PMID:27068617

  12. Profiling the phenolic compounds of Artemisia pectinata by HPLC-PAD-MSn.

    PubMed

    Ma, Chao-Mei; Hattori, Masao; Chen, Hu-Biao; Cai, Shao-Qing; Daneshtalab, Mohsen

    2008-01-01

    An HPLC-PAD-MS(n) method was employed to profile the phenolic compounds of the aerial part of Artemisia pectinata (Neopallasia pectinata), a plant with no previous reports concerning its phenolic constituents. Three isomers of trans-caffeoylquinic acid accompanied by cis-5-caffeoylquinic acid, six isomers of trans-dicaffeoylquinic acid, two isomers of methyl trans-dicaffeoylquinate (including one new isomer), a trans-caffeoylferuloylquinic acid and three flavanoids were identified unambiguously by analysis of their UV and MS(n) spectra in comparison with standard compounds that were isolated from natural sources, or synthesised, or were surrogate standards (green coffee extract). Other compounds were identified by analysis of their UV and MSn data in comparison with those reported in the literature. MS(n) experiments also suggested the presence of groups of dicaffeoylquinic acid glycosides, caffeoylquinic acid diglycosides, caffeoylquinic acid glycosides and quinic acid diglycosides. PMID:17994537

  13. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    PubMed

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. PMID:26798990

  14. Studies on polyamine and ornithine metabolism in rat colon: effects of two synergistically. Acting inducers of ornithine decarboxylase activity

    SciTech Connect

    Stanley, B.A.

    1987-01-01

    Ornithine decarboxylase (ODC) activity in rat colon mucosa was determined by the release of /sup 14/CO/sub 2/ from radiolabeled ornithine in the presence (total enzyme) or absence (holoenzyme) of added pyridoxal-5'-phosphate (PLP). Total leucine incorporation into acid-precipitable protein over 30 minute was calculated by dividing the /sup 3/H-leucine in protein by the specific activity of the intracellular leucine. Amino acids, polyamines, and PLP-semicarbazide were quantified by high pressure liquid chromatography. Ornithine aminotransaminase activity (OAT) was measured as the quantity of pyrolline (5-carboxy) produced from alpha-ketoglutarate and ornithine. After 10 weeks on a high or no vitamin B/sub 6/ diet, no change in basal ODC activity was seen; however, sodium deoxycholate instillation in vitamin B/sub 6/ deficient rats led to a large increase in total but not holo-ODC activity. In rats fed normal chow diet, no increases in mucosal PLP levels were seen after either treatment. Increases in general protein synthesis rate could not account for the peaks in ODC activity after either stimulus. Putrescine increases were proportional to peaks of ODC activity after either stimulus, while spermine levels remained depressed for 18 hours after starvation/refeeding. Ornithine levels were increased after either stimulus, and this increase was linked to decreases in OAT activity, indicating short-term coordination of overall ornithine metabolism to favor polyamine biosynthesis.

  15. Bacterial Decarboxylation of o-Phthalic Acids

    PubMed Central

    Taylor, Barrie F.; Ribbons, Douglas W.

    1983-01-01

    The decarboxylation of phthalic acids was studied with Bacillus sp. strain FO, a marine mixed culture ON-7, and Pseudomonas testosteroni. The mixed culture ON-7, when grown anaerobically on phthalate but incubated aerobically with chloramphenicol, quantitatively converted phthalic acid to benzoic acid. Substituted phthalic acids were also decarboxylated: 4,5-dihydroxyphthalic acid to protocatechuic acid; 4-hydroxyphthalic and 4-chlorophthalic acids to 3-hydroxybenzoic and 3-chlorobenzoic acids, respectively; and 3-fluorophthalic acid to 2-and 3-fluorobenzoic acids. Bacillus sp. strain FO gave similar results except that 4,5-dihydroxyphthalic acid was not metabolized, and both 3- and 4-hydroxybenzoic acids were produced from 4-hydroxyphthalic acid. P. testosteroni decarboxylated 4-hydroxyphthalate (to 3-hydroxybenzoate) and 4,5-dihydroxyphthalate but not phthalic acid and halogenated phthalates. Thus, P. testosteroni and the mixed culture ON-7 possessed 4,5-dihydroxyphthalic acid decarboxylase, previously described in P. testosteroni, that metabolized 4,5-dihydroxyphthalic acid and specifically decarboxylated 4-hydroxyphthalic acid to 3-hydroxybenzoic acid. The mixed culture ON-7 and Bacillus sp. strain FO also possessed a novel decarboxylase that metabolized phthalic acid and halogenated phthalates, but not 4,5-dihydroxyphthalate, and randomly decarboxylated 4-hydroxyphthalic acid. The decarboxylation of phthalic acid is suggested to involve an initial reduction to 1,2-dihydrophthalic acid followed by oxidative decarboxylation to benzoic acid. PMID:16346440

  16. New enzymatic methods for selective assay of L-lysine using an L-lysine specific decarboxylase/oxidase from Burkholderia sp. AIU 395.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2015-03-01

    We developed new enzymatic methods for the selective assay of L-lysine by utilizing an oxidase reaction and a decarboxylation reaction by the L-lysine-specific decarboxylase/oxidase (L-Lys-DC/OD) from Burkholderia sp. AIU 395. The method utilizing the oxidase reaction of this enzyme was useful for determination of high concentrations of L-lysine. The method utilizing the decarboxylase reaction, which proceeded via the combination of the L-Lys-DC/OD and putrescine oxidase (PUO) from Micrococcus rubens, was effective for determination of low concentrations of L-lysine. Both methods showed good linearity, and neither was affected by other amino acids or amines. In addition, the within-assay and between-assay precisions of both methods were within the allowable range. The coupling of L-Lys-DC/OD with PUO was also useful for the differential assay of L-lysine and cadaverine. These newly developed methods were applied to the assay of L-lysine in biological samples and found to be effective. PMID:25282636

  17. The structure, function and properties of sirohaem decarboxylase - an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway

    PubMed Central

    Palmer, David J; Schroeder, Susanne; Lawrence, Andrew D; Deery, Evelyne; Lobo, Susana A; Saraiva, Ligia M; McLean, Kirsty J; Munro, Andrew W; Ferguson, Stuart J; Pickersgill, Richard W; Brown, David G; Warren, Martin J

    2014-01-01

    Some bacteria and archaea synthesize haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side-chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem respectively. The characterization of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallized and its structure has been elucidated. The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed. PMID:24865947

  18. Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Abeta(25-35) in the Alzheimer's disease model rat brain: effect of memantine.

    PubMed

    Arif, Mohammad; Kato, Takeshi

    2009-01-01

    Peptidylarginine deiminases (PADs) convert the arginine residues in proteins into citrulline residues in a Ca(2+)-dependent manner. We previously showed that a bilateral injection of ibotenic acid into the rat nucleus basalis magnocellularis elevated the PAD2 activity in the hippocampus and striatum. In this study, we examined whether repeated intracerebroventricular infusions of soluble Abeta25-35 would affect the PAD2 expression in any regions of the rat brain. We also assessed the protective effect of memantine on Abeta-induced PAD2 alterations. The infusion of Abeta(25-35) increased the activity and protein level of PAD2 in the hippocampus, and co-treatment with memantine suppressed these changes. An immunohistochemical analysis showed that an increased level of PAD2 was coincident with GFAP-positive astrocytes and CD11b-positive microglia. In addition, immunofluoresecence staining revealed that citrullinepostive immunoreactivity coincided with the occurrence of GFAP-positive astrocytes. Co-treatment with memantine reversed the activation of the astrocytes and microglia, thus attenuating the PAD2 increment. These biochemical and immunohistochemical results suggest that PAD2 might play an important role in the pathology of early Alzheimer's disease, and may correlate with the changes in glial cells that are recovered by memantine treatment. PMID:19641855

  19. EFFECT OF LEAD ON GAMMA AMINO BUTYRIC ACID SYNTHESIS

    EPA Science Inventory

    The project studies the inhibitory effect of lead on the enzymatic activity of brain glutamic amino acid decarboxylase (GADC). The enzyme is responsible for the catalytic formation of gamma amino butyric acid (GABA) inhibitory neurons which is believed to be involved with the tra...

  20. Detection, purification and identification of an endogenous inhibitor of L-Dopa decarboxylase activity from human placenta.

    PubMed

    Vassiliou, Alice-Georgia; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2009-06-01

    An endogenous inhibitor of L-Dopa decarboxylase activity was identified and purified from human placenta. The endogenous inhibitor of L-Dopa decarboxylase (Ddc) was localized in the membrane fraction of placental tissue. Treatment of membranes with phosphatidylinositol-specific phospholipase C or proteinase K did not affect membrane-associated Ddc inhibitory activity, suggesting that a population of the inhibitor is embedded within membranes. Purification was achieved by extraction from a nondenaturing polyacrylamide gel. The purification scheme resulted in the isolation of a single 35 kDa band, bearing L-Dopa decarboxylase inhibitory activity. The purified inhibitor was identified as Annexin V. The elucidation of the biological importance of the presence of an L-Dopa decarboxylase activity inhibitor in normal human tissues could provide us with new information leading to the better understanding of the biological pathways that Ddc is involved in. PMID:19005753

  1. The protein arginine deiminases (PADs): Structure, Function, Inhibition, and Disease

    PubMed Central

    Bicker, Kevin L.

    2012-01-01

    The post translational modification of histones has significant effects on overall chromatin function. One such modification is citrullination, which is catalyzed by the protein arginine deiminases (PADs), a unique family of enzymes that catalyzes the hydrolysis of peptidyl-arginine to form peptidyl-citrulline on histones, fibrinogen, and other biologically relevant proteins. Overexpression and/or increased PAD activity is observed in several diseases, including rheumatoid arthritis, Alzheimer’s disease, multiple sclerosis, lupus, Parkinson’s disease, and cancer. This review discusses the important structural and mechanistic characteristics of the PADs, as well as recent investigations into the role of the PADs in increasing disease severity in RA and colitis and the importance of PAD activity in mediating neutrophil extracellular trap (NET) formation through chromatin decondensation. Lastly, efforts to develop PAD inhibitors with excellent potency, selectivity and in vivo efficacy are discussed, highlighting the most promising inhibitors. PMID:23175390

  2. Fern L-methionine decarboxylase: Kinetics and mechanism of decarboxylation and abortive transamination

    SciTech Connect

    Akhtar, M.; Stevenson, D.E.; Gani, D. )

    1990-08-21

    L-Methionine decarboxylase from Dryopteris filix-mas catalyzes the decarboxylation of L-methionine and a range of straight- and branched-chain L-amino acids to give the corresponding amine products. The deuterium solvent isotope effects for the decarboxylation of (2S)-methionine are {sup D}(V/K) = 6.5 and {sup D}V = 2.3, for (2S)-valine are {sup D}(V/K) = 1.9 and {sup D}V = 2.6, and for (2S)-lecuine are {sup D}(V/K) = 2.5 and {sup D}V = 1.0 at pL 5.5. At pL 6.0 and above, where the value of k{sub cat} for all of the substrates is low, the solvent isotope effects on V{sub max} for methionine are 1.1-1.2 whereas the effects on V/K remain unchanged, indicating that the solvent-sensitive transition state occurs before the first irreversible step, carbon dioxide desorption. At very high concentration, the product amine can promote transamination of the coenzyme. However, the reaction occurs infrequently and does not influence the partitioning between decarboxylation and substrate-mediated abortive transamination under steady-state turnover conditions. The partition ratio, normal catalytic versus abortive events, can be determined from the amount of substrate consumed by a known amount of enzyme at infinite time, and the rate of inactivation can be determined by measuring the decrease in enzyme activity with respect to time. Experiments conducted in deuterium oxide allowed the solvent isotope effects for the partition ratio and the abortive reaction to be determined. {sup 1}H NMR spectroscopic analysis of 3-(methylthio)-1-aminopropane isolated from incubations conducted in 50 molar % deuterium oxide at pL 4.8 and at pL 6.5 indicated that the proton donor was monoprotic and, therefore, is probably the imidazolium side chain of a histidine residue.

  3. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  4. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  5. Metal pad instabilities in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg

    2015-12-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current, and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  6. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  7. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  8. Mars Science Laboratory Launch Pad Thermal Control

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Bame, David

    2011-01-01

    This paper will describe the challenges faced in accommodating the warm Multi Mission Radioisotope Thermoelectric Generator (MMRTG) during the pre-launch phases of integration, launch pad operations as well as during launch. Predictions of temperatures during these phases will be presented when all the cooling systems (HRS and A/C) are operational. In-air tests conducted on the spacecraft in December 2008 to simulate the launch conditions were very successful and showed that all components would be within their allowable limits during these phases. Results of these tests will be shared in this paper.

  9. Tilting pad gas bearing design for micro gas turbines

    NASA Astrophysics Data System (ADS)

    Nabuurs, M. J. H. W.; Al-Bender, F.; Reynaerts, D.

    2013-12-01

    This paper presents the results of a dynamic stability investigation of a micro gas turbine supported by two flexible tilting pad bearings. The pad flexibility allows centrifugal and thermal shaft growth of the rotor but can also introduce undesirable rotor instabilities. An eigenvalue analysis on the linearised rotor-bearing dynamics is performed to estimate the required pad stiffness and damping for stability. Results of the eigenvalue analysis are evaluated by fully nonlinear orbit simulations.

  10. Measuring pad-pad pinch strength in a non-human primate: Macaca fascicularis.

    PubMed

    Banks, Jacob J; Lavender, Steven A; Buford, John A; Sommerich, Carolyn M

    2007-12-01

    The primary purpose of this study was to establish a methodology for determining and perhaps predicting (via regression analysis of anthropometric measures) Macaca fascicularis isometric pinch strength for a specific task. The larger purpose of this work was to properly scale a pinching task for the monkeys in order to study dose-response relationships in a non-human primate model for carpal tunnel syndrome. Three female and one male macaque (n=4) of varying size and age were trained to perform a left-handed pad-pad pinch. The task required 60 degrees of wrist flexion at a static pinching distance of 3 cm between the thumb and fingers. Subjects were trained for a period of 20-weeks. After that time, an analysis of performance gradients found that they had each reached a plateau in their force output. Pinch strength for the four animals ranged from 29.4 to 59.8 N. Regression analysis revealed that body mass (kg) and wrist circumference (cm) were both predictive of pinch strength, exhibiting adjusted R(2) values of 0.93 (p=0.024) and 0.96 (p=0.015), respectively. Thus, the results suggest that maximal pinch strength could be acceptably estimated in future subjects using either the wrist circumference or the body mass measures, as both were strong predictors of pad-pad pinch strength. PMID:17035044

  11. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    SciTech Connect

    Parkins, D.W.; Horner, D. Michell Bearings, Newcastle-upon-Tyne )

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values. 11 refs.

  12. Pad Safety Personnel Launch Support For STS-200

    NASA Technical Reports Server (NTRS)

    Guarino, Jennifer

    2007-01-01

    The launch of a space shuttle is a complex and lengthy procedure. There are many places and components to look at and prepare. The components are the orbiter, solid rocket boosters, external tank, and ground equipment. Some of the places are the launch pad, fuel locations, and surrounding structures. Preparations for a launch include equipment checks, system checks, sniff checks for hazardous commodities, and countless walkdowns. Throughout these preparations, pad safety personnel must always be on call. This requires three shifts of multiple people to be ready when needed. Also, the pad safety personnel must be available for the non-launch tasks that are always present for both launch pads

  13. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    NASA Astrophysics Data System (ADS)

    Parkins, D. W.; Horner, D.

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values.

  14. Control of adhesion force between ceria particles and polishing pad in shallow trench isolation chemical mechanical planarization.

    PubMed

    Seo, Jihoon; Moon, Jinok; Bae, Jae-Young; Yoon, Kwang Seob; Sigmund, Wolfgang; Paik, Ungyu

    2014-06-01

    The adhesion force between ceria and polyurethane (PU) pad was controlled to remove the step height from cell region to peripheral region during Shallow Trench Isolation Chemical Mechanical Planarization (STI-CMP) for NAND flash. Picolinic acid was found to be adsorbed on ceria particles at pH 4.5 following a Langmuir isotherm with the maximum adsorbed amount of 0.36 mg/m2. The ceria suspension with full surface coverage of picolinic acid showed a threefold increase in the number of adhered ceria particles on the PU pad over non-coated ceria particles. It was shown that the coverage percent of picolinic acid on ceria corresponds well with the amount percent of adsorbed ceria on PU pad. The change in adsorbed particles was directly reflected in the CMP polishing process where significant improvements were achieved. Particularly, convex areas on the chip experienced higher friction force from the attached abrasives on the PU pad than concave areas. As a result, the convex areas have increased removal rate of step height compared to the ceria suspension without picolinic acid. The changing profiles of convex areas are reported during the step height reduction as a function of polishing time. PMID:24738395

  15. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities.

    PubMed

    Volke, A; Wegener, G; Vasar, E; Volke, V

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method, we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. PMID:16541190

  16. Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations.

    PubMed

    Froese, D Sean; Forouhar, Farhad; Tran, Timothy H; Vollmar, Melanie; Kim, Yi Seul; Lew, Scott; Neely, Helen; Seetharaman, Jayaraman; Shen, Yang; Xiao, Rong; Acton, Thomas B; Everett, John K; Cannone, Giuseppe; Puranik, Sriharsha; Savitsky, Pavel; Krojer, Tobias; Pilka, Ewa S; Kiyani, Wasim; Lee, Wen Hwa; Marsden, Brian D; von Delft, Frank; Allerston, Charles K; Spagnolo, Laura; Gileadi, Opher; Montelione, Gaetano T; Oppermann, Udo; Yue, Wyatt W; Tong, Liang

    2013-07-01

    Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design. PMID:23791943

  17. Molecular and biochemical characterization of S-adenosylmethionine decarboxylase from the free-living nematode Caenorhabditis elegans.

    PubMed Central

    Da'dara, A A; Walter, R D

    1998-01-01

    S-Adenosylmethionine decarboxylase (SAMDC) is a major regulatory enzyme in the polyamine biosynthesis and is considered a potentially important drug target for the chemotherapy of proliferative and parasitic diseases. To study regulatory mechanisms which are involved in the expression of SAMDC of the free-living nematode Caenorhabditis elegans, we have isolated the SAMDC gene and cDNA. Genomic Southern-blot analysis suggests that the C. elegans SAMDC is encoded by a single-copy gene which spans 3.9 kb and consists of six exons and five introns. The first two introns are located in the 5'-untranslated region (UTR). Analyses of the 5'-flanking region of the gene revealed several consensus sequences for the binding of different transcription factors such as CBP, AP2, cMyb, VPE2 and others. The C. elegans SAMDC mRNA possesses an open reading frame (ORF) which encodes a polypeptide of 368 amino acids, corresponding to a SAMDC proenzyme with a calculated molecular mass of 42141 Da. The active form of the C. elegans SAMDC is a heterotetramer, consisting of two subunits of 32 and 10 kDa derived from cleavage of the pro-enzyme. The SAMDC mRNA has an unusually long 5'-UTR of 477 nucleotides. This region has a small ORF which could encode a putative peptide of 17 residues. Moreover, the C. elegans SAMDC mRNA is trans-spliced with the 22 nucleotides spliced leader sequence at the 5'-end. PMID:9841864

  18. Accumulation of uroporphyrin does not provoke further inhibition of liver uroporphyrinogen decarboxylase activity in hexachlorobenzene-induced porphyria.

    PubMed

    Adjarov, D G; Elder, G H

    1986-01-01

    The inhibition of uroporphyrinogen decarboxylase (Uro-D) is the basic pathogenetic mechanism in porphyria caused by hexachlorobenzene (HCB). This study aimed to establish whether hepatic accumulation of uroporphyrin in this porphyria could provoke a further decrease of Uro-D activity. Male C57Bl/6 mice were treated for 8 weeks with a diet containing 0.02% HCB. In some of them the deposition of liver porphyrins was additionally increased by intraperitoneal application of delta-aminolaevulinic acid (ALA). Uro-D activity was determined by measuring unconverted substrate uroporphyrinogen after its oxidation to uroporphyrin by reversed-phase high performance liquid chromatography. The value of endogenously formed uroporphyrin was also obtained from the sample by subtraction, using a blank assay. HCB treatment resulted in reduced activity of hepatic Uro-D, but this activity was not significantly less in animals loaded with ALA than in non-loaded mice. Uroporphyrin deposition tended to decrease 6 weeks after withdrawal of HCB, but the activity of Uro-D was still markedly inhibited. There was no evidence that the accumulation of uroporphyrin promoted a supplementary decrease of Uro-D activity in HCB porphyria. PMID:3596742

  19. Crystal Structures of Malonyl-Coenzyme A Decarboxylase Provide Insights into Its Catalytic Mechanism and Disease-Causing Mutations

    PubMed Central

    Froese, D. Sean; Forouhar, Farhad; Tran, Timothy H.; Vollmar, Melanie; Kim, Yi Seul; Lew, Scott; Neely, Helen; Seetharaman, Jayaraman; Shen, Yang; Xiao, Rong; Acton, Thomas B.; Everett, John K.; Cannone, Giuseppe; Puranik, Sriharsha; Savitsky, Pavel; Krojer, Tobias; Pilka, Ewa S.; Kiyani, Wasim; Lee, Wen Hwa; Marsden, Brian D.; von Delft, Frank; Allerston, Charles K.; Spagnolo, Laura; Gileadi, Opher; Montelione, Gaetano T.; Oppermann, Udo; Yue, Wyatt W.; Tong, Liang

    2013-01-01

    Summary Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design. PMID:23791943

  20. Identification of a mutation in the ovine uroporphyrinogen decarboxylase (UROD) gene associated with a type of porphyria.

    PubMed

    Nezamzadeh, R; Seubert, A; Pohlenz, J; Brenig, B

    2005-08-01

    Porphyria is a group of at least eight diseases caused by abnormalities in the chemical steps that lead to haeme production. The different types of porphyria show different signs and symptoms and can be strongly influenced by environmental factors. Mutations of the uroporphyrinogen decarboxylase (UROD) gene have been shown to be causative for porphyria cutanea tarda (PCT) in humans. Porphyria is a rare disorder in livestock. Although disorders of haeme biosynthesis have been described in cattle, pigs, sheep and cats, PCT has only been reported in pigs. We observed typical signs of porphyria (photosensitivity and porphyrinuria) in a flock of German Blackface sheep and postulated that the porphyria could be caused by a mutation in the UROD gene. To investigate this, we cloned and sequenced the ovine UROD gene. We identified a single point mutation (C --> T) in UROD which leads to an amino acid substitution at Leu 131 Pro, which is located within the active cleft site of the UROD protein. PMID:16026339

  1. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  2. Unusual space-group pseudo symmetry in crystals of human phosphopantothenoylcysteine decarboxylase

    SciTech Connect

    Manoj, N.; Ealick, S.E.

    2010-12-01

    Phosphopantothenoylcysteine (PPC) decarboxylase is an essential enzyme in the biosynthesis of coenzyme A and catalyzes the decarboxylation of PPC to phosphopantetheine. Human PPC decarboxylase has been expressed in Escherichia coli, purified and crystallized. The Laue class of the diffraction data appears to be {bar 3}m, suggesting space group R32 with two monomers per asymmetric unit. However, the crystals belong to the space group R3 and the asymmetric unit contains four monomers. The structure has been solved using molecular replacement and refined to a current R factor of 29%. The crystal packing can be considered as two interlaced lattices, each consistent with space group R32 and with the corresponding twofold axes parallel to each other but separated along the threefold axis. Thus, the true space group is R3 with four monomers per asymmetric unit.

  3. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria.

    PubMed

    Dailey, Harry A; Gerdes, Svetlana

    2015-05-15

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are iron-coproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  4. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGESBeta

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  5. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism.

    PubMed

    Wagner, Tristan; Bellinzoni, Marco; Wehenkel, Annemarie; O'Hare, Helen M; Alzari, Pedro M

    2011-08-26

    The α-ketoglutarate dehydrogenase (KDH) complex is a major regulatory point of aerobic energy metabolism. Mycobacterium tuberculosis was reported to lack KDH activity, and the putative KDH E1o component, α-ketoglutarate decarboxylase (KGD), was instead assigned as a decarboxylase or carboligase. Here, we show that this protein does in fact sustain KDH activity, as well as the additional two reactions, and these multifunctional properties are shared by the Escherichia coli homolog, SucA. We also show that the mycobacterial enzyme is finely regulated by an additional acyltransferase-like domain and by the action of acetyl-CoA, a powerful allosteric activator able to enhance the concerted protein motions observed during catalysis. Our results uncover the functional plasticity of a crucial node in bacterial metabolism, which may be important for M. tuberculosis during host infection. PMID:21867916

  6. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  7. Gecko adhesion pad: a smart surface?

    NASA Astrophysics Data System (ADS)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  8. Launch Pad 39 Hail Monitor Array System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Weather conditions at Kennedy Space Center are extremely dynamic, and they greatly affect the safety of the Space Shuttles sitting on the launch pads. For example, on May 13, 1999, the foam on the External Tank (ET) of STS-96 was significantly damaged by hail at the launch pad, requiring rollback to the Vehicle Assembly Building. The loss of ET foam on STS-114 in 2005 intensified interest in monitoring and measuring damage to ET foam, especially from hail. But hail can be difficult to detect and monitor because it is often localized and obscured by heavy rain. Furthermore, the hot Florida climate usually melts the hail even before the rainfall subsides. In response, the hail monitor array (HMA) system, a joint effort of the Applied Physics Laboratory operated by NASA and ASRC Aerospace at KSC, was deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network, in conjunction with Colorado State University, continue to test duplicate hail monitor systems deployed in the high plains of Colorado.

  9. Reducing Biogenic-Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments

    PubMed Central

    Calzada, Javier; del Olmo, Ana; Picón, Antonia; Gaya, Pilar

    2013-01-01

    Biogenic amines may reach concentrations of public health concern in some cheeses. To minimize biogenic amine buildup in raw milk cheese, high-pressure treatments of 400 or 600 MPa for 5 min were applied on days 21 and 35 of ripening. On day 60, counts of lactic acid bacteria, enterococci, and lactobacilli were 1 to 2 log units lower in cheeses treated at 400 MPa and 4 to 6 log units lower in cheeses treated at 600 MPa than in control cheese. At that time, aminopeptidase activity was 16 to 75% lower in cheeses treated at 400 MPa and 56 to 81% lower in cheeses treated at 600 MPa than in control cheese, while the total free amino acid concentration was 35 to 53% higher in cheeses treated at 400 MPa and 3 to 15% higher in cheeses treated at 600 MPa, and decarboxylase activity was 86 to 96% lower in cheeses treated at 400 MPa and 93 to 100% lower in cheeses treated at 600 MPa. Tyramine, putrescine, and cadaverine were the most abundant amines in control cheese. The total biogenic amine concentration on day 60, which reached a maximum of 1.089 mg/g dry matter in control cheese, was 27 to 33% lower in cheeses treated at 400 MPa and 40 to 65% lower in cheeses treated at 600 MPa. On day 240, total biogenic amines attained a concentration of 3.690 mg/g dry matter in control cheese and contents 11 to 45% lower in cheeses treated at 400 MPa and 73 to 76% lower in cheeses treated at 600 MPa. Over 80% of the histidine and 95% of the tyrosine had been converted into histamine and tyramine in control cheese by day 60. Substrate depletion played an important role in the rate of biogenic amine buildup, becoming a limiting factor in the case of some amino acids. PMID:23241980

  10. 40 CFR 265.442 - Design and installation of new drip pads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., STORAGE, AND DISPOSAL FACILITIES Drip Pads § 265.442 Design and installation of new drip pads. Owners and operators of new drip pads must ensure that the pads are designed, installed, and operated in...

  11. 40 CFR 264.572 - Design and installation of new drip pads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... DISPOSAL FACILITIES Drip Pads § 264.572 Design and installation of new drip pads. Owners and operators of new drip pads must ensure that the pads are designed, installed, and operated in accordance with...

  12. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  13. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  14. A new technique to determine organic and inorganic acid contamination.

    PubMed

    Vo, Evanly

    2002-01-01

    A new acid indicator pad was developed for the detection of acid breakthrough of gloves and chemical protective clothing. The pad carries a reagent which responds to acid contaminant by producing a color change. The pad was used to detect both organic and inorganic acids permeating through glove materials using the modified ASTM F-739 and direct permeability testing procedures. Breakthrough times for each type of glove were determined, and found to range from 4 min to > 4 h for propionic acid, from 3 min to > 4 h for acrylic acid, and from 26 min to > 4 h for HCl. A quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited > 99% adsorption [the acid and its reactivity (the acid reacted with an indicator to contribute the color change)] on the pads at a spiking level of 1.8 microL for each acid. Acid recovery during quantification was calculated for each acid, ranging from 52-72% (RSD < or = 4.0%) for both acids over the spiking range 0.2-1.8 microL. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 260-282 and 270-296 microg cm(-2) for propionic acid and acrylic acid, respectively. The new colorimetric indicator pad should be useful in detecting and collecting acid permeation samples through gloves and chemical protective clothing in both laboratory and field studies, for quantitative analysis. PMID:11827389

  15. Creating Microcomputer Graphics with the KoalaPad.

    ERIC Educational Resources Information Center

    White, Dennis W.

    1985-01-01

    The KoalaPad, an advanced graphic tablet introduced in 1983, reduces the cost and the degree of programing background required to create sophisticated images on the microcomputer. The potentials of the KoalaPad for use in an art education program are discussed, and recommendations for creating a microcomputer graphics lab are presented. (RM)

  16. 50. SOUTHEAST CORNER OF LAUNCH PAD. RAIL AND BUMPER IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. SOUTHEAST CORNER OF LAUNCH PAD. RAIL AND BUMPER IN CENTER OF PHOTOGRAPH; FIRE SUPPRESSION NOZZLES ON RIGHT; THRUST SECTION HEATER DUCT ON LEFT. COMMUNICATIONS HOOKUP FOR THE MST LEFT OF DUCT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. iPad Use and Student Engagement in the Classroom

    ERIC Educational Resources Information Center

    Mango, Oraib

    2015-01-01

    iPads and handheld digital devices have been securing their place in educational institutions surrounded by debates between advocates and skeptics. In light of not enough evidence supporting the use of iPads in education, this study examined the ways that college students in two foreign language classrooms perceived the influence of the use of…

  1. 1. GENERAL VIEW OF PAD B MOBILE SERVICE STRUCTURE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF PAD B MOBILE SERVICE STRUCTURE IN SETTING WITH FACILITY 28416 (PAD A MOBILE SERVICE STRUCTURE) IN DISTANCE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. Effectiveness of Using iPads to Build Math Fluency

    ERIC Educational Resources Information Center

    O'Malley, Patricia; Jenkins, Sandi; Wesley, Brooke; Donehower, Claire; Rabuck, Deidre; Lewis, MEB.

    2013-01-01

    Research into integrating technology such as iPads into the curriculum for students with disabilities is still new. The purpose of this study was to examine the effect of the use of a basic math skill application on an iPad to increase basic math fluency. As part of a classwide academic intervention, the study was conducted with 10 students with…

  3. iPads in Inclusive Classrooms: Ecologies of Learning

    ERIC Educational Resources Information Center

    Meyer, Bente

    2013-01-01

    This paper builds on data from a project where iPads were used in a lower secondary school in Denmark to support school development and inclusive learning environments. The paper explores how iPads enter into and work as part of an ecology of learning in five classes in lower secondary school. The paper argues that we should disengage approaches…

  4. DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE OF THE GUN EMPLACEMENT. NOTE ADDED BLOCK OF CAST CONCRETE AT THE LOW (RIGHT) END OF SLOPED PAD. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  5. iPad use during ward rounds: an observational study.

    PubMed

    Lehnbom, Elin C; Adams, Kristian; Day, Richard O; Westbrook, Johanna I; Baysari, Melissa T

    2014-01-01

    Much clinical information is computerised and doctors' use of mobile devices such as iPad tablets to access this information is expanding rapidly. This study investigated the use of iPads during ward rounds and their usefulness in providing access to information during ward rounds. Ten teams of doctors at a large teaching hospital were given iPads for ten weeks and were observed on ward rounds for 77.3 hours as they interacted with 525 patients. Use of iPads and other information technology devices to access clinical information was recorded. The majority of clinical information was accessed using iPads (56.2%), followed by computers-on-wheels (35.8%), stationary PCs (7.9%) and smartphones (0.1%). Despite having read-only access on iPads, doctors were generally happy using iPads on ward rounds. These findings provide evidence of the value of iPads as a tool to access information at the point of care. PMID:25087529

  6. Teaching with Technology: iPads and Primary Mathematics

    ERIC Educational Resources Information Center

    Attard, Catherine

    2013-01-01

    iPads are beginning to appear in more and more primary classrooms, yet it is difficult to find teaching ideas that promote deep mathematical understanding. Catherine Attard provides a list of teaching considerations to be used when using iPads and two practical ideas for using them.

  7. 49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION HEATER AND DUCTS ON RIGHT; UMBILICAL MAST POWER CONNECTORS ON LEFT; RAIL SYSTEM AND FIRE SUPPRESSION NOZZLES IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Topography of whisking II: interaction of whisker and pad.

    PubMed

    Bermejo, R; Friedman, W; Zeigler, H P

    2005-09-01

    The peripheral effector system mediating rodent whisking produces protraction/retraction movements of the whiskers and translation movements of the collagenous mystacial pad. To examine the interaction of these movements during whisking in air we used high-resolution, optoelectronic methods for two-dimensional monitoring of whisker and pad movements in head-fixed rats. Under these testing conditions (1) whisker movements on the same side of the face are synchronous and of similar amplitude; (2) pad movements exhibit the characteristic 'exploratory' rhythm (6-12 Hz) of whisking but their movements often have a low frequency (1-2 Hz) component; (3) Pad movements occur in both antero-posterior and dorso-ventral planes but there are considerable variations in the amplitude and topography of movement parameters in the two planes. We conclude that (a) both whisker and pad receive input from a common central rhythm generator; (b) differences in whisker and pad amplitude and topography probably reflect differences in the biomechanical properties of the structures receiving that input; (c) pad movements make a significant contribution to the kinematics of whisking behavior and (d) the two-dimensional nature of pad translation movements significantly increases the rat's flexible control of its mobile sensor. PMID:16338829

  9. Public access to defibrillation (PAD): implementing a church program.

    PubMed

    Gilchrist, Jody

    2012-01-01

    For every minute without cardiopulmonary resuscitation and defibrillation, the odds of surviving cardiac arrest decrease by 7% to 10%. Churches can implement a public access to defibrillation (PAD) program and help save lives. This article outlines steps and resources for setting up a PAD program. PMID:22480085

  10. Implementing iPads in the Inclusive Classroom Setting

    ERIC Educational Resources Information Center

    Maich, Kimberly; Hall, Carmen

    2016-01-01

    This column provides practical suggestions to help guide teachers in utilizing classroom sets of iPads. Following a brief introduction to tablet technology in inclusive classrooms and the origin of these recommendations from a case study focus group, important elements of setting up classroom iPad use, from finding funding to teaching apps, are…

  11. Open Vehicle Sketch Pad Aircraft Modeling Strategies

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2013-01-01

    Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.

  12. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  13. Metal pad instabilities in liquid metal batteries.

    PubMed

    Zikanov, Oleg

    2015-12-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current, and the current perturbations caused by the local variations of the thickness of the electrolyte layer. PMID:26764818

  14. Microneurovascular free digital pad transfer in the dog.

    PubMed

    Basher, A W; Fowler, J D; Bowen, C V; Clark, E G; Crosby, N L

    1990-01-01

    By cadaver dissections, the fifth digit of the canine hind limb was determined to have a consistent neurovascular anatomy, and therefore be a suitable donor for an axial pattern digital pad flap. The defined digital pad flap was transferred to the region of an excised metacarpal pad by microneurovascular anastomoses in five operations on four dogs. One flap failure was considered to result from failure of the venous anastomosis. In all four successful transfers, cutaneous sensation was reestablished on average in 78 days. There was histologic evidence of nerve regeneration across the anastomosis in one dog at week 24. The transferred pads of three dogs monitored for 15 months underwent hypertrophic changes. There were no complications in two active dogs. In one dog, superficial ulceration of a region of the flap adjacent to the pad required surgical revision. This dog continued to show mild lameness after daily runs of 3 to 4 km. PMID:1971973

  15. Pad printer for electronics. Final report

    SciTech Connect

    1998-05-01

    This is the Final report on DARPA-sponsored development Program Pad Printer for Electronics DE-FC04-95AL87486 which was initiated in February, 1995 and intended to run 24 months to February 1997. The Program has significant value to the Thick Film processing industry, an electronic manufacturing alternative for producing functional modules integrated at the multichip level. The result is highly reliable, high volumetric efficiency, subassemblies for military applications and for commercial applications in severe environments, such as automotive, portable communications, and bio-implantable devices. The program progressed quite satisfactorily through 19 months, when it encountered severe, non-technical, difficulties. Resolving these difficulties resulted in several months of delay in completing the Program, but resulted in only a trivial increase in total program cost and no increase in cost to the sponsor. The principle Objective of the Program was the development of a printing system -- machine and appropriate inks -- compatible with existing thick-film processing but offering a 5x improvement in line density. This objective has been met. The Pad Printer is capable of printing suitable inks in traces 25 g wide on 50g centers to a fired thickness of 3 {mu}; each of these parameters is roughly 1/5 the value of the current alternative, silk-screen printing. The available inks represent an assortment of conductor, dielectric, and insulator formulations and the knowledge developed permits extending this family of inks to new and diverse functional materials. An important secondary objective was maximum compatibility with existing Thick Film processing; the printer and ink systems may be substituted directly for the silk screen printers in existing processes. The Program reached or exceeded its other Technical Objectives in almost every case and, in those few instances where the objective was only partially met, work continues under private funding.

  16. Production of biogenic amines by lactic acid bacteria: screening by PCR, thin-layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must.

    PubMed

    Costantini, Antonella; Cersosimo, Manuela; Del Prete, Vincenzo; Garcia-Moruno, Emilia

    2006-02-01

    Biogenic amines are frequently found in wine and other fermented food. We investigated the ability of 133 strains of lactic acid bacteria isolated from musts and wines of different origins to produce histamine, tyramine, and putrescine. We detected the genes responsible for encoding the corresponding amino acid decarboxylases through PCR assays using two primer sets for every gene: histidine decarboxylase (hdc), tyrosine decarboxylase (tdc), and ornithine decarboxylase (odc); these primers were taken from the literature or designed by us. Only one strain of Lactobacillus hilgardii was shown to possess the hdc gene, whereas four strains of Lactobacillus brevis had the tdc gene. None of the Oenococcus oeni strains, the main agents of malolactic fermentation, was a biogenic amine producer. All PCR amplicon band-positive results were confirmed by thin-layer chromatography and high-performance liquid chromatography analyses. PMID:16496581

  17. iPads in Breast Imaging – A Phantom Study

    PubMed Central

    Hammon, M.; Schlechtweg, P. M.; Schulz-Wendtland, R.; Uder, M.; Schwab, S. A.

    2014-01-01

    Introduction: Modern tablet PCs as the iPad are becoming more and more integrated into medicine. The aim of this study was to evaluate the display quality of iPads regarding digital mammography. Materials and Methods: Three experienced readers compared the display quality of the iPad 2 and 3 with a dedicated 10 megapixel (MP) mammography liquid crystal display (LCD) screen in consensus using the standardized Contrast Detail Mammography (CDMAM) phantom. Phantom fields without agreement between the readers were classified as “uncertain”, correct 2 : 1 decisions were classified as “uncertain/readable”. In a second step display quality of the three reading devices was judged subjectively in a side by side comparison. Results: The 10 MP screen was superior to both iPads in 4 (phantom-)fields and inferior in 2 fields. Comparing the iPads, version 3 was superior in 4 fields and version 2 was superior in 1 field. However these differences were not significant. Total number of “uncertain” fields did not show significant differences. The number of “uncertain” fields was 15 with the 10 MP screen, 16 with the iPad 2 and 17 with the iPad 3 (p > 0.05), the number of “uncertain/readable” fields was 4, 7 and 8, respectively. Subjective image quality of the iPad 3 and the 10 MP screen was rated superior to the iPad 2. Conclusion: The evaluated iPads, especially in version 3, seem to be adequate to display mammograms in a diagnostic quality and thus could be useful e.g. for patient consultation, clinical demonstration or educational and teaching purposes. However primary mammogram reading should still be performed on dedicated large sized reading screens. PMID:24741126

  18. Binocular iPad treatment for amblyopia in preschool children

    PubMed Central

    Birch, Eileen E.; Li, Simone L.; Jost, Reed M.; Morale, Sarah E.; De La Cruz, Angie; Stager, David; Dao, Lori; Stager, David R.

    2014-01-01

    Background Recent experimental evidence supports a role for binocular visual experience in the treatment of amblyopia. The purpose of this study was to determine whether repeated binocular visual experience with dichoptic iPad games could effectively treat amblyopia in preschool children. Methods A total of 50 consecutive amblyopic preschool children 3–6.9 years of age were assigned to play sham iPad games (first 5 children) or binocular iPad games (n = 45) for at least 4 hours per week for 4 weeks. Thirty (67%) children in the binocular iPad group and 4 (80%) in the sham iPad group were also treated with patching at a different time of day. Visual acuity and stereoacuity were assessed at baseline, at 4 weeks, and at 3 months after the cessation of game play. Results The sham iPad group had no significant improvement in visual acuity (t4 = 0.34, P = 0.75). In the binocular iPad group, mean visual acuity (plus or minus standard error) improved from 0.43 ± 0.03 at baseline to 0.34 ± 0.03 logMAR at 4 weeks (n = 45; paired t44 = 4.93; P < 0.0001). Stereoacuity did not significantly improve (t44 = 1.35, P = 0.18). Children who played the binocular iPad games for ≥8 hours (≥50% compliance) had significantly more visual acuity improvement than children who played 0–4 hours (t43 = 4.21, P = 0.0001). Conclusions Repeated binocular experience, provided by dichoptic iPad game play, was more effective than sham iPad game play as a treatment for amblyopia in preschool children. PMID:25727578

  19. Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli.

    PubMed

    Bergholz, Teresa M; Tarr, Cheryl L; Christensen, Lisa M; Betting, David J; Whittam, Thomas S

    2007-10-01

    Escherichia coli have evolved adaptive systems to resist strongly acidic habitats in part through the production of 2 biochemically identical isoforms of glutamate decarboxylase (GAD), encoded by the gadA and gadB genes. These genes occur in E. coli and other members of the genospecies (e.g., Shigella spp.) and originated as part of a genomic fitness island acquired early in Escherichia evolution. The present duplicated gad loci are widely spaced on the E. coli chromosome, and the 2 genes are 97% similar in sequence. Comparison of the nucleotide sequences of the gadA and gadB in 16 strains of pathogenic E. coli revealed 3.8% and 5.0% polymorphism in the 2 genes, respectively. Alignment of the homologous genes identified a total of 120 variable sites, including 21 fixed nucleotide differences between the loci within the first 82 codons of the genes. Twenty-three phylogenetically informative sites were polymorphic for the same nucleotides in both genes suggesting recent gene conversions or intergenic recombination. Phylogenetic analysis based on the synonymous substitutions per synonymous site indicated 2 cases in which specific gadA and gadB alleles were more closely related to one another than to other alleles at the corresponding locus. The results indicate that at least 3 gene conversion events have occurred after the gad gene duplication in the evolution of E. coli. Despite multiple gene conversion events, the upstream regulatory regions and the 5' end of each gene remains distinct, suggesting that maintaining functionally different gad genes is important in this acid-resistance mechanism in pathogenic E. coli. PMID:17675652

  20. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  1. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.

    PubMed Central

    Birkholtz, Lyn-Marie; Wrenger, Carsten; Joubert, Fourie; Wells, Gordon A; Walter, Rolf D; Louw, Abraham I

    2004-01-01

    Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains

  2. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  3. An Archaeal Glutamate Decarboxylase Homolog Functions as an Aspartate Decarboxylase and Is Involved in β-Alanine and Coenzyme A Biosynthesis

    PubMed Central

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki

    2014-01-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms. PMID:24415726

  4. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  5. Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality

    PubMed Central

    Park, Eunkyue; Park, Seung Yong; Schuller-Levis, Georgia

    2014-01-01

    We engineered a CSAD KO mouse to investigate the physiological roles of taurine. The disruption of the CSAD gene was verified by Southern, Northern, and Western blotting. HPLC indicated an 83% decrease of taurine concentration in the plasma of CSAD−/−. Although CSAD−/− generation (G)1 and G2 survived, offspring from G2 CSAD−/− had low brain and liver taurine concentrations and most died within 24 hrs of birth. Taurine concentrations in G3 CSAD−/− born from G2 CSAD−/− treated with taurine in the drinking water were restored and survival rates of G3 CSAD−/− increased from 15% to 92%. The mRNA expression of CDO, ADO, and TauT was not different in CSAD−/− compared to WT and CSAD mRNA was not expressed in CSAD−/−. Expression of Gpx 1 and 3 was increased significantly in CSAD−/− and restored to normal levels with taurine supplementation. Lactoferrin and the prolactin receptor were significantly decreased in CSAD−/−. The prolactin receptor was restored with taurine supplementation. These data indicated that CSAD KO is a good model for studying the effects of taurine deficiency and its treatment with taurine supplementation. PMID:24639894

  6. A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter

    PubMed Central

    Kamthan, Ayushi; Kamthan, Mohan; Kumar, Avinash; Sharma, Pratima; Ansari, Sekhu; Thakur, Sarjeet Singh; Chaudhuri, Abira; Datta, Asis

    2015-01-01

    Oxalate decarboxylase (OXDC) enzyme has immense biotechnological applications due to its ability to decompose anti-nutrient oxalic acid. Flammulina velutipes, an edible wood rotting fungus responds to oxalic acid by induction of OXDC to maintain steady levels of pH and oxalate anions outside the fungal hyphae. Here, we report that upon oxalic acid induction, a calmodulin (CaM) like protein-FvCaMLP, interacts with the OXDC promoter to regulate its expression. Electrophoretic mobility shift assay showed that FvCamlp specifically binds to two non-canonical E-box elements (AACGTG) in the OXDC promoter. Moreover, substitutions of amino acids in the EF hand motifs resulted in loss of DNA binding ability of FvCamlp. F. velutipes mycelia treated with synthetic siRNAs designed against FvCaMLP showed significant reduction in FvCaMLP as well as OXDC transcript pointing towards positive nature of the regulation. FvCaMLP is different from other known EF hand proteins. It shows sequence similarity to both CaMs and myosin regulatory light chain (Cdc4), but has properties typical of a calmodulin, like binding of 45Ca2+, heat stability and Ca2+ dependent electrophoretic shift. Hence, FvCaMLP can be considered a new addition to the category of unconventional Ca2+ binding transcriptional regulators. PMID:26455820

  7. [The supinator fat pad in fractures of the elbow joint].

    PubMed

    Schunk, K; Grossholz, M; Schild, H

    1989-03-01

    The position of the supinator fat pad is regarded as a valuable sign in fractures of the elbow. In our patients the pad was visible in 277 out of 337 cases (82%). The sign was positive in only 27 out of 55 proximal fractures of the radius (sensitivity 0.49). There was no correlation between the severity of the fracture and the sign. There was marked variation in the distance between the pad and the radius, depending on age, build and projection. Our results indicate that the sign is not suitable for the diagnosis of fracture of the elbow. PMID:2538879

  8. Changes in activity of lysine decarboxylase in winter triticale in response to grain aphid feeding.

    PubMed

    Sempruch, C; Leszczyński, B; Wójcicka, Agnieszka; Makosz, M; Matok, H; Chrzanowski, G

    2010-12-01

    Changes in lysine decarboxylase (LDC) activity caused by Sitobion avenae (F.) feeding on two winter triticale cultivars (cvs) were studied. The aphid fecundity and values of intrinsic rate of natural increase showed that cv Witon was less susceptible to S. avenae than cv Tornado. The grain aphid feeding on more susceptible triticale caused a decrease in the LDC activity, with exceptions of root tissues after two weeks of the feeding. In case of less susceptible cv Witon reduction of the LDC activity was observed only during initial period of S. avenae feeding. Later the aphid infestation induced activity of the LDC within tissues of cv Witon. PMID:21112841

  9. Identification of the active site of human mitochondrial malonyl-coenzyme a decarboxylase: A combined computational study.

    PubMed

    Ling, Baoping; Liu, Yuxia; Li, Xiaoping; Wang, Zhiguo; Bi, Siwei

    2016-06-01

    Malonyl-CoA decarboxylase (MCD) can control the level of malonyl-CoA in cell through the decarboxylation of malonyl-CoA to acetyl-CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N-terminal helical domain instead of the adenine ring of CoA. The residues 300 - 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl-CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl-CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792-802. © 2016 Wiley Periodicals, Inc. PMID:26948533

  10. Enzyme Architecture: Deconstruction of the Enzyme-Activating Phosphodianion Interactions of Orotidine 5′-Monophosphate Decarboxylase

    PubMed Central

    2015-01-01

    The mechanism for activation of orotidine 5′-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters kcat and Km for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-d-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (kcat)obs for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (Km)obs. PMID:24958125

  11. Association between a polymorphism of the 65K-glutamate decarboxylase gene and insulin-dependent diabetes mellitus

    SciTech Connect

    Kure, S.; Aoki, Y.; Narisawa, K.

    1994-09-01

    Autoimmunity against 65K-glutamate decarboxylase (GAD65), one of two forms of the {gamma}-aminobutyric acid-synthesizing enzyme, is commonly associated with insulin-dependent diabetes mellitus (IDDM). To study the predisposing effect of the GAD65 genotype on IDDM, we performed a case-control study screening an association between a newly-identified GAD65 polymorphism and IDDM in the Japanese population. The identified polymorphism was a microsatellite that was located in an intron near the 3{prime} end of the GAD65 gene consisting of variable numbers of a (CA)-dinucleotide repeat. We amplified the polymorphic region by polymerase chain reaction, and, for each individual in the control group (n=254) and the IDDM group (n=108), determined a pair of (CA)-repeat numbers, each number derived from one or the other of their alleles. In both groups we found 13 allelic variants with different repeat numbers, ranging from 19 to 31 repeats of the (CA) dinucleotide. The most frequent allelic variant in the IDDM group was 20 repeats; (CA){sub 20}. A higher frequency of a genotype containing two (CA){sub 20} alleles (p=0.005) was observed in the IDDM group (41.7%) compared with the control group (26.8%). Odds ratio (a 95% confidence interval) for a heterozygote or a homozygote of (CA){sub 20} versus a subject without (CA){sub 20} was 1.2 (0.66-2.25) and 2.23 (1.18-4.21), respectively. No significant association was observed between the (CA)-repeat genotype and the appearance of anti-GAD antibodies in the patients whose duration of the diabetes was less than 4 years (n=35). Therefore, genetic variations in GAD65 appears to be associated with IDDM susceptibility.

  12. Expression Patterns Conferred by Tyrosine/Dihydroxyphenylalanine Decarboxylase Promoters from Opium Poppy Are Conserved in Transgenic Tobacco1

    PubMed Central

    Facchini, Peter J.; Penzes-Yost, Catherine; Samanani, Nailish; Kowalchuk, Brett

    1998-01-01

    Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species. PMID:9733527

  13. High Frequency of Histamine-Producing Bacteria in the Enological Environment and Instability of the Histidine Decarboxylase Production Phenotype▿

    PubMed Central

    Lucas, Patrick M.; Claisse, Olivier; Lonvaud-Funel, Aline

    2008-01-01

    Lactic acid bacteria contribute to wine transformation during malolactic fermentation. They generally improve the sensorial properties of wine, but some strains produce histamine, a toxic substance that causes health issues. Histamine-producing strains belong to species of the genera Oenococcus, Lactobacillus, and Pediococcus. All carry an hdcA gene coding for a histidine decarboxylase that converts histidine into histamine. For this study, a method based on quantitative PCR and targeting hdcA was developed to enumerate these bacteria in wine. This method was efficient for determining populations of 1 to 107 CFU per ml. An analysis of 264 samples collected from 116 wineries of the same region during malolactic fermentation revealed that these bacteria were present in almost all wines and at important levels, exceeding 103 CFU per ml in 70% of the samples. Histamine occurred at an often important level in wines containing populations of the above-mentioned bacteria. Fifty-four colonies of histamine producers isolated from four wines were characterized at the genetic level. All were strains of Oenococcus oeni that grouped into eight strain types by randomly amplified polymorphic DNA analysis. Some strains were isolated from wines collected in distant wineries. Moreover, hdcA was detected on a large and possibly unstable plasmid in these strains of O. oeni. Taken together, the results suggest that the risk of histamine production exists in almost all wines and is important when the population of histamine-producing bacteria exceeds 103 per ml. Strains of O. oeni producing histamine are frequent in wine during malolactic fermentation, but they may lose this capacity during subcultures in the laboratory. PMID:18065614

  14. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    PubMed Central

    Manto, Mario; Honnorat, Jérôme; Hampe, Christiane S.; Guerra-Narbona, Rafael; López-Ramos, Juan Carlos; Delgado-García, José María; Saitow, Fumihito; Suzuki, Hidenori; Yanagawa, Yuchio; Mizusawa, Hidehiro; Mitoma, Hiroshi

    2015-01-01

    Autoantibodies to the smaller isoform of glutamate decarboxylase (GAD) can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct GAD autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal GAD antibodies. We found that GAD autoantibodies present in patients with stiff person syndrome (n = 7) and cerebellar ataxia (n = 15) recognized an epitope distinct from that recognized by GAD autoantibodies present in patients with type 1 diabetes mellitus (n = 10) or limbic encephalitis (n = 4). We demonstrated that the administration of a monoclonal GAD antibody representing this epitope specificity; (1) disrupted in vitro the association of GAD with γ-Aminobutyric acid containing synaptic vesicles; (2) depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect; (3) significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task; (4) markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm; and (5) induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of GAD by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such GAD antibodies could be envisioned. PMID:25870548

  15. 48. DETAIL VIEW OF AIR VENT AT 'CATFISH' LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. DETAIL VIEW OF AIR VENT AT 'CATFISH' LAUNCH PAD Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  16. 43. DETAIL VIEW OF 'CATFISH' LAUNCH PAD (continues view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. DETAIL VIEW OF 'CATFISH' LAUNCH PAD (continues view of CA-57-7) Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  17. 32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  18. 21 CFR 872.3540 - OTC denture cushion or pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-counter. (b) Classification. (1) Class I if the device is made of wax-impregnated cotton cloth that the... denture cushion or pad is made of a material other than wax-impregnated cotton cloth or if the...

  19. 21 CFR 872.3540 - OTC denture cushion or pad.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-counter. (b) Classification. (1) Class I if the device is made of wax-impregnated cotton cloth that the... denture cushion or pad is made of a material other than wax-impregnated cotton cloth or if the...

  20. 21 CFR 872.3540 - OTC denture cushion or pad.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-counter. (b) Classification. (1) Class I if the device is made of wax-impregnated cotton cloth that the... denture cushion or pad is made of a material other than wax-impregnated cotton cloth or if the...

  1. 21 CFR 872.3540 - OTC denture cushion or pad.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-counter. (b) Classification. (1) Class I if the device is made of wax-impregnated cotton cloth that the... denture cushion or pad is made of a material other than wax-impregnated cotton cloth or if the...

  2. 21 CFR 872.3540 - OTC denture cushion or pad.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-counter. (b) Classification. (1) Class I if the device is made of wax-impregnated cotton cloth that the... denture cushion or pad is made of a material other than wax-impregnated cotton cloth or if the...

  3. Preventive medicine oversight of splash pads on military installations.

    PubMed

    Hardcastle, Lisa Raysby; Perry, Matthew; Browne, Ashley

    2015-01-01

    Over the past several years, an increasing number of military installations have installed splash pads that provide fun, recreational water entertainment for Soldiers and their families. The addition of splash pads brings added responsibilities for medical treatment facility preventive medicine oversight and installation facilities maintenance to ensure a safe and healthy environment. Currently, there are no consistent standards or detailed guidance for military installations to follow when installing and maintaining splash pads. The central issues associated with splash pads on military installations are water quality and risk for waterborne illnesses, responsibility for safety and health oversight, and federal energy and water sustainability mandates. This article examines the importance of implementing a standard for design and oversight to ensure the health and safety of Soldiers and their families. PMID:25651143

  4. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  5. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    NASA Astrophysics Data System (ADS)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  6. 35. Photocopy of Photograph VIEW TO EAST, VIEW OF PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of Photograph VIEW TO EAST, VIEW OF PAD B LAUNCH DECK AND UMBILICAL MAST, 28 February 1966. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. 19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  8. 58. Overall view of entry to launch pad from inside ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Overall view of entry to launch pad from inside gate with building 157, sentry control box on right, looking northeast - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  9. 56. Overall view towards launch pad with building 157, sentry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Overall view towards launch pad with building 157, sentry control box on left, and building 156, Warhead Building on right, looking southwest - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  10. 16 CFR 1632.5 - Mattress pad test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. (v) A different number of... substrate. (b) Flame resistant mattress pads. The following additional requirements shall be applicable...

  11. 16 CFR 1632.5 - Mattress pad test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. (v) A different number of... substrate. (b) Flame resistant mattress pads. The following additional requirements shall be applicable...

  12. 8. View east. East abutment, showing bearings on concrete pads, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View east. East abutment, showing bearings on concrete pads, drainage pipes for approach, and scupper downspouts. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  13. 7. Shed and keeper' house with helicopter pad in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Shed and keeper' house with helicopter pad in foreground, view east, southwest and northwest sides - Goat Island Light Station, Goat Island, next to entrance to Cape Porpoise Harbor, just south of Trott Island, Cape Porpoise, York County, ME

  14. Orbital Rolls to Launch Pad at Wallops for Station Flight

    NASA Video Gallery

    An Orbital Sciences Corporation Antares rolled out to launch Pad-0A at NASA's Wallops Flight Facility, Sunday, January 5, 2014, in advance of a planned Wednesday, Jan. 8th, 1:32 p.m. EST launch. Th...

  15. 16. CONCRETE PAD ON WHICH AN ELECTRICAL REACTOR WAS MOUNTED, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. CONCRETE PAD ON WHICH AN ELECTRICAL REACTOR WAS MOUNTED, IN THE BASEMENT, EAST WALL - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR

  16. Time-Lapse: Mobile Launcher Moves to Launch Pad

    NASA Video Gallery

    The mobile launcher that will host NASA's Space Launch System and new Orion spacecraft was moved to Launch Pad 39B at NASA's Kennedy Space Center in Florida to begin two weeks of structural and sys...

  17. 4. VIEW SOUTHEAST, COMPRESSOR PADS Imperial Carbon Black Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHEAST, COMPRESSOR PADS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  18. 2. VIEW SOUTHWEST, COMPRESSOR PADS Imperial Carbon Black Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, COMPRESSOR PADS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  19. Behind the Scenes: Shuttle Crawls to Launch Pad

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, take a look at what's needed to roll a space shuttle out of the Vehicle Assembly Building and out to the launch pad. Astronaut Mike Massimino talks to som...

  20. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata.

    PubMed

    Stevens, L H; Blom, T J; Verpoorte, R

    1993-08-01

    The subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus (L.) G. Don and Tabernaemontana divaricata (L.) R. Br. ex Roem. et Schult, was investigated. It was found that tryptophan decarboxylase is an extra-vacuolar enzyme, whereas strictosidine synthase is active inside the vacuole. Strong indications were obtained for the localization of strictosidine glucosidase on the outside of the tonoplast. The results suggest that tryptamine is transported into the vacuole where it is condensed with secologanin to form strictosidine, and that strictosidine passes the tonoplast and is subsequently hydrolysed outside the vacuole. PMID:24201788

  1. Method for Producing Launch/Landing Pads and Structures Project

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P. (Compiler)

    2015-01-01

    Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.

  2. Assessment of Raman Spectroscopy as a Silicone Pad Production Diagnostic

    SciTech Connect

    Saab, A P; Balazs, G B; Maxwell, R S

    2005-05-05

    Silicone pressure pads are currently deployed in the W80. The mechanical properties of these pads are largely based on the degree of crosslinking between the polymer components that comprise the raw gumstock from which they are formed. Therefore, it is desirable for purposes of both production and systematic study of these materials to have a rapid, reliable means of assaying the extent of crosslinking. The present report describes the evaluation of Raman spectroscopy in this capacity.

  3. 44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  5. Riverland ERA maintenance pad site diesel contamination risk assessment

    SciTech Connect

    Valcich, P.J.

    1993-12-02

    The maintenance pad site consists of a concrete pad and underlying soils, approximately 15 by 46 m in area, and a drainage ditch with dimensions of 2.4 by 91 m. The ditch is located approximately 60 m from the concrete pad and is oriented parallel to the pads long axis. The facility was built in 1943, at which time the concrete pad was the floor of a maintenance shed for railroad activities. In 1955, use of the facility as a maintenance shed was discontinued. Between 1955 and 1957, the facility was used as a radioactivity decontamination area for railroad cars; acetone-soaked rags were used to remove surface contamination from the cars. The concrete pad was washed down with a mixture of water and diesel fuel, which was then flushed via clay pipe to the drainage ditch. In 1963, the maintenance shed was torn down and the concrete pad covered with approximately one-half meter of fill. The concrete pad was re-exposed in 1993. The site was sampled for Toxicity Characteristic Leachate Procedure (TCLP) metals, volatile, and semi-volatile compounds, as well as for extractable fuel hydrocarbons. A total of 17 samples were collected from surface concrete, soil beneath surface concrete, and ditch soil. One concrete sample and one ditch soil sample were split. The ditch soil sample was also duplicated. The relative percent difference (RPD) in extractable hydrocarbons of the two split samples, one from concrete and one from ditch soil are, respectively, 52% and 186%. The RPD for the duplicate sample, taken from the same ditch soil sample from which one of the splits was taken, is 39%.

  6. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells

    PubMed Central

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-01

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  7. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells.

    PubMed

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-19

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  8. 21 CFR 884.5425 - Scented or scented deodorized menstrual pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scented or scented deodorized menstrual pad. 884... Therapeutic Devices § 884.5425 Scented or scented deodorized menstrual pad. (a) Identification. A scented or scented deodorized menstrual pad is a device that is a pad made of cellulosic or synthetic material...

  9. The CIMSS iPad Library and ESIP Teacher Workshops

    NASA Astrophysics Data System (ADS)

    Dahlman, L.; Mooney, M. E.

    2012-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison launched a new initiative in 2012 to engage teachers and students in data acquisition and regional climate studies. The CIMSS iPad Library, part of a NASA funded Climate Literacy Ambassadors project, loans iPads to science teachers for an entire school year. The first units were distributed at a NOAA funded teacher workshop conducted at the annual Earth Science Information Partners (ESIP) summer conference. Educators learned about numerous NOAA and NASA resources at the ESIP Teacher Workshop and also several different climate-related Apps, including SatCam, an application for iOS devices that allows users to collect observations of local cloud and surface conditions coordinated with an overpass of the Terra, Aqua, or Suomi NPP satellite. This presentation will outline connections between the Climate Literacy Ambassadors community and ESIP Teacher Workshops before delving into details about the new iPad Library and SatCam. We will discuss considerations and challenges related to a technology loaning library, software recoding to HTML5, and some advantages and limitations related to iPads. We will also share feedback acquired over the fall from ESIP Educators using the SatCam App with their students with the iPads they borrowed (like books) from the CIMSS iPad Library.

  10. Heterologous expression and characterization of tyrosine decarboxylase from Enterococcus faecalis R612Z1 and Enterococcus faecium R615Z1.

    PubMed

    Liu, Fang; Xu, Wenjuan; Du, Lihui; Wang, Daoying; Zhu, Yongzhi; Geng, Zhiming; Zhang, Muhan; Xu, Weimin

    2014-04-01

    Tyrosine decarboxylase (TDC) is responsible for tyramine production and can catalyze phenylalanine to produce β-phenylethylamine. Enterococcus strains are a group of bacteria predominantly producing tyramine and β-phenylethylamine in water-boiled salted duck. In this study, the heterologous expression and characterization of two TDCs from Enterococcus faecalis R612Z1 (612TDC) and Enterococcus faecium R615Z1 (615TDC) were studied. The recombinant putative proteins of 612TDC and 615TDC were heterologously expressed in Escherichia coli. 612TDC is a 620-amino-acid protein with a molecular mass of 70.0 kDa, whereas 615TDC is a 625-amino-acid protein with a molecular mass of 70.3 kDa. Both 612TDC and 615TDC showed an optimum temperature of 25 °C for the tyrosine and phenylalanine substrates. However, 612TDC revealed maximal activity at pH 5.5, whereas 615TDC revealed maximal activity at pH 6.0. Kinetic studies showed that 612TDC and 615TDC exhibited higher specificity for tyrosine than for phenylalanine. The catalysis abilities of both 612TDC and 615TDC for phenylalanine were restrained significantly with the increase in NaCl concentration, but this was not the case for tyrosine. This study revealed that the enzyme properties of the purified recombinant 612TDC and 615TDC were similar, although their amino acid sequences had 84% identity. PMID:24680070

  11. The new fertilizer-producing facility near Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A recently installed fertilizer-producing system sits near Launch Pad 39A (upper left background). Using a 'scrubber,' the system captures nitrogen tetroxide vapor that develops as a by-product when it is transferred from ground storage tanks into the Shuttle storage tanks. Nitrogen tetroxide is used as the oxidizer for the hypergolic propellant in the Shuttle's on-orbit reaction control system. The scrubber then uses hydrogen peroxide to produce nitric acid, which, after adding potassium hydroxide, converts to potassium nitrate, a commercial fertilizer. The black tanker at left is collecting the potassium nitrate, which will be used on the orange groves that KSC leases to outside companies.

  12. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  13. Glutamate decarboxylase from barley embryos and roots. General properties and the occurrence of three enzymic forms.

    PubMed Central

    Inatomi, K; Slaughter, J C

    1975-01-01

    Glutamate decarboxylase in extracts of barley has a Km value for L-glutamate of 22 mM and is activated by the addition of pyridoxal phosphate by up to 3.5 times. Sucrose-density-gradient experiments indicate the presence of two enzyme forms with molecular weights 256000 and 120000. The lower-molecular-weight form appears to be relatively inactive and spontaneously associates to the higher-molecular-weight form on storage. The enzyme is inhibited by thiol reagents and the distribution of activity on density gradients is altered in favour of the lower-molecular-weight form by the presence of 2-mercaptoethanol. After removal of the 2-mercaptoethanol spontaneous association to the higher-molecular-weight form occurs. The presence of oxygen in the extraction buffer and in the water during imbibition leads to a relative increase in the higher-molecular-weight form compared with situations where oxygen is excluded. In contrast, glutamate decarboxylase in extracts of 3-day-old barley roots has a Km value for L-glutamate of 3.1 mM and is activated up to 10% by addition of pyridoxal phosphate. The root enzyme occurs as a single species with molecular weight 310000 and this is unaffected by 2-mercaptoethanol although thiol reagents do act as weak inhibitors. The molecular weight is also unaffected by the presence or absence of oxygen in the extraction buffers. PMID:1167156

  14. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    PubMed Central

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  15. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases

    PubMed Central

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-01-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  16. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  17. Stereochemistry of 4-carboxymuconolactone decarboxylase and muconolactone isomerase in the. beta. -ketoadipate pathway

    SciTech Connect

    Whitman, C.P.; Chari, R.V.J.; Ngai, K.L.; Kozarich, J.W.

    1986-05-01

    The protocatechuate and catechol pathways, two separate and parallel branches of the ..beta..-ketoadipate pathway in Pseudomonas putida, converge at a common intermediate - ..beta..-ketoadipate enol-lactone. The enol-lactone is generated by 4-carboxymuconolactone decarboxylase in the protocatechuate pathway while muconolactone isomerase produces it in the catechol pathway. The presence of these enzymes as well as ..beta..-carboxymuconate cycloisomerase and its substrate, ..beta..-carboxy-cis,cis-muconate, in a NMR tube, leads to the following sequence of events. Lactonization of ..beta..-carboxy-cis,cis-muconate produces 4-carboxymuconolactone which decarboxylates enzymatically with deuteration by D/sub 2/O to afford 2-(/sup 2/H)-4-ketoadipate enol-lactone - the substrate for muconolactone isomerase. Further conversion of the monodeuterated enol-lactone by muconolactone isomerase affords muconolactone which is nearly completely deuterated at the 4 position. The proton ricochets between the 2 and 4 positions with concurrent washout while in the 2 position. Based on the known absolute stereochemistry of 4-carboxymuconolactone and muconolactone, these results suggest that both the decarboxylase and isomerase proceed by syn mechanisms, but operate on opposite faces of the common enol-lactone substrate.

  18. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    PubMed

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues. PMID:25655388

  19. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  20. Saturn I (SA-1) on Launch Pad

    NASA Technical Reports Server (NTRS)

    1961-01-01

    On October 27, 1961, the Marshall Space Flight Center and the Nation marked a high point in the 3-year-old Saturn development program when the first Saturn vehicle, SA-1, flew a flawless 215-mile ballistic trajectory from Cape Canaveral, Florida. SA-1 is pictured here on the launch pad ready for lift off. Developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, SA-1 incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks, as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle.

  1. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  2. The effect of football shoulder pads on pulmonary function.

    PubMed

    Coast, J Richard; Baronas, Jessica L; Morris, Colleen; Willeford, K Sean

    2005-12-01

    Restriction of expansion of the lungs or chest wall impedes inflation of the lungs during inhalation. Functional changes occurring during such restriction include reduced pulmonary and/or chest wall compliance, decreases in pulmonary function, and ultimately a decrease in exercise performance. Such restriction can be seen in several pathologic conditions such as scoliosis or obesity, as well as occupational situations such as the wearing of bullet-proof vests. This study investigated the hypothesis that tightened football shoulder pads produce decrements in pulmonary function similar to those shown in previous studies involving other external chest-wall restricting devices. In this study, 24 subjects, all members of a collegiate division IAA football team and used to wearing the pads, performed standard pulmonary function tests while wearing no pads (control, CTRL), wearing pads that were not secured (pads loose, PL) and while wearing pads secured "game-tight" (pads tight, PT). The data showed that both forced vital capacity (FVC) and forced expiratory volume in one second (FEV1.0) were significantly decreased in the PT condition compared to either the CTRL or PL condition, with no changes in the FEV1.0/FVC ratio or peak expiratory flow rate. These results are consistent with a restrictive condition and support our hypothesis that tightened shoulder pads reduce pulmonary function. Further studies remain to be performed to determine whether these changes lead to decreased exercise performance and whether equipment modifications can be made to limit alterations in pulmonary function without decreasing the protective value of the pads. Key PointsThe shoulder pads used in American football extend to the xyphoid process and may provide a restriction to breathing. This was tested in the present study in 24 college-level football players with normal resting pulmonary function.The results showed that there was a decrease in FVC of approximately 150 ml and a similar

  3. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation

    PubMed Central

    Lewis, Huw D.; Liddle, John; Coote, Jim E.; Atkinson, Stephen J.; Barker, Michael D.; Bax, Benjamin, D.; Bicker, Kevin L.; Bingham, Ryan P.; Campbell, Matthew; Chen, Yu Hua; Chung, Chun-wa; Craggs, Peter D.; Davis, Rob P.; Eberhard, Dirk; Joberty, Gerard; Lind, Kenneth E.; Locke, Kelly; Maller, Claire; Martinod, Kimberly; Patten, Chris; Polyakova, Oxana; Rise, Cecil E.; Rüdiger, Martin; Sheppard, Robert J.; Slade, Daniel J.; Thomas, Pamela; Thorpe, Jim; Yao, Gang; Drewes, Gerard; Wagner, Denisa D.; Thompson, Paul R.; Prinjha, Rab K.; Wilson, David M.

    2015-01-01

    PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases, through clinical genetics and gene disruption in mice. Novel, selective PAD4 inhibitors binding to a calcium-deficient form of the PAD4 enzyme have, for the first time, validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation. The therapeutic potential of PAD4 inhibitors can now be explored. PMID:25622091

  4. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    PubMed Central

    Zargar, K.; Saville, R.; Phelan, R. M.; Tringe, S. G.; Petzold, C. J.; Keasling, J. D.; Beller, H. R.

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  5. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.

    PubMed

    Abdellaoui, Sofiene; Hickey, David P; Stephens, Andrew R; Minteer, Shelley D

    2015-10-01

    The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule. PMID:26271633

  6. COMPARISON OF ENHANCEMENT OF GGTASE-POSITIVE FOCI AND INDUCTION OF ORNITHINE DECARBOXYLASE IN RAT LIVER BY BARBITURATES

    EPA Science Inventory

    The induction of ornithine decarboxylase (ODC) by barbiturates and the ability of barbiturates to enhance neoplastic progression of chemically initiated cancer was examined in rat liver. All seven barbiturates induced ODC with barbital (7.7 fold increase) and phenobarbital (5.7 f...

  7. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) and 1 CFR part 51. Copies may be obtained from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115...

  8. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  9. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  10. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  11. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  12. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  13. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  14. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  15. POSTNATAL METHYL MERCURY EXPOSURE: EFFECTS ON ONTOGENY OF RENAL AND HEPATIC ORNITHINE DECARBOXYLASE RESPONSES TO TROPHIC STIMULI

    EPA Science Inventory

    The effects of postnatal methylmercury exposure on the ongoteny of kidney and liver responsiveness to trophic stimuli were examined. Increased ornithine decarboxylase (ODC) activity was used as an index of tissue stimulation. In the rat, kidney ODC responsiveness to growth hormon...

  16. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  17. Confirmational identification of Escherichia coli, a comparison of genotypic and phenotypic assays for glutamate decarboxylase and beta-D-glucuronidase.

    PubMed Central

    McDaniels, A E; Rice, E W; Reyes, A L; Johnson, C H; Haugland, R A; Stelma, G N

    1996-01-01

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and beta-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E. coli, three major groups of diarrheagenic E. coli, three other non-coli Escherichia species, and various other gram-negative and -positive bacteria found in water. The genotypic assays were performed with hybridization probes generated by PCR amplification of 670- and 623-bp segments of the gadA/B (GAD) and uidA (GUD) genes, respectively. The GAD enzymes catalyze the alpha-decarboxylation of L-glutamic acid to yield gamma-aminobutyric acid and carbon dioxide, which are detected in the phenotypic assay by a pH-sensitive indicator dye. The phenotypic assay for GUD involves the transformation of 4-methylumbelliferyl-beta-D-glucuronide to the fluorogenic compound 4-methylumbelliferone. The GAD phenotypic assay detected the majority of the E. coli strains tested, whereas a number of these strains, including all representatives of the O157:H7 serotype and several nonpathogenic E. coli strains, gave negative results in the GUD assay. Both phenotypic assays detected some but not all strains from each of the four Shigella species. A strain of Citrobacter freundii was also detected by the GUD assay but not by the GAD assay. All E. coli and Shigella strains were detected with both the gadA/B and uidA probes. A few Escherichia fergusonii strains gave weak hybridization signals in response to both probes at 65 degrees C but not at 68 degrees C. None of the other bacterial species tested were detected by either probe. These results were consistent with previous reports which have indicated that the GAD phenotypic assay detects a wider range of E. coli strains than does the GUD assay and is also somewhat more specific for this species. The genotypic assays for the two enzymes were found to be equivalent in both of

  18. Isolation and characterization of the orotidine 5'-monophosphate decarboxylase domain of the multifunctional protein uridine 5'-monophosphate synthase.

    PubMed

    Floyd, E E; Jones, M E

    1985-08-01

    The multifunctional protein uridine 5'-monophosphate (UMP) synthase catalyzes the final two reactions of the de novo biosynthesis of UMP in mammalian cells by the sequential action of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23). This protein is composed of one or two identical subunits; the monomer weighs of 51,500 daltons. UMP synthase from mouse Ehrlich ascites cells can exist as three distinct species as determined by sucrose density gradient centrifugation: a 3.6 S monomer, a 5.1 S dimer, and a 5.6 S conformationally altered dimer. Limited digestion of each of these three species with trypsin produced a 28,500-dalton peptide that was relatively resistant to further proteolysis. The peptide appears to be one of the two enzyme domains of UMP synthase for it retained only OMP decarboxylase activity. Similar results were obtained when UMP synthase was digested with elastase. OMP decarboxylase activity was less stable for the domain than for UMP synthase; the domain can rapidly lose activity upon storage or upon dilution. The size of the mammalian OMP decarboxylase domain is similar to that of yeast OMP decarboxylase. If the polypeptides which are cleaved from UMP synthase by trypsin are derived exclusively from either the amino or the carboxyl end of UMP synthase, then the size of a fragment possessing the orotate phosphoribosyltransferase domain could be as large as 23,000 daltons which is similar in size to the orotate phosphoribosyltransferase of yeast and of Escherichia coli. PMID:3839509

  19. Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chinese hamster ovary cells and in melanoma cells stimulated to differentiate.

    PubMed Central

    Scott, K F; Meyskens, F L; Russell, D H

    1982-01-01

    Transglutaminase (TGase; R-glutaminyl-peptide:amine gamma-glutamyltransferase, EC 2.3.2.13) and ornithine decarboxylase (ODCase; L-ornithine carboxy-lyase, EC 4.1.1.17) activities were measured after the addition of retinoid analogs to Chinese hamster ovary (CHO) cells released from quiescence and Cloudman S91 (CCL 53.1) mouse melanoma cells stimulated to differentiate with alpha-melanocyte-stimulating hormone (MSH, melanotropin). In both cell culture lines, we detected a biphasic increase in TGase activity and a single peak of ODCase activity within 7 hr after release or stimulation. Retinoid analogs altered the expression of the initial TGase peak in both CHO and melanoma cells. Retinol increased the activity of TGase 1 hr after release in CHO cells, and the activity remained elevated until hr 4. A broad peak of TGase activity also occurred after the addition of alpha-difluoromethylornithine, an irreversible inhibitor of ODCase, and after addition of alpha-difluoromethylornithine plus retinol. In mouse melanoma cells, retinoic acid plus MSH markedly enhanced the activity of the initial TGase peak compared to MSH alone. Retinoic acid alone also increased TGase activity biphasically in these cells without the addition of MSH. These studies suggest that retinoid effects that increase TGase activity may alter the ODCase expression in proliferation and differentiation. PMID:6125941

  20. Relation between coumarate decarboxylase and vinylphenol reductase activity with regard to the production of volatile phenols by native Dekkera bruxellensis strains under 'wine-like' conditions.

    PubMed

    Sturm, M E; Assof, M; Fanzone, M; Martinez, C; Ganga, M A; Jofré, V; Ramirez, M L; Combina, M

    2015-08-01

    Dekkera/Brettanomyces bruxellensis is considered a major cause of wine spoilage, and 4-ethylphenol and 4-ethylguaiacol are the most abundant off-aromas produced by this species. They are produced by decarboxylation of the corresponding hydroxycinnamic acids (HCAs), followed by a reduction of the intermediate 4-vinylphenols. The aim of the present study was to examine coumarate decarboxylase (CD) and vinylphenol reductase (VR) enzyme activities in 5 native D. bruxellensis strains and determine their relation with the production of ethylphenols under 'wine-like' conditions. In addition, biomass, cell culturability, carbon source utilization and organic acids were monitored during 60 days. All strains assayed turned out to have both enzyme activities. No significant differences were found in CD activity, whilst VR activity was variable among the strains. Growth of D. bruxellensis under 'wine-like' conditions showed two growth phases. Sugars were completely consumed during the first growth phase. Transformation of HCAs into ethylphenols also occurred during active growth of the yeast. No statistical differences were observed in volatile phenol levels produced by the strains growing under 'wine-like' conditions, independently of the enzyme activity previously recorded. Furthermore, our results demonstrate a relationship between the physiological state of D. bruxellensis and its ability to produce ethylphenols. Inhibition of growth of D. bruxellensis in wine seems to be the most efficient way to avoid ethylphenol production and the consequent loss of wine quality. PMID:25955288

  1. Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase.

    PubMed

    Ishihara, Atsushi; Nakao, Takahito; Mashimo, Yuko; Murai, Masatoshi; Ichimaru, Naoya; Tanaka, Chihiro; Nakajima, Hiromitsu; Wakasa, Kyo; Miyagawa, Hisashi

    2011-01-01

    Tryptophan-derived secondary metabolites, including serotonin and its hydroxycinnamic acid amides, markedly accumulate in rice leaves in response to pathogen attack. These compounds have been implicated in the physical defense system against pathogen invasion by being deposited in cell walls. Serotonin is biosynthesized from tryptophan via tryptamine, and tryptophan decarboxylase (TDC) catalyzes the first committed reaction. In this study, (S)-α-(fluoromethyl)tryptophan (S-αFMT) was utilized to investigate the effects of the inhibition of TDC on the defense responses of rice leaves. S-αFMT, enantiospecifically synthesized from L-tryptophan, effectively inhibited TDC activity extracted from rice leaves infected by Bipolaris oryzae. The inhibition rate increased dependently on the incubation time, indicating that S-αFMT served as a suicide substrate. Treatment of rice seedlings with S-αFMT suppressed accumulation of serotonin, tryptamine, and hydroxycinnamic acid amides of serotonin in a dose-dependent manner in B. oryzae-inoculated leaves. The lesions formed on seedlings treated with S-αFMT lacked deposition of brown materials, and those leaves were severely damaged in comparison with leaves without S-αFMT treatment. Administrating tryptamine to S-αFMT-treated leaves restored accumulation of tryptophan-derived secondary metabolites as well as deposition of brown material. In addition, tryptamine administration reduced damage caused by fungal infection. Accordingly, the accumulation of tryptophan-derived secondary metabolites was suggested to be part of the effective defense mechanism of rice. PMID:21112065

  2. STS-101 Atlantis near Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Seen from across the backwaters of the Indian River Lagoon, the Space Shuttle Atlantis, atop the mobile launcher platform and crawler-transporter, nears Launch Pad 39A at 1 mph. The crawler- transporter takes about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. The crawler- transporter carries its cargo at 1 mph, taking about five hours to cover the 3.4 miles from the Vehicle Assembly Building to the launch pad. A leveling system on the crawler-transporter keeps the top of the Space Shuttle vertical, especially negotiating the ramp leading to the launch pads and when it is raised and lowered on pedestals at the pad. Liftoff of Atlantis on mission STS-101 is scheduled for April 17 at 7:03 p.m. EDT. STS-101 is a logistics and resupply mission for the International Space Station, to restore full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda.

  3. Insect tricks: two-phasic foot pad secretion prevents slipping.

    PubMed

    Dirks, Jan-Henning; Clemente, Christofer J; Federle, Walter

    2010-04-01

    Many insects cling to vertical and inverted surfaces with pads that adhere by nanometre-thin films of liquid secretion. This fluid is an emulsion, consisting of watery droplets in an oily continuous phase. The detailed function of its two-phasic nature has remained unclear. Here we show that the pad emulsion provides a mechanism that prevents insects from slipping on smooth substrates. We discovered that it is possible to manipulate the adhesive secretion in vivo using smooth polyimide substrates that selectively absorb its watery component. While thick layers of polyimide spin-coated onto glass removed all visible hydrophilic droplets, thin coatings left the emulsion in its typical form. Force measurements of stick insect pads sliding on these substrates demonstrated that the reduction of the watery phase resulted in a significant decrease in friction forces. Artificial control pads made of polydimethylsiloxane showed no difference when tested on the same substrates, confirming that the effect is caused by the insects' fluid-based adhesive system. Our findings suggest that insect adhesive pads use emulsions with non-Newtonian properties, which may have been optimized by natural selection. Emulsions as adhesive secretions combine the benefits of 'wet' adhesion and resistance against shear forces. PMID:19755498

  4. Visible light active photocatalyst from recycled disposable heating pads

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Chien; Wang, Chun-Yu; Chen, Che-Chin; Wang, Chih-Ming; Hsiao, Ta-Chih; Tsai, Din Ping

    2016-01-01

    Alpha-Fe2O3 (α-Fe2O3) is cheap and abundant and has potential to be a highly efficient photocatalyst for water splitting. According to the report, there are a huge amount of disposable heating pads being created every year, and the pads are used one time then thrown away. We found that the main product of used heating pads is α-Fe2O3. Here, we collect and purify the α-Fe2O3 powder in the used heating pads using low power consumption processes. It is shown that the recycled heating pads can be used as a cost-effective photocatalyst for H2 energy and for decomposition of organic pollutants as well. Additionally, the plasmonic enhanced photocatalysis reaction of α-Fe2O3 is also investigated. It is found that H2 evolution rate can be enhanced 15% using α-Fe2O3 nanoparticles coated with a thin Au layer. The degradation of methylene blue can also enhance 12% compared to photocatalyst α-Fe2O3 nanoparticles coated without Au layer.

  5. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    PubMed Central

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization. PMID:16517636

  6. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    PubMed

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  7. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  8. Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase.

    PubMed

    Nitta, Yoko; Kikuzaki, Hiroe; Azuma, Toshiaki; Ye, Yuan; Sakaue, Motoyoshi; Higuchi, Yoshiki; Komori, Hirohumi; Ueno, Hiroshi

    2013-06-01

    Histidine decarboxylase (HDC) catalyses the formation of histamine, a bioactive amine. Agents that control HDC activity are beneficial for treating histamine-mediated symptoms, such as allergies and stomach ulceration. We searched for inhibitors of HDC from the ethyl acetate extract of the petal of Filipendula ulmaria, also called meadowsweet. Rugosin D, rugosin A, rugosin A methyl ester (a novel compound), and tellimagrandin II were the main components; these 4 ellagitannins exhibited a non-competitive type of inhibition, with K(i) values of approximately 0.35-1 μM. These K(i) values are nearly equal to that of histidine methyl ester (K(i)=0.46 μM), an existing substrate analogue inhibitor. Our results show that food products contain potent HDC inhibitors and that these active food constituents might be useful for designing clinically available HDC inhibitors. PMID:23411280

  9. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  10. Oral putrescine restores virulence of ornithine decarboxylase-deficient Leishmania donovani in mice

    PubMed Central

    Olenyik, Tamara; Gilroy, Caslin; Ullman, Buddy

    2011-01-01

    Administration of putrescine as a 1% solution in the drinking water ameliorated the profound loss of virulence exhibited by ornithine decarboxylase (ODC) deficient Leishmania donovani in mice. Furthermore, supplying α-difluoromethylornithine, an ODC inhibitor, at 2% in the drinking water reduced but did not eliminate infection with wild type L. donovani in the mouse model. Taken collectively, these findings: 1) demonstrate that oral putrescine can access the phagolysosome of macrophages in which the parasite resides in mice; 2) establish that the loss of virulence due to the Δodc lesion is a consequence of the inability of the mutant parasite to synthesize sufficient polyamines de novo; 3) imply that the L. donovani amastigote cannot access host polyamines in sufficient amounts for survival and growth; 4) and validate ODC as a drug target, although oral administration of DFMO is an unlikely therapeutic paradigm for visceral leishmaniasis. PMID:21182873

  11. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    PubMed

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  12. Structural Determinants for Inhibitory Ligands of Orotidine-5′-Monophosphate Decarboxylase

    PubMed Central

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    In recent years, orotidine-5′-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures. PMID:20452222

  13. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine

    PubMed Central

    Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter; Donia, Mohamed S.; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C.; Fraser, James S.; Fischbach, Michael A.

    2014-01-01

    Summary Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrates that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. PMID:25263219

  14. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tsai, Yo-Hsian; Lin, Kuan-Lian; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chen, Chung-Hwan; Chen, Yuhsin; Sie, Min-Hua; Wang, Gwo-Jaw; Lee, Mon-Juan

    2015-07-22

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis. Suppression of ODC by its irreversible inhibitor, α-difluoromethylornithine (DFMO), or by RNA interference through siRNA, enhanced osteogenic gene expression and alkaline phosphatase activity, and accelerated matrix mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, adipogenic gene expression and lipid accumulation was attenuated, indicating that the enhanced osteogenesis was accompanied by down-regulation of adipogenesis when ODC was suppressed. A decrease in the intracellular polyamine content of hBMSCs during osteogenic induction was observed, suggesting that the level of endogenous polyamines is regulated during differentiation of hBMSCs. This study elucidates the role of polyamine metabolism in the lineage commitment of stem cells and provides a potential new indication for DFMO as bone-stimulating drug. PMID:26140984

  15. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.

    PubMed

    Nilsson, Jonas A; Keller, Ulrich B; Baudino, Troy A; Yang, Chunying; Norton, Sara; Old, Jennifer A; Nilsson, Lisa M; Neale, Geoffrey; Kramer, Debora L; Porter, Carl W; Cleveland, John L

    2005-05-01

    Checkpoints that control Myc-mediated proliferation and apoptosis are bypassed during tumorigenesis. Genes encoding polyamine biosynthetic enzymes are overexpressed in B cells from E mu-Myc transgenic mice. Here, we report that disabling one of these Myc targets, Ornithine decarboxylase (Odc), abolishes Myc-induced suppression of the Cdk inhibitors p21(Cip1) and p27(Kip1), thereby impairing Myc's proliferative, but not apoptotic, response. Moreover, lymphoma development was markedly delayed in E mu-Myc;Odc(+/-) transgenic mice and in E mu-Myc mice treated with the Odc inhibitor difluoromethylornithine (DFMO). Strikingly, tumors ultimately arising in E mu-Myc;Odc(+/-) transgenics lacked deletions of Arf, suggesting that targeting Odc forces other routes of transformation. Therefore, Odc is a critical Myc transcription target that regulates checkpoints that guard against tumorigenesis and is an effective target for cancer chemoprevention. PMID:15894264

  16. OMP decarboxylase: phosphodianion binding energy is used to stabilize a vinyl carbanion intermediate.

    PubMed

    Goryanova, Bogdana; Amyes, Tina L; Gerlt, John A; Richard, John P

    2011-05-01

    Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions. PMID:21486036

  17. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice

    PubMed Central

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher

    2013-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  18. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGESBeta

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  19. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    SciTech Connect

    Alexopoulos, E.; Kanjee, U.; Snider, J.; Houry, W.A.; Pai, E.F.

    2010-02-11

    The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222{sub 1}; the Ta{sub 6}Br{sub 12}{sup 2+} cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta{sub 6}Br{sub 12}{sup 2+}-derivatized structure to 5 {angstrom} resolution. Many of the Ta{sub 6}Br{sub 12}{sup 2+}-binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006), J. Biol. Chem. 281, 1532-1546].

  20. Pristane-induced effects on cytochrome P-4501A, ornithine decarboxylase and putrescine in rats.

    PubMed

    Harper, C M; Soni, M G; Mehendale, H M; Cuchens, M A

    1995-08-16

    The effects of pristane (2,6,10,14-tetramethylpentadecane) on cytochrome P-4501A (cP4501A) activity in microsomes, as well as on ornithine decarboxylase (ODC) activity and concomitant putrescine levels were examined in Copenhagen rats. In general, pristane treatment led to increased cP4501A levels when compared to basal levels, while co-treatment with 3-methylcholanthrene (3-MC) and pristane elicited augmented cP4501A responses when compared to responses induced by 3-MC alone. Increases in both ODC activity and putrescine levels were also observed in pristane treated rats. Collectively, these results indicate that pristane influences cP4501A activity and elicits promoter-like responses as reflected in elevated ODC activity and increased amount of putrescine. PMID:7656217

  1. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.

    PubMed

    Kuettner, E Bartholomeus; Keim, Antje; Kircher, Markus; Rosmus, Susann; Sträter, Norbert

    2008-03-21

    Arylmalonate decarboxylase (AMDase) from Bordetella bronchiseptica catalyzes the enantioselective decarboxylation of arylmethylmalonates without the need for an organic cofactor or metal ion. The decarboxylation reaction is of interest for the synthesis of fine chemicals. As basis for an analysis of the catalytic mechanism of AMDase and for a rational enzyme design, we determined the X-ray structure of the enzyme up to 1.9 A resolution. Like the distantly related aspartate or glutamate racemases, AMDase has an aspartate transcarbamoylase fold consisting of two alpha/beta domains related by a pseudo dyad. However, the domain orientation of AMDase differs by about 30 degrees from that of the glutamate racemases, and also significant differences in active-site structures are observed. In the crystals, four independent subunits showing different conformations of active-site loops are present. This finding is likely to reflect the active-site mobility necessary for catalytic activity. PMID:18258259

  2. Gecko inspired carbon nanotube based thermal gap pads

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny; Dhinojwala, Ali

    2012-02-01

    Thermal management has become a critical factor in designing the next generation of microprocessors. The bottleneck in design of material for efficient heat transfer from electronic units to heat sinks is to enhance heat flow across interface between two dissimilar, rough surfaces. Carbon nanotubes (CNT) have been shown to be promising candidates for thermal transport. However, the heat transport across the interface continues to be a challenging hurdle. In the current work we designed free standing thermal pads based on gecko-inspired carbon nanotube adhesives. The pads were made of metallic carbon nanotubes and the structure was designed such that it would allow large area of intimate contact. We showed that these adhesive pads can be used as electrical and thermal interconnects.

  3. Closing microvascular lesions with fibrin sealant-attached muscle pads.

    PubMed

    Fehm, Nando Percy; Vatankhah, Bijan; Dittmar, Michael S; Tevetoglu, Yesim; Retzl, Gerald; Horn, Markus

    2005-01-01

    Fibrin sealants are used in a variety of surgical procedures, mainly for purposes of hemostasis and assisted wound healing. The combined use of fibrin sealant and autologous muscle pads for hemostasis was not reported previously. Arterial incisions in the common carotid artery in rats were closed by the combined application of fibrin sealant and an autologous muscle pad. Postsurgical vessel patency and degree of stenosis were evaluated by color duplex sonography, computed tomography angiography, and postmortem histology. The combined application of muscle pad and fibrin sealant and achievement of hemostasis was feasible in all animals. Seventy-eight percent of animals showed no or only slight postsurgical vessel stenosis. Our method is simple and quick to perform, showing a high potential for hemostasis in microvascular lesions. Therefore, it might be used in future experimental studies for conservation of vessel patency after arterial catheterization and in experimental or clinical vascular surgery. PMID:16184526

  4. On pads and filters: Processing strong-motion data

    USGS Publications Warehouse

    Boore, D.M.

    2005-01-01

    Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.

  5. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. Visible near the tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  6. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis nears the top of the launch pad. The Rotating Service Structure is wide open (in front of the Mobile Launcher Platform). After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  7. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the early morning hours, Space Shuttle Atlantis, with its solid rocket boosters and orange external tank, sits atop the Mobile Launcher Platform ready to roll to the launch pad. Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  8. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis, atop the Mobile Launcher Platform, passes by the American flag as it moves through the gate at the launch pad. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  9. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. The Rotating Service Structure is wide open (at left). After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  10. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the early light of dawn, Atlantis heads to the launch pad, lighted in the distance. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  11. STS-100 crew members practice emergency escape from the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - As part of emergency escape training at Launch Pad 39A, the STS-100 crew climb into slidewire baskets that, during a real emergency, would propel them off the Fixed Service Structure to a landing area away from the pad. The crew is taking part in Terminal Countdown Demonstration Test activities that also include a simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  12. STS-100 crew members practice emergency escape from the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - During emergency escape training at Launch Pad 39A, STS-100 Pilot Jeffrey S. Ashby (left) and Commander Kent V. Rominger are in their slidewire basket that, during a real emergency, would propel them off the Fixed Service Structure to a landing area away from the pad. The crew is taking part in Terminal Countdown Demonstration Test activities that also include a simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  13. An approach to evaluate capacitance, capacitive reactance and resistance of pivoted pads of a thrust bearing

    NASA Astrophysics Data System (ADS)

    Prashad, Har

    1992-07-01

    A theoretical approach is developed for determining the capacitance and active resistance between the interacting surfaces of pivoted pads and thrust collar, under different conditions of operation. It is shown that resistance and capacitive reactance of a thrust bearing decrease with the number of pads times the values of these parameters for an individual pad, and that capacitance increases with the number of pads times the capacitance of an individual pad. The analysis presented has a potential to diagnose the behavior of pivoted pad thrust bearings with the angle of tilt and the ratio of film thickness at the leading to trailing edge, by determining the variation of capacitance, resistance, and capacitive reactance.

  14. Woodpecker Preventative measures at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Technicians at Launch Pad 39B take steps to prevent further damage from woodpeckers to the Space Shuttle Discovery, set to lift off July 13 on Mission STS-70. Installing balloons with scary eyes, such as these two near the external tank, are just one of the measures being taken to keep woodpeckers away since Discovery's second rollout to Pad B. Discovery had to be rolled back once to the Vehicle Assembly Building to repair woodpecker holes made in the insulation covering the external tank.

  15. Discrete integrable systems generated by Hermite-Padé approximants

    NASA Astrophysics Data System (ADS)

    Aptekarev, Alexander I.; Derevyagin, Maxim; Van Assche, Walter

    2016-05-01

    We consider Hermite-Padé approximants in the framework of discrete integrable systems defined on the lattice {{{Z}}2} . We show that the concept of multiple orthogonality is intimately related to the Lax representations for the entries of the nearest neighbor recurrence relations and it thus gives rise to a discrete integrable system. We show that the converse statement is also true. More precisely, given the discrete integrable system in question there exists a perfect system of two functions, i.e. a system for which the entire table of Hermite-Padé approximants exists. In addition, we give a few algorithms to find solutions of the discrete system.

  16. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    PubMed Central

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  17. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  18. The STS-98 crew practices emergency egress from the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency egress training at the Launch Pad, Commander Ken Cockrell gets help adjusting his helmet. The crew is practicing using the slidewire baskets that slide along 1200-foot wire to the landing zone below and nearby bunker. The crew has been taking part in Terminal Countdown Demonstration Test activities, which include the simulated countdown and emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  19. TROPHIC CONTROL OF THE ORNITHINE DECARBOXYLASE/POLYAMINE SYSTEM IN NEONATAL RAT CEREBELLUM: REGIONALLY-SELECTIVE EFFECTS OF NEONATAL LESIONS CAUSED BY 6-HYDROXYDOPAMINE

    EPA Science Inventory

    Norepinephrine has been hypothesized as a trophic factor influencing postnatal development of the cerebellum. n the current study, neonatal rats were given 6-hydroxydopanine (6-OHDA) to destroy noradrenergic projections and the effects on the ornithine decarboxylase (ODC)/polyami...

  20. Environmental effects and characterization of the Egyptian radioactive well logging calibration pad facility.

    PubMed

    Al Alfy, Ibrahim Mohammad

    2013-12-01

    A set of ten radioactive well-logging calibration pads were constructed in one of the premises of the Nuclear Materials Authority (NMA), Egypt, at 6th October city. These pads were built for calibrating geophysical well-logging instruments. This calibration facility was conducted through technical assistance and practical support of the International Atomic Energy Agency (IAEA) and (ARCN). There are five uranium pads with three different uranium concentrations and borehole diameters. The other five calibration pads include one from each of the following: blank, potassium, thorium, multi layers and mixed. More than 22 t of various selected Egyptian raw materials were gathered for pad construction from different locations in Egypt. Pad's site and the surrounding area were spectrometrically surveyed before excavation for the construction process of pad-basin floor. They yielded negligible radiation values which are very near to the detected general background. After pad's construction, spectrometric measurements were carried out again in the same locations when the exposed bore holes of the pads were closed. No radioactivity leakage was noticed from the pads. Meanwhile, dose rate values were found to range from 0.12 to 1.26 mS/y. They were measured during the opening of bore holes of the pads. These values depend mainly upon the type and concentration of the pads as well as their borehole diameters. The results of radiospectrometric survey illustrate that the specification of top layers of the pads were constructed according to international standards. PMID:24140880