Science.gov

Sample records for acid dehydrogenase complex

  1. Directed Regulation of Multienzyme Complexes of 2-Oxo Acid Dehydrogenases Using Phosphonate and Phosphinate Analogs of 2-Oxo Acids.

    PubMed

    Artiukhov, A V; Graf, A V; Bunik, V I

    2016-12-01

    2-Oxo acid dehydrogenase complexes are important metabolic checkpoints functioning at the intercept of sugar and amino acid degradation. This review presents a short summary of architectural, catalytic, and regulatory principles of the complexes structure and function, based on recent advances in studies of well-characterized family members. Special attention is given to use of synthetic phosphonate and phosphinate analogs of 2-oxo acids as selective and efficient inhibitors of the cognate complexes in biological systems of bacterial, plant, and animal origin. We summarize our own results concerning the application of synthetic analogs of 2-oxo acids in situ and in vivo to reveal functional interactions between 2-oxo acid dehydrogenase complexes and other components of metabolic networks specific to different cells and tissues. Based on our study of glutamate excitotoxicity in cultured neurons, we show how a modulation of metabolism by specific inhibition of its key reaction may be employed to correct pathologies. This approach is further developed in our study on the action of the phosphonate analog of 2-oxoglutarate in animals. The study revealed that upregulation of 2-oxoglutarate dehydrogenase complex is involved in animal stress response and may provide increased resistance to damaging effects, underlying so-called preconditioning. The presented analysis of published data suggests synthetic inhibitors of metabolic checkpoints as promising tools to solve modern challenges of systems biology, metabolic engineering, and medicine.

  2. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid.

    PubMed

    Sintchak, M D; Fleming, M A; Futer, O; Raybuck, S A; Chambers, S P; Caron, P R; Murcko, M A; Wilson, K P

    1996-06-14

    The structure of inosine-5'-monophosphate dehydrogenase (IMPDH) in complex with IMP and mycophenolic acid (MPA) has been determined by X-ray diffraction. IMPDH plays a central role in B and T lymphocyte replication. MPA is a potent IMPDH inhibitor and the active metabolite of an immunosuppressive drug recently approved for the treatment of allograft rejection. IMPDH comprises two domains: a core domain, which is an alpha/beta barrel and contains the active site, and a flanking domain. The complex, in combination with mutagenesis and kinetic data, provides a structural basis for understanding the mechanism of IMPDH activity and indicates that MPA inhibits IMPDH by acting as a replacement for the nicotinamide portion of the nicotinamide adenine dinucleotide cofactor and a catalytic water molecule.

  3. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  4. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  5. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  6. Kinetic and spectral investigation of allosteric interaction of coenzymes with 2-oxo acid dehydrogenase complexes

    NASA Astrophysics Data System (ADS)

    Strumiło, S.; Czygier, M.; Kondracikowska, J.; Dobrzyń, P.; Czerniecki, J.

    2002-09-01

    The possible role of thiamine pyrophosphate (TPP) in the regulation of both multienzyme pyruvate dehydrogenase complex (PDC) and 2-oxoglutarate dehydrogenase complex (OGDC) has been investigated by kinetic and spectral methods. The purified PDC and OGDC from animal heart muscle were near saturated with endogenous TPP. The PDC containing the bound coenzyme showed hysteretic behaviour manifested in a lag phase of the catalysed reaction after the contact of PDC with substrates. Exogenous TPP added to the full reaction medium led to a disappearance of the lag phase and to strong reduction of the Michaelis constant ( Km) value for pyruvate, and more moderate decrease of Km for both coenzyme A and NAD. In the case of OGDC exogenous TPP also decreased S 0.5 ( Km) for substrate 2-oxoglutarate. In addition, exogenous TPP changed both the UV and circular dichroism spectra of PDC and last one of OGDC, and lowered the fluorescence emission of the multienzyme complexes containing bound molecules of endogenous coenzyme in their active sites. Thiamine pyrophosphate seems to play, besides its coenzyme function, the role of positive allosteric effector which causes conformational changes of the multienzyme complexes and increases their affinity to substrates.

  7. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    PubMed

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.

  8. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Pseudomonas aeruginosa Catalyze Pyocyanin and Phenazine-1-carboxylic Acid Reduction via the Subunit Dihydrolipoamide Dehydrogenase.

    PubMed

    Glasser, Nathaniel R; Wang, Benjamin X; Hoy, Julie A; Newman, Dianne K

    2017-03-31

    Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro, suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD(+) (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD(+) in LpdG and other enzymes, achieving the same end by a different mechanism.

  9. Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine.

    PubMed

    Jeitner, Thomas M; Xu, Hui; Gibson, Gary E

    2005-01-01

    Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.

  10. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  11. In situ nucleic acid hybridization of pyruvate dehydrogenase complex-E2 in primary biliary cirrhosis: pyruvate dehydrogenase complex-E2 messenger RNA is expressed in hepatocytes but not in biliary epithelium.

    PubMed

    Harada, K; Van de Water, J; Leung, P S; Coppel, R L; Nakanuma, Y; Gershwin, M E

    1997-01-01

    Pyruvate dehydrogenase-E2, or a cross-reactive molecule, has been shown by a variety of immunohistochemical methods to be present in increased amounts in biliary epithelial cells (BEC) in primary biliary cirrhosis (PBC). In this study, to further understand the nature of the immunoreactive molecule in BEC, we examined the expression of pyruvate dehydrogenase complex-E2 (PDC-E2) messenger RNA (mRNA) and PDC-E2 protein in sections of livers from patients and controls to help identify the molecule found in BEC. We performed in situ hybridization using an antisense probe against the major epitope of PDC-E2. The data were very striking and suggested that there was no increased production of PDC-E2 in BEC. For example, in livers from patients with PBC, PDC-E2 mRNA was found in periportal hepatocytes in 16 of 17 cases (94%). In contrast, interlobular bile ducts and septal bile ducts had detectable levels of PDC-E2 mRNA in only 1 of 17 (6%) and 3 of 8 (38%) cases, respectively. Interestingly, proliferating bile ductules contained detectable levels of mRNA in 12 of 15 cases (80%). In control liver, periportal hepatocytes were positive in 15 of 17 cases (88%). Interlobular bile ducts, septal bile ducts, and proliferating bile ductules expressed mRNA signals in 4 of 17 (24%), 2 of 10 (20%), and 14 of 16 (88%), respectively. When formalin-fixed, paraffin-embedded sections were examined by immunohistochemical staining with anti-PDC-E2 monoclonal antibody (mAb) C355.1, the interlobular bile ducts showed typical aberrant apical staining in all 10 PBC cases, but 0 of 9 liver controls. Periportal hepatocytes, proliferating bile ductules and infiltrating mononuclear cells stained with C355.1 but in a characteristic mitochondrial staining pattern. The presence of a PDC-E2-like molecule recognized by C355.1 is not reflected by the expression levels of PDC-E2 mRNA in the BEC of patients with PBC.

  12. Limited proteolysis and sequence analysis of the 2-oxo acid dehydrogenase complexes from Escherichia coli. Cleavage sites and domains in the dihydrolipoamide acyltransferase components.

    PubMed Central

    Packman, L C; Perham, R N

    1987-01-01

    The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented. Images Fig. 1. Fig. 2. PMID:3297046

  13. The Pyruvate Dehydrogenase Complexes: Structure-based Function and Regulation*

    PubMed Central

    Patel, Mulchand S.; Nemeria, Natalia S.; Furey, William; Jordan, Frank

    2014-01-01

    The pyruvate dehydrogenase complexes (PDCs) from all known living organisms comprise three principal catalytic components for their mission: E1 and E2 generate acetyl-coenzyme A, whereas the FAD/NAD+-dependent E3 performs redox recycling. Here we compare bacterial (Escherichia coli) and human PDCs, as they represent the two major classes of the superfamily of 2-oxo acid dehydrogenase complexes with different assembly of, and interactions among components. The human PDC is subject to inactivation at E1 by serine phosphorylation by four kinases, an inactivation reversed by the action of two phosphatases. Progress in our understanding of these complexes important in metabolism is reviewed. PMID:24798336

  14. Structure of D-lactate dehydrogenase from Aquifex aeolicus complexed with NAD(+) and lactic acid (or pyruvate).

    PubMed

    Antonyuk, Svetlana V; Strange, Richard W; Ellis, Mark J; Bessho, Yoshitaka; Kuramitsu, Seiki; Inoue, Yumiko; Yokoyama, Shigeyuki; Hasnain, S Samar

    2009-12-01

    The crystal structure of D-lactate dehydrogenase from Aquifex aeolicus (aq_727) was determined to 2.12 A resolution in space group P2(1)2(1)2(1), with unit-cell parameters a = 90.94, b = 94.43, c = 188.85 A. The structure was solved by molecular replacement using the coenzyme-binding domain of Lactobacillus helveticus D-lactate dehydrogenase and contained two homodimers in the asymmetric unit. Each subunit of the homodimer was found to be in a ;closed' conformation with the NADH cofactor bound to the coenzyme-binding domain and with a lactate (or pyruvate) molecule bound at the interdomain active-site cleft.

  15. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity.

    PubMed

    Vatrinet, Renaud; Leone, Giulia; De Luise, Monica; Girolimetti, Giulia; Vidone, Michele; Gasparre, Giuseppe; Porcelli, Anna Maria

    2017-01-01

    Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the α-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell's change in bioenergetic requirements. By contributing to the control of α-ketoglutarate levels, dynamics, and oxidation state, the α-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer.

  16. Leucine-induced activation of translational initiation is partly regulated by the branched-chain {alpha}-keto acid dehydrogenase complex in C2C12 cells

    SciTech Connect

    Nakai, Naoya . E-mail: nakai@hss.osaka-u.ac.jp; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-05-19

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain {alpha}-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 ({alpha}2{beta}2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1{alpha} subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex.

  17. A mimic of the pyruvate dehydrogenase complex.

    PubMed

    Zhao, Huanyu; Breslow, Ronald

    2010-10-15

    Pyruvic acid undergo decarboxylation catalyzed by a hydrophobic thiazolium salt and reacts with a hydrophobic analog of lipoic acid to form a hydrophobic acylthioester that reacts with aniline to form acetanilide in water, but only in the presence of a hydrophobically modified polyaziridine that acts to gather the reactants just as the enzyme complex does.

  18. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    SciTech Connect

    Park, Yun-Hee; Patel, Mulchand S.

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  19. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  20. Rv0132c of Mycobacterium tuberculosis Encodes a Coenzyme F420-Dependent Hydroxymycolic Acid Dehydrogenase

    PubMed Central

    Purwantini, Endang; Mukhopadhyay, Biswarup

    2013-01-01

    The ability of Mycobacterium tuberculosis to manipulate and evade human immune system is in part due to its extraordinarily complex cell wall. One of the key components of this cell wall is a family of lipids called mycolic acids. Oxygenation of mycolic acids generating methoxy- and ketomycolic acids enhances the pathogenic attributes of M. tuberculosis. Thus, the respective enzymes are of interest in the research on mycobacteria. The generation of methoxy- and ketomycolic acids proceeds through intermediary formation of hydroxymycolic acids. While the methyl transferase that generates methoxymycolic acids from hydroxymycolic acids is known, hydroxymycolic acids dehydrogenase that oxidizes hydroxymycolic acids to ketomycolic acids has been elusive. We found that hydroxymycolic acid dehydrogenase is encoded by the rv0132c gene and the enzyme utilizes F420, a deazaflavin coenzyme, as electron carrier, and accordingly we called it F420-dependent hydroxymycolic acid dehydrogenase. This is the first report on the involvement of F420 in the synthesis of a mycobacterial cell envelope. Also, F420-dependent hydroxymycolic acid dehydrogenase was inhibited by PA-824, and therefore, it is a previously unknown target for this new tuberculosis drug. PMID:24349169

  1. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    ERIC Educational Resources Information Center

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  2. Amino acid substitutions at glutamate-354 in dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH.

    PubMed

    Sun, Zhentao; Do, Phi Minh; Rhee, Mun Su; Govindasamy, Lakshmanan; Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2012-05-01

    Pyruvate dehydrogenase (PDH) of Escherichia coli is inhibited by NADH. This inhibition is partially reversed by mutational alteration of the dihydrolipoamide dehydrogenase (LPD) component of the PDH complex (E354K or H322Y). Such a mutation in lpd led to a PDH complex that was functional in an anaerobic culture as seen by restoration of anaerobic growth of a pflB, ldhA double mutant of E. coli utilizing a PDH- and alcohol dehydrogenase-dependent homoethanol fermentation pathway. The glutamate at position 354 in LPD was systematically changed to all of the other natural amino acids to evaluate the physiological consequences. These amino acid replacements did not affect the PDH-dependent aerobic growth. With the exception of E354M, all changes also restored PDH-dependent anaerobic growth of and fermentation by an ldhA, pflB double mutant. The PDH complex with an LPD alteration E354G, E354P or E354W had an approximately 20-fold increase in the apparent K(i) for NADH compared with the native complex. The apparent K(m) for pyruvate or NAD(+) for the mutated forms of PDH was not significantly different from that of the native enzyme. A structural model of LPD suggests that the amino acid at position 354 could influence movement of NADH from its binding site to the surface. These results indicate that glutamate at position 354 plays a structural role in establishing the NADH sensitivity of LPD and the PDH complex by restricting movement of the product/substrate NADH, although this amino acid is not directly associated with NAD(H) binding.

  3. A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle.

    PubMed

    Yu, Hailan; Du, Xiaoqiu; Zhang, Fengxia; Zhang, Fang; Hu, Yong; Liu, Shichang; Jiang, Xiangning; Wang, Guodong; Liu, Dong

    2012-08-01

    The mitochondrial pyruvate dehydrogenase complex (mtPDC) plays a pivotal role in controlling the entry of carbon into the tricarboxylic acid (TCA) cycle for energy production. This multi-enzyme complex consists of three components: E1, E2, and E3. In Arabidopsis, there are three genes, mtE2-1, mtE2-2, and mtE2-3, which encode the putative mtPDC E2 subunit but how each of them contributes to the total mtPDC activity remains unknown. In this work, we characterized an Arabidopsis mutant, m132, that has abnormal small organs. Molecular cloning indicated that the phenotype of m132 is caused by a mutation in the mtE2-1 gene, which results in a truncation of 109 amino acids at the C-terminus of the encoded protein. In m132, mtPDC activity is only 30% of the WT and ATP production is severely impaired. The mutation in the mtE2-1 gene also leads to the over-accumulation of most intermediate products of the TCA cycle and of all the amino acids for protein synthesis. Our results suggest that, among the three mtE2 genes, mtE2-1 is a major contributor to the function of Arabidopsis mtPDC and that the functional disruption of mtE2-1 profoundly affects plant growth and development, as well as its metabolism.

  4. Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...

  5. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    SciTech Connect

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  6. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    PubMed

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  7. The ω-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking dissociation of β-catenin complex, inhibiting COX-2 through repressing NF-κB, and inducing 15-prostaglandin dehydrogenase

    PubMed Central

    Han, Young-Min; Jeong, Migyeung; Park, Jong-Min; Kim, Mi-Young; Go, Eun-Jin; Cha, Ji Young; Kim, Kyung Jo; Hahm, Ki Baik

    2016-01-01

    Numerous studies have demonstrated that diets containing an increased ratio of ω-6 : ω-3 polyunsaturated fatty acids (PUFAs) are a risk factor for colon cancer and might affect tumorigenesis. Therefore, dietary ω-3 PUFA administration may be a preventive strategy against colon cancer. Until now, the exact molecular mechanisms and required dietary doses of ω-3 PUFAs for cancer prevention were unknown. In this study, we explored the anti-tumorigenic mechanisms of ω-3 PUFAs against a colitis-associated cancer (CAC) model. Through in vitro cell models involving docosahexaenoic acid (DHA) administration, down-regulation of survivin and Bcl-2, and up-regulation of Bax, accompanied by blockage of β-catenin complex dissociation, the main mechanisms responsible for DHA-induced apoptosis in HCT116 cells were determined. Results included significant reduction in azoxymethane-initiated, dextran sodium sulfate-promoted CACs, as well as significant preservation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and significant inhibition of Cyclooxyganase-2 (COX-2) and Prostaglandin E2(P < 0.01). Additional mechanisms and significant induction of apoptosis in both tumor and non-tumor tissues were also noted in fat-1 transgenic (TG) mice. The lipid profiles of colon tissues measured in all specimens revealed that intake greater than 3 g ω-3 PUFA/60 kg of body weight showed tissue levels similar to those seen in fat-1 TG mice, preventing cancer. Our study concluded that COX-2 inhibition, 15-PGDH preservation, apoptosis induction, and blockage of β-catenin complex dissociation contributed to the anti-tumorigenesis effect of ω-3 PUFAs, and an intake higher than 3g ω-3 PUFAs/60 kg of body weight can assist in CAC prevention. PMID:27566583

  8. The ω-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking dissociation of β-catenin complex, inhibiting COX-2 through repressing NF-κB, and inducing 15-prostaglandin dehydrogenase.

    PubMed

    Han, Young-Min; Jeong, Migyeung; Park, Jong-Min; Kim, Mi-Young; Go, Eun-Jin; Cha, Ji Young; Kim, Kyung Jo; Hahm, Ki Baik

    2016-09-27

    Numerous studies have demonstrated that diets containing an increased ratio of ω-6 : ω-3 polyunsaturated fatty acids (PUFAs) are a risk factor for colon cancer and might affect tumorigenesis. Therefore, dietary ω-3 PUFA administration may be a preventive strategy against colon cancer. Until now, the exact molecular mechanisms and required dietary doses of ω-3 PUFAs for cancer prevention were unknown. In this study, we explored the anti-tumorigenic mechanisms of ω-3 PUFAs against a colitis-associated cancer (CAC) model. Through in vitro cell models involving docosahexaenoic acid (DHA) administration, down-regulation of survivin and Bcl-2, and up-regulation of Bax, accompanied by blockage of β-catenin complex dissociation, the main mechanisms responsible for DHA-induced apoptosis in HCT116 cells were determined. Results included significant reduction in azoxymethane-initiated, dextran sodium sulfate-promoted CACs, as well as significant preservation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and significant inhibition of Cyclooxyganase-2 (COX-2) and Prostaglandin E2(P < 0.01). Additional mechanisms and significant induction of apoptosis in both tumor and non-tumor tissues were also noted in fat-1 transgenic (TG) mice. The lipid profiles of colon tissues measured in all specimens revealed that intake greater than 3 g ω-3 PUFA/60 kg of body weight showed tissue levels similar to those seen in fat-1 TG mice, preventing cancer. Our study concluded that COX-2 inhibition, 15-PGDH preservation, apoptosis induction, and blockage of β-catenin complex dissociation contributed to the anti-tumorigenesis effect of ω-3 PUFAs, and an intake higher than 3g ω-3 PUFAs/60 kg of body weight can assist in CAC prevention.

  9. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    PubMed

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  10. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex

    PubMed Central

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571

  11. Altered kinetic properties of the branched-chain alpha-keto acid dehydrogenase complex due to mutation of the beta-subunit of the branched-chain alpha-keto acid decarboxylase (E1) component in lymphoblastoid cells derived from patients with maple syrup urine disease.

    PubMed Central

    Indo, Y; Kitano, A; Endo, F; Akaboshi, I; Matsuda, I

    1987-01-01

    Branched-chain alpha-keto acid dehydrogenase (BCKDH) complexes of lymphoblastoid cell lines derived from patients with classical maple syrup urine disease (MSUD) phenotypes were studied in terms of their catalytic functions and analyzed by immunoblotting, using affinity purified anti-bovine BCKDH antibody. Kinetic studies on three cell lines derived from patients with the classical phenotype showed sigmoidal or near sigmoidal kinetics for overall BCKDH activity and a deficiency of the E1 component activity. An immunoblot study revealed a markedly decreased amount of the E1 beta subunit accompanied by weak staining of the E1 alpha subunit. The E2 and E3 component exhibited a cross-reactive peptide. Thus, in at least some patients with MSUD, mutations of the E1 beta subunit might provide an explanation for the altered kinetic properties of the BCKDH complex. Images PMID:3597778

  12. Suicidal dephosphorylation of thiamine pyrophosphate coupled with pyruvate dehydrogenase complex.

    PubMed

    Strumilo, Slawomir; Dobrzyn, Pawel; Czerniecki, Jan; Tylicki, Adam

    2004-12-01

    Earlier it was noted that purified pyruvate dehydrogenase complex (PDC) produced by "Sigma" usually contains almost saturating amounts of thiamine pyrophosphate (ThPP). In this communication we present the observation that the endogenous ThPP coupled to PDC is dephosphorylated while staying at -10 degrees C, because in the enzyme preparation thiamine monophosphate and un-phosphorylated thiamine appear (HPLC determination). Under the same conditions exogenous ThPP is not dephosphorylated despite contact with the PDC preparation. This may suggest that interactions of some active groups of the enzyme with molecules of endogenous ThPP leads to break-up of the phosphoesters bonds, and destruction of the coenzyme. Decrease of PDC activity during storage is not in proportion with the degree of ThPP dephosphorylation. However the observed instability of PDC activity may be a consequence of the spontaneous process of its coenzyme autodestruction.

  13. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes.

    PubMed

    Venugopal, Aditya; Bryk, Ruslana; Shi, Shuangping; Rhee, Kyu; Rath, Poonam; Schnappinger, Dirk; Ehrt, Sabine; Nathan, Carl

    2011-01-20

    Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb's pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host-reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild-type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched-chain keto acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC, and lpdC. Without Lpd, Mtb cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb.

  14. Pyruvate Dehydrogenase Complex Activity in Normal and Deficient Fibroblasts

    PubMed Central

    Sheu, Kwan-Fu Rex; Hu, Chii-Whei C.; Utter, Merton F.

    1981-01-01

    Pyruvate dehydrogenase complex (PDC) activity in human skin fibroblasts appears to be regulated by a phosphorylation-dephosphorylation mechanism, as is the case with other animal cells. The enzyme can be activated by pretreating the cells with dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, before they are disrupted for measurement of PDC activity. With such treatment, the activity reaches 5-6 nmol/min per mg of protein at 37°C with fibroblasts from infants. Such values represent an activation of about 5-20-fold over those observed with untreated cells. That this assay, based on [1-14C]pyruvate decarboxylation, represents a valid measurement of the overall PDC reaction is shown by the dependence of 14CO2 production on the presence of thiamin-PP, coenzyme A (CoA), Mg++, and NAD+. Also, it has been shown that acetyl-CoA and 14CO2 are formed in a 1:1 ratio. A similar degree of activation of PDC can also be achieved by adding purified pyruvate dehydrogenase phosphatase and high concentrations of Mg++ and Ca++, or in some cases by adding the metal ions alone to the cell homogenate after disruption. These results strongly suggest that activation is due to dephosphorylation. Addition of NaF, which inhibits dephosphorylation, leads to almost complete loss of PDC activity. Assays of completely activated PDC were performed on two cell lines originating from patients reported to be deficient in this enzyme (Blass, J. P., J. Avigan, and B. W. Ublendorf. 1970. J. Clin. Invest. 49: 423-432; Blass, J. P., J. D. Schuman, D. S. Young, and E. Ham. 1972. J. Clin. Invest. 51: 1545-1551). Even after activation with DCA, fibroblasts from the patients showed values of only 0.1 and 0.3 nmol/min per mg of protein. A familial study of one of these patients showed that both parents exhibited activity in fully activated cells about half that of normal values, whereas cells from a sibling appeared normal. These results demonstrate the inheritance nature of PDC deficiency

  15. Metabolic control analysis of eucaryotic pyruvate dehydrogenase multienzyme complex.

    PubMed

    Modak, Jayant; Deckwer, Wolf-Dieter; Zeng, An-Ping

    2002-01-01

    Metabolic control analysis (MCA) of pyruvate dehydrogenase multienzyme (PDH) complex of eucaryotic cells has been carried out using both in vitro and in vivo mechanistic models. Flux control coefficients (FCC) for the sensitivity of pyruvate decarboxylation rate to activities of various PDH complex reactions are determined. FCCs are shown to be strong functions of both pyruvate levels and various components of PDH complex. With the in vitro model, FCCs are shown to be sensitive to only the E1 component of the PDH complex at low pyruvate concentrations. At high pyruvate concentrations, the control is shared by all of the components, with E1 having a negative influence while the other three components, E2, X, and K, exert a positive control over the pyruvate decarboxylation rate. An unusual behavior of deactivation of the E1 component leading to higher net PDH activity is shown to be linked to the combined effect of protein X acylation and E1 deactivation. The steady-state analysis of the in vivo model reveals multiple steady state behavior of pyruvate metabolism with two stable and one unstable steady-states branches. FCCs also display multiplicity, showing completely different control distribution exerted by pyruvate and PDH components on three branches. At low pyruvate concentrations, pyruvate supply dominates the decarboxylation rate and PDH components do not exert any significant control. Reverse control distribution is observed at high pyruvate concentration. The effect of dilution due to cell growth on pyruvate metabolism is investigated in detail. While pyruvate dilution effects are shown to be negligible under all conditions, significant PDH complex dilution effects are observed under certain conditions. Comparison of in vitro and in vivo models shows that PDH components exert different degrees of control outside and inside the cells. At high pyruvate levels, PDH components are shown to exert a higher degree of control when reactions are taking place inside

  16. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity

    PubMed Central

    Mathias, Rommel A.; Greco, Todd M.; Oberstein, Adam; Budayeva, Hanna G.; Chakrabarti, Rumela; Rowland, Elizabeth A.; Kang, Yibin; Shenk, Thomas; Cristea, Ileana M.

    2014-01-01

    Summary Sirtuins (SIRTs) are critical enzymes that govern genome regulation, metabolism, and aging. Despite conserved deacetylase domains, mitochondrial SIRT4 and SIRT5 have little to no deacetylase activity, and a robust catalytic activity for SIRT4 has been elusive. Here, we establish SIRT4 as a cellular lipoamidase that regulates the pyruvate dehydrogenase complex (PDH). Importantly, SIRT4 catalytic efficiency for lipoyl- and biotinyl-lysine modifications is superior to its deacetylation activity. PDH, which converts pyruvate to acetyl-CoA, has been known to be primarily regulated by phosphorylation of its E1 component. We determine that SIRT4 enzymatically hydrolyzes the lipoamide cofactors from the E2 component dihydrolipoyllysine acetyltransferase (DLAT), diminishing PDH activity. We demonstrate SIRT4-mediated regulation of DLAT lipoyl levels and PDH activity in cells and in vivo, in mouse liver. Furthermore, metabolic flux switching via glutamine stimulation induces SIRT4 lipoamidase activity to inhibit PDH, highlighting SIRT4 as a guardian of cellular metabolism. PMID:25525879

  17. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  18. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense

    PubMed Central

    Son, Hyeoncheol Francis; Park, Sunghoon; Yoo, Tae Hyeon; Jung, Gyoo Yeol; Kim, Kyung-Jin

    2017-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical to be converted to acrylic acid and acrylamide. Aldehyde dehydrogenase (ALDH), an enzyme that catalyzes the reaction of 3-hydroxypropionaldehyde (3-HPA) to 3-HP, determines 3-HP production rate during the conversion of glycerol to 3-HP. To elucidate molecular mechanism of 3-HP production, we determined the first crystal structure of a 3-HP producing ALDH, α-ketoglutarate-semialdehyde dehydrogenase from Azospirillum basilensis (AbKGSADH), in its apo-form and in complex with NAD+. Although showing an overall structure similar to other ALDHs, the AbKGSADH enzyme had an optimal substrate binding site for accepting 3-HPA as a substrate. Molecular docking simulation of 3-HPA into the AbKGSADH structure revealed that the residues Asn159, Gln160 and Arg163 stabilize the aldehyde- and the hydroxyl-groups of 3-HPA through hydrogen bonds, and several hydrophobic residues, such as Phe156, Val286, Ile288, and Phe450, provide the optimal size and shape for 3-HPA binding. We also compared AbKGSADH with other reported 3-HP producing ALDHs for the crucial amino acid residues for enzyme catalysis and substrate binding, which provides structural implications on how these enzymes utilize 3-HPA as a substrate. PMID:28393833

  19. A 'random steady-state' model for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase enzyme complexes

    NASA Astrophysics Data System (ADS)

    Najdi, T. S.; Hatfield, G. W.; Mjolsness, E. D.

    2010-03-01

    The multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, involved in the central metabolism of Escherichia coli consist of multiple copies of three different enzymes, E1, E2 and E3, that cooperate to channel substrate intermediates between their active sites. The E2 components form the core of the complex, while a mixture of E1 and E3 components binds to the core. We present a random steady-state model to describe catalysis by such multienzyme complexes. At a fast time scale, the model describes the enzyme catalytic mechanisms of substrate channeling at a steady state, by polynomially approximating the analytic solution of a biochemical master equation. At a slower time scale, the structural organization of the different enzymes in the complex and their random binding/unbinding to the core is modeled using methods from equilibrium statistical mechanics. Biologically, the model describes the optimization of catalytic activity by substrate sharing over the entire enzyme complex. The resulting enzymatic models illustrate the random steady state (RSS) for modeling multienzyme complexes in metabolic pathways.

  20. Single amino acid polymorphism in aldehyde dehydrogenase gene superfamily.

    PubMed

    Priyadharshini Christy, J; George Priya Doss, C

    2015-01-01

    The aldehyde dehydrogenase gene superfamily comprises of 19 genes and 3 pseudogenes. These superfamily genes play a vital role in the formation of molecules that are involved in life processes, and detoxification of endogenous and exogenous aldehydes. ALDH superfamily genes associated mutations are implicated in various diseases, such as pyridoxine-dependent seizures, gamma-hydroxybutyric aciduria, type II Hyperprolinemia, Sjogren-Larsson syndrome including cancer and Alzheimer's disease. Accumulation of large DNA variations data especially Single Amino acid Polymorphisms (SAPs) in public databases related to ALDH superfamily genes insisted us to conduct a survey on the disease associated mutations and predict their function impact on protein structure and function. Overall this study provides an update and highlights the importance of pathogenic mutations in associated diseases. Using KD4v and Project HOPE a computational based platform, we summarized all the deleterious properties of SAPs in ALDH superfamily genes by the providing valuable insight into structural alteration rendered due to mutation. We hope this review might provide a way to define the deleteriousness of a SAP and helps to understand the molecular basis of the associated disease and also permits precise diagnosis and treatment in the near future.

  1. Human liver class I alcohol dehydrogenase gammagamma isozyme: the sole cytosolic 3beta-hydroxysteroid dehydrogenase of iso bile acids.

    PubMed

    Marschall, H U; Oppermann, U C; Svensson, S; Nordling, E; Persson, B; Höög, J O; Jörnvall, H

    2000-04-01

    3beta-Hydroxy (iso) bile acids are formed during enterohepatic circulation from 3alpha-hydroxy bile acids and constitute normal compounds in plasma but are virtually absent in bile. Isoursodeoxycholic acid (isoUDCA) is a major metabolite of UDCA. In a recent study it was found that after administration of isoUDCA, UDCA became the major acid in bile. Thus, epimerization of the 3beta-hydroxy to a 3alpha-hydroxy group, catalyzed by 3beta-hydroxysteroid dehydrogenases (HSD) and 3-oxo-reductases must occur. The present study aims to characterize the human liver bile acid 3beta-HSD. Human liver cytosol and recombinant alcohol dehydrogenase (ADH) betabeta and gammagamma isozymes were subjected to native polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing. Activity staining with oxidized nicotinamide adenine dinucleotide (NAD(+)) or oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) as cofactors and various iso bile acids as substrates was used to screen for 3beta-HSD activity. Reaction products were identified and quantified by gas chromotography/mass spectrometry (GC/MS). Computer-assisted substrate docking of isoUDCA to the active site of a 3-dimensional model of human class I gammagamma ADH was performed. ADH gammagamma isozyme was identified as the iso bile acid 3beta-HSD present in human liver cytosol, with NAD(+) as a cofactor. Values for k(cat)/K(m) were in the rank order isodeoxycholic acid (isoDCA), isochenodeoxycholic acid (isoCDCA), isoUDCA, and isolithocholic acid (isoLCA) (0.10, 0.09, 0.08, and 0. 05 min(-1) x micromol/L(-1), respectively). IsoUDCA fits as substrate to the 3-dimensional model of the active-site of ADH gammagamma. ADH gammagamma isozyme was defined as the only bile acid 3beta-HSD in human liver cytosol. Hydroxysteroid dehydrogenases are candidates for the binding and transport of 3alpha-hydroxy bile acids. We assume that ADH gammagamma isozyme is involved in cytosolic bile acid binding and transport processes as well.

  2. A NEW LEVEL OF ARCHITECTURAL COMPLEXITY IN THE HUMAN PYRUVATE DEHYDROGENASE COMPLEX

    PubMed Central

    Smolle, Michaela; Prior, Alison Elizabeth; Brown, Audrey Elaine; Cooper, Alan; Byron, Olwyn; Lindsay, John Gordon

    2006-01-01

    SUMMARY Mammalian pyruvate dehydrogenase multi-enzyme complex (PDC) is a key metabolic assembly comprising a 60- meric pentagonal dodecahedral E2 core attached to which are 30 E1 heterotetramers and 6 E3 homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3 binding protein (E3BP) located on each of the 12 E2 icosahedral faces. Here, we present evidence for a novel subunit organisation in which dihydrolipoamide dehydrogenase (E3) and E3BP form subcomplexes with a 1:2 stoichiometry implying the existence of a network of E3 ‘cross-bridges’ linking pairs of E3BPs across the surface of the E2 core assembly. We have also determined a low resolution structure for a truncated E3BP/E3 subcomplex using small angle xray scattering showing one of the E3BP lipoyl domains docked into the E3 active site. This new level of architectural complexity in mammalian PDC contrasts with the recently published crystal structure of human E3 complexed with its cognate subunit binding domain and provides important new insights into subunit organisation, its catalytic mechanism and regulation by the intrinsic PDC kinase. PMID:16679318

  3. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  4. Levels of Alpha-Glycerophosphate Dehydrogenase, Triosephosphate Isomerase and Lactic Acid Dehydrogenase in Muscles of the Cockroach, ’Periplaneta americana’ L.,

    DTIC Science & Technology

    The level of alpha-glycerophosphate dehydrogenase is slightly higher in leg muscle than in thoracic muscle of the American cockroach, Periplaneta ... americana . Triosephosphate isomerase in leg muscle is about twice that of thoracic muscle. There is little lactic acid dehydrogenase in both muscles. (Author)

  5. On the Unique Structural Organization of the Saccharomyces cerevisiae Pyruvate Dehydrogenase Complex*

    PubMed Central

    Stoops, James K.; Cheng, R. Holland; Yazdi, Mohammed A.; Maeng, Cheol-Young; Schroeter, John P.; Klueppelberg, Uwe; Kolodziej, Steven J.; Baker, Timothy S.; Reed, Lester J.

    2014-01-01

    Dihydrolipoamide acyltransferase (E2), a catalytic and structural component of the three functional classes of multienzyme complexes that catalyze the oxidative decarboxylation of α-keto acids, forms the central core to which the other components attach. We have determined the structures of the truncated 60-mer core dihydrolipoamide acetyltransferase (tE2) of the Saccharomyces cerevisiae pyruvate dehydrogenase complex and complexes of the tE2 core associated with a truncated binding protein (tBP), intact binding protein (BP), and the BP associated with its dihydrolipoamide dehydrogenase (BP·E3). The tE2 core is a pentagonal dodecahedron consisting of 20 cone-shaped trimers interconnected by 30 bridges. Previous studies have given rise to the generally accepted belief that the other components are bound on the outside of the E2 scaffold. However, this investigation shows that the 12 large openings in the tE2 core permit the entrance of tBP, BP, and BP·E3 into a large central cavity where the BP component apparently binds near the tip of the tE2 trimer. The bone-shaped E3 molecule is anchored inside the central cavity through its interaction with BP. One end of E3 has its catalytic site within the surface of the scaffold for interaction with other external catalytic domains. Though tE2 has 60 potential binding sites, it binds only about 30 copies of tBP, 15 of BP, and 12 of BP·E3. Thus, E2 is unusual in that the stoichiometry and arrangement of the tBP, BP, and E3·BP components are determined by the geometric constraints of the underlying scaffold. PMID:9038189

  6. Structural and Thermodynamic Basis for Weak Interactions between Dihydrolipoamide Dehydrogenase and Subunit-binding Domain of the Branched-chain α-Ketoacid Dehydrogenase Complex*

    PubMed Central

    Brautigam, Chad A.; Wynn, R. Max; Chuang, Jacinta L.; Naik, Mandar T.; Young, Brittany B.; Huang, Tai-huang; Chuang, David T.

    2011-01-01

    The purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-Å resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other α-ketoacid dehydrogenase complexes. PMID:21543315

  7. Structural and Thermodynamic Basis for Weak Interactions between Dihydrolipoamide Dehydrogenase and Subunit-binding Domain of the Branched-chain [alpha]-Ketoacid Dehydrogenase Complex

    SciTech Connect

    Brautigam, Chad A.; Wynn, R. Max; Chuang, Jacinta L.; Naik, Mandar T.; Young, Brittany B.; Huang, Tai-huang; Chuang, David T.

    2012-02-27

    The purified mammalian branched-chain {alpha}-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain {alpha}-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-{angstrom} resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other {alpha}-ketoacid dehydrogenase complexes.

  8. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.

    PubMed

    Goncalves, Renata L S; Bunik, Victoria I; Brand, Martin D

    2016-02-01

    In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.

  9. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies.

    PubMed

    Jha, Mithilesh Kumar; Lee, In-Kyu; Suk, Kyoungho

    2016-09-01

    Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.

  10. Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat.

    PubMed

    Buerstatte, C R; Behar, K L; Novotny, E J; Lai, J C

    2000-12-29

    This study was initiated to test the hypothesis that the development of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity, like that of pyruvate dehydrogenase complex, is one of the late developers of tricarboxylic acid (TCA) cycle enzymes. The postnatal development of KGDHC in rat brain exhibits four distinct region-specific patterns. The age-dependent increases in olfactory bulb (OB) and hypothalamus (HYP) form one pattern: low in postnatal days (P) 2 and 4, KGDHC activity rose linearly to attain adult level at P30. The increases in mid-brain (MB) and striatum (ST) constitute a second pattern: being <40% of adult level at P2 and P4, KGDHC activity rose steeply between P10 and P17 and attained adult level by P30. The increases in cerebellum (CB), cerebral cortex (CC), and hippocampus (HIP) form a third pattern: being 25-30% of adult level at P2 and P4, KGDHC activity doubled between P10 and P17 and rose to adult level by P30. KGDHC activity development is unique in pons and medulla (PM): being >60% of the adult level at P2, it rose rapidly to adult level by P10. Thus, KGDHC activity develops earlier in phylogenetically older regions (PM) than in phylogenetically younger regions (CB, CC, HIP). Being lowest in activity among all TCA cycle enzymes, KGDHC activity in any region at any age will exert a limit on the maximum TCA cycle flux therein. The results may have functional and pathophysiological implications in control of brain glucose oxidative metabolism, energy metabolism, and neurotransmitter syntheses.

  11. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    PubMed Central

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  12. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    PubMed

    Narayan, Srinivas B; Master, Stephen R; Sireci, Anthony N; Bierl, Charlene; Stanley, Paige E; Li, Changhong; Stanley, Charles A; Bennett, Michael J

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  13. Localization of the gene (OGDH) coding for the E1k component of the [alpha]-ketoglutarate dehydrogenase complex to chromosome 7p13-p11. 2

    SciTech Connect

    Szabo, P.; Cai, X.; Ali, G.; Blass, J.P. )

    1994-03-15

    [alpha]-Ketoglutarate dehydrogenase (E1k), also designated oxoglutarate dehydrogenase (OGDH; EC 1.2.4.2), is a component of the enzyme complex that catalyzes the conversion of [alpha]-ketogluterate to succinyl coenzyme A, a critical step in the Krebs tricarboxylic acid cycle. Deficiencies in the activity of this enzyme complex have been observed in brain and peripheral cells of patients with Alzheimer's disease. This finding led the authors to localize the genes for the polypeptides that compose the [alpha]-ketoglutarate dehydrogenase complex (KDGHC). The E1k locus was mapped to chromosome 7p13-p11.2 using a pair of human-rodent somatic cell hybrid panels. A second related sequence, possibly a pseudogene, was identified and mapped to chromosome 10. 16 refs., 1 fig.

  14. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.

    PubMed

    Plapp, Bryce V; Charlier, Henry A; Ramaswamy, S

    2016-02-01

    Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67.

  15. The 2-Oxoacid Dehydrogenase Complexes in Mitochondria Can Produce Superoxide/Hydrogen Peroxide at Much Higher Rates Than Complex I*

    PubMed Central

    Quinlan, Casey L.; Goncalves, Renata L. S.; Hey-Mogensen, Martin; Yadava, Nagendra; Bunik, Victoria I.; Brand, Martin D.

    2014-01-01

    Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I. PMID:24515115

  16. Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm).

    PubMed

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R Max; Mobley, James A; Chuang, David T; Hutson, Susan M

    2010-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain alpha-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain alpha-keto acids from BCATm to E1. The protein complex also contains glutamate dehydrogenase (GDH1), 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1, pyruvate carboxylase, and BCKDC kinase. GDH1 binds to the pyridoxamine 5'-phosphate (PMP) form of BCATm (PMP-BCATm) but not to the pyridoxal 5'-phosphate-BCATm and other metabolon proteins. Leucine activates GDH1, and oxidative deamination of glutamate is increased further by addition of PMP-BCATm. Isoleucine and valine are not allosteric activators of GDH1, but in the presence of 5'-phosphate-BCATm, they convert BCATm to PMP-BCATm, stimulating GDH1 activity. Sensitivity to ADP activation of GDH1 was unaffected by PMP-BCATm; however, addition of a 3 or higher molar ratio of PMP-BCATm to GDH1 protected GDH1 from GTP inhibition by 50%. Kinetic results suggest that GDH1 facilitates regeneration of the form of BCATm that binds to E1 decarboxylase of the BCKDC, promotes metabolon formation, branched-chain amino acid oxidation, and cycling of nitrogen through glutamate.

  17. Energy substrate metabolism in pyruvate dehydrogenase complex deficiency.

    PubMed

    Stenlid, Maria Halldin; Ahlsson, Fredrik; Forslund, Anders; von Döbeln, Ulrika; Gustafsson, Jan

    2014-11-01

    Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism, resulting in lactic acidosis and neurological dysfunction. In order to provide energy for the brain, a ketogenic diet has been tried. Both the disorder and the ketogenic therapy may influence energy production. The aim of the study was to assess hepatic glucose production, lipolysis and resting energy expenditure (REE) in an infant, given a ketogenic diet due to neonatal onset of the disease. Lipolysis and glucose production were determined for two consecutive time periods by constant-rate infusions of [1,1,2,3,3-²H₅]-glycerol and [6,6-²H²]-glucose. The boy had been fasting for 2.5 h at the start of the sampling periods. REE was estimated by indirect calorimetry. Rates of glucose production and lipolysis were increased compared with those of term neonates. REE corresponded to 60% of normal values. Respiratory quotient (RQ) was increased, indicating a predominance of glucose oxidation. Blood lactate was within the normal range. Several mechanisms may underlie the increased rates of glucose production and lipolysis. A ketogenic diet will result in a low insulin secretion and reduced peripheral and hepatic insulin sensitivity, leading to increased production of glucose and decreased peripheral glucose uptake. Surprisingly, RQ was high, indicating active glucose oxidation, which may reflect a residual enzyme activity, sufficient during rest. Considering this, a strict ketogenic diet might not be the optimal choice for patients with PDH deficiency. We propose an individualised diet for this group of patients aiming at the highest glucose intake that each patient will tolerate without elevated lactate levels.

  18. Crystallization and Preliminary Structural Analysis of Dihydrolipoyl Transsuccinylase, the Core of the 2-Oxoglutarate Dehydrogenase Complex

    PubMed Central

    Derosier, David J.; Oliver, Robert M.; Reed, Lester J.

    1971-01-01

    Dihydrolipoyl transsuccinylase, one of the three enzymes comprising the Escherichia coli 2-oxoglutarate dehydrogenase (EC 1.2.4.2) complex, has been crystallized. Studies by x-ray diffraction and electron microscopy establish that the transsuccinylase has octahedral (432) symmetry, i.e., it consists of 24 subunits that are structurally identical. Images PMID:4942179

  19. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  20. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    SciTech Connect

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-02-27

    Potassium tellurite (K{sub 2}TeO{sub 3}) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  1. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  2. Papyriferic acid, an antifeedant triterpene from birch trees, inhibits succinate dehydrogenase from liver mitochondria.

    PubMed

    McLean, Stuart; Richards, Stephen M; Cover, Siow-Leng; Brandon, Sue; Davies, Noel W; Bryant, John P; Clausen, Thomas P

    2009-10-01

    Papyriferic acid (PA) is a triterpene that is secreted by glands on twigs of the juvenile ontogenetic phase of resin producing tree birches (e.g., Betula neoalaskana, B. pendula) and that deters browsing by mammals such as the snowshoe hare (Lepus americanus). We investigated the pharmacology of PA as a first step in understanding its antifeedant effect. After oral administration to rats, PA and several metabolites were found in feces but not urine, indicating that little was absorbed systemically. Metabolism involved various combinations of hydrolysis of its acetyl and malonyl ester groups, and hydroxylation of the terpene moiety. The presence of a malonyl group suggested a possible interaction with succinate dehydrogenase (SDH), a mitochondrial enzyme known to be competitively inhibited by malonic acid. The effect of PA on the oxidation of succinate by SDH was examined in mitochondrial preparations from livers of ox, rabbit, and rat. In all three species, PA was a potent inhibitor of SDH. Kinetic analysis indicated that, unlike malonate, PA acted by an uncompetitive mechanism, meaning that it binds to the enzyme-substrate complex. The hydrolysis product of PA, betulafolienetriol oxide, was inactive on SDH. Overall, the evidence suggests that PA acts as the intact molecule and interacts at a site other than the succinate binding site, possibly binding to the ubiquinone sites on complex II. Papyriferic acid was potent (K(iEIS) ranged from 25 to 45 microM in the three species) and selective, as malate dehydrogenase was unaffected. Although rigorous proof will require further experiments, we have a plausible mechanism for the antifeedant effect of PA: inhibition of SDH in gastrointestinal cells decreases mitochondrial energy production resulting in a noxious stimulus, 5-HT release, and sensations of nausea and discomfort. There is evidence that the co-evolution of birches and hares over a large and geographically-diverse area in Northern Europe and America has

  3. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids

    PubMed Central

    Whitehouse, Sue; Cooper, Ronald H.; Randle, Philip J.

    1974-01-01

    dichloroacetate inhibited incorporation of 14C from [U-14C]glucose, [U-14C]fructose and from [U-14C]lactate into CO2 and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound. PMID:4478069

  4. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

    PubMed

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-15

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.

  5. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  6. Design of novel dihydroxynaphthoic acid inhibitors of Plasmodium falciparum lactate dehydrogenase.

    PubMed

    Megnassan, Eugene; Keita, Melalie; Bieri, Cecile; Esmel, Akori; Frecer, Vladimir; Miertus, Stanislav

    2012-09-01

    We have studied inhibition of Plasmodium falciparum lactate dehydrogenase (pfLDH) by dihydroxynaphthoic acid (DHNA) analogues derivatives of hemigossypol-sesquiterpene found in cottonseed known to exhibit antimalarial activity. Molecular models of pfLDH-DHNA complexes were prepared from high-resolution crystal structures containing DHNA and azole inhibitors and binding affinities of the inhibitors were computed by molecular mechanics - polarizable continuum model of solvation (MM-PCM) approach. The 3D structures of the pfLDH-DHNA complexes were validated by a QSAR model, which confirmed consistency between the computed binding affinities and experimental inhibition constants for a training set and validation set of twelve DHNA inhibitors obtained from literature. Novel more potent DHNA analogs were identified by structure-based molecular design and predicted to inhibit pfLDH in the low nanomolar concentration range. In addition, the designed DHNA analogs displayed favorable predicted ADME-related profiles and an elevated selectivity for the pfLDH over the human isoform.

  7. Interaction of thiamin diphosphate with phosphorylated and dephosphorylated mammalian pyruvate dehydrogenase complex.

    PubMed

    Liu, Xiaoqing; Bisswanger, Hans

    2005-01-01

    Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.

  8. Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae

    PubMed Central

    Liu, Long; Zhuge, Xin; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua

    2015-01-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. PMID:25595755

  9. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells

    PubMed Central

    Zimmer, Andreas David; Walbrecq, Geoffroy; Kozar, Ines; Behrmann, Iris; Haan, Claude

    2016-01-01

    The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia. PMID:27800515

  10. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    PubMed Central

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  11. Physiological Function of Alcohol Dehydrogenases and Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus

    PubMed Central

    Burdette, D. S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R. I.; Zeikus, J. G.

    2002-01-01

    A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities). PMID:11916712

  12. Regulation of pyruvate dehydrogenase during infusion of fatty acids of varying chain lengths in the perfused rat heart.

    PubMed

    Latipää, P M; Peuhkurinen, K J; Hiltunen, J K; Hassinen, I E

    1985-12-01

    The effects of a homologous series of fatty acids with a chain length of two to eight on the rate of pyruvate oxidation and covalent interconversions of the pyruvate dehydrogenase complex (PDH) were studied in isolated perfused rat hearts. In the Langendorff-perfused heart beating at 5 Hz against an aortic pressure of 59 mmHg (7.85 kPa), a positive linear correlation was found between the fraction of PDH existing in the active non-phosphorylated form of pyruvate dehydrogenase complex (PDHa) and the pyruvate oxidation rate until the PDHa fraction increased to 48%. This value resulted in a saturation of the citric acid cycle and further activation did not increase the metabolic flux. The PDHa content of the tissue was higher during infusion of odd carbon number fatty acids than during infusion of even carbon number fatty acids. Propionate caused an almost maximal (93%) activation of PDH. A negative correlation was found between the mitochondrial NADH/NAD+ ratio and the PDHa content. A negative correlation was also found between the acetyl-CoA/CoA ratio and the tissue PDHa content. The rate of labelled CO2 production, the specific radioactivity of tissue alanine and the metabolic balance sheet demonstrated that the alanine aminotransferase reaction in the total tissue does not reach equilibrium with the mitochondrial pyruvate pool during propionate oxidation, but the equilibrium is reached during the oxidation of even-number carbon fatty acids. This suggests that pyruvate is formed from propionate-derived metabolites also in the cytosol, although the primary metabolism of propionate occurs in the mitochondria. The results indicate that the rate of pyruvate oxidation in the myocardium is mainly regulated by covalent interconversion of PDH. During propionate oxidation the PDHa content in the tissue can increase beyond the point of saturation of the citric acid cycle and this indicates that feedback inhibition of the enzyme is rate-determining under these conditions.

  13. CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.

    PubMed

    Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka

    2017-02-01

    In this study, we demonstrated the conversion of CO2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV(2+)), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO2 to fuel.

  14. Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis.

    PubMed

    Sukumar, Narayanasami; Chen, Zhi-wei; Ferrari, Davide; Merli, Angelo; Rossi, Gian Luigi; Bellamy, Henry D; Chistoserdov, Andrei; Davidson, Victor L; Mathews, F Scott

    2006-11-14

    The crystal structure of an electron transfer complex of aromatic amine dehydrogenase (AADH) and azurin is presented. Electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of AADH to the type I copper of the cupredoxin azurin. This structure is compared with the complex of the TTQ-containing methylamine dehydrogenase (MADH) and the cupredoxin amicyanin. Despite significant similarities between the two quinoproteins and the two cupredoxins, each is specific for its respective partner and the ionic strength dependence and magnitude of the binding constant for each complex are quite different. The AADH-azurin interface is largely hydrophobic, covering approximately 500 A(2) of surface on each molecule, with one direct hydrogen bond linking them. The closest distance from TTQ to copper is 12.6 A compared with a distance of 9.3 A in the MADH-amicyanin complex. When the MADH-amicyanin complex is aligned with the AADH-azurin complex, the amicyanin lies on top of the azurin but is oriented quite differently. Although the copper atoms differ in position by approximately 4.7 A, the amicyanin bound to MADH appears to be rotated approximately 90 degrees from its aligned position with azurin. Comparison of the structures of the two complexes identifies features of the interface that dictate the specificity of the protein-protein interaction and determine the rate of interprotein electron transfer.

  15. Molecular basis of maple syrup urine disease: novel mutations at the E1 alpha locus that impair E1(alpha 2 beta 2) assembly or decrease steady-state E1 alpha mRNA levels of branched-chain alpha-keto acid dehydrogenase complex.

    PubMed Central

    Chuang, J. L.; Fisher, C. R.; Cox, R. P.; Chuang, D. T.

    1994-01-01

    We report the occurrence of three novel mutations in the E1 alpha (BCKDHA) locus of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1 alpha gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1 alpha subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1 alpha mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1 alpha subunit impairs its proper assembly with the normal E1 beta. Unassembled as well as misassembled E1 alpha and E1 beta subunits are degraded in the cell. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8037208

  16. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.

    PubMed

    Eikmanns, Bernhard J; Blombach, Bastian

    2014-12-20

    The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative thiamine pyrophosphate-dependent decarboxylation of pyruvate to acetyl-CoA and CO2. Since pyruvate is a key metabolite of the central metabolism and also the precursor for several relevant biotechnological products, metabolic engineering of this multienzyme complex is a promising strategy to improve microbial production processes. This review summarizes the current knowledge and achievements on metabolic engineering approaches to tailor the PDHC of Corynebacterium glutamicum for the bio-based production of l-valine, 2-ketosiovalerate, pyruvate, succinate and isobutanol and to improve l-lysine production.

  17. Thiamine pyrophosphate as an effector of 2-oxoglutarate dehydrogenase complex from European bison heart.

    PubMed

    Strumilo, S; Markiewicz, J

    1995-09-01

    The purified 2-oxoglutarate dehydrogenase complex (OGDC) from the European bison heart was near saturated with endogenous bound thiamine pyrophosphate (TPP). Exogenous TPP added to the full OGDC reaction medium decreased S0.5 for 2-oxoglutarate approximately 2.6-fold without any notable change in the maximum reaction rate. The TPP effect was observed in the presence of 1 mM ADP which alone is a strong positive allosteric effector of OGDC. At an unsaturating 2-oxoglutarate concentration the A50 value for TPP was approximately 0.05 mM. The ADP-like action of exogenous TPP was also found in the 2-oxoglutarate dehydrogenase (E1) reaction, determined in the presence of 2,6-dichlorophenoloindophenol as an electron acceptor.

  18. Random phage mimotopes recognized by monoclonal antibodies against the pyruvate dehydrogenase complex-E2 (PDC-E2).

    PubMed

    Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L

    1996-10-01

    Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself.

  19. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.

    PubMed

    O'Brien, Marisa; Chalker, Julia; Slade, Liam; Gardiner, Danielle; Mailloux, Ryan J

    2017-05-01

    Pyruvate dehydrogenase (Pdh) is a vital source of reactive oxygen species (ROS) in several different tissues. Pdh has also been suggested to serve as a mitochondrial redox sensor. Here, we report that O2(•-)/ H2O2 emission from pyruvate dehydrogenase (Pdh) is altered by S-glutathionylation. Glutathione disulfide (GSSG) amplified O2(•-)/ H2O2 production by purified Pdh during reverse electron transfer (RET) from NADH. Thiol oxidoreductase glutaredoxin-2 (Grx2) reversed these effects confirming that Pdh is a target for S-glutathionylation. S-glutathionylation had the opposite effect during forward electron transfer (FET) from pyruvate to NAD(+) lowering O2(•-)/ H2O2 production. Immunoblotting for protein glutathione mixed disulfides (PSSG) following diamide treatment confirmed that purified Pdh can be S-glutathionylated. Similar observations were made with mouse liver mitochondria. S-glutathionylation catalysts diamide and disulfiram significantly reduced pyruvate or 2-oxoglutarate driven O2(•-)/ H2O2 production in liver mitochondria, results that were confirmed using various Pdh, 2-oxoglutarate dehydrogenase (Ogdh), and respiratory chain inhibitors. Immunoprecipitation of Pdh and Ogdh confirmed that either protein can be S-glutathionylated by diamide and disulfiram. Collectively, our results demonstrate that the S -glutathionylation of Pdh alters the amount of ROS formed by the enzyme complex. We also confirmed that Ogdh is controlled in a similar manner. Taken together, our results indicate that the redox sensing and ROS forming properties of Pdh and Ogdh are linked to S-glutathionylation.

  20. Production of racemic lactic acid in Pediococcus cerevisiae cultures by two lactate dehydrogenases.

    PubMed

    Gordon, G L; Doelle, H W

    1975-02-01

    Nicotinamide adenine dinucleotide (NAD)-dependent d(minus)-and l(plus)-lactate dehydrogenases have been partially purified 89- and 70-fold simultaneously from cell-free extracts of Pediococcus cerevisiae. Native molecular weights, as estimated from molecular sieve chromatography and electrophoresis in nondenaturing polyacrylamide gels, are 71,000 to 73,000 for d(minus)-lactate dehydrogenase and 136,000 to 139,000 for l(plus)-lactate dehydrogenase. Electrophoresis in sodium dodecyl sulfate-containing gels reveals subunits with approximate molecular weights of 37,000 to 39,000 for both enzymes. By lowering the pyruvate concentration from 5.0 to 0.5 mM, the pH optimum for pyruvate reduction by d(minus)-lactate dehydrogenase decreases from pH 8.0 to 3.6. However, l(plus)-lactate dehydrogenase displays an optimum for pyruvate reduction between pH 4.5 and 6.0 regardless of the pyruvate concentration. The enzymes obey Michaelis-Menten kinetics for both pyruvate and reduced NAD at pH 5.4 and 7.4, with increased affinity for both substrates at the acid pH. alpha-Ketobutyrate can be used as a reducible substrate, whereas oxamate has no inhibitory effect on lactate oxidation by either enzyme. Adenosine triphosphate causes inhibition of both enzymes by competition with reduced NAD. Adenosine diphosphate is also inhibitory under the same conditions, whereas NAD acts as a product inhibitor. These results are discussed with relation to the lactate isomer production during the growth cycle of P. cerevisiae.

  1. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae.

    PubMed

    Matus-Ortega, M G; Cárdenas-Monroy, C A; Flores-Herrera, O; Mendoza-Hernández, G; Miranda, M; González-Pedrajo, B; Vázquez-Meza, H; Pardo, J P

    2015-10-01

    Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.

  2. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea.

    PubMed

    Borziak, Kirill; Posner, Mareike G; Upadhyay, Abhishek; Danson, Michael J; Bagby, Stefan; Dorus, Steve

    2014-01-01

    Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs), is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA), which in archaea is typically encoded by two genes (LplA-N and LplA-C), or by a lipoyl(octanoyl) transferase (LipB or LipM) plus a lipoic acid synthetase (LipA). Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL)-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across the archaea

  3. Coenzyme Q releases the inhibitory effect of free fatty acids on mitochondrial glycerophosphate dehydrogenase.

    PubMed

    Rauchová, Hana; Drahota, Zdenek; Rauch, Pavel; Fato, Romana; Lenaz, Giorgio

    2003-01-01

    Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glycerophosphate-dependent respiration by exogenous CoQ(3), since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ(3), our data indicate that the activating effect of CoQ(3) is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ(3) could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.

  4. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes

    PubMed Central

    Schormann, Norbert; Ayres, Chapelle A.; Fry, Alexandra; Green, Todd J.; Banerjee, Surajit; Ulett, Glen C.

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH. PMID:27875551

  5. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes.

    PubMed

    Schormann, Norbert; Ayres, Chapelle A; Fry, Alexandra; Green, Todd J; Banerjee, Surajit; Ulett, Glen C; Chattopadhyay, Debasish

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH.

  6. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    SciTech Connect

    Pampa, K.J.; Lokanath, N.K.; Girish, T.U.; Kunishima, N.; Rai, V.R.

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  7. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  8. The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver.

    PubMed

    Scholz, R; Olson, M S; Schwab, A J; Schwabe, U; Noell, C; Braun, W

    1978-05-16

    The effect of fatty acids on the rate of pyruvate decarboxylation was studied in perfused livers from fed rats. The production of 14CO2 from infused [1-14C]pyruvate was employed as a monitor of the flux through the pyruvate dehydrogenase reaction. A correction for other decarboxylation reactions was made using kinetic analyses. Fatty acid (octanoate or oleate) infusion caused a stimulation of pyruvate decarboxylation at pyruvate concentrations in the perfusate below 1 mM (up to 3-fold at 0.05 mM pyruvate) but decreased the rate to one-third of control rates at pyruvate concentrations near 5 mM. These effects were half-maximal at fatty acid concentrations below 0.1 mM. Infusion of 3-hydroxybutyrate also caused a marked stimulation of pyruvate decarboxylation at low pyruvate concentrations. The data suggest that the mechanism by which fatty acids stimulate the flux through the pyruvate dehydrogenase reaction in perfused liver at low (limiting) pyruvate concentrations involves an acceleration of pyruvate transport into the mitochondrial compartment due to an exchange with acetoacetate. Furthermore, it is proposed that a relationship exists between ketogenesis and the regulation of pyruvate oxidation at pyruvate concentrations approximating conditions in vivo.

  9. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation

    PubMed Central

    F.Vellucci, Vincent; Gygax, Scott; Hostetter, Margaret K.

    2007-01-01

    For 50 years, physiologic studies in Candida albicans have associated fermentation with filamentation and respiration with yeast morphology. Analysis of the mitochondrial proteome of a C. albicans NDH51 mutant, known to be defective in filamentation, identified increased expression of several proteins in the respiratory pathway. Most notable was a 15-fold increase in pyruvate dehydrogenase complex protein X (Pdx1), an essential component of the pyruvate dehydrogenase complex. In basal salts medium with 100 mM glucose as carbon source, two independent pdx1 mutants displayed a filamentation defect identical to ndh51; reintegration of one PDX1 allele restored filamentation. Concentrations of glucose ≤100 mM did not correct the filamentation defect. Expanding on previous work, these studies suggest that increased expression of proteins extraneous to the electron transport chain compensates for defects in the respiratory pathway to maintain yeast morphology. Mitochondrial proteomics can aid in the identification of C. albicans genes not previously implicated in filamentation. PMID:17254815

  10. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    SciTech Connect

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari; Nara, Takeshi; Aoki, Takashi; Harada, Shigeharu; Kita, Kiyoshi

    2005-10-01

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  11. [Interaction of pyruvate dehydrogenase complex from the heart muscle with thiamine diphosphate and its derivatives].

    PubMed

    Strumilo, S A; Kiselevskiĭ, Iu V; Taranda, N I; Zabrodskaia, S V; Oparin, D A

    1989-01-01

    Inhibitory effects of 23 thiamin derivatives on the bovine heart pyruvate dehydrogenase complex (PDC) were studied. Oxythiamin diphosphate and tetrahydroxythiamin diphosphate exhibited the most pronounced effect on the PDC activity, affecting the complex by a competitive type of inhibition for thiamin diphosphate (TDP). The apparent affinity of TDP and the anticoenzyme derivatives for apo PDC depended on presence of phosphate and divalent metal ions. Phosphate considerably increased the Km values for TDP (up to 0.17 microM) and the Ki values for oxythiamin diphosphate (0.40 microM) as well as for tetrahydroxythiamin diphosphate (0.23 microM). In presence of Mn2+, Km value for TDP was 3.5-fold lower as compared with Mg2+ containing medium.

  12. Amino-Acid Sequence of NADP-Specific Glutamate Dehydrogenase of Neurospora crassa

    PubMed Central

    Wootton, John C.; Chambers, Geoffrey K.; Holder, Anthony A.; Baron, Andrew J.; Taylor, John G.; Fincham, John R. S.; Blumenthal, Kenneth M.; Moon, Kenneth; Smith, Emil L.

    1974-01-01

    A tentative primary structure of the NADP-specific glutamate dehydrogenase [L-glutamate: NADP oxidoreductase (deaminating), EC 1.4.1.4] from Neurospora crassa has been determined. The proposed sequence contains 452 amino-acid residues in each of the identical subunits of the hexameric enzyme. Comparison of the sequence with that of the bovine liver enzyme reveals considerable homology in the amino-terminal portion of the chain, including the vicinity of the reactive lysine, with only shorter stretches of homology within the carboxyl-terminal regions. The significance of this distribution of homologous regions is discussed. PMID:4155068

  13. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions.

    PubMed

    Maeda, Soya; Shimizu, Kumiko; Kihira, Chie; Iwabu, Yuki; Kato, Ryuichi; Sugimoto, Makoto; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2017-04-01

    Pyruvate dehydrogenase complex regulator (PdhR) is a transcriptional regulator that negatively regulates formation of pyruvate dehydrogenase complex (PDHc), NADH dehydrogenase (NDH)-2, and cytochrome bo3 oxidase in Escherichia coli. To investigate the effects of a PdhR defect on glucose metabolism, a pdhR deletion mutant was derived from the wild-type E. coli W1485 strain by λ Red-mediated recombination. While no difference in the fermentation profiles was observed between the two strains under oxygen-sufficient conditions, under oxygen-limited conditions, the growth level of the wild-type strain was significantly decreased with retarded glucose consumption accompanied by by-production of substantial amounts of pyruvic acid and acetic acid. In contrast, the mutant grew and consumed glucose more efficiently than did the wild-type strain with enhanced respiration, little by-production of pyruvic acid, less production yield and rates of acetic acid, thus displaying robust metabolic activity. As expected, increased activities of PDHc and NDH-2 were observed in the mutant. The increased activity of PDHc may explain the loss of pyruvic acid by-production, probably leading to decreased acetic acid formation, and the increased activity of NDH-2 may explain the enhanced respiration. Measurement of the intracellular NAD(+)/NADH ratio in the mutant revealed more oxidative or more reductive intracellular environments than those in the wild-type strain under oxygen-sufficient and -limited conditions, respectively, suggesting another role of PdhR: maintaining redox balance in E. coli. The overall results demonstrate the biotechnological advantages of pdhR deletion in boosting glucose metabolism and also improve our understanding of the role of PdhR in bacterial physiology.

  14. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying; Ouyang, Jia

    2015-08-10

    L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA.

  15. Random phage mimotopes recognized by monoclonal antibodies against the pyruvate dehydrogenase complex-E2 (PDC-E2).

    PubMed Central

    Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L

    1996-01-01

    Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855289

  16. Component co-expression and purification of recombinant human pyruvate dehydrogenase complex from baculovirus infected SF9 cells.

    PubMed

    Jiang, Yong; Wang, Juan; Zhang, Guofeng; Oza, Khyati; Myers, Linda; Holbert, Marc A; Sweitzer, Sharon

    2014-05-01

    The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.

  17. Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species.

    PubMed Central

    Lernmark, U.; Gardestrom, P.

    1994-01-01

    Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation. PMID:12232437

  18. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways.

    PubMed

    Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang; Blair, Ian A; Freeman, Bruce A; Wendell, Stacy Gelhaus

    2015-06-05

    Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.

  19. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  20. The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants

    PubMed Central

    Vilain, Sven; Esposito, Giovanni; Haddad, Dominik; Schaap, Onno; Dobreva, Mariya P.; Vos, Melissa; Van Meensel, Stefanie; Morais, Vanessa A.; De Strooper, Bart; Verstreken, Patrik

    2012-01-01

    Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC); however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I–associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling. PMID:22242018

  1. Dichloroacetate, the Pyruvate Dehydrogenase Complex and the Modulation of mESC Pluripotency

    PubMed Central

    Rodrigues, Ana Sofia; Correia, Marcelo; Gomes, Andreia; Pereira, Sandro L.; Perestrelo, Tânia; Sousa, Maria Inês; Ramalho-Santos, João

    2015-01-01

    Introduction The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. Methods/Results In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. Conclusions DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic

  2. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  3. Novel 18beta-glycyrrhetinic acid analogues as potent and selective inhibitors of 11beta-hydroxysteroid dehydrogenases.

    PubMed

    Su, Xiangdong; Lawrence, Harshani; Ganeshapillai, Dharshini; Cruttenden, Adrian; Purohit, Atul; Reed, Michael J; Vicker, Nigel; Potter, Barry V L

    2004-08-15

    Extensive structural modifications to the 18beta-glycyrrhetinic acid template are described and their effects on the SAR of the 11beta-hydroxysteroid dehydrogenase isozymes type 1 and 2 from the rat are investigated. Isoform selective inhibitors have been discovered and compound 7 N-(2-hydroxyethyl)-3beta-hydroxy-11-oxo-18beta-olean-12-en-30-oic acid amide is highlighted as a very potent selective inhibitor of 11beta-hydroxysteroid dehydrogenase 2 with an IC(50) = 4pM.

  4. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase.

    PubMed Central

    Yamagata, M.; Hasuda, K.; Stamato, T.; Tannock, I. F.

    1998-01-01

    Solid tumours develop an acidic extracellular environment with high concentration of lactic acid, and lactic acid produced by glycolysis has been assumed to be the major cause of tumour acidity. Experiments using lactate dehydrogenase (LDH)-deficient ras-transfected Chinese hamster ovarian cells have been undertaken to address directly the hypothesis that lactic acid production is responsible for tumour acidification. The variant cells produce negligible quantities of lactic acid and consume minimal amounts of glucose compared with parental cells. Lactate-producing parental cells acidified lightly-buffered medium but variant cells did not. Tumours derived from parental and variant cells implanted into nude mice were found to have mean values of extracellular pH (pHe) of 7.03 +/- 0.03 and 7.03 +/- 0.05, respectively, both of which were significantly lower than that of normal muscle (pHe = 7.43 +/- 0.03; P < 0.001). Lactic acid concentration in variant tumours (450 +/- 90 microg g(-1) wet weight) was much lower than that in parental tumours (1880 +/- 140 microg/g(-1)) and similar to that in serum (400 +/- 35 microg/g(-1)). These data show discordance between mean levels of pHe and lactate content in tumours; the results support those of Newell et al (1993) and suggest that the production of lactic acid via glycolysis causes acidification of culture medium, but is not the only mechanism, and is probably not the major mechanism responsible for the development of an acidic environment within solid tumours. PMID:9667639

  5. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase.

    PubMed

    Li, Chao; Tao, Fei; Xu, Ping

    2016-08-17

    High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks.

  6. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be

  7. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production.

    PubMed

    Dave, Khyati K; Punekar, Narayan S

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.

  8. Crystal structure of Escherichia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 A resolution.

    PubMed

    Hall, M D; Levitt, D G; Banaszak, L J

    1992-08-05

    The crystal structure of malate dehydrogenase from Escherichia coli has been determined with a resulting R-factor of 0.187 for X-ray data from 8.0 to 1.87 A. Molecular replacement, using the partially refined structure of porcine mitochondrial malate dehydrogenase as a probe, provided initial phases. The structure of this prokaryotic enzyme is closely homologous with the mitochondrial enzyme but somewhat less similar to cytosolic malate dehydrogenase from eukaryotes. However, all three enzymes are dimeric and form the subunit-subunit interface through similar surface regions. A citrate ion, found in the active site, helps define the residues involved in substrate binding and catalysis. Two arginine residues, R81 and R153, interacting with the citrate are believed to confer substrate specificity. The hydroxyl of the citrate is hydrogen-bonded to a histidine, H177, and similar interactions could be assigned to a bound malate or oxaloacetate. Histidine 177 is also hydrogen-bonded to an aspartate, D150, to form a classic His.Asp pair. Studies of the active site cavity indicate that the bound citrate would occupy part of the site needed for the coenzyme. In a model building study, the cofactor, NAD, was placed into the coenzyme site which exists when the citrate was converted to malate and crystallographic water molecules removed. This hypothetical model of a ternary complex was energy minimized for comparison with the structure of the binary complex of porcine cytosolic malate dehydrogenase. Many residues involved in cofactor binding in the minimized E. coli malate dehydrogenase structure are homologous to coenzyme binding residues in cytosolic malate dehydrogenase. In the energy minimized structure of the ternary complex, the C-4 atom of NAD is in van der Waals' contact with the C-3 atom of the malate. A catalytic cycle involves hydride transfer between these two atoms.

  9. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs.

  10. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  11. 15-Hydroxyprostaglandin Dehydrogenase Generation of Electrophilic Lipid Signaling Mediators from Hydroxy Ω-3 Fatty Acids*

    PubMed Central

    Wendell, Stacy Gelhaus; Golin-Bisello, Franca; Wenzel, Sally; Sobol, Robert W.; Holguin, Fernando; Freeman, Bruce A.

    2015-01-01

    15-Hydroxyprostaglandin dehydrogenase (15PGDH) is the primary enzyme catalyzing the conversion of hydroxylated arachidonic acid species to their corresponding oxidized metabolites. The oxidation of hydroxylated fatty acids, such as the conversion of prostaglandin (PG) E2 to 15-ketoPGE2, by 15PGDH is viewed to inactivate signaling responses. In contrast, the typically electrophilic products can also induce anti-inflammatory and anti-proliferative responses. This study determined that hydroxylated docosahexaenoic acid metabolites (HDoHEs) are substrates for 15PGDH. Examination of 15PGDH substrate specificity was conducted in cell culture (A549 and primary human airway epithelia and alveolar macrophages) using chemical inhibition and shRNA knockdown of 15PGDH. Substrate specificity is broad and relies on the carbon position of the acyl chain hydroxyl group. 14-HDoHE was determined to be the optimal DHA substrate for 15PGDH, resulting in the formation of its electrophilic metabolite, 14-oxoDHA. Consistent with this, 14-HDoHE was detected in bronchoalveolar lavage cells of mild to moderate asthmatics, and the exogenous addition of 14-oxoDHA to primary alveolar macrophages inhibited LPS-induced proinflammatory cytokine mRNA expression. These data reveal that 15PGDH-derived DHA metabolites are biologically active and can contribute to the salutary signaling actions of Ω-3 fatty acids. PMID:25586183

  12. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes.

    PubMed

    Alberty, Robert A

    2004-04-01

    It is of interest to calculate equilibrium compositions of systems of biochemical reactions at specified concentrations of coenzymes because these reactants tend to be in steady states. Thermodynamic calculations under these conditions require the definition of a further transformed Gibbs energy G" by use of a Legendre transform. These calculations are applied to the pyruvate dehydrogenase reaction plus the citric acid cycle, but steady-state concentrations of CoA, acetyl-CoA and succinyl-CoA cannot be specified because they are involved in the conservation of carbon atoms. These calculations require the use of linear algebra to obtain further transformed Gibbs energies of formation of reactants and computer programs to calculate equilibrium compositions. At specified temperature, pH, ionic strength and specified concentrations of several coenzymes, the equilibrium composition depends on the specified concentrations of the coenzymes and the initial amounts of reactants.

  13. A pivotal role for beta-aminoisobutyric acid and oxidative stress in dihydropyrimidine dehydrogenase deficiency?

    PubMed

    van Kuilenburg, A B P; Stroomer, A E M; Abeling, N G G M; van Gennip, A H

    2006-01-01

    Dihydropyrimidine dehydrogenase (DPD) constitutes the first step of the pyrimidine degradation pathway in which the pyrimidine bases uracil and thymine are catabolised to beta-alanine and beta-aminoisobutyric acid (beta-AIB), respectively. The mean concentration of beta-AIB was approximately 5- to 8-fold lower in urine of patients with a DPD deficiency, when compared to age-matched controls. Comparable levels of 8-hydroxydeoxyguanosine (8-OHdG) were present in urine from controls and DPD patients at the age <2 year. In contrast, slightly elevated levels of 8-OHdG were detected in urine from DPD patients with an age >2 year, suggesting the presence of increased oxidative stress.

  14. Inhibition of succinate dehydrogenase by malonic acid produces an "excitotoxic" lesion in rat striatum.

    PubMed

    Greene, J G; Porter, R H; Eller, R V; Greenamyre, J T

    1993-09-01

    Excitotoxicity and defects in neuronal energy metabolism have both been implicated in the pathogenesis of neurodegenerative disease. These two mechanisms may be linked through the NMDA receptor, activation of which is dependent on neuronal membrane potential. Because the ability to maintain membrane potential is dependent on neuronal energy metabolism, bioenergetic defects may affect NMDA receptor-mediated excitotoxicity. We now report that reversible inhibition of succinate dehydrogenase (SDH), an enzyme central to both the tricarboxylic acid cycle and the electron transport chain, produces an "excitotoxic" lesion in rat striatum that can be blocked by the NMDA antagonist MK-801. Male Sprague-Dawley rats received intrastriatal stereotaxic injections of the SDH inhibitor malonic acid (1 or 2 mumol) in combination with intraperitoneal injections of vehicle or MK-801 (5 mg/kg) 30 min before and 210 min after malonic acid. Animals were killed 72 h after surgery, and brains were processed for histology, cytochrome oxidase activity, and [3H]MK-801 and [3H]AMPA autoradiography. The higher dose of malonic acid (2 mumol) produced large lesions that were markedly attenuated by treatment with MK-801 (28.1 +/- 3.6 vs. 4.7 +/- 2.6 mm3; p < 0.001). [3H]MK-801 and [3H]AMPA binding were reduced in the lesions by 60 and 63%, respectively. One micromole of malonic acid produced smaller lesions that were almost completely blocked by MK-801 treatment (9.6 +/- 1.3 vs. 0.06 +/- 0.04 mm3; p < 0.0001). The toxic effects of malonic acid were due specifically to inhibition of SDH inasmuch as coinjection of a threefold excess of succinate with the malonic acid blocked the striatal lesions (p < 0.002).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    PubMed Central

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  16. A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism.

    PubMed

    Blume, Christian; Behrens, Christof; Eubel, Holger; Braun, Hans-Peter; Peterhansel, Christoph

    2013-11-01

    Glyoxylate is a peroxisomal intermediate of photorespiration, the recycling pathway for 2-phosphoglycolate (2-PG) produced by the oxygenase activity of Rubisco. Under hot and dry growth conditions, photorespiratory intermediates can accumulate and must be detoxified by alternative pathways, including plastidal reactions. Moreover, there is evidence that chloroplasts are capable of actively producing glyoxylate from glycolate. Further metabolic steps are unknown, but probably include a CO2 release step. Here, we report that CO2 production from glycolate and glyoxylate in isolated tobacco chloroplasts can be inhibited by pyruvate, but not related compounds. We isolated a protein fraction that was enriched for the chloroplast pyruvate dehydrogenase complex (PDC). The fraction contained a protein complex of several MDa in size that included all predicted subunits of the chloroplast PDC and a so far unidentified HSP93-V/ClpC1 heat shock protein. Glyoxylate competitively inhibited NADH formation from pyruvate in this fraction. The Km for pyruvate and the Ki for glyoxylate were 330 and 270 μM, respectively. Glyoxylate decarboxylation was also enriched in this fraction and could be in turn inhibited by pyruvate. Based on these data, we suggest that the chloroplast PDC might be part of a pathway for glycolate and/or glyoxylate oxidation in chloroplasts.

  17. In vitro synthesis of the pyruvate dehydrogenase complex components of Ascaris suum mitochondria

    SciTech Connect

    Desai, S.; Ruff, V.; DuBrul, E.F.; Komuniecki, R.W.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) plays a pivotal role in the anaerobic metabolism of Ascaris suum mitochondria. They have initiated a series of studies on the in vitro synthesis and mitochondrial import of PDC. PDC has been purified from adult Ascaris body wall muscle, fully phosphorylated in vitro, and separated into its component subunits on SDS/PAGE. The individual components were electroeluted from the gels and used to immunize rabbits. IgG's to the individual subunits were prepared from antisera and their specificities were verified by immuno-blotting. Each IgG identified a single specific band at the appropriate location in extracts of adult Ascaris body wall muscle mitochondria. Poly A/sup +/-RNA was prepared from body wall muscle and translated in a reticylocyte lysate system using /sup 35/S-methionine. Translation products were immunoprecipitated with specific IgG's, electrophoresed, and fluorographed. Each immunoprecipitation gave rise to a single radioactive polypeptide that was slightly larger than the specific PDC subunit isolated from the adult mitochondria. This system has demonstrated its feasibility for the study of mitochondrial import of a multienzyme complex that is critical for the anaerobic mitochondrial metabolism of Ascaris suum.

  18. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  19. Immunocapture and microplate-based activity measurement of mammalian pyruvate dehydrogenase complex.

    PubMed

    Lib, Margarita; Rodriguez-Mari, Adriana; Marusich, Michael F; Capaldi, Roderick A

    2003-03-01

    Altered pyruvate dehydrogenase (PDH) functioning occurs in primary PDH deficiencies and in diabetes, starvation, sepsis, and possibly Alzheimer's disease. Currently, the activity of the enzyme complex is difficult to measure in a rapid high-throughput format. Here we describe the use of a monoclonal antibody raised against the E2 subunit to immunocapture the intact PDH complex still active when bound to 96-well plates. Enzyme turnover was measured by following NADH production spectrophotometrically or by a fluorescence assay on mitochondrial protein preparations in the range of 0.4 to 5.0 micro g per well. Activity is sensitive to known PDH inhibitors and remains regulated by phosphorylation and dephosphorylation after immunopurification because of the presence of bound PDH kinase(s) and phosphatase(s). It is shown that the immunocapture assay can be used to detect PDH deficiency in cell extracts of cultured fibroblasts from patients, making it useful in patient screens, as well as in the high-throughput format for discovery of new modulators of PDH functioning.

  20. The Spectrum of Pyruvate Dehydrogenase Complex Deficiency: Clinical, Biochemical and Genetic Features in 371 Patients

    PubMed Central

    Patel, Kavi P.; O'Brien, Thomas W.; Subramony, Sankarasubramon H.; Shuster, Jonathan; Stacpoole, Peter W.

    2013-01-01

    Context Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. Objective We reviewed 371 cases of PDC deficiency, published between 1970-2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 Binding Protein of the complex. Data Sources and Extraction English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. Results Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. Conclusions Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤20. PMID:22079328

  1. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients

    PubMed Central

    Patel, Kavi P.; O’Brien, Thomas W.; Subramony, Sankarasubramon H.; Shuster, Jonathan; Stacpoole, Peter W.

    2014-01-01

    Context Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. Objective We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. Data sources and extraction English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. Results Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. Conclusions Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio≤20. PMID:22896851

  2. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    PubMed

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  3. Biosynthesis, import and processing of precursor polypeptides of mammalian mitochondrial pyruvate dehydrogenase complex.

    PubMed Central

    De Marcucci, O G; Gibb, G M; Dick, J; Lindsay, J G

    1988-01-01

    An immunological analysis has been conducted of early events in the biosynthesis, import and assembly of the mammalian pyruvate dehydrogenase complex (PDC). For this purpose, monospecific polyclonal antisera were produced against the intact assembly from ox heart, Mr 8.5 x 10(6), and each of its component polypeptides, E1 alpha, E1 beta, E2, E3 and protein X. Optimal detergent-based incubation mixtures were developed for obtaining clean immunoprecipitation of PDC polypeptides and their precursors from [35S]methionine-labelled extracts of PK-15 (pig kidney), NBL-1 (bovine kidney) and BRL (Buffalo Rat liver) cells. In PK-15 cells, independent higher Mr species, corresponding to precursors of the E2, E1 alpha and E1 beta subunits of PDC, could be detected by immune precipitation and fluorography after incubation of intact cells for 4 h with [35S]methionine and 1-2 mM-2,4-dinitrophenol or 10-15 microM-carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Similar precursor states could be observed in uncoupler-treated BRL or NBL-1 cells. Pre-E1 alpha, pre-E1 beta and also pre-E3, have signal sequences in the Mr range 1500-3000 while pre-E2 contains a long additional segment of Mr 7000-9000. All of these forms exhibit similar kinetics of processing to the mature subunits with a transit time of 10-12 min. In NBL-1 cells, E3 is present in the immune complexes formed with anti-PDC serum whereas this is not the case in PK-15 cells. Thus, there are significant variations in the affinity of lipoamide dehydrogenase (E3) for the E2 core structure in different species. Pre-E1 alpha accumulates only poorly in PK-15 cells and is aberrantly processed on removal of uncoupler. This precursor is markedly more stable in NBL-1 and BRL cells. The lack of detection of a precursor form of component X is also discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3415648

  4. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.

    PubMed

    Skory, C D

    2004-04-01

    Rhizopus oryzae is capable of producing high levels of lactic acid by the fermentation of glucose. Yields typically vary over 60-80%, with the remaining glucose diverted primarily into ethanol fermentation. The goal of this work was to increase lactate dehydrogenase (LDH) activity, so lactic acid fermentation could more effectively compete for available pyruvate. Three different constructs, pLdhA71X, pLdhA48XI, and pLdhA89VII, containing various lengths of the ldhA gene fragment, were transformed into R. oryzae. This fungus rarely integrates DNA used for transformation, but instead relies on extra-chromosomal replication in a high-copy number. Plasmid pLdhA48XI was linearized prior to transformation in order to facilitate integration into the pyrG gene used for selection. Isolates transformed with ldhA containing plasmid were compared with both the wild-type parent strain and the auxotrophic recipient strain containing vector only. All isolates transformed with pLdhA71X or pLdhA48XI had multiple copies of the ldhA gene that resulted in ldhA transcript accumulation, LDH specific activity, and lactic acid production higher than the controls. Integration of plasmid pLdhA48XI increased the stability of the strain, but did not seem to offer any benefit for increasing lactic acid production. Since lactic acid fermentation competes with ethanol and fumaric acid production, it was not unexpected that increased lactic acid production was always concomitant with decreased ethanol and fumaric acid. Plasmid pLdhA71X, containing a large ldhA fragment (6.1 kb), routinely yielded higher levels of lactic acid than the smaller region (3.3 kb) used to construct plasmid pLdhA48XI. The greatest levels of ldhA transcript and enzyme production occurred with isolates transformed with plasmid pLdhA89VII. However, these transformants always produced less lactic acid and higher amounts of ethanol, fumaric, and glycerol compared with the control.

  5. Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus

    DOE PAGES

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; ...

    2016-01-29

    In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificialmore » chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.« less

  6. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    PubMed Central

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; Kelly, Robert M.; Adams, Michael W. W.

    2016-01-01

    Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms. PMID:26858706

  7. Loss of fatty acid control of gluconeogenesis and PDH complex flux in adrenalectomized rats.

    PubMed

    Ciprés, G; Urcelay, E; Butta, N; Ayuso, M S; Parrilla, R; Martín-Requero, A

    1994-10-01

    This work aimed to determine the role played by the adrenal gland in the fatty acid control of gluconeogenesis in isolated perfused rat livers. The gluconeogenic substrate concentration responses were not altered in adrenalectomized (ADX) rats. This observation indicates that glucocorticoids are not essential to maintain normal basal gluconeogenic rates. In contrast, fatty acid failed to stimulate gluconeogenesis from lactate and elicited attenuated stimulation with pyruvate as substrate in livers from ADX rats. Fatty acid-induced stimulation of respiration and ketone body production were similar in control and ADX rats. Thus the diminished responsiveness of the gluconeogenic pathway to fatty acid cannot be the result of different rates of energy production and/or generation of reducing power. Fatty acids did not inhibit pyruvate decarboxylation in livers from ADX rats. Even though mitochondria isolated from livers of ADX rats showed normal basal rates of pyruvate metabolism, fatty acids failed to inhibit pyruvate decarboxylation and the activity of the pyruvate dehydrogenase complex. This novel observation of the glucocorticoid effect in controlling the pyruvate dehydrogenase complex responsiveness indicates that the mitochondrial partitioning of pyruvate between carboxylation and decarboxylation reactions may be altered in livers from ADX rats. We propose that the diminished effect of fatty acid in stimulating gluconeogenesis in livers from ADX rats is the result of a limited pyruvate availability for the carboxylase reaction due to a lack of inhibition of flux through the pyruvate dehydrogenase complex.

  8. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  9. Regulatory effect of thiamin pyrophosphate on pig heart pyruvate dehydrogenase complex.

    PubMed

    Strumilo, S; Czerniecki, J; Dobrzyn, P

    1999-03-16

    The kinetic behavior of pig heart pyruvate dehydrogenase complex (PDC) containing bound endogenous thiamin pyrophosphate (TPP) was affected by exogenous TPP. In the absence of exogenous TPP, a lag phase of the PDC reaction was observed. TPP added to the PDC reaction medium containing Mg2+ led to a disappearance of the lag phase, inducing strong reduction of the Km value for pyruvate (from 76.7 to 19.0 microM) but a more moderate decrease of Km for CoA (from 12.2 to 4.3 microM) and Km for NAD+ (from 70.2 to 33.6 microM), with no considerable change in the maximum reaction rate. Likewise, thiamin monophosphate (TMP) decreased the Km value of PDC for pyruvate, but to a lesser extent (from 76.7 to 57.9 microM) than TPP. At the unsaturating level of pyruvate, the A50 values for TPP and TMP were 0.2 microM and 0.3 mM, respectively. This could mean that the effect of TPP on PDC was more specific. In addition, exogenous TPP changed the UV spectrum and lowered the fluorescence emission of the PDC containing bound endogenous TPP in its active sites. The data obtained suggest that TPP plays, in addition to its catalytic function, the important role of positive regulatory effector of pig heart PDC.

  10. Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics.

    PubMed

    Li, Ming; Smith, Christopher J; Walker, Matthew T; Smith, Thomas J

    2009-08-21

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)(+) as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  11. Succinate-dependent energy generation and pyruvate dehydrogenase complex activity in isolated Ascaris suum mitochondria

    SciTech Connect

    Campbell, T.A.

    1988-01-01

    Body wall muscle from the parasitic nematode, Ascaris suum, contain unique anaerobic mitochondria that preferentially utilize fumarate and branched-chain enoyl CoA's as terminal electron acceptors instead of oxygen. While electron transport in these organelles is well characterized, the role of oxygen in succinate-dependent phosphorylation is still not clearly defined. Therefore, the present study was designed to more fully characterize succinate metabolism in these organelles as well as the in vitro regulation of a key mitochondrial enzyme, the pyruvate dehydrogenase complex (PDC). In the absence of added adenine nucleotides, incubations in succinate resulted in substantial elevations in intramitochrondrial ATP levels, but ATP/ADP ratios were considerably higher in incubations with malate. The stimulation of phosphorylation in aerobic incubations with succinate was rotenone sensitive and appears to be Site I dependent. Increase substrate level phosphorylation, coupled to propionate formation, or additional sites of electron-transport associated ATP synthesis were not significant. Under aerobic conditions, {sup 14}CO{sub 2} evolution from 1,4-({sup 14}C)succinate was stimulated and NADH/NAD{sup +} ratios were elevated, but the formation of {sup 14}C propionate was unchanged.

  12. Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD[superscript +] and Fluoroalcohols Define Strained Michaelis Complexes

    SciTech Connect

    Plapp, Bryce V.; Ramaswamy, S.

    2013-01-16

    Structures of horse liver alcohol dehydrogenase complexed with NAD{sup +} and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 {angstrom} resolution, providing estimates of atomic positions with overall errors of 0.02 {angstrom}, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 and Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 {angstrom}. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 {angstrom}) and participate in a low-barrier hydrogen bond (2.52 {angstrom}) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9{sup o} for C4N and 4.8{sup o} for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P){sup +}. It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.

  13. Inosine 5'-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo.

    PubMed Central

    McLean, Jeremy E; Hamaguchi, Nobuko; Belenky, Peter; Mortimer, Sarah E; Stanton, Martin; Hedstrom, Lizbeth

    2004-01-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides. In addition to the catalytic domain, IMPDH contains a subdomain of unknown function composed of two cystathione beta-synthase domains. Our results, using three different assays, show that IMPDHs from Tritrichomonas foetus, Escherichia coli, and both human isoforms bind single-stranded nucleic acids with nanomolar affinity via the subdomain. Approx. 100 nucleotides are bound per IMPDH tetramer. Deletion of the subdomain decreases affinity 10-fold and decreases site size to 60 nucleotides, whereas substitution of conserved Arg/Lys residues in the subdomain with Glu decreases affinity by 20-fold. IMPDH is found in the nucleus of human cells, as might be expected for a nucleic-acid-binding protein. Lastly, immunoprecipitation experiments show that IMPDH binds both RNA and DNA in vivo. These experiments indicate that IMPDH has a previously unappreciated role in replication, transcription or translation that is mediated by the subdomain. PMID:14766016

  14. Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism.

    PubMed

    Peng, Huo-Lei; Deng, Hua; Dyer, R Brian; Callender, Robert

    2014-03-25

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the "live" reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD(+)·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate's C2═O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2═O group and active site residues, as shown by the observation of at least four C2═O stretch bands indicating varying degrees of C2═O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure-activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution.

  15. Global view of cognate kinase activation by the human pyruvate dehydrogenase complex.

    PubMed

    Guevara, Elena L; Yang, Luying; Birkaya, Barbara; Zhou, Jieyu; Nemeria, Natalia S; Patel, Mulchand S; Jordan, Frank

    2017-02-23

    The human pyruvate dehydrogenase complex (PDC) comprises four multidomain components, E1, E3, E2 and an E3-binding protein (E3BP), the latter two forming the core as E2·E3BP sub-complex. Pyruvate flux through PDC is regulated via phosphorylation (inactivation) at E1 by four PDC kinases (PDKs), and reactivation by two PDC phosphatases. Up-regulation of PDK isoform gene expression is reported in several forms of cancer, while PDKs may be further activated by PDC by binding to the E2·E3BP core. Hence, the PDK: E2·E3BP interaction provides new therapeutic targets. We carried out both functional kinetic and thermodynamic studies to demonstrate significant differences in the activation of PDK isoforms by binding to the E2·E3BP core: (i) PDK2 needs no activation by E2·E3BP for efficient functioning, while PDK4 was the least effective of the four isoforms, and could not be activated by E2·E3BP. Hence, development of inhibitors to the interaction of PDK2 and PDK4 with E2·E3BP is not promising; (ii) Design of inhibitors to interfere with interaction of E2·E3BP with PDK1 and PDK3 is promising. PDK3 needs E2·E3BP core for activation, an activation best achieved by synergistic combination of E2-derived catalytic domain and tridomain.

  16. Global view of cognate kinase activation by the human pyruvate dehydrogenase complex

    PubMed Central

    Guevara, Elena L.; Yang, Luying; Birkaya, Barbara; Zhou, Jieyu; Nemeria, Natalia S.; Patel, Mulchand S.; Jordan, Frank

    2017-01-01

    The human pyruvate dehydrogenase complex (PDC) comprises four multidomain components, E1, E3, E2 and an E3-binding protein (E3BP), the latter two forming the core as E2·E3BP sub-complex. Pyruvate flux through PDC is regulated via phosphorylation (inactivation) at E1 by four PDC kinases (PDKs), and reactivation by two PDC phosphatases. Up-regulation of PDK isoform gene expression is reported in several forms of cancer, while PDKs may be further activated by PDC by binding to the E2·E3BP core. Hence, the PDK: E2·E3BP interaction provides new therapeutic targets. We carried out both functional kinetic and thermodynamic studies to demonstrate significant differences in the activation of PDK isoforms by binding to the E2·E3BP core: (i) PDK2 needs no activation by E2·E3BP for efficient functioning, while PDK4 was the least effective of the four isoforms, and could not be activated by E2·E3BP. Hence, development of inhibitors to the interaction of PDK2 and PDK4 with E2·E3BP is not promising; (ii) Design of inhibitors to interfere with interaction of E2·E3BP with PDK1 and PDK3 is promising. PDK3 needs E2·E3BP core for activation, an activation best achieved by synergistic combination of E2-derived catalytic domain and tridomain. PMID:28230160

  17. Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: Relationship to Catalytic Mechanism

    PubMed Central

    2015-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the “live” reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD+·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate’s C2=O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2=O group and active site residues, as shown by the observation of at least four C2=O stretch bands indicating varying degrees of C2=O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure–activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  18. The effects of alpha-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver.

    PubMed

    Fisher, R A; Tanabe, S; Buxton, D B; Olson, M S

    1985-08-05

    The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.

  19. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    PubMed

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  20. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation.

    PubMed

    Walsh, D A; Cooper, R H; Denton, R M; Bridges, B J; Randle, P J

    1976-07-01

    1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4

  1. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms.

    PubMed Central

    MacDonald, I A; Rochon, Y P; Hutchison, D M; Holdeman, L V

    1982-01-01

    A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2 Images PMID:6758698

  2. Inhibition of snowshoe hare succinate dehydrogenase activity as a mechanism of deterrence for papyriferic acid in birch.

    PubMed

    Forbey, Jennifer Sorensen; Pu, Xinzhu; Xu, Dong; Kielland, Knut; Bryant, John

    2011-12-01

    The plant secondary metabolite papyriferic acid (PA) deters browsing by snowshoe hares (Lepus americanus) on the juvenile developmental stage of the Alaska paper birch (Betula neoalaskana). However, the physiological mechanism that reduces browsing remains unknown. We used pharmacological assays and molecular modeling to test the hypothesis that inhibition of succinate dehydrogenase (SDH) is a mode of action (MOA) of toxicity of PA in snowshoe hares. We tested this hypothesis by measuring the effect of PA on the activity of SDH in liver mitochondria isolated from wild hares. In addition, we used molecular modeling to determine the specific binding site of PA on SDH. We found that PA inhibits SDH from hares by an uncompetitive mechanism in a dose-dependent manner. Molecular modeling suggests that inhibition of SDH is a result of binding of PA at the ubiquinone binding sites in complex II. Our results provide a MOA for toxicity that may be responsible for the concentration-dependent anti-feedant effects of PA. We propose that snowshoe hares reduce the dose-dependent toxic consequences of PA by relying on efflux transporters and metabolizing enzymes that lower systemic exposure to dietary PA.

  3. The effect of 2-oxoglutarate or 3-hydroxybutyrate on pyruvate dehydrogenase complex in isolated cerebrocortical mitochondria.

    PubMed

    Lai, J C; Sheu, K F

    1987-08-01

    The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxybutyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861-1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.

  4. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia.

    PubMed

    Cardell, M; Siesjö, B K; Wieloch, T

    1991-01-01

    The effect of severe insulin-induced hypoglycemia on the activity of the pyruvate dehydrogenase enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex during burst suppression EEG, after 10, 30, and 60 min of isoelectric EEG, and after 30 and 180 min and 24 h of recovery following 30 min of hypoglycemic coma. Changes in PDHC activity were correlated to levels of labile organic phosphates and glycolytic metabolites. In cortex from control animals, the rate of [1-14C]pyruvate decarboxylation was 7.1 +/- 1.3 U/mg of protein, or 35% of the total PDHC activity. The activity was unchanged during burst suppression EEG whereas the active fraction increased to 81-87% during hypoglycemic coma. Thirty minutes after glucose-induced recovery, the PDHC activity had decreased by 33% compared to control levels, and remained significantly depressed after 3 h of recovery. This decrease in activity was not due to a decrease in the total PDHC activity. At 24 h of recovery, PDHC activity had returned to control levels. We conclude that the activation of PDHC during hypoglycemic coma is probably the result of an increased PDH phosphatase activity following depolarization and calcium influx, and allosteric inhibition of PDH kinase due to increased ADP/ATP ratio. The depression of PDHC activity following hypoglycemic coma is probably due to an increased phosphorylation of the enzyme, as a consequence of an imbalance between PDH phosphatase and kinase activities. Since some reduction of the ATP/ADP ratio persisted and since the lactate/pyruvate ratio had normalized by 3 h of recovery, the depression of PDHC most likely reflects a decrease in PDH phosphatase activity, probably due to a decrease in intramitochondrial Ca2+.

  5. Nonlinear dynamics of eucaryotic pyruvate dehydrogenase multienzyme complex: decarboxylation rate, oscillations, and multiplicity.

    PubMed

    Zeng, An-Ping; Modak, Jayant; Deckwer, Wolf-Dieter

    2002-01-01

    Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (nu(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect nu(1) and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and leads to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruvate metabolism in animal cell culture.

  6. Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis *

    PubMed Central

    Kim, Sang-Chul; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism. PMID:23504314

  7. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    PubMed Central

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  8. Biliary epithelial expression of pyruvate dehydrogenase complex in primary biliary cirrhosis: an immunohistochemical and immunoelectron microscopic study.

    PubMed

    Nakanuma, Y; Tsuneyama, K; Kono, N; Hoso, M; Van de Water, J; Gershwin, M E

    1995-01-01

    It has been reported recently that there is a unique distribution of the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2) on biliary epithelial cells in patients with primary biliary cirrhosis (PBC) but not primary sclerosing cholangitis. This distribution has been demonstrated using a mouse monoclonal antibody, coined C355.1. The epitope recognized by C355.1 is near the lipoic acid binding site of PDC-E2. C355.1 inhibits PDC-E2 activity in vitro and, unlike a panel of other monoclonal antibodies against different regions of PDC-E2, appears to bind not only to mitochondria but also to a unique antigen expressed predominantly on the luminal side of biliary epithelial cells in PBC. We have extended these observations by studying the subcellular reactivity of C355.1 using postembedding immunoelectron microscopy on the intrahepatic small bile ducts of PBC livers, extrahepatic biliary obstruction (EBO) livers, and normal livers. We report that the reactivity of C355.1 can be classified into two categories. The first category is characterized by small foci of reaction products that were randomly dispersed in cytoplasm, particularly in supranuclear areas; the ultrastructural characterization of these foci was impossible to define but was similar in PBC and EBO. However, of particular interest was the second category of reactivity, which was characterized by deposition of reaction products around the biliary lumen, including microvilli and adjacent subluminal ectoplasm and secretory substances in the biliary lumen. This staining pattern was frequent in PBC livers, only occasionally evident in EBO livers, and not found in normal livers. These data further define and highlight the unique subcellular distribution of PDC-E2 around the biliary lumen in PBC livers and suggest that this abnormality is related to the pathogenesis of bile duct lesions.

  9. Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet.

    PubMed

    Kadota, Yoshihiro; Toyoda, Takanari; Kitaura, Yasuyuki; Adams, Sean H; Shimomura, Yoshiharu

    2013-12-01

    Branched-chain α-ketoacid (BCKA) dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of BCKA catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal models. In this study, we examined the regulation of hepatic BCKDC in rats with diet-induced obesity (DIO). Rats were fed a control or a 60% of energy high-fat diet (HFD) for twelve weeks. Concentrations of blood components and the activities and protein amounts of hepatic BCKDC and its specific kinase (BDK) were measured. The concentrations of plasma glucose, insulin, and corticosterone were significantly elevated in DIO rats compared to those fed the control diet, suggestive of insulin resistance. Blood BCAA concentrations were not increased. The activity of hepatic BCKDC that was present in the active form in the liver was higher in DIO rats compared to controls, although the total activity and the enzyme amount were not different between two diet groups. The activity of hepatic BDK and the abundance of BDK bound to the BCKDC were decreased in DIO rats. The total amount of hepatic BDK was also significantly decreased in DIO rats. In rats made obese through HFD feeding, in contrast to prior studies in rat models of type 2 diabetes, hepatic BDK was down-regulated and thereby hepatic BCKDC was activated, suggesting that DIO promotes liver BCKA catabolism. In this model there was no evidence that increased blood BCAAs drive DIO-associated insulin resistance, since concentrations of BCAAs were not altered by DIO.

  10. Identification and Validation of Aspartic Acid Semialdehyde Dehydrogenase as a New Anti-Mycobacterium Tuberculosis Target

    PubMed Central

    Meng, Jianzhou; Yang, Yanhui; Xiao, Chunling; Guan, Yan; Hao, Xueqin; Deng, Qi; Lu, Zhongyang

    2015-01-01

    Aspartic acid semialdehyde dehydrogenase (ASADH) lies at the first branch point in the essential aspartic acid biosynthetic pathway that is found in bacteria and plants but is absent from animals. Mutations in the asadh gene encoding ASADH produce an inactive enzyme, which is lethal. Therefore, in this study, we investigated the hypothesis that ASADH represents a new anti-Mycobacterium tuberculosis (MTB) target. An asadh promoter-replacement mutant MTB, designated MTB::asadh, in which asadh gene expression is regulated by pristinamycin, was constructed to investigate the physiological functions of ASADH in the host bacteria. Bacterial growth was evaluated by monitoring OD600 and ASADH expression was analyzed by Western blotting. The results showed that the growth and survival of MTB::asadh was completely inhibited in the absence of the inducer pristinamycin. Furthermore, the growth of the mutant was rigorously dependent on the presence of the inducer in the medium. The starved mutant exhibited a marked reduction (approximately 80%) in the cell wall materials compared to the wild-type, in addition to obvious morphological differences that were apparent in scanning electron microscopy studies; however, with the addition of pristinamycin, the cell wall contents and morphology similar to those of the wild-type strain were recovered. The starved mutant also exhibited almost no pathogenicity in an in vitro model of infection using mouse macrophage J774A.1 cells. The mutant showed a concentration-dependent recovery of pathogenicity with the addition of the inducer. These findings implicate ASADH as a promising target for the development of novel anti-MTB drugs. PMID:26437401

  11. Identification and Validation of Aspartic Acid Semialdehyde Dehydrogenase as a New Anti-Mycobacterium Tuberculosis Target.

    PubMed

    Meng, Jianzhou; Yang, Yanhui; Xiao, Chunling; Guan, Yan; Hao, Xueqin; Deng, Qi; Lu, Zhongyang

    2015-09-30

    Aspartic acid semialdehyde dehydrogenase (ASADH) lies at the first branch point in the essential aspartic acid biosynthetic pathway that is found in bacteria and plants but is absent from animals. Mutations in the asadh gene encoding ASADH produce an inactive enzyme, which is lethal. Therefore, in this study, we investigated the hypothesis that ASADH represents a new anti-Mycobacterium tuberculosis (MTB) target. An asadh promoter-replacement mutant MTB, designated MTB::asadh, in which asadh gene expression is regulated by pristinamycin, was constructed to investigate the physiological functions of ASADH in the host bacteria. Bacterial growth was evaluated by monitoring OD600 and ASADH expression was analyzed by Western blotting. The results showed that the growth and survival of MTB::asadh was completely inhibited in the absence of the inducer pristinamycin. Furthermore, the growth of the mutant was rigorously dependent on the presence of the inducer in the medium. The starved mutant exhibited a marked reduction (approximately 80%) in the cell wall materials compared to the wild-type, in addition to obvious morphological differences that were apparent in scanning electron microscopy studies; however, with the addition of pristinamycin, the cell wall contents and morphology similar to those of the wild-type strain were recovered. The starved mutant also exhibited almost no pathogenicity in an in vitro model of infection using mouse macrophage J774A.1 cells. The mutant showed a concentration-dependent recovery of pathogenicity with the addition of the inducer. These findings implicate ASADH as a promising target for the development of novel anti-MTB drugs.

  12. Effect of malonate and p-chlorophenoxy acetic acid on hepatic succinic dehydrogenase activity of ageing lizards.

    PubMed

    Jena, B S; Patnaik, B K

    1990-01-01

    The degree of inhibition of hepatic succinic dehydrogenase activity by malonate, a competitive inhibitor, did not differ between young and middle-aged lizards. On the other hand, the same parameter increased significantly between middle-aged and old lizards. The percent inhibition of enzyme activity by p-chlorophenoxy acetic acid was also age-dependent, being higher in middle-aged and old than in young lizards.

  13. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder.

  14. Elementary steps in the reaction of the pyruvate dehydrogenase complex from pig heart. Kinetics of thiamine diphosphate binding to the complex.

    PubMed

    Sümegi, B; Alkonyi, I

    1983-11-02

    In the progress curve of the reaction of the pyruvate dehydrogenase complex, a lag phase was observed when the concentration of thiamin diphosphate was lower than usual (about 0.2-1 mM) in the enzyme assay. The length of the lag phase was dependent on thiamin diphosphate concentration, ranging from 0.2 min to 2 min as the thiamin diphosphate concentration varied from 800 nM to 22 nM. The lag phase was also observed in the elementary steps catalyzed by the pyruvate dehydrogenase component. A Km value of 107 nM was found for thiamin diphosphate with respect to the steady-state reaction rate following the lag phase. The pre-steady-state kinetic data indicate that the resulting lag phase was the consequence of a slow holoenzyme formation from apoenzyme and thiamin diphosphate. The thiamin diphosphate can bind to the pyruvate dehydrogenase complex in the absence of pyruvate, but the presence of 2 mM pyruvate increases the rate constant of binding from 1.4 X 10(4) M-1 S-1 to 1.3 X 10(5) M-1 S-1 and decreases the rate constant of dissociation from 2.3 X 10(-2) S-1 to 4.1 X 10(-3) S-1. On the other hand, the effect of pyruvate on the thiamin diphosphate binding revealed the existence of a thiamin-diphosphate-independent pyruvate-binding site in the pyruvate dehydrogenase complex. Direct evidence was also obtained with fluorescence techniques for the existence of this binding site and the dissociation constant of pyruvate was found to be 0.38 mM. On the basis of these data we have proposed a random mechanism for the binding of pyruvate and thiamin diphosphate to the complex. Binding of substrates to the enzyme complex caused an increase in the fluorescence of the dansylaziridine-labelled pyruvate dehydrogenase complex, showing that binding of substrates to the complex is accompanied by structural changes.

  15. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes.

    PubMed

    Rivera-Perez, Crisalejandra; Nouzova, Marcela; Clifton, Mark E; Garcia, Elena Martin; LeBlanc, Elizabeth; Noriega, Fernando G

    2013-08-01

    The juvenile hormones (JHs) play a central role in insect reproduction, development and behavior. Interrupting JH biosynthesis has long been considered a promising strategy for the development of target-specific insecticides. Using a combination of RNAi, in vivo and in vitro studies we characterized the last unknown biosynthetic enzyme of the JH pathway, a fatty aldehyde dehydrogenase (AaALDH3) that oxidizes farnesal into farnesoic acid (FA) in the corpora allata (CA) of mosquitoes. The AaALDH3 is structurally and functionally a NAD(+)-dependent class 3 ALDH showing tissue- and developmental-stage-specific splice variants. Members of the ALDH3 family play critical roles in the development of cancer and Sjögren-Larsson syndrome in humans, but have not been studies in groups other than mammals. Using a newly developed assay utilizing fluorescent tags, we demonstrated that AaALDH3 activity, as well as the concentrations of farnesol, farnesal and FA were different in CA of sugar and blood-fed females. In CA of blood-fed females the low catalytic activity of AaALDH3 limited the flux of precursors and caused a remarkable increase in the pool of farnesal with a decrease in FA and JH synthesis. The accumulation of the potentially toxic farnesal stimulated the activity of a reductase that converted farnesal back into farnesol, resulting in farnesol leaking out of the CA. Our studies indicated AaALDH3 plays a key role in the regulation of JH synthesis in blood-fed females and mosquitoes seem to have developed a "trade-off" system to balance the key role of farnesal as a JH precursor with its potential toxicity.

  16. Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells.

    PubMed

    Romanov, Victor; Whyard, Terry; Bonala, Radha; Johnson, Francis; Grollman, Arthur

    2011-12-01

    Ingestion of aristolochic acids (AA) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adduct formation, is well-documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. Epithelial cell death is a critical characteristic of these pathological conditions. To elucidate the mechanisms of AA-induced cytotoxicity, we explored AA-interacting proteins in tubular epithelial cells (TEC). We found that AA interacts with a mitochondrial enzyme glutamate dehydrogenase (GDH) and moderately inhibits its activity. We report that AA induces cell death in GDH-knockdown TEC preferentially via non-apoptotic means, whereas in GDH-positive cells, death was executed by both the non-apoptotic and apoptotic mechanisms. Apoptosis is an energy-reliant process and demands higher adenosine 5'-triphosphate (ATP) consumption than does the non-apoptotic cell death. We found that, after AAI treatment, the ATP depletion is more pronounced in GDH-knockdown cells. When we reduced ATP in TEC cells by inhibition of glycolysis and mitochondrial respiration, cell death mode switched from apoptosis and necrosis to necrosis only. In addition, in cells incubated at low glucose and no glutamine conditions, oxaloacetate and pyruvate reduced AAI-induced apoptosis our data suggest that AAI-GDH interactions in TEC are critical for the induction of apoptosis by direct inhibition of GDH activity. AA binding may also induce changes in GDH conformation and promote interactions with other molecules or impair signaling by GDH metabolic products, leading to apoptosis.

  17. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.

    PubMed

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V; Kreikemeyer, Bernd; Wade, Rebecca C; Fiedler, Tomas

    2013-07-19

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.

  18. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase1[OPEN

    PubMed Central

    Thatcher, Louise F.

    2017-01-01

    Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells. PMID:28209841

  19. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    PubMed

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.

  20. Selective inhibition of 11beta-hydroxysteroid dehydrogenase 1 by 18alpha-glycyrrhetinic acid but not 18beta-glycyrrhetinic acid.

    PubMed

    Classen-Houben, Dirk; Schuster, Daniela; Da Cunha, Thierry; Odermatt, Alex; Wolber, Gerhard; Jordis, Ulrich; Kueenburg, Bernhard

    2009-02-01

    Elevated cortisol concentrations have been associated with metabolic diseases such as diabetes type 2 and obesity. 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1, catalyzing the conversion of inactive 11-ketoglucocorticoids into their active 11beta-hydroxy forms, plays an important role in the regulation of cortisol levels within specific tissues. The selective inhibition of 11beta-HSD1 is currently considered as promising therapeutic strategy for the treatment of metabolic diseases. In recent years, natural compound-derived drug design has gained considerable interest. 18beta-glycyrrhetinic acid (GA), a metabolite of the natural product glycyrrhizin, is not selective and inhibits both 11beta-HSD1 and 11beta-HSD2. Here, we compare the biological activity of 18beta-GA and its diastereomer 18alpha-GA against the two enzymes in lysates of transfected HEK-293 cells and show that 18alpha-GA selectively inhibits 11beta-HSD1 but not 11beta-HSD2. This is in contrast to 18beta-GA, which preferentially inhibits 11beta-HSD2. Using a pharmacophore model based on the crystal structure of the GA-derivative carbenoxolone in complex with human 11beta-HSD1, we provide an explanation for the differences in the activities of 18alpha-GA and 18beta-GA. This model will be used to design novel selective derivatives of GA.

  1. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  2. Cooperation of divalent ions and thiamin diphosphate in regulation of the function of pig heart pyruvate dehydrogenase complex.

    PubMed

    Czerniecki, J; Czygier, M

    2001-12-01

    The role of Mg2+, Ca2+, and Mn2+ in regulation of purified pig heart pyruvate dehydrogenase complex (PDC) containing endogenous thiamin diphosphate (TDP) was studied. It was found that the effects of the cations depended on the presence of exogenous TDP. In the absence of added TDP, the divalent cations led to a shortening of a lag phase of the PDC reaction and a strong reduction of the Km value for pyruvate. The relative efficiency of the three types of ions are presented as follows: Mn2+>Ca2+>Mg2+. The other sources claim that in the presence of exogenous TDP, which alone strongly increased the affinity of PDC for pyruvate, any significant additional effects of the cations were not observed. However, Mg2+, Ca2+, and Mn2+ decreased the Km value for CoA in both cases, the absence and presence of exogenous TDP, in approximately a similar extent (about twofold). The affinity of PDC for NAD+ seems to be not sensitive to the presence of the divalent cations. The data obtained suggest that Mg2+, Ca2+, and Mn2+ can cooperate with TDP as positive regulatory effectors of pig heart PDC on the level of pyruvate dehydrogenase and lipoamide acetyltransferase components of the complex.

  3. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS.

  4. Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 11β-Hydroxysteroid Dehydrogenase 1.

    PubMed

    Vuorinen, Anna; Seibert, Julia; Papageorgiou, Vassilios P; Rollinger, Judith M; Odermatt, Alex; Schuster, Daniela; Assimopoulou, Andreana N

    2015-04-01

    In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum.

  5. Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase.

    PubMed

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-03-06

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  6. Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease.

    PubMed Central

    Nobukuni, Y; Mitsubuchi, H; Endo, F; Akaboshi, I; Asaka, J; Matsuda, I

    1990-01-01

    A defect in the E1 beta subunit of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex is one cause of maple syrup urine disease (MSUD). In an attempt to elucidate the molecular basis of MSUD, we isolated and characterized a 1.35 kbp cDNA clone encoding the entire precursor of the E1 beta subunit of BCKDH complex from a human placental cDNA library. Nucleotide sequence analysis revealed that the isolated cDNA clone (lambda hBE1 beta-1) contained a 5'-untranslated sequence of four nucleotides, the translated sequence of 1,176 nucleotides and the 3'-untranslated sequence of 169 nucleotides. Comparison of the amino acid sequence predicted from the nucleotide sequence of the cDNA insert of the clone with the NH2-terminal amino acid sequence of the purified mature bovine BCKDH-E1 beta subunit showed that the cDNA insert encodes for a 342-amino acid subunit with a Mr = 37,585. The subunit is synthesized as the precursor with a leader sequence of 50 amino acids and is processed at the NH2 terminus. A search for protein homology revealed that the primary structure of human BCKDH-E1 beta was similar to the bovine BCKDH-E1 beta and to the E1 beta subunit of human pyruvate dehydrogenase complex, in all regions. The structures and functions of mammalian alpha-ketoacid dehydrogenase complexes are apparently highly conserved. Genomic DNA from lymphoblastoid cell lines derived from normal and five MSUD patients, in whom E1 beta was not detected by immunoblot analysis, gave the same restriction maps on Southern blot analysis. The gene has at least 80 kbp. Images PMID:2365818

  7. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  8. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  9. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites.

  10. Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation[W][OA

    PubMed Central

    Araújo, Wagner L.; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Nunes-Nesi, Adriano; Fernie, Alisdair R.

    2012-01-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions. PMID:22751214

  11. Enzymological and physiological consequences of restructuring the lipoyl domain content of the pyruvate dehydrogenase complex of Escherichia coli.

    PubMed

    Guest, J R; Attwood, M M; Machado, R S; Matqi, K Y; Shaw, J E; Turner, S L

    1997-02-01

    The core-forming lipoate acetyltransferase (E2p) subunits of the pyruvate dehydrogenase (PDH) complex of Escherichia coli contain three tandemly repeated lipoyl domains although one lipoyl domain is apparently sufficient for full catalytic activity in vitro. Plasmids containing IPTG-inducible aceEF-IpdA operons which express multilip-PDH complexes bearing one N-terminal lipoyl domain and up to seven unlipoylated (mutant) domains per E2p chain, were constructed. Each plasmid restored the nutritional lesion of a strain lacking the PDH complex and expressed a sedimentable PDH complex, although the catalytic activities declined significantly as the number of unlipoylated domains increased above four per E2p chain. It was concluded that the extra domains protrude from the 24-meric E2p core without affecting assembly of the E1p and E3 subunits, and that the lipoyl cofactor bound to the outermost domain can participate successfully at each of the three types of active site in the assembled complex. Physiological studies with two series of isogenic strains expressing multilip-PDH complexes from modified chromosomal pdh operons (pdhR-aceEF-IpdA) showed that three lipoyl domains per E2p chain is optimal and that only the outermost domain need be lipoylated for optimal activity. It is concluded that the reason for retaining three lipoyl domains is to extend the reach of the outermost lipoyl cofactor rather than to provide extra cofactors for catalysis.

  12. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  13. The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. The tryptic peptides.

    PubMed Central

    Wootton, J C; Taylor, J G; Jackson, A A; Chambers, G K; Fincham, J R

    1975-01-01

    The NADP-specific glutamate dehydrogenase of Neurospora crassa was digested with trypsin, and peptides accounting for 441 out of the 452 residues of the polypeptide chain were isolated and substantially sequenced. Additional experimental detail has been deposited as Supplementary Publication SUP 50052 (11 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem J. (1975) 145, 5. PMID:1000

  14. Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse

    PubMed Central

    van Vlies, Naomi; Tian, Liqun; Overmars, Henk; Bootsma, Albert H.; Kulik, Willem; Wanders, Ronald J. A.; Wood, Philip A.; Vaz, Frédéric M.

    2004-01-01

    In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD−/− (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD−/− mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial β-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD−/− tissues, indicating that, in this situation, the β-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD−/− hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD−/− mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse. PMID:15535801

  15. A novel 18 beta-glycyrrhetinic acid analogue as a potent and selective inhibitor of 11 beta-hydroxysteroid dehydrogenase 2.

    PubMed

    Vicker, Nigel; Su, Xiangdong; Lawrence, Harshani; Cruttenden, Adrian; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2004-06-21

    Using 18beta-glycyrrhetinic acid as a template, the synthesis of a series of secondary amides at the 30-position is described and the effects of these modifications on the SAR of the 11beta-hydroxysteroid dehydrogenase isozymes type 1 and 2 from the rat are investigated. An isoform selective inhibitor has been discovered and compound 5, N-(2-hydroxyethyl)-3beta-hydroxy-11-oxo-18beta-olean-12-en-30-oic acid amide, is highlighted as a very potent and selective inhibitor of 11beta-hydroxysteroid dehydrogenase 2 with an IC(50)=4 pM.

  16. The pyruvate dehydrogenase complex: nutrient control and the pathogenesis of insulin resistance.

    PubMed

    Sugden, M C; Orfali, K A; Holness, M J

    1995-06-01

    This review examines the molecular mechanisms underlying substrate competition between glucose and lipid in starvation and in insulin-resistant states. We demonstrate that lipid-derived substrates are oxidized in preference to glucose by skeletal muscle in vivo during prolonged starvation. An accelerated and exaggerated lipolytic and ketogenic response to starvation in late pregnancy is associated with more rapid suppression of glucose oxidation by the maternal skeletal-muscle mass. These benign adaptations to changes in lipid availability (which occur secondarily to changes in carbohydrate supply and demand) contrast with the well-documented detrimental effects to health of an inappropriately high supply of dietary lipid. We present results that indicate that the prolonged consumption of a diet high in saturated fat is associated with a stable enhancement of pyruvate dehydrogenase (PDH) kinase activity at least in two oxidative tissues--liver and heart. This long-term enhancement of PDH kinase activity is concomitant with the development of whole-body insulin resistance and adds a new dimension to the potential role of dietary composition in the pathogenesis of insulin resistance.

  17. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.

    PubMed

    Lima, Luanne Helena Augusto; das Graças de Almeida Felipe, Maria; Vitolo, Michele; Torres, Fernando Araripe Gonçalves

    2004-11-01

    The first two steps in xylose metabolism are catalyzed by NAD(P)H-dependent xylose reductase (XR) (EC 1.1.1.21) and NAD(P)-dependent xylitol dehydrogenase (XDH) (EC 1.1.1.9), which lead to xylose-->xylitol-->xylulose conversion. Xylitol has high commercial value, due to its sweetening and anticariogenic properties, as well as several clinical applications. The acid hydrolysis of sugarcane bagasse allows the separation of a xylose-rich hemicellulosic fraction that can be used as a substrate for Candida guilliermondii to produce xylitol. However, the hydrolysate contains acetic acid, an inhibitor of microbial metabolism. In this study, the effect of acetic acid on the activities of XR and XDH and on xylitol formation by C. guilliermondii were studied. For this purpose, fermentations were carried out in bagasse hydrolysate and in synthetic medium. The activities of XR and XDH were higher in the medium containing acetic acid than in control medium. Moreover, none of the fermentative parameters were significantly altered during cell culture. It was concluded that acetic acid does not interfere with xylitol formation since the increase in XR activity is proportional to XDH activity, leading to a greater production of xylitol and its subsequent conversion to xylulose.

  18. Inhibition of 3beta- and 17beta-hydroxysteroid dehydrogenase activities in rat Leydig cells by perfluorooctane acid.

    PubMed

    Zhao, Binghai; Chu, Yanhui; Hardy, Dianne O; Li, Xiao-kun; Ge, Ren-Shan

    2010-01-01

    Perfluorooctane acid (PFOA) is classified as a persistent organic pollutant and as an endocrine disruptor. The mechanism by which PFOA causes reduced testosterone production in males is not known. We tested our hypothesis that PFOA interferes with Leydig cell steroidogenic enzymes by measuring its effect on 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase 3 (17beta-HSD3) activities in rat testis microsomes and Leydig cells. The IC(50)s of PFOA and mode of inhibition were assayed. PFOA inhibited microsomal 3beta-HSD with an IC(50) of 53.2+/-25.9 microM and 17beta-HSD3 with an IC(50) 17.7+/-6.8 microM. PFOA inhibited intact Leydig cell 3beta-HSD with an IC(50) of 146.1+/-0.9 microM and 17beta-HSD3 with an IC(50) of 194.8+/-1.0 microM. The inhibitions of 3beta-HSD and 17beta-HSD3 by PFOA were competitive for the substrates. In conclusion, PFOA inhibits 3beta-HSD and 17beta-HSD3 in rat Leydig cells.

  19. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions.

  20. The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly.

    PubMed

    Marrott, Nia L; Marshall, Jacqueline J T; Svergun, Dmitri I; Crennell, Susan J; Hough, David W; Danson, Michael J; van den Elsen, Jean M H

    2012-03-01

    The dihydrolipoyl acyl-transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2-oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo-trimers that, depending on the source, further associate into either octahedral (24-mer) or icosahedral (60-mer) assemblies, as predicted by the principles of quasi-equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo-trimers assemble into a unique 42-mer oblate spheroid. Analytical equilibrium centrifugation and small-angle X-ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non-identical environments, forms an irregular protein shell via non-equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi-equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self-assembling biological complexes to be utilized in innovative nanotechnology applications.

  1. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  2. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    PubMed

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124.

  3. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    PubMed

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  4. Effect of Butanedioic Acid Mono (2,2-Dimethylhydrazide) on the Activity of Membrane-Bound Succinate Dehydrogenase

    PubMed Central

    See, Raymond M.; Foy, Chester L.

    1982-01-01

    Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator. PMID:16662493

  5. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co

  6. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors.

    PubMed

    Gaware, Rawindra; Khunt, Rupesh; Czollner, Laszlo; Stanetty, Christian; Da Cunha, Thierry; Kratschmar, Denise V; Odermatt, Alex; Kosma, Paul; Jordis, Ulrich; Classen-Houben, Dirk

    2011-03-15

    Glycyrrhetinic acid, the metabolite of the natural product glycyrrhizin, is a well known nonselective inhibitor of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and type 2. Whereas inhibition of 11β-HSD1 is currently under consideration for treatment of metabolic diseases, such as obesity and diabetes, 11β-HSD2 inhibitors may find therapeutic applications in chronic inflammatory diseases and certain forms of cancer. Recently, we published a series of hydroxamic acid derivatives of glycyrrhetinic acid showing high selectivity for 11β-HSD2. The most potent and selective compound is active against human 11β-HSD2 in the low nanomolar range with a 350-fold selectivity over human 11β-HSD1. Starting from the lead compounds glycyrrhetinic acid and the hydroxamic acid derivatives, novel triterpene type derivatives were synthesized and analyzed for their biological activity against overexpressed human 11β-HSD1 and 11β-HSD2 in cell lysates. Here we describe novel 29-urea- and 29-hydroxamic acid derivatives of glycyrrhetinic acid as well as derivatives with the Beckman rearrangement of the 3-oxime to a seven-membered ring, and the rearrangement of the C-ring from 11-keto-12-ene to 12-keto-9(11)-ene. The combination of modifications on different positions led to compounds comprising further improved selective inhibition of 11β-HSD2 in the lower nanomolar range with up to 3600-fold selectivity.

  7. The protein conformation of Cd-substituted horse liver alcohol dehydrogenase and its metal-site coordination geometry in binary and ternary inhibitor complexes.

    PubMed

    Hemmingsen, L; Bauer, R; Bjerrum, M J; Adolph, H W; Zeppezauer, M; Cedergren-Zeppezauer, E

    1996-10-15

    The coordination geometry of the metal at the active site in Cd-substituted horse liver alcohol dehydrogenase (LADH) has been investigated for the binary complexes of LADH with imidazole, isobutyramide, decanoic acid and Cl-, and for the ternary complexes of LADH with NADH and imidazole, NADH and isobutyramide, NAD+ and decanoic acid and NAD+ and Cl-, by using the method of perturbed angular correlation of gamma-rays (PAC). The spectral results are consistent with a flexible structure around the metal for the binary complexes with inhibitors. For ternary complexes, however, a rigid structure is observed. An exception is the ternary complex between LADH, NADH and imidazole, in which the metal site is still flexible. Comparing with available structures determined by X-ray crystallography, we found a correlation between open structures and flexible metal sites, and between closed structures and rigid metal sites. This indicates that the PAC technique can be applied to distinguish the two conformations in solution. The spectral parameters, omega(o) and eta, of the experiments, except for the complexes with imidazole, fall into two groups: one with low omega(o) and one with high omega(o) (eta is relatively constant in all experiments). In this work it is clarified that the low omega(o) values are connected with the presence of a negatively charged solvent ligand. Using an angular-overlap approach to interpret the results, the low omega(o) values are found to be compatible with a coordination geometry where the S-Cd-S (Cys174 and Cys46 coordinate to the metal) angle is about 110 degrees as suggested in [Hemmingsen, L., Bauer, R., Danielsen, E., Bjerrum. M. J., Zeppezauer, M., Adolph, H. W., Formicka, G. & Cedergren-Zeppezauer, E. (1995) Biochemistry 34, 7145-7153], whereas high omega(o) values are compatible with an S-Cd-S angle of 130 degrees. The presence of a negatively charged metal ligand, therefore, might trigger the movement of the sulfur of Cys174. As it is

  8. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  9. A ROLE FOR AMPK IN THE INHIBITION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE BY POLYUNSATURATED FATTY ACIDS

    PubMed Central

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-01-01

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids. PMID:19646964

  10. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Graça, Inês; Silva, Joaquina; Sá, Rosália; Sousa, Mário; Barros, Alberto; Tavares de Almeida, Isabel; Rivera, Isabel

    2012-09-10

    During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.

  11. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis.

    PubMed

    Huang, Shaobai; Taylor, Nicolas L; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2013-02-01

    Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth.

  12. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components

    PubMed Central

    Ambrus, Attila; Nemeria, Natalia S.; Torocsik, Beata; Tretter, Laszlo; Nilsson, Mattias; Jordan, Frank; Adam-Vizi, Vera

    2015-01-01

    Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess ‘moonlighting’ activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca2+, ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both

  13. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components.

    PubMed

    Ambrus, Attila; Nemeria, Natalia S; Torocsik, Beata; Tretter, Laszlo; Nilsson, Mattias; Jordan, Frank; Adam-Vizi, Vera

    2015-12-01

    Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess 'moonlighting' activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both

  14. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    PubMed

    Xekouki, Paraskevi; Stratakis, Constantine A

    2012-12-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.

  15. Bacillus anthracis inosine 5'-monophosphate dehydrogenase in action: the first bacterial series of structures of phosphate ion-, substrate-, and product-bound complexes.

    PubMed

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Wu, Ruiying; Wilton, Rosemarie; Gollapalli, Deviprasad R; Wang, Ximi K; Zhang, Rongguang; Jedrzejczak, Robert; Mack, Jamey C; Maltseva, Natalia; Mulligan, Rory; Binkowski, T Andrew; Gornicki, Piotr; Kuhn, Misty L; Anderson, Wayne F; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2012-08-07

    Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.

  16. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nicotinamide-ascorbic acid complex. 172.315... Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be... the controlled reaction between ascorbic acid and nicotinamide, melting in the range 141 °C to 145...

  17. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.

    PubMed

    Zhang, Huan; Shi, Lulu; Mao, Xinlei; Lin, Jinping; Wei, Dongzhi

    2016-11-10

    Membrane-bound alcohol dehydrogenase (mADH) was overexpressed in Gluconobacter oxydans DSM 2003, and the effects on cell growth and glycolic acid production were investigated. The transcription levels of two terminal ubiquinol oxidases (bo3 and bd) in the respiratory chain of the engineered strain G. oxydans-adhABS were up-regulated by 13.4- and 3.8-fold, respectively, which effectively enhanced the oxygen uptake rate, resulting in higher resistance to acid. The cell biomass of G. oxydans-adhABS could increase by 26%-33% when cultivated in a 7L bioreactor. The activities of other major membrane-bound dehydrogenases were also increased to some extent, particularly membrane-bound aldehyde dehydrogenase (mALDH), which is involved in the catalytic oxidation of aldehydes to the corresponding acids and was 1.26-fold higher. Relying on the advantages of the above, G. oxydans-adhABS could produce 73.3gl(-1) glycolic acid after 45h of bioconversion with resting cells, with a molar yield 93.5% and a space-time yield of 1.63gl(-1)h(-1). Glycolic acid production could be further improved by fed-batch fermentation. After 45h of culture, 113.8gl(-1) glycolic acid was accumulated, with a molar yield of 92.9% and a space-time yield of 2.53gl(-1)h(-1), which is the highest reported glycolic acid yield to date.

  18. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  19. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  20. Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus

    SciTech Connect

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; Kelly, Robert M.; Adams, Michael W. W.

    2016-01-29

    In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.

  1. A chemical proteomic probe for detecting dehydrogenases: catechol rhodanine.

    PubMed

    Ge, Xia; Sem, Daniel S

    2012-01-01

    Inherent complexity of the proteome often demands that it be studied as manageable subsets, termed subproteomes. A subproteome can be defined in a number of ways, although a pragmatic approach is to define it based on common features in an active site that lead to binding of a common small molecule ligand (e.g., a cofactor or a cross-reactive drug lead). The subproteome, so defined, can be purified using that common ligand tethered to a resin, with affinity chromatography. Affinity purification of a subproteome is described in the next chapter. That subproteome can then be analyzed using a common ligand probe, such as a fluorescent common ligand that can be used to stain members of the subproteome in a native gel. Here, we describe such a fluorescent probe, based on a catechol rhodanine acetic acid (CRAA) ligand that binds to dehydrogenases. The CRAA ligand is fluorescent and binds to dehydrogenases at pH > 7, and hence can be used effectively to stain dehydrogenases in native gels to identify what subset of proteins in a mixture are dehydrogenases. Furthermore, if one is designing inhibitors to target one or more of these dehydrogenases, the CRAA staining can be performed in a competitive assay format, with or without inhibitor, to assess the selectivity of the inhibitor for the targeted dehydrogenase. Finally, the CRAA probe is a privileged scaffold for dehydrogenases, and hence can easily be modified to increase affinity for a given dehydrogenase.

  2. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase.

    PubMed

    Lowe, Edward D; Gao, Guang-Yao; Johnson, Louise N; Keung, Wing Ming

    2008-08-14

    The ALDH2*2 gene encoding the inactive variant form of mitochondrial aldehyde dehydrogenase (ALDH2) protects nearly all carriers of this gene from alcoholism. Inhibition of ALDH2 has hence become a possible strategy to treat alcoholism. The natural product 7-O-glucosyl-4'-hydroxyisoflavone (daidzin), isolated from the kudzu vine ( Peruraria lobata), is a specific inhibitor of ALDH2 and suppresses ethanol consumption. Daidzin is the active principle in a herbal remedy for "alcohol addiction" and provides a lead for the design of improved ALDH2. The structure of daidzin/ALDH2 in complex at 2.4 A resolution shows the isoflavone moiety of daidzin binding close to the aldehyde substrate-binding site in a hydrophobic cleft and the glucosyl function binding to a hydrophobic patch immediately outside the isoflavone-binding pocket. These observations provide an explanation for both the specificity and affinity of daidzin (IC50 =80 nM) and the affinity of analogues with different substituents at the glucosyl position.

  3. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex.

    PubMed

    Seifert, Franziska; Ciszak, Ewa; Korotchkina, Lioubov; Golbik, Ralph; Spinka, Michael; Dominiak, Paulina; Sidhu, Sukhdeep; Brauer, Johanna; Patel, Mulchand S; Tittmann, Kai

    2007-05-29

    At the junction of glycolysis and the Krebs cycle in cellular metabolism, the pyruvate dehydrogenase multienzyme complex (PDHc) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. In mammals, PDHc is tightly regulated by phosphorylation-dephosphorylation of three serine residues in the thiamin-dependent pyruvate dehydrogenase (E1) component. In vivo, inactivation of human PDHc correlates mostly with phosphorylation of serine 264, which is located at the entrance of the substrate channel leading to the active site of E1. Despite intense investigations, the molecular mechanism of this inactivation has remained enigmatic. Here, a detailed analysis of microscopic steps of catalysis in human wild-type PDHc-E1 and pseudophosphorylation variant Ser264Glu elucidates how phosphorylation of Ser264 affects catalysis. Whereas the intrinsic reactivity of the active site in catalysis of pyruvate decarboxylation remains nearly unaltered, the preceding binding of substrate to the enzyme's active site via the substrate channel and the subsequent reductive acetylation of the E2 component are severely slowed in the phosphorylation variant. The structure of pseudophosphorylation variant Ser264Glu determined by X-ray crystallography reveals no differences in the three-dimensional architecture of the phosphorylation loop or of the active site, when compared to those of the wild-type enzyme. However, the channel leading to the active site is partially obstructed by the side chain of residue 264 in the variant. By analogy, a similar obstruction of the substrate channel can be anticipated to result from a phosphorylation of Ser264. The kinetic and thermodynamic results in conjunction with the structure of Ser264Glu suggest that phosphorylation blocks access to the active site by imposing a steric and electrostatic barrier for substrate binding and active site coupling with the E2 component. As a Ser264Gln variant, which carries no charge at position 264, is also selectively

  4. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

    PubMed Central

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-01-01

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267

  5. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux.

    PubMed

    Fan, Jing; Kamphorst, Jurre J; Rabinowitz, Joshua D; Shlomi, Tomer

    2013-10-25

    Acetyl-CoA is an important anabolic precursor for lipid biosynthesis. In the conventional view of mammalian metabolism, acetyl-CoA is primarily derived by the oxidation of glucose-derived pyruvate in mitochondria. Recent studies have employed isotope tracers to show that in cancer cells grown in hypoxia or with defective mitochondria, a major fraction of acetyl-CoA is produced via another route, reductive carboxylation of glutamine-derived α-ketoglutarate (catalyzed by reverse flux through isocitrate dehydrogenase, IDH). Here, we employ a quantitative flux model to show that in hypoxia and in cells with defective mitochondria, oxidative IDH flux persists and may exceed the reductive flux. Therefore, IDH flux may not be a net contributor to acetyl-CoA production, although we cannot rule out net reductive IDH flux in some compartments. Instead of producing large amounts of net acetyl-CoA reductively, the cells adapt by reducing their demand for acetyl-CoA by importing rather than synthesizing fatty acids. Thus, fatty acid labeling from glutamine in hypoxia can be explained by spreading of label without net reductive IDH flux.

  6. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  7. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.

  8. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    SciTech Connect

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to use {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.

  9. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs.

  10. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  11. Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801.

    PubMed

    Messam, C A; Greene, J G; Greenamyre, J T; Robinson, M B

    1995-07-03

    The effects of intrastriatal injections of a reversible inhibitor of succinate dehydrogenase, malonate, on the extracellular concentrations of amino acid neurotransmitters were examined using a microdialysis probe that was positioned a fixed distance from an injection cannula. Malonate (2 mumol) caused a 23 +/- 5-fold increase in extracellular glutamate (Glu), a 18 +/- 6-fold increase extracellular gamma-aminobutyric acid (GABA) and a modest increase in extracellular aspartate (Asp, 2.9 +/- 0.8-fold increase). Administration of the NMDA receptor antagonist MK-801 (5 mg/kg) prior to injection of malonate almost completely blocked these increases. This study provides direct evidence that inhibition of succinate dehydrogenase causes an increase in extracellular amino acid neurotransmitters and further evidence that bioenergetic defects may contribute to the pathogenesis of chronic neurodegenerative diseases through an excitotoxic mechanism.

  12. Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33

    PubMed Central

    Li, Huili; Xie, Kebo; Yu, Wenjun; Hu, Liejie; Huang, Haiyan; Xie, Huijun

    2016-01-01

    Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33. PMID:26729714

  13. Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33.

    PubMed

    Li, Huili; Xie, Kebo; Yu, Wenjun; Hu, Liejie; Huang, Haiyan; Xie, Huijun; Wang, Shuning

    2016-01-04

    Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.

  14. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms.

    PubMed

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-04-09

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4'-aminopyrimidine N1' atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu(571), Glu(235), and Glu(237)) and Arg(606) resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu(235) makes no direct contact with the cofactor. The role of the conserved Glu(571) residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  15. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  16. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture.

    PubMed

    Araújo, Wagner L; Nunes-Nesi, Adriano; Osorio, Sonia; Usadel, Björn; Fuentes, Daniela; Nagy, Réka; Balbo, Ilse; Lehmann, Martin; Studart-Witkowski, Claudia; Tohge, Takayuki; Martinoia, Enrico; Jordana, Xavier; Damatta, Fábio M; Fernie, Alisdair R

    2011-02-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.

  17. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  18. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed...

  19. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed...

  20. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nicotinamide-ascorbic acid complex. 172.315 Section... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed...

  1. Free fatty acid inhibition of the insulin induction of glucose-6-phosphate dehydrogenase in rat hepatocyte monolayers.

    PubMed

    Salati, L M; Adkins-Finke, B; Clarke, S D

    1988-01-01

    Rat hepatocytes in monolayer culture were utilized to determine if the decrease in glucose-6-phosphate dehydrogenase (G6PD) activity resulting from the ingestion of fat can be mimicked by the addition of fatty acids to a chemically, hormonally defined medium. G6PD activity in cultured hepatocytes was induced several-fold by insulin. Dexamethasone or T3 did not amplify the insulin induction of G6PD. Glucose alone increased G6PD activity in cultured hepatocytes from fasted donors by nearly 500%. Insulin in combination with glucose induced G6PD an additional two-fold. The increase in G6PD activity caused by glucose was greater in hepatocytes isolated from 72 hr-fasted rats as compared to fed donor rats. Such a response was reminiscent of the "overshoot" phenomenon in which G6PD activity is induced well above the normal level by fasting-refeeding rats a high glucose diet. Addition of linoleate to the medium resulted in a significant suppression of insulin's ability to induce G6PD, but linoleate had no effect on the induction of G6PD activity by glucose alone. A shift to the right in the insulin-response curve for the induction of G6PD also was detected for the induction of malic enzyme and acetyl-CoA carboxylase. Arachidonate (0.25 mM) was a significantly more effective inhibitor of the insulin action than linoleate was. Apparently rat hepatocytes in monolayer culture can be utilized as a model to investigate the molecular mechanism by which fatty acids inhibit the production of lipogenic enzymes. In part, this mechanism of fatty acid inhibition involves desensitization of hepatocytes to the lipogenic action of insulin.

  2. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis.

  3. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.

    PubMed

    Höppner, Astrid; Schomburg, Dietmar; Niefind, Karsten

    2013-11-01

    Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydrogenases (SDH/QDH) occurring in bacteria and plants. We characterized the dual-substrate quinate/shikimate dehydrogenase (QSDH) from Corynebacterium glutamicum (CglQSDH) kinetically and revealed a clear substrate preference of CglQSDH for quinate compared with shikimate both at the pH optimum and in a physiological pH range, which is a remarkable contrast to closely related SDH/QDH enzymes. With respect to the cosubstrate, CglQSDH is strictly NAD(H) dependent. These substrate and cosubstrate profiles correlate well with the details of three atomic resolution crystal structures of CglQSDH in different functional states we report here: with bound NAD+ (binary complex) and as ternary complexes with NADH plus either shikimate or quinate. The CglQSDH-NADH-quinate structure is the first complex structure of any member of the SDH/QDH family with quinate. Based on this novel structural information and systematic sequence and structure comparisons with closely related enzymes, we can explain the strict NAD(H) dependency of CglQSDH as well as its discrimination between shikimate and quinate.

  4. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins.

    PubMed

    Hara, Masakazu; Endo, Takuya; Kamiya, Keita; Kameyama, Ayuko

    2017-03-01

    Dehydrins, which are group 2 late embryogenesis abundant (LEA) proteins, accumulate in plants during the development of the embryo and exposure to abiotic stresses including low temperature. Dehydrins exhibit cryoprotection of freezing-sensitive enzymes, e.g. lactate dehydrogenase (LDH). Although it has been reported that K-segments conserved in dehydrins are related to their cryoprotection activity, it has not been determined which sequence features of the K-segments contribute to the cryoprotection. A cryoprotection assay using LDH indicated that 13 K-segments including 12 K-segments found in Arabidopsis dehydrins and a typical K-segment (TypK, EKKGIMEKIKEKLPG) derived from the K-segments of many plants showed similar cryoprotective activities. Mutation of the TypK sequence demonstrated that hydrophobic amino acids were clearly involved in preventing the cryoinactivation, cryoaggregation, and cryodenaturation of LDH. We propose that the cryoprotective activities of dehydrins may be made possible by the hydrophobic residues of the K-segments.

  5. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    PubMed

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  6. Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase.

    PubMed

    Petrick, J S; Jagadish, B; Mash, E A; Aposhian, H V

    2001-06-01

    Monomethylarsonous acid (MMA(III)), a metabolite of inorganic arsenic, has received very little attention from investigators of arsenic metabolism in humans. MMA(III), like sodium arsenite, contains arsenic in the +3 oxidation state. Although we have previously demonstrated that it is more toxic than arsenite in cultured Chang human hepatocytes, there are no data showing in vivo toxicity of MMA(III). When MMA(III) or sodium arsenite was administered intraperitoneally to hamsters, the LD(50)s were 29.3 and 112.0 micromol/kg of body wt, respectively. In addition, inhibition of hamster kidney or purified porcine heart pyruvate dehydrogenase (PDH) activity by MMA(III) or arsenite was determined. To inhibit hamster kidney PDH activity by 50%, the concentrations (mean +/- SE) of MMA(III) as methylarsine oxide, MMA(III) as diiodomethylarsine, and arsenite were 59.9 +/- 6.5, 62.0 +/- 1.8, and 115.7 +/- 2.3 microM, respectively. To inhibit activity of purified porcine heart PDH activity by 50%, the concentrations (mean +/- SE) of MMA(III) as methylarsine oxide and arsenite were 17.6 +/- 4.1 and 106.1 +/- 19.8 microM, respectively. These data demonstrate that MMA(III) is more toxic than inorganic arsenite, both in vivo and in vitro, and call into question the hypothesis that methylation of inorganic arsenic is a detoxication process.

  7. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  8. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens.

    PubMed

    Cheng, Fang-yi; Zamski, Eli; Guo, Wei-wen; Pharr, D Mason; Williamson, John D

    2009-11-01

    The sugar alcohol mannitol is an important carbohydrate with well-documented roles in both metabolism and osmoprotection in many plants and fungi. In addition to these traditionally recognized roles, mannitol is reported to be an antioxidant and as such may play a role in host-pathogen interactions. Current research suggests that pathogenic fungi can secrete mannitol into the apoplast to suppress reactive oxygen-mediated host defenses. Immunoelectron microscopy, immunoblot, and biochemical data reported here show that the normally symplastic plant enzyme, mannitol dehydrogenase (MTD), is secreted into the apoplast after treatment with the endogenous inducer of plant defense responses salicylic acid (SA). In contrast, a cytoplasmic marker protein, hexokinase, remained cytoplasmic after SA-treatment. Secreted MTD retained activity after export to the apoplast. Given that MTD converts mannitol to the sugar mannose, MTD secretion may be an important component of plant defense against mannitol-secreting fungal pathogens such as Alternaria. After SA treatment, MTD was not detected in the Golgi apparatus, and its SA-induced secretion was resistant to brefeldin A, an inhibitor of Golgi-mediated protein transport. Together with the absence of a known extracellular targeting sequence on the MTD protein, these data suggest that a plant's response to pathogen challenge may include secretion of selected defensive proteins by as yet uncharacterized, non-Golgi mechanisms.

  9. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  10. Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors.

    PubMed

    Stanetty, Christian; Czollner, Laszlo; Koller, Iris; Shah, Priti; Gaware, Rawindra; Cunha, Thierry Da; Odermatt, Alex; Jordis, Ulrich; Kosma, Paul; Classen-Houben, Dirk

    2010-11-01

    Glycyrrhetinic acid, the metabolite of the natural product glycyrrhizin, is a well known nonselective inhibitor of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and type 2. Whereas inhibition of 11β-HSD1 is currently under consideration for treatment of metabolic diseases, such as obesity and diabetes, 11β-HSD2 inhibitors may find therapeutic applications in chronic inflammatory diseases and certain forms of cancer. So far, no selective 11β-HSD2 inhibitor has been developed and neither animal studies nor clinical trials have been reported based on 11β-HSD2 inhibition. Starting from the lead compound glycyrrhetinic acid, novel triterpene type derivatives were synthesized and analyzed for their biological activity against overexpressed human 11β-HSD1 and 11β-HSD2 in cell lysates. Several hydroxamic acid derivatives showed high selectivity for 11β-HSD2. The most potent and selective compound is active against human 11β-HSD2 in the low nanomolar range with a 350-fold selectivity over human 11β-HSD1.

  11. Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas

    PubMed Central

    Kim, Ji Young; Kim, Sung Kwon; Kim, Seung-Ki; Park, Sung-Hye; Kim, Hyeonjin; Lee, Se-Hoon; Choi, Seung Hong; Park, Sunghyouk; Park, Chul-Kee

    2015-01-01

    Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has become the main treatment modality in malignant gliomas. However unlike glioblastomas, there are inconsistent result about fluorescence status in WHO grade III gliomas. Here, we show that mutational status of IDH1 is linked to 5-ALA fluorescence. Using genetically engineered malignant glioma cells harboring wild type (U87MG-IDH1WT) or mutant (U87MG-IDH1R132H) IDH1, we demonstrated a lag in 5-ALA metabolism and accumulation of protoporphyrin IX (PpIX) in U87MG-IDH1R132H cells. Next, we used liquid chromatography–mass spectrometry (LC-MS) to screen for tricarboxylic acid (TCA) cycle-related metabolite changes caused by 5-ALA exposure. We observed low baseline levels of NADPH, an essential cofactor for the rate-limiting step of heme degradation, in U87MG-IDH1R132H cells. High levels of NADPH are required to metabolize excessive 5-ALA, giving a plausible reason for the temporarily enhanced 5-ALA fluorescence in mutant IDH1 cells. This hypothesis was supported by the results of metabolic screening in human malignant glioma samples. In conclusion, we have discovered a relationship between enhanced 5-ALA fluorescence and IDH1 mutations in WHO grade III gliomas. Low levels of NADPH in tumors with mutated IDH1 is responsible for the enhanced fluorescence. PMID:26008980

  12. Biochemical changes of the synovial liquid of corpses with regard to the cause of death. 2: Alkaline phosphatase, lactic acid dehydrogenase (LDH), and glutamic oxalacetic transaminase (GOT).

    PubMed

    More, D S; Arroyo, M C

    1985-04-01

    We studied the activity of various enzymes in the synovial liquid of 100 corpses with regard to the cause of death finding that the alkaline phospatase and glutamic oxalacetic transaminase (GOT) are increased in cranioencephalic trauma, possibly as a result of the important cellular lysis which goes with them; and lactic acid dehydrogenase (LDH) is increased in the pulmonary processes, almost certainly with relation to the great quantity of this enzyme in the lung.

  13. Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of D-lactate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-12-02

    An NAD-dependent D-lactate dehydrogenase (D-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of α-keto carboxylic acids such as phenylpyruvic acid (PPA), α-ketobutyric acid, α-ketovaleric acid, β-hydroxypyruvate. Compared with wild-type D-nLDH, the Y52L mutant D-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-α-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50 mM PPA was completely reduced to (R)-PLA in 90 min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral α-hydroxy carboxylic acids.

  14. Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth

    PubMed Central

    Sulpice, Ronan; Sienkiewicz-Porzucek, Agata; Osorio, Sonia; Krahnert, Ina; Stitt, Mark; Nunes-Nesi, Adriano

    2010-01-01

    Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (Fv/Fm), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism. PMID:20473773

  15. Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth.

    PubMed

    Sulpice, Ronan; Sienkiewicz-Porzucek, Agata; Osorio, Sonia; Krahnert, Ina; Stitt, Mark; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2010-10-01

    Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (F (v)/F (m)), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism.

  16. Behavior of carboxylic acids upon complexation with beryllium compounds.

    PubMed

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  17. Thiamin-responsive maple-syrup-urine disease: decreased affinity of the mutant branched-chain alpha-keto acid dehydrogenase for alpha-ketoisovalerate and thiamin pyrophosphate.

    PubMed Central

    Chuang, D T; Ku, L S; Cox, R P

    1982-01-01

    The biochemical basis for the therapeutic effects of thiamin in thiamin-responsive maple-syrup-urine disease (MSUD) was investigated in intact and disrupted fibroblast cultures from normals and patients with various forms of MSUD. Decarboxylation of alpha-keto[1-14C]isovalerate (KIV) by intact cells from a thiamin-responsive MSUD patient was at 30-40% of the normal rate with or without thiamin in the incubation medium. Under similar conditions, intact classical MSUD fibroblasts failed to decarboxylate KIV. Branched-chain alpha-keto acid (BCKA) dehydrogenase activity measured in disrupted cells from the thiamin-responsive subject showed sigmoidal kinetics in the absence of thiamin pyrophosphate (TPP), with an increased concentration of substrate needed for half-maximal velocity (K0.5 for KIV = 7 mM vs. 0.05 mM in normal cells). When assayed with 0.2 mM TPP present, the mutant enzyme showed (i) a shift in kinetics to near Michaelis-Menten type as observed with the normal BCKA dehydrogenase and (ii) a lower K0.5 value of 4 mM for KIV, suggesting a TPP-mediated increase in the mutant enzyme's affinity for substrate. By contrast, TPP increased only the Vmax and was without effect on the apparent Km for KIV of the BCKA dehydrogenase from cells of normals and patients with classical MSUD and variant thiamin-responsive MSUD (grade 3). Measurement of the apparent Km for TPP of the BCKA dehydrogenase from thiamin-responsive mutant MSUd cells showed a 16-fold increase in the constant to 25 microM compared to enzymes from normal or classical MSUD cells. These findings demonstrate that the primary defect in the thiamin-responsive MSUD patient is a reduced affinity of the mutant BCKA dehydrogenase for TPP that results in impaired oxidative decarboxylation of BCKA. PMID:6954481

  18. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex.

    PubMed

    Wang, Junjie; Nemeria, Natalia S; Chandrasekhar, Krishnamoorthy; Kumaran, Sowmini; Arjunan, Palaniappa; Reynolds, Shelley; Calero, Guillermo; Brukh, Roman; Kakalis, Lazaros; Furey, William; Jordan, Frank

    2014-05-30

    The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s(-1), comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4'-aminopyrimidine tautomer of bound thiamin diphosphate (AP).

  19. Inhibition of human and rat 11beta-hydroxysteroid dehydrogenase type 1 by 18beta-glycyrrhetinic acid derivatives.

    PubMed

    Su, Xiangdong; Vicker, Nigel; Lawrence, Harshani; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11beta-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11beta-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18beta-glycyrrhetinic acid (18beta-GA) derivatives (2-5) and their inhibitory activities against rat hepatic11beta-HSD1 and rat renal 11beta-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds' ability to inhibit human 11beta-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18beta-GA derivatives 2 and 3 with apparent selectivity for rat 11beta-HSD1 showed a high percentage inhibition for human microsomal 11beta-HSD1 at 10 microM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18beta-GA derivatives 4 and 5, although showing selectivity for rat 11beta-HSD1 inhibited human microsomal 11beta-HSD1 with IC50 values in the low micromolar range.

  20. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    PubMed Central

    2011-01-01

    Background Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. Results In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. Conclusions We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications. PMID:21923907

  1. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production.

    PubMed

    Lee, Jae Won; In, Jung Hoon; Park, Joon-Bum; Shin, Jonghyeok; Park, Jin Hwan; Sung, Bong Hyun; Sohn, Jung-Hoon; Seo, Jin-Ho; Park, Jin-Byoung; Kim, Soo Rin; Kweon, Dae-Hyuk

    2017-01-10

    Lactic acid (LA) is a versatile compound used in the food, pharmaceutical, textile, leather, and chemical industries. Biological production of LA is possible by yeast strains expressing a bacterial gene encoding l-lactate dehydrogenase (LDH). Kluyveromyces marxianus is an emerging non-conventional yeast with various phenotypes of industrial interest. However, it has not been extensively studied for LA production. In this study, K. marxianus was engineered to express and co-express various heterologous LDH enzymes that were reported to have different pH optimums. Specifically, three LDH enzymes originating from Staphylococcus epidermidis (SeLDH; optimal at pH 5.6), Lactobacillus acidophilus (LaLDH; optimal at pH 5.3), and Bos taurus (BtLDH; optimal at pH 9.8) were functionally expressed individually and in combination in K. marxianus, and the resulting strains were compared in terms of LA production. A strain co-expressing SeLDH and LaLDH (KM5 La+SeLDH) produced 16.0g/L LA, whereas the strains expressing those enzymes individually produced only 8.4 and 6.8g/L, respectively. This co-expressing strain produced 24.0g/L LA with a yield of 0.48g/g glucose in the presence of CaCO3. Our results suggest that co-expression of LDH enzymes with different pH optimums provides sufficient LDH activity under dynamic intracellular pH conditions, leading to enhanced production of LA compared to individual expression of the LDH enzymes.

  2. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  3. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production.

  4. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids.

    PubMed

    Ensenauer, Regina; He, Miao; Willard, Jan-Marie; Goetzman, Eric S; Corydon, Thomas J; Vandahl, Brian B; Mohsen, Al-Walid; Isaya, Grazia; Vockley, Jerry

    2005-09-16

    Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is not entirely understood. Recently, a novel ACAD (ACAD-9) of unknown function that is highly homologous to human very-long-chain acyl-CoA dehydrogenase was identified by large-scale random sequencing. To characterize its enzymatic role, we have expressed ACAD-9 in Escherichia coli, purified it, and determined its pattern of substrate utilization. The N terminus of the mature form of the enzyme was identified by in vitro mitochondrial import studies of precursor protein. A 37-amino acid leader peptide was cleaved sequentially by two mitochondrial peptidases to yield a predicted molecular mass of 65 kDa for the mature subunit. Submitochondrial fractionation studies found native ACAD-9 to be associated with the mitochondrial membrane. Gel filtration analysis indicated that, like very-long-chain acyl-CoA dehydrogenase, ACAD-9 is a dimer, in contrast to the other known ACADs, which are tetramers. Purified mature ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (C16:1-, C18:1-, C18:2-, C22:6-CoA). These results suggest a previously unrecognized role for ACAD-9 in the mitochondrial beta-oxidation of long-chain unsaturated fatty acids. Because of the substrate specificity and abundance of ACAD-9 in brain, we speculate that it may play a role in the turnover of lipid membrane unsaturated fatty acids that are essential for membrane integrity and structure.

  5. The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes.

    PubMed

    Sazanov, L A; Burrows, P A; Nixon, P J

    1998-02-03

    The plastid genomes of several plants contain ndh genes-homologues of genes encoding subunits of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I, involved in respiration in mitochondria and eubacteria. From sequence similarities with these genes, the ndh gene products have been suggested to form a large protein complex (Ndh complex); however, the structure and function of this complex remains to be established. Herein we report the isolation of the Ndh complex from the chloroplasts of the higher plant Pisum sativum. The purification procedure involved selective solubilization of the thylakoid membrane with dodecyl maltoside, followed by two anion-exchange chromatography steps and one size-exclusion chromatography step. The isolated Ndh complex has an apparent total molecular mass of approximately 550 kDa and according to SDS/PAGE consists of at least 16 subunits including NdhA, NdhI, NdhJ, NdhK, and NdhH, which were identified by N-terminal sequencing and immunoblotting. The Ndh complex showed an NADH- and deamino-NADH-specific dehydrogenase activity, characteristic of complex I, when either ferricyanide or the quinones menadione and duroquinone were used as electron acceptors. This study describes the isolation of the chloroplast analogue of the respiratory complex I and provides direct evidence for the function of the plastid Ndh complex as an NADH:plastoquinone oxidoreductase. Our results are compatible with a dual role for the Ndh complex in the chlororespiratory and cyclic photophosphorylation pathways.

  6. Oxidation of 3,4-dehydro-D-proline and other D-amino acid analogues by D-alanine dehydrogenase from Escherichia coli.

    PubMed

    Deutch, Charles E

    2004-09-15

    3,4-Dehydro-DL-proline is a toxic analogue of L-proline which has been useful in studying the uptake and metabolism of this key amino acid. When membrane fractions from Escherichia coli strain UMM5 (putA1::Tn5 proC24) lacking both L-proline dehydrogenase and L-Delta(1)-pyrroline-5-carboxylate reductase were incubated with 3,4-dehydro-DL-proline, pyrrole-2-carboxylate was formed. There was no enzyme activity with 3,4-dehydro-L-proline, but activity was restored after racemization of the substrate. Oxidation of 3,4-dehydro-DL-proline by membrane fractions from strain UMM5 was induced by growth in minimal medium containing D- or L-alanine, had a pH optimum of 9, and was competitively inhibited by D-alanine. An E. coli strain with no D-alanine dehydrogenase activity due to the dadA237 mutation was unable to oxidize either 3,4-dehydro-D-proline or D-alanine, as were spontaneous Dad(-) mutants of E. coli strain UMM5. Membrane fractions containing D-alanine dehydrogenase also catalyzed the oxidation of D-2-aminobutyrate, D-norvaline, D-norleucine, cis-4-hydroxy-D-proline, and DL-ethionine. These results indicate that d-alanine dehydrogenase is responsible for the residual 3,4-dehydro-DL-proline oxidation activity in putA proC mutants of E. coli and provide further evidence that this enzyme plays a general role in the metabolism of D-amino acids and their analogues.

  7. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6.

  8. Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen Trypanosoma cruzi in complex with substrate

    PubMed Central

    Ortíz, Cecilia; Larrieux, Nicole; Medeiros, Andrea; Botti, Horacio; Comini, Marcelo; Buschiazzo, Alejandro

    2011-01-01

    An N-terminally truncated version of the enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi lacking the first 37 residues was crystallized both in its apo form and in a binary complex with glucose 6-­phosphate. The crystals both belonged to space group P21 and diffracted to 2.85 and 3.35 Å resolution, respectively. Self-rotation function maps were consistent with point group 222. The structure was solved by molecular replacement, confirming a tetrameric quaternary structure. PMID:22102256

  9. Species-specific differences in tissue-specific expression of alcohol dehydrogenase are under the control of complex cis-acting loci: Evidence from Drosophila hybrids

    SciTech Connect

    Ranganayakulu, G.; Reddy, A.R. ); Kirkpatrick, R.B.; Martin, P.F. )

    1991-12-01

    Differences in the expression of alcohol dehydrogenase in the hindgut and testis of adult Drosophila virilis, D. texana, D. novamexicana and D. borealis flies were observed. These heritable differences do not arise due to chromosomal rearrangements, since the polytene chromosome banding patterns did not reveal any such gross chromosomal rearrangements near the Adh locus in any of the tested species. Analysis of the interspecific hybrids revealed that these differences are controlled by complex cis-acting genetic loci. Further, the cis-acting locus controlling the expression of ADH in testis was found to be separable by crossing-over.

  10. 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of micea

    PubMed Central

    Penno, Carlos A.; Morgan, Stuart A.; Rose, Adam J.; Herzig, Stephan; Lavery, Gareth G.; Odermatt, Alex

    2014-01-01

    11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specific and global 11β-HSD1-deficient mice. 11β-HSD1-deficiency resulted in elevated circulating unconjugated BAs, an effect more pronounced in global than liver-specific knockout mice. Gene expression analyses revealed decreased expression of the BA-CoA ligase Fatp5, suggesting impaired BA amidation. Reduced organic anion-transporting polypeptide-1A1 (Oatp1a1) and enhanced organic solute-transporter-β (Ostb) mRNA expression were observed in livers from global 11β-HSD1-deficient mice. The impact of 11β-HSD1-deficiency on BA homeostasis seems to be GR-independent because intrahepatic corticosterone and GR target gene expression were not substantially decreased in livers from global knockout mice. Moreover, Fatp5 expression in livers from hepatocyte-specific GR knockout mice was unchanged. The results revealed a role for 11β-HSD1 in BA homeostasis. PMID:25061560

  11. An enantioselective NADP(+)-dependent alcohol dehydrogenase responsible for cooxidative production of (3S)-5-hydroxy-3-methyl-pentanoic acid.

    PubMed

    Takeda, Minoru; Matsumura, Aline Tiemi; Kurosaki, Kaishi; Chhetri, Rajan Thapa; Motomatsu, Shigekazu; Suzuki, Ichiro; Sahabi, Danladi Mahuta

    2016-06-01

    A soil bacterium, Mycobacterium sp. B-009, is able to grow on racemic 1,2-propanediol (PD). The strain was revealed to oxidize 3-methyl-1,5-pentanediol (MPD) to 5-hydroxy-3-methyl-pentanoic acid (HMPA) during growth on PD. MPD was converted into an almost equimolar amount of the S-form of HMPA (S-HMPA) at 72%ee, suggesting the presence of an enantioselective MPD dehydrogenase (MPD-DH). As expected, an NADP(+)-dependent alcohol dehydrogenase, which catalyzes the initial step of MPD oxidation, was detected and purified from the cell-free extract. This enzyme was suggested to be a homodimeric medium-chain alcohol dehydrogenase/reductase (MDR). The catalytic and kinetic parameters indicated that MPD is the most suitable substrate for the enzyme. The enzyme was encoded by a 1047-bp gene (mpd1) and several mycobacterial strains were found to have putative MDR genes similar to mpd1. In a phylogenetic tree, MPD-DH formed an independent clade together with the putative MDR of Mycobacterium neoaurum, which produces opportunistic infections.

  12. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  13. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  14. Scaffold electrodes based on thioctic acid-capped gold nanoparticles coordinated Alcohol Dehydrogenase and Azure A films for high performance biosensor.

    PubMed

    Gómez-Anquela, C; García-Mendiola, T; Abad, José M; Pita, M; Pariente, F; Lorenzo, E

    2015-12-01

    Nanometric size gold nanoparticles capped with thiotic acid are used to coordinate with the Zn (II) present in the catalytic center of Alcohol Dehydrogenase (ADH). In combination with the NADH oxidation molecular catalyst Azure A, electrografted onto carbon screen-printed electrodes, they are used as scaffold electrodes for the construction of a very efficient ethanol biosensor. The final biosensing device exhibits a highly efficient ethanol oxidation with low overpotential of -0.25 V besides a very good analytical performance with a detection limit of 0.14±0.01 μM and a stable response for more than one month.

  15. Cofluorescence of Eu 3+ in complexes of aromatic carboxylic acids

    NASA Astrophysics Data System (ADS)

    Panigrahi, B. S.; Peter, Susy; Viswanathan, K. S.

    1997-12-01

    The fluorescence of Eu 3+ in certain Eu 3+-aromatic acid complexes were enhanced by over two orders of magnitude, by the addition of La 3+; a process referred to as cofluorescence. Cofluorescence was observed only with certain aromatic acid ligands; trismesic acid, pyromellitic acid and mellitic acid; thereby clearly establishing a correlation between the structure of the ligand and the process of cofluorescence. While cofluorescence has been extensively studied using β-diketones as ligands, our studies demonstrate cofluorescence for the first time in ligands other than β-diketones. Furthermore, the mechanism of cofluorescence in the aromatic acid complexes studied by us appears to be different from that operating in the β-diketones. While intermolecular energy transfer is believed to occur in the β-diketones, formation of polynuclear complexes appears to be responsible for cofluorescence in the aromatic acid ligands.

  16. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II.

    PubMed

    Keshtzar, E; Khodayar, M J; Javadipour, M; Ghaffari, M A; Bolduc, D L; Rezaei, M

    2016-10-01

    Chronic arsenic exposure has been linked to many health problems including diabetes and cancer. In the present study, we assessed the protective effect of ellagic acid (EA) against toxicity induced by arsenic in isolated rat liver mitochondria. Reactive oxygen species (ROS) and mitochondrial membrane potential decline were assayed using dichlorofluorescein diacetate and rhodamine 123, respectively, and dehydrogenase activity obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion assay. Arsenic increased ROS levels and mitochondrial dysfunction, which led to a reduction in mitochondrial total dehydrogenase activity. Mitochondria pretreated with EA exposed to arsenic at various concentrations led to a reversal of ROS production and mitochondrial damage. Our results showed that mitochondria were significantly affected when exposed to arsenic, which resulted in excessive ROS production and mitochondrial membrane disruption. Pretreatment with EA, reduced ROS amounts, mitochondrial damage, and restored total dehydrogenase activity specifically associated with mitochondrial complex II. EA protective characteristics may be accomplished particularly throughout the mitochondrial maintenance either directly by its antioxidant property or indirectly through its maintaining of complex II. These findings also suggest a potential role for EA in treating or preventing mitochondria associated disorders.

  17. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-06-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1.

  18. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  19. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  20. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages.

    PubMed

    Chan, Zhulong; Wang, Qing; Xu, Xiangbin; Meng, Xianghong; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2008-11-01

    We report here a comparative analysis of sweet cherry (Prunus avium) fruits proteome induced by salicylic acid (SA) at different maturity stages. The results demonstrated that SA enhanced the resistance of sweet cherry fruits against Penicillium expansum, resulting in lower disease incidences and smaller lesion diameters, especially at earlier maturity stage. Based on proteomics analysis, 13 and 28 proteins were identified after SA treatment at earlier (A) and later (B) maturity stage, respectively. Seven antioxidant proteins and three pathogenesis related-proteins were identified at both A and B stages, while five heat shock proteins and four dehydrogenases were only detected at B stage. SA treatment also stimulated higher transcript levels of peroxidase, but repressed that of catalase. Moreover, some proteins regulated by SA at B maturity stage were identified as enzymes involved in glycolysis and tricarboxylic acid cycle. These findings indicated that younger sweet cherry fruits showed stronger resistance against pathogen invasion after SA treatment. It further indicated that antioxidant proteins were involved in the resistance response of fruits at every maturity stage, while heat shock proteins and dehydrogenases might potentially act as factors only at later maturity stages.

  1. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.

    PubMed Central

    Miller, S M; Magasanik, B

    1991-01-01

    We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive. Images PMID:1682801

  2. Influence of human serum albumin on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase.

    PubMed

    Maeda, Yorio; Funagayama, Mayumi; Shinohara, Akio; Koshimoto, Chihiro; Furusawa, Hidemi; Nakahara, Hiroshi; Yamaguchi, Yukiko; Saitoh, Tomokazu; Yamamoto, Takashi; Komaki, Kansei

    2014-09-01

    The influence of human serum albumin (HSA) on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase (11β-HSD1) was studied in vitro. A rat liver microsomal fraction was prepared, and the 11β-HSD1 enzyme activity in the presence of various concentrations of bile acids and HSA was determined using hydrocortisone as the substrate. The products of the reaction were extracted and analyzed using high-performance liquid chromatography. The magnitude of the inhibition decreased with the addition of HSA in a dose-dependent manner. Four percent human albumin decreased the inhibitory effects of 100 μM chenodeoxycholic acid and lithocholic acid from 89.9 ± 5.6 to 54.5 ± 6.1% and from 83.8 ± 4.8 to 20.8 ± 4.2%, respectively. In contrast, ursodeoxycholic acid and deoxycholic acid showed no inhibitory effect on the enzyme activity in the presence of 4% human serum albumin, and the addition of 1% γ-globulin to the assay mixture in the presence of bile acids did not affect the enzyme activity. Our in vitro study showed that the addition of HSA ameliorated the inhibition of 11β-HSD1 and that the magnitude of the change is dependent on the species of bile acid, presumably based on the numbers of hydroxyl groups. These results suggest that HSA seems to protect the bile acid-mediated inhibition of 11β-HSD1 in the healthy subject. On the other hand, in the patients with obstructive biliary diseases, not only elevated serum bile acid but also the accompanying hypoalbuminemia is important to evaluate the pathophysiology of the bile acid-mediated inhibition of 11β-HSD1 of the disease.

  3. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  4. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    PubMed

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  5. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    SciTech Connect

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi; Loewus, F.A. )

    1990-11-01

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on the reaction.

  6. The complex of band 3 protein of the human erythrocyte membrane and glyceraldehyde-3-phosphate dehydrogenase: stoichiometry and competition by aldolase.

    PubMed

    von Rückmann, Bogdan; Schubert, Dieter

    2002-02-10

    The cytoplasmic domain of band 3, the main intrinsic protein of the erythrocyte membrane, possesses binding sites for a variety of other proteins of the membrane and the cytoplasm, including the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase. We have studied the stoichiometry of the complexes of human band 3 protein and GAPDH and the competition by aldolase for the binding sites. In addition, we have tried to verify the existence of mixed band 3/GAPDH/aldolase complexes, which could represent the nucleus of a putative glycolytic multienzyme complex on the erythrocyte membrane. The technique applied was analytical ultracentrifugation, in particular sedimentation equilibrium analysis, on mixtures of detergent-solubilized band 3 and dye-labelled GAPDH, in part of the experiments supplemented by aldolase. The results obtained were analogous to those reported for the binding of hemoglobin, aldolase and band 4.1 to band 3: (1) the predominant or even sole band 3 oligomer forming the binding site is the tetramer. (2) The band 3 tetramer can bind up to four tetramers of GAPDH. (3) The band 3/GAPDH complexes are unstable. (4) Artificially stabilized band 3 dimers also represent GAPDH binding sites. In addition it was found that aldolase competes with GAPDH for binding to the band 3 tetramer, and that ternary complexes of band 3 tetramers, GAPDH and aldolase do exist.

  7. Characteristics of external and internal NAD(P)H dehydrogenases in Hoya carnosa mitochondria.

    PubMed

    Hong, Hoang Thi Kim; Nose, Akihiro

    2012-12-01

    This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase-crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact-and alamethicin-permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca(2+), (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca(2+), (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca(2+) and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.

  8. β-Cyclodextrin- para-aminosalicylic acid inclusion complexes

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.; Oranskaya, E. I.

    2010-11-01

    Complex formation of β-cyclodextrin with para-aminosalicylic acid in buffer solutions is studied by UV spectroscopy. It is found that the stoichiometric proportion of the components in the β-cyclodextrin-para-aminosalicylic acid inclusion complex is 1:1. The Ketelar equation is used to calculate the stability constants of the inclusion complexes at different temperatures. The thermodynamic parameters of the complex formation process (ΔG, ΔH, ΔS) are calculated using the van't Hoff equation. The 1:1 β-cyclodextrin-para-aminosalicylic acid inclusion complex is prepared in solid form and its characteristics are determined by IR spectroscopic and x-ray diffraction techniques.

  9. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    PubMed Central

    Cossard, Raynald; Esposito, Michela; Sellem, Carole H.; Pitayu, Laras; Vasnier, Christelle; Delahodde, Agnès; Dassa, Emmanuel P.

    2015-01-01

    Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function. The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabditis elegans with notable improvements in reproduction and whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression. We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny, and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals without affecting their respiration rate and ATP content. We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g., NDUFV1, NDUFS1, NDUFS6, NDUFS8, or GRIM-19 human orthologs) in wild type animals is significantly reduced in the Ndi1p expressing worm. All together these results open up the perspective to identify new genes involved in complex I function, assembly, or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression. PMID:26124772

  10. Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis.

    PubMed

    Zsigmond, Laura; Tomasskovics, Bálint; Deák, Veronika; Rigó, Gábor; Szabados, László; Bánhegyi, Gábor; Szarka, András

    2011-08-01

    The mitochondrial antioxidant homeostasis was investigated in Arabidopsis ppr40-1 mutant, which presents a block of electron flow at complex III. The activity of the ascorbate biosynthetic enzyme, L-galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) (GLDH) was elevated in mitochondria isolated from mutant plants. In addition increased activities of the enzymes of Foyer-Halliwell-Asada cycle and elevated glutathione (GSH) level were observed in the mutant mitochondria. Lower ascorbate and ascorbate plus dehydroascorbate contents were detected at both cellular and mitochondrial level. Moreover, the more oxidized mitochondrial redox status of ascorbate in the ppr40-1 mutant indicated that neither the enhanced activity of GLDH nor Foyer-Halliwell-Asada cycle could compensate for the enhanced ascorbate consumption in the absence of a functional respiratory chain.

  11. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC.

  12. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation.

    PubMed

    Struys, Eduard A; Jakobs, Cornelis

    2010-01-04

    The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.

  13. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  14. Role of pyruvate transporter in the regulation of the pyruvate dehydrogenase multienzyme complex in perfused rat liver.

    PubMed

    Zwiebel, F M; Schwabe, U; Olson, M S; Scholz, R

    1982-01-19

    Metabolic substrates such as octanoate, beta-hydroxybutyrate, and alpha-ketoisocaproate which produce acetoacetate stimulate the rate of pyruvate decarboxylation in perfused livers from fed rats at perfusate pyruvate concentrations in the physiological range (below 0.2 mM). A quantitative relationship between pyruvate oxidation (14CO2 production from [1-14C]pyruvate) and ketogenesis (production of acetoacetate or total ketone bodies) was observed with all ketogenic substrates when studied over a wide range of concentrations. The ratio of extra pyruvate decarboxylated to extra acetoacetate produced was greater than 1 with octanoate and alpha-ketoisocaproate, but it was less than 1 with beta-hydroxybutyrate. The stimulatory effect of beta-hydroxybutyrate on pyruvate decarboxylation was abolished completely in the presence of 0.1 mM alpha-cyanocinnamate, an inhibitor of the pyruvate transporting system in the mitochondrial membrane. The data suggest that the mechanism by which the flux through the pyruvate dehydrogenase reaction is stimulated in liver under ketogenic conditions involves an acceleration of the net rate of pyruvate transport into the mitochondria compartment due to an exchange with acetoacetate and/or acetoacetate plus beta-hydroxybutyrate.

  15. Uranyl complexes of n-alkanediaminotetra-acetic acids.

    PubMed

    Gonçalves, M L; Mota, A M; da Silva, J J

    1984-07-01

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 degrees in 0.10M and 1.00M KNO(3). The influence of the length of the alkane chain of the ligands on the complexes formed is discussed.

  16. Phosphatase-like activity, DNA binding, DNA hydrolysis, anticancer and lactate dehydrogenase inhibition activity promoting by a new bis-phenanthroline dicopper(II) complex.

    PubMed

    Anbu, Sellamuthu; Kandaswamy, Muthusamy; Kamalraj, Subban; Muthumarry, Johnpaul; Varghese, Babu

    2011-07-28

    A new bis-phenanthroline dicopper(II) complex has been synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structure of the dinuclear Cu(II) complex [Cu(2)(μ-CH(3)COO)(μ-H(2)O)(μ-OH)(phen)(2)](2+) (phen = 1,10-phenanthroline) (1) was determined by single crystal X-ray diffraction technique. The coordination environment around each Cu(II) ion in complex 1 can be described as slightly distorted square pyramidal geometry. The distance between the CuCu centers in the complex is found to be 2.987 Å. The electronic, redox, phosphate hydrolysis, DNA binding and DNA cleavage have been studied. The antiproliferative effect of complex 1 was confirmed by the lactate dehydrogenase (LDH) enzyme level in MCF-7 cancer cell lysate and content media. The dicopper(II) complex inhibited the LDH enzyme as well as the growth of the human breast cancer MCF7 cell line at an IC(50) value of 0.011 μg ml(-1). The results strongly suggest that complex 1 is a good cancer therapeutic agent. Electrochemical studies of complex 1 showed an irreversible, followed by a quasi-reversible, one electron reduction processes between -0.20 to -0.8 V. Michaelis-Menten kinetic parameters for the hydrolysis of 4-nitrophenyl phosphate by complex 1 are k(cat) = 3.56 × 10(-2) s(-1) and K(M) = 4.3 × 10(-2) M. Complex 1 shows good binding propensity to calf thymus DNA, with a binding constant value of 1.3 (±0.13) × 10(5) M(-1) (s = 2.1). The size of the binding site and viscosity data suggest a DNA intercalative binding nature of the complex. Complex 1 shows efficient hydrolytic cleavage of supercoiled pBR322-DNA in the dark and in the absence of any external reagents, as demonstrated by the T4 ligase experiment. The pseudo-Michaelis-Menten kinetic parameters for DNA hydrolysis by complex 1 are k(cat) = 1.27 ± 0.4 h(-1) and K(M) = 7.7 × 10(-2) M.

  17. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates

    PubMed Central

    Dibrova, Daria V.; Cherepanov, Dmitry A.; Galperin, Michael Y.; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2013-01-01

    This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. PMID:23871937

  18. Geometry and cooperativity effects in adenosine-carboxylic acid complexes.

    PubMed

    Schlund, Sebastian; Mladenovic, Milena; Basílio Janke, Eline M; Engels, Bernd; Weisz, Klaus

    2005-11-23

    NMR experiments and theoretical investigations were performed on hydrogen bonded complexes of specifically 1- and 7-15N-labeled adenine nucleosides with carboxylic acids. By employing a freonic solvent of CDClF2 and CDF3, NMR spectra were acquired at temperatures as low as 123 K, where the regime of slow hydrogen bond exchange is reached and several higher-order complexes were found to coexist in solution. Unlike acetic acid, chloroacetic acid forms Watson-Crick complexes with the proton largely displaced from oxygen to the nitrogen acceptor in an ion pairing structure. Calculated geometries and chemical shifts of the proton in the hydrogen bridge favorably agree with experimentally determined values if vibrational averaging and solvent effects are taken into account. The results indicate that binding a second acidic ligand at the adenine Hoogsteen site in a ternary complex weakens the hydrogen bond to the Watson-Crick bound carboxylic acid. However, substituting a second adenine nucleobase for a carboxylic acid in the trimolecular complex leads to cooperative binding at Watson-Crick and Hoogsteen faces of adenosine.

  19. Polymeric complexes of isonicotinic acid hydrazide with antituberculosis effects.

    PubMed

    Slivkin, A I; Lapenko, V L; Bychuk, A I; Suslina, S N; Slivkin, D A; Kornienko, S V; Belenova, A S

    2013-10-01

    We studied the effects of an analogue of isonicotinic acid hydrazide on the treatment course of experimental tuberculosis. Complex analysis has demonstrated the efficiency of isonicotinic acid hydrazide immobilized on a carrier that consisted of water-soluble cation-active analogue of chitosan (N-chlorohydroxypropyl chitosan) in a complex with cobalt ions in the therapy of experimental tuberculosis. Immunostimulating activity of the polymeric metal complex was revealed. The obtained data can be used for the development of highly effective methods for tuberculosis treatment.

  20. Relationships within the aldehyde dehydrogenase extended family.

    PubMed Central

    Perozich, J.; Nicholas, H.; Wang, B. C.; Lindahl, R.; Hempel, J.

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project. PMID:10210192

  1. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.

    PubMed

    Ishida, Nobuhiro; Saitoh, Satoshi; Tokuhiro, Kenro; Nagamori, Eiji; Matsuyama, Takashi; Kitamoto, Katsuhiko; Takahashi, Haruo

    2005-04-01

    We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2microm plasmid-based vectors and two genome-integrated strains.

  2. Biosynthesis of Ascorbic Acid in Kidney Bean. l-Galactono-γ-Lactone Dehydrogenase Is an Intrinsic Protein Located at the Mitochondrial Inner Membrane1

    PubMed Central

    Siendones, Emilio; González-Reyes, José A.; Santos-Ocaña, Carlos; Navas, Plácido; Córdoba, Francisco

    1999-01-01

    Hypocotyls of kidney beans (Phaseolus vulgaris L.) accumulated ascorbate after preincubation with a number of possible precursors, mainly l-galactono-γ-lactone (l-GL) and l-gulono-γ-lactone. The increase in the intracellular ascorbate concentration was parallel to the high stimulation of the l-GL dehydrogenase (l-GLD) activity measured in vitro using l-GL as a substrate and cytochrome c as an electron acceptor. Cell fractionation using a continuous linear Percoll gradient demonstrated that l-GLD is associated with mitochondria; therefore, pure mitochondria were isolated and subjected to detergent treatment to separate soluble from membrane-linked proteins. l-GLD activity was mainly associated with the detergent phase, suggesting that a membrane-intrinsic protein is responsible for the ascorbic acid biosynthetic activity. Subfractionation of mitochondria demonstrated that l-GLD is located at the inner membrane. PMID:10398727

  3. An amperometric D-amino acid biosensor prepared with a thermostable D-proline dehydrogenase and a carbon nanotube-ionic liquid gel.

    PubMed

    Tani, Yuji; Itoyama, Yukiko; Nishi, Kenichi; Wada, Chikahiro; Shoda, Yoshio; Satomura, Takenori; Sakuraba, Haruhiko; Ohshima, Toshihisa; Hayashi, Yukako; Yabutani, Tomoki; Motonaka, Junko

    2009-07-01

    Carbon nanotube (CNT) gel, which is composed of a mixture of single-wall CNT, an ionic liquid, and a thermostable D-proline dehydrogenase (D-Pro DH) immobilized electrode was utilized for the determination of D-amino acids (DAAs) in food samples. When a critical comparison with CNT, Ketjen Black (KB), and carbon powder (CP) was also carried out, the CNT/D-Pro DH immobilized electrode showed the highest sensitivity and the lowest detection limit of D-proline. In addition, the CNT/D-Pro DH immobilized electrode was applied to detection of DAAs in rice wine and vinegar samples. The concentrations of DAAs in rice wine and vinegar samples were 0.0210 +/- 0.0001 and 0.55 +/- 0.05 mmol L(-1), respectively.

  4. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents.

    PubMed

    Mallinson, Joanne E; Constantin-Teodosiu, Dumitru; Glaves, Philip D; Martin, Elizabeth A; Davies, Wendy J; Westwood, F Russell; Sidaway, James E; Greenhaff, Paul L

    2012-12-15

    We previously reported that statin myopathy is associated with impaired carbohydrate (CHO) oxidation in fast-twitch rodent skeletal muscle, which we hypothesised occurred as a result of forkhead box protein O1 (FOXO1) mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) gene transcription. Upregulation of FOXO gene targets known to regulate proteasomal and lysosomal muscle protein breakdown was also evident. We hypothesised that increasing CHO oxidation in vivo, using the pyruvate dehydrogenase complex (PDC) activator, dichloroacetate (DCA), would blunt activation of FOXO gene targets and reduce statin myopathy. Female Wistar Hanover rats were dosed daily for 12 days (oral gavage) with either vehicle (control, 0.5% w/v hydroxypropyl-methylcellulose 0.1% w/v polysorbate-80; n = 9), 88 mg( )kg(-1) day(-1) simvastatin (n = 8), 88 mg( )kg(-1) day(-1) simvastatin + 30 mg kg(-1) day(-1) DCA (n = 9) or 88 mg kg(-1) day(-1) simvastatin + 40 mg kg(-1) day(-1) DCA (n = 9). Compared with control, simvastatin reduced body mass gain and food intake, increased muscle fibre necrosis, plasma creatine kinase levels, muscle PDK4, muscle atrophy F-box (MAFbx) and cathepsin-L mRNA expression, increased PDK4 protein expression, and proteasome and cathepsin-L activity, and reduced muscle PDC activity. Simvastatin with DCA maintained body mass gain and food intake, abrogated the myopathy, decreased muscle PDK4 mRNA and protein, MAFbx and cathepsin-L mRNA, increased activity of PDC and reduced proteasome activity compared with simvastatin. PDC activation abolished statin myopathy in rodent skeletal muscle, which occurred at least in part via inhibition of FOXO-mediated transcription of genes regulating muscle CHO utilisation and protein breakdown.

  5. Human 17β-hydroxysteroid dehydrogenase-ligand complexes: crystals of different space groups with various cations and combined seeding and co-crystallization

    NASA Astrophysics Data System (ADS)

    Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.

    1999-01-01

    Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.

  6. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.

    PubMed

    Gu, Sol-A; Jun, Chanha; Joo, Jeong Chan; Kim, Seil; Lee, Seung Hwan; Kim, Yong Hwan

    2014-05-10

    Lactobacillus coryniformis is known to produce d-lactic acid as a dominant fermentation product at a cultivation temperature of approximately 30°C. However, the considerable production of l-lactic acid is observed when the fermentation temperature is greater than 40°C. Because optically pure lactates are synthesized from pyruvate by the catalysis of chiral-specific d- or l-lactate dehydrogenase, the higher thermostability of l-LDHs is assumed to be one of the key factors decreasing the optical purity of d-lactic acid produced from L. coryniformis at high temperature. To verify this hypothesis, two types of d-ldh genes and six types of l-ldh genes based on the genomic information of L. coryniformis were synthesized and expressed in Escherichia coli. Among the LDHs tested, five LDHs showed activity and were used to construct polyclonal antibodies. d-LDH1, l-LDH2, and l-LDH3 were found to be expressed in L. coryniformis by Western blotting analysis. The half-life values (t1/2) of the LDHs at 40°C were estimated to be 10.50, 41.76, and 2311min, and the T50(10) values were 39.50, 39.90, and 58.60°C, respectively. In addition, the Tm values were 36.0, 41.0, and 62.4°C, respectively, which indicates that l-LDH has greater thermostability than d-LDH. The higher thermostability of l-LDHs compared with that of d-LDH1 may be a major reason why the enantiopurity of d-lactic acid is decreased at high fermentation temperatures. The key enzymes characterized will suggest a direction for the design of genetically modified lactic acid bacteria to produce optically pure d-lactic acid.

  7. Crystallization and preliminary X-ray analysis of the complex of NADH and 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831

    SciTech Connect

    Kataoka, Sachiyo; Nakamura, Shota; Ohkubo, Tadayasu; Ueda, Shigeru; Uchiyama, Susumu; Kobayashi, Yuji; Oda, Masayuki

    2006-06-01

    The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 has been crystallized and X-ray diffraction data have been collected to 1.8 Å resolution. The NAD(P){sup +}-dependent enzyme 3α-hydroxysteroid dehydrogenase (3α-HSD) catalyzes the reversible interconversion of hydroxyl and oxo groups at position 3 of the steroid nucleus. The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 was crystallized by the hanging-drop vapour-diffusion method. Refinement of crystallization conditions with microseeding improved the quality of the X-ray diffraction data to a resolution of 1.8 Å. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.46, b = 82.25, c = 86.57 Å, and contained two molecules, reflecting dimer formation of 3α-HSD, in the asymmetric unit.

  8. Cloning, expression, and biochemical characterization of a novel NADP(+)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids.

    PubMed

    Bakonyi, Daniel; Hummel, Werner

    2017-04-01

    A gene encoding a novel 7α-specific NADP(+)-dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP(+) using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type.

  9. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  10. Tiller number is altered in the ascorbic acid-deficient rice suppressed for L-galactono-1,4-lactone dehydrogenase.

    PubMed

    Liu, Yonghai; Yu, Le; Tong, Jianhua; Ding, Junhui; Wang, Ruozhong; Lu, Yusheng; Xiao, Langtao

    2013-03-01

    The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. L-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO(2) assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.

  11. Surface complexation modeling or organic acid sorption to goethite

    SciTech Connect

    Evanko, C.R.; Dzombak, D.A.

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and

  12. Surface Complexation Modeling of Organic Acid Sorption to Goethite.

    PubMed

    Evanko; Dzombak

    1999-06-15

    Surface complexation modeling was performed using the Generalized Two-Layer Model for a series of low molecular weight organic acids. Sorption of these organic acids to goethite was investigated in a previous study to assess the influence of particular structural features on sorption. Here, the ability to describe the observed sorption behavior for compounds with similar structural features using surface complexation modeling was investigated. A set of surface reactions and equilibrium constants yielding optimal data fits was obtained for each organic acid over a range of total sorbate concentrations. Surface complexation modeling successfully described sorption of a number of the simple organic acids, but an additional hydrophobic component was needed to describe sorption behavior of some compounds with significant hydrophobic character. These compounds exhibited sorption behavior that was inconsistent with ligand exchange mechanisms since sorption did not decrease with increasing total sorbate concentration and/or exceeded surface site saturation. Hydrophobic interactions appeared to be most significant for the compound containing a 5-carbon aliphatic chain. Comparison of optimized equilibrium constants for similar surface species showed that model results were consistent with observed sorption behavior: equilibrium constants were highest for compounds having adjacent carboxylic groups, lower for compounds with adjacent phenolic groups, and lowest for compounds with phenolic groups in the ortho position relative to a carboxylic group. Surface complexation modeling was also performed to fit sorption data for Suwannee River fulvic acid. The data could be described well using reactions and constants similar to those for pyromellitic acid. This four-carboxyl group compound may be useful as a model for fulvic acid with respect to sorption. Other simple organic acids having multiple carboxylic and phenolic functional groups were identified as potential models for humic

  13. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  14. Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex.

    PubMed

    Meschi, Francesca; Wiertz, Frank; Klauss, Linda; Cavalieri, Chiara; Blok, Anneloes; Ludwig, Bernd; Heering, Hendrik A; Merli, Angelo; Rossi, Gian Luigi; Ubbink, Marcellus

    2010-10-20

    The first crystal structure of a ternary redox protein complex was comprised of the enzyme methylamine dehydrogenase (MADH) and two electron transfer proteins, amicyanin and cytochrome c-551i from Paracoccus denitrificans [Chen et al. Science 1994, 264, 86-90]. The arrangement of the proteins suggested possible electron transfer from the active site of MADH via the amicyanin copper ion to the cytochrome heme iron, although the distance between the metals is large. We studied the interactions between these proteins in solution. A titration followed by NMR spectroscopy shows that amicyanin binds cytochrome c-551i. The interface comprises the hydrophobic and positive patches of amicyanin, not the binding site observed in the ternary complex. NMR experiments further show that amicyanin binds tightly to MADH with an interface that matches the one observed in the crystal structure and that mostly overlaps with the binding site for cytochrome c-551i. Upon addition of cytochrome c-551i, no changes in the NMR spectrum of MADH-bound amicyanin are observed, suggesting that a possible interaction of the cytochrome with the binary complex must be very weak, with a dissociation constant higher than 2 mM. Reconstitution of the entire redox chain in vitro demonstrates that amicyanin can react rapidly with cytochrome c-551i, but that association of amicyanin with MADH inhibits this reaction. It is concluded that electron transfer from MADH to cytochrome c-551i does not involve a ternary complex but occurs via a ping-pong mechanism in which amicyanin uses the same interface for the reactions with MADH and cytochrome c-551i.

  15. Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steffen, Wojtek; Gemperli, Anja C; Cvetesic, Nevena; Steuber, Julia

    2010-09-01

    The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li(+) sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na(+) or K(+). The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes.

  16. The proline-rich region of glyceraldehyde-3-phosphate dehydrogenase from human sperm may bind SH3 domains, as revealed by a bioinformatic study of low-complexity protein segments.

    PubMed

    Tatjewski, Marcin; Gruca, Aleksandra; Plewczynski, Dariusz; Grynberg, Marcin

    2016-02-01

    Glyceraldehyde-3-phosphate dehydrogenase from human sperm (GAPDHS) provides energy to the sperm flagellum, and is therefore essential for sperm motility and male fertility. This isoform is distinct from somatic GAPDH, not only in being specific for the testis but also because it contains an additional amino-terminal region that encodes a proline-rich motif that is known to bind to the fibrous sheath of the sperm tail. By conducting a large-scale sequence comparison on low-complexity sequences available in databases, we identified a strong similarity between the proline-rich motif from GAPDHS and the proline-rich sequence from Ena/vasodilator-stimulated phosphoprotein-like (EVL), which is known to bind an SH3 domain of dynamin-binding protein (DNMBP). The putative binding partners of the proline-rich GAPDHS motif include SH3 domain-binding protein 4 (SH3BP4) and the IL2-inducible T-cell kinase/tyrosine-protein kinase ITK/TSK (ITK). This result implies that GAPDHS participates in specific signal-transduction pathways. Gene Ontology category-enrichment analysis showed several functional classes shared by both proteins, of which the most interesting ones are related to signal transduction and regulation of hydrolysis. Furthermore, a mutation of one EVL proline to leucine is known to cause colorectal cancer, suggesting that mutation of homologous amino acid residue in the GAPDHS motif may be functionally deleterious.

  17. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists.

    PubMed

    Dunning, Kylie R; Anastasi, Marie R; Zhang, Voueleng J; Russell, Darryl L; Robker, Rebecca L

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of ³H₂O from [³H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid

  18. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  19. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  20. A Cluster of Four Homologous Small RNAs Modulates C1 Metabolism and the Pyruvate Dehydrogenase Complex in Rhodobacter sphaeroides under Various Stress Conditions

    PubMed Central

    Billenkamp, Fabian; Peng, Tao; Berghoff, Bork A.

    2015-01-01

    ABSTRACT In bacteria, regulatory RNAs play an important role in the regulation and balancing of many cellular processes and stress responses. Among these regulatory RNAs, trans-encoded small RNAs (sRNAs) are of particular interest since one sRNA can lead to the regulation of multiple target mRNAs. In the purple bacterium Rhodobacter sphaeroides, several sRNAs are induced by oxidative stress. In this study, we focused on the functional characterization of four homologous sRNAs that are cotranscribed with the gene for the conserved hypothetical protein RSP_6037, a genetic arrangement described for only a few sRNAs until now. Each of the four sRNAs is characterized by two stem-loops that carry CCUCCUCCC motifs in their loops. They are induced under oxidative stress, as well as by various other stress conditions, and were therefore renamed here sRNAs CcsR1 to CcsR4 (CcsR1–4) for conserved CCUCCUCCC motif stress-induced RNAs 1 to 4. Increased CcsR1–4 expression decreases the expression of genes involved in C1 metabolism or encoding components of the pyruvate dehydrogenase complex either directly by binding to their target mRNAs or indirectly. One of the CcsR1–4 target mRNAs encodes the transcriptional regulator FlhR, an activator of glutathione-dependent methanol/formaldehyde metabolism. Downregulation of this glutathione-dependent pathway increases the pool of glutathione, which helps to counteract oxidative stress. The FlhR-dependent downregulation of the pyruvate dehydrogenase complex reduces a primary target of reactive oxygen species and reduces aerobic electron transport, a main source of reactive oxygen species. Our findings reveal a previously unknown strategy used by bacteria to counteract oxidative stress. IMPORTANCE Phototrophic organisms have to cope with photo-oxidative stress due to the function of chlorophylls as photosensitizers for the formation of singlet oxygen. Our study assigns an important role in photo-oxidative stress resistance to a

  1. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  2. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  3. A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in Ilex paraguariensis leaves in response to water deficit and abscisic acid.

    PubMed

    Acevedo, Raúl M; Maiale, Santiago J; Pessino, Silvina C; Bottini, Rubén; Ruiz, Oscar A; Sansberro, Pedro A

    2013-04-01

    Ilex paraguariensis plants were subjected to progressive soil water deficit, and differential display (DD) was used to analyse gene expression in leaves to characterise physiological responses to mild and severe water deficits. A cDNA fragment showing strong homology with the flavoprotein subunit (SDH1) of succinate:ubiquinone oxidoreductase (succinate dehydrogenase, SDH, EC 1.3.5.1) was upregulated in plants exposed to drought. Quantitative real-time PCR revealed that the SDH1-like transcript level began to increase when the leaf relative water content (RWC) decreased to 78% and peaked when the RWC dropped to 57%. A correlation between abscisic acid (ABA) concentration and variations in transcript levels was assessed by GC-SIM. After rehydration, SDH1 mRNA and ABA returned to their initial levels. In stressed leaves sprayed with ABA SDH1 mRNA accumulated in greater levels compared to stressed leaves that did not receive ABA. Moreover, the enzymatic activity of succinate dehydrogenase increased 1.5-fold in the mature leaves of ABA-treated plants. This physiological response may be related to the tendency of this species to minimise water losses through stomatal closure in the early stages of dehydration to avoid tissue desiccation. As the leaf water potential diminished due to an increase in water restriction, I. paraguariensis leaf tissues reacted by making osmotic adjustments to sustain tissue metabolic activity, which enables the recovery of photosynthesis upon re-watering. These results provide new insights concerning the linkage between plant respiration and photosynthetic metabolism that could be potentially further used in breeding programs aiming water tolerant genotypes.

  4. Two d-2-Hydroxy-acid Dehydrogenases in Arabidopsis thaliana with Catalytic Capacities to Participate in the Last Reactions of the Methylglyoxal and β-Oxidation Pathways*

    PubMed Central

    Engqvist, Martin; Drincovich, María F.; Flügge, Ulf-Ingo; Maurino, Verónica G.

    2009-01-01

    The Arabidopsis thaliana locus At5g06580 encodes an ortholog to Saccharomyces cerevisiae d-lactate dehydrogenase (AtD-LDH). The recombinant protein is a homodimer of 59-kDa subunits with one FAD per monomer. A substrate screen indicated that AtD-LDH catalyzes the oxidation of d- and l-lactate, d-2-hydroxybutyrate, glycerate, and glycolate using cytochrome c as an electron acceptor. AtD-LDH shows a clear preference for d-lactate, with a catalytic efficiency 200- and 2000-fold higher than that for l-lactate and glycolate, respectively, and a Km value for d-lactate of ∼160 μm. Knock-out mutants showed impaired growth in the presence of d-lactate or methylglyoxal. Collectively, the data indicated that the protein is a d-LDH that participates in planta in the methylglyoxal pathway. Web-based bioinformatic tools revealed the existence of a paralogous protein encoded by locus At4g36400. The recombinant protein is a homodimer of 61-kDa subunits with one FAD per monomer. A substrate screening revealed highly specific d-2-hydroxyglutarate (d-2HG) conversion in the presence of an organic cofactor with a Km value of ∼580 μm. Thus, the enzyme was characterized as a d-2HG dehydrogenase (AtD-2HGDH). Analysis of knock-out mutants demonstrated that AtD-2HGDH is responsible for the total d-2HGDH activity present in A. thaliana. Gene coexpression analysis indicated that AtD-2HGDH is in the same network as several genes involved in β-oxidation and degradation of branched-chain amino acids and chlorophyll. It is proposed that AtD-2HGDH participates in the catabolism of d-2HG most probably during the mobilization of alternative substrates from proteolysis and/or lipid degradation. PMID:19586914

  5. Development of an amine dehydrogenase for synthesis of chiral amines.

    PubMed

    Abrahamson, Michael J; Vázquez-Figueroa, Eduardo; Woodall, Nicholas B; Moore, Jeffrey C; Bommarius, Andreas S

    2012-04-16

    A leucine dehydrogenase has been successfully altered through several rounds of protein engineering to an enantioselective amine dehydrogenase. Instead of the wild-type α-keto acid, the new amine dehydrogenase now accepts the analogous ketone, methyl isobutyl ketone (MIBK), which corresponds to exchange of the carboxy group by a methyl group to produce chiral (R)-1,3-dimethylbutylamine.

  6. Molecular mimicry in primary biliary cirrhosis. Evidence for biliary epithelial expression of a molecule cross-reactive with pyruvate dehydrogenase complex-E2.

    PubMed Central

    Van de Water, J; Turchany, J; Leung, P S; Lake, J; Munoz, S; Surh, C D; Coppel, R; Ansari, A; Nakanuma, Y; Gershwin, M E

    1993-01-01

    Sera from patients with primary biliary cirrhosis (PBC) react with enzymes of the 2-oxo dehydrogenase pathways, particularly PDC-E2. These enzymes are present in all nucleated cells, yet autoimmune damage is confined to biliary epithelial cells. Using a panel of eight mouse monoclonal antibodies and a human combinatorial antibody specific for PDC-E2, we examined by indirect immunofluorescence and confocal microscopy sections of liver from patients with PBC, progressive sclerosing cholangitis, and hepatocarcinoma. The monoclonal antibodies gave typical mitochondrial immunofluorescence on biliary epithelium and on hepatocytes from patients with either PBC, progressive sclerosing cholangitis, or hepatocarcinoma. However, one of eight mouse monoclonal antibodies (C355.1) and the human combinatorial antibody reacted with great intensity and specificity with the luminal region of biliary epithelial cells from patients with PBC. Simultaneous examination of these sections with an antiisotype reagent for human IgA revealed high IgA staining in the luminal region of biliary epithelial cells in patients with PBC. IgG and IgA antibodies to PDC-E2 were detected in the bile of patients with PBC but not normal controls. We believe that this data may be interpreted as indicating that a molecule cross-reactive with PDC-E2 is expressed at high levels in the luminal region of biliary epithelial cells in PBC. Images PMID:8514873

  7. Molecular mimicry in primary biliary cirrhosis. Evidence for biliary epithelial expression of a molecule cross-reactive with pyruvate dehydrogenase complex-E2.

    PubMed

    Van de Water, J; Turchany, J; Leung, P S; Lake, J; Munoz, S; Surh, C D; Coppel, R; Ansari, A; Nakanuma, Y; Gershwin, M E

    1993-06-01

    Sera from patients with primary biliary cirrhosis (PBC) react with enzymes of the 2-oxo dehydrogenase pathways, particularly PDC-E2. These enzymes are present in all nucleated cells, yet autoimmune damage is confined to biliary epithelial cells. Using a panel of eight mouse monoclonal antibodies and a human combinatorial antibody specific for PDC-E2, we examined by indirect immunofluorescence and confocal microscopy sections of liver from patients with PBC, progressive sclerosing cholangitis, and hepatocarcinoma. The monoclonal antibodies gave typical mitochondrial immunofluorescence on biliary epithelium and on hepatocytes from patients with either PBC, progressive sclerosing cholangitis, or hepatocarcinoma. However, one of eight mouse monoclonal antibodies (C355.1) and the human combinatorial antibody reacted with great intensity and specificity with the luminal region of biliary epithelial cells from patients with PBC. Simultaneous examination of these sections with an antiisotype reagent for human IgA revealed high IgA staining in the luminal region of biliary epithelial cells in patients with PBC. IgG and IgA antibodies to PDC-E2 were detected in the bile of patients with PBC but not normal controls. We believe that this data may be interpreted as indicating that a molecule cross-reactive with PDC-E2 is expressed at high levels in the luminal region of biliary epithelial cells in PBC.

  8. X-ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL-arginine and supramolecular association in arginine-dicarboxylic acid complexes.

    PubMed

    Roy, Siddhartha; Singh, Desh Deepak; Vijayan, M

    2005-02-01

    The adipic acid complexes of DL-arginine and L-arginine are made up of zwitterionic, singularly positively charged arginium ions and doubly negatively charged adipate ions, with a 2:1 stoichiometry. One of the two crystallographically independent arginium ions in the L-arginine complex has a conformation hitherto unobserved in crystal structures containing the amino acid. In the present study the structural data on arginine complexes of saturated dicarboxylic acids with 0-5 C atoms separating the two carboxyl functions are given. In terms of molecular aggregation, formic and acetic acid complexes behave in a similar way to those involving fairly long carboxylic acids such as adipic acid. By and large, the supramolecular assembly in complexes involving dicarboxylic acids with 3 or more C atoms separating the carboxyl groups (glutaric, adipic and pimelic acids), and those involving formic and acetic acids, have common features. The aggregation patterns in complexes involving oxalic, malonic and maleic acids do not share striking features among themselves (except for the mode of hydrogen-bonded dimerization of arginium ions) or with those involving larger dicarboxylic acids. Complexes of succinic acid, the shortest linear dicarboxylic acid, share features with those involving shorter as well as longer dicarboxylic acids. The difference in the behaviour of long and short dicarboxylic acids and the ambiguous behaviour of succinic acid can be broadly related to their lengths.

  9. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST.

    PubMed

    Pantaleo, Maria A; Astolfi, Annalisa; Urbini, Milena; Nannini, Margherita; Paterini, Paola; Indio, Valentina; Saponara, Maristella; Formica, Serena; Ceccarelli, Claudio; Casadio, Rita; Rossi, Giulio; Bertolini, Federica; Santini, Donatella; Pirini, Maria G; Fiorentino, Michelangelo; Basso, Umberto; Biasco, Guido

    2014-01-01

    Mutations of genes encoding the subunits of the succinate dehydrogenase (SDH) complex were described in KIT/PDGFRA wild-type GIST separately in different reports. In this study, we simultaneously sequenced the genome of all subunits, SDHA, SDHB, SDHC, and SDHD in a larger series of KIT/PDGFRA wild-type GIST in order to evaluate the frequency of the mutations and explore their biological role. SDHA, SDHB, SDHC, and SDHD were sequenced on the available samples obtained from 34 KIT/PDGFRA wild-type GISTs. Of these, in 10 cases, both tumor and peripheral blood (PB) were available, in 19 cases only tumor, and in 5 cases only PB. Overall, 9 of the 34 patients with KIT/PDGFRA wild-type GIST carried mutations in one of the four subunits of the SDH complex (six patients in SDHA, two in SDHB, one in SDHC). WB and immunohistochemistry analysis showed that patients with KIT/PDGFRA wild-type GIST who harbored SDHA mutations exhibited a significant downregulation of both SDHA and SDHB protein expression, with respect to the other GIST lacking SDH mutations and to KIT/PDGFRA-mutated GIST. Clinically, four out of six patients with SDHA mutations presented with metastatic disease at diagnosis with a very slow, indolent course. Patients with KIT/PDGFRA wild-type GIST may harbor germline and/or de novo mutations of SDH complex with prevalence for mutations within SDHA, which is associated with a downregulation of SDHA and SDHB protein expression. The presence of germline mutations may suggest that these patients should be followed up for the risk of development of other cancers.

  10. Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanofibers and fibrous mats of polyvinyl alcohol (PVA) loaded with tannic acid (TA) and ferric ion (Fe+++) complexes (TA-Fe+++) were synthesized by the electrospinning technique. The spinning solutions were characterized for surface tension, electrical conductivity, and viscosity. It was found that ...

  11. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway.

    PubMed

    Kuivanen, Joosu; Arvas, Mikko; Richard, Peter

    2017-01-01

    D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD(+) requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP(+)/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s(-1), and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD(+)/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s(-1), and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism.

  12. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway

    PubMed Central

    Kuivanen, Joosu; Arvas, Mikko; Richard, Peter

    2017-01-01

    D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD+ requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP+/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s-1, and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD+/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s-1, and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism. PMID:28261181

  13. α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: synthesis, herbicidal activity, inhibition on pyruvate dehydrogenase complex (PDHc), and application as postemergent herbicide against broadleaf weeds.

    PubMed

    He, Hong-Wu; Peng, Hao; Wang, Tao; Wang, Chubei; Yuan, Jun-Lin; Chen, Ting; He, Junbo; Tan, Xiaosong

    2013-03-13

    Pyruvate dehydrogenase complex (PDHc) is the site of action of a new class of herbicides. On the basis of the previous work for O,O'-dimethyl α-(substituted-phenoxyacetoxy)alkylphosphonates (I), further synthetic modifications were made by introducing a fural and a thienyl group to structure I. A series of α-(substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonate derivatives (II) were synthesized as potential inhibitors of PDHc. The postemergent activity of the title compounds II was evaluated in greenhouse experiments. The in vitro efficacy of II against PDHc was also examined. Compounds II with fural as R(3) and 2,4-dichloro as X and Y showed significant herbicidal activity and effective inhibition against PDHc from plants. O,O'-Dimethyl α-(2,4-dichlorophenoxyacetoxy)-α-(furan-2-yl)methylphosphonate II-17 had higher inhibitory potency against PDHc from Pisum sativum than against PDHc from Oryza sativa in vitro and was most effective against broadleaf weeds at 50 and 300 ai g/ha. II-17 was safe for maize and rice even at the dose of 900-1200 ai g/ha. Field trials at different regions in China showed that II-17 (HWS) could control a broad spectrum of broad-leaved and sedge weeds at the rate of 225-375 ai g/ha for postemergent applications in maize fields. II-17 (HWS) displayed potential utility as a selective herbicide.

  14. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light

    PubMed Central

    Yamori, Wataru; Shikanai, Toshiharu; Makino, Amane

    2015-01-01

    Cyclic electron transport around photosystem I (PS I) was discovered more than a half-century ago and two pathways have been identified in angiosperms. Although substantial progress has been made in understanding the structure of the chloroplast NADH dehydrogenase-like (NDH) complex, which mediates one route of the cyclic electron transport pathways, its physiological function is not well understood. Most studies focused on the role of the NDH-dependent PS I cyclic electron transport in alleviation of oxidative damage in strong light. In contrast, here it is shown that impairment of NDH-dependent cyclic electron flow in rice specifically causes a reduction in the electron transport rate through PS I (ETR I) at low light intensity with a concomitant reduction in CO2 assimilation rate, plant biomass and importantly, grain production. There was no effect on PS II function at low or high light intensity. We propose a significant physiological function for the chloroplast NDH at low light intensities commonly experienced during the reproductive and ripening stages of rice cultivation that have adverse effects crop yield. PMID:26358849

  15. Cryptic antigenic determinants on the extracellular pyruvate dehydrogenase complex/mimeotope found in primary biliary cirrhosis. A probe by affinity mass spectrometry.

    PubMed

    Yip, T T; Van de Water, J; Gershwin, M E; Coppel, R L; Hutchens, T W

    1996-12-20

    Affinity mass spectrometry (AMS) was used to evaluate the structural diversity of the E2 component of pyruvate dehydrogenase complex (PDC) in normal and diseased liver cells, including those from patients with the autoimmune disease primary biliary cirrhosis (PBC). Two different antibodies to PDC-E2, the immunodominant mitochondrial autoantigen in patients with PBC, were used. AMS was performed directly on frozen liver sections and purified bile duct epithelial cells. Mass spectrometric signals associated with the molecular recognition of PBC-specific antigenic determinants were enhanced by an in situ enzyme-linked signal amplification process. Samples from patients with PBC gave strong positive signals for the antigen(s) recognized by the monoclonal antibody C355.1. Conversely, tissues from normal and disease controls showed only a minimal signal. AMS was used to identify specific antigenic determinants within the E2 component of PDC for comparison with unknown antigenic determinants observed by affinity capture with C355.1 monoclonal antibody from PBC samples. PDC components bound to C355.1 were mapped and identified by mass before dissociation from the E2 component. A similar approach was used to identify unknown antigenic determinants associated with PBC. We believe AMS may be an important new approach with wide application to the identification of molecules associated with a number of disease states.

  16. Structure of the Alpha(2)F(2) Ni-Dependent CO Dehydrogenase Component of the Methanosarcina Barkeri Acetyl-CoA Decarbonylase/Synthase Complex

    SciTech Connect

    Gong, W.; Hao, B.; Wei, Z.; Ferguson, D.J.; Jr.; Tallant, T.; Krzycki, J.A.; Chang, M.K.

    2009-05-18

    Ni-dependent carbon monoxide dehydrogenases (Ni-CODHs) are a diverse family of enzymes that catalyze reversible CO:CO{sub 2} oxidoreductase activity in acetogens, methanogens, and some CO-using bacteria. Crystallography of Ni-CODHs from CO-using bacteria and acetogens has revealed the overall fold of the Ni-CODH core and has suggested structures for the C cluster that mediates CO:CO{sub 2} interconversion. Despite these advances, the mechanism of CO oxidation has remained elusive. Herein, we report the structure of a distinct class of Ni-CODH from methanogenic archaea: the {alpha}{sub 2}{epsilon}{sub 2} component from the {alpha}{sub 8}{beta}{sub 8}{gamma}{sub 8}{delta}{sub 8}{epsilon}{sub 8} CODH/acetyl-CoA decarbonylase/synthase complex, an enzyme responsible for the majority of biogenic methane production on Earth. The structure of this Ni-CODH component provides support for a hitherto unobserved state in which both CO and H{sub 2}O/OH{sup -} bind to the Ni and the exogenous FCII iron of the C cluster, respectively, and offers insight into the structures and functional roles of the {epsilon}-subunit and FeS domain not present in nonmethanogenic Ni-CODHs.

  17. Structure of the Alpha-2 Epsilon-2 Ni-dependent CO Dehydrogenase Component of the Methanosarcina Barkeri Acetyl-CoA Decarbonylase/Synthase Complex

    SciTech Connect

    Gong, W.; Hao, B; Wei, Z; Ferguson, Jr., D; Tallant, T; Krzycki, J; Chan, M

    2008-01-01

    Ni-dependent carbon monoxide dehydrogenases (Ni-CODHs) are a diverse family of enzymes that catalyze reversible CO:CO2 oxidoreductase activity in acetogens, methanogens, and some CO-using bacteria. Crystallography of Ni-CODHs from CO-using bacteria and acetogens has revealed the overall fold of the Ni-CODH core and has suggested structures for the C cluster that mediates CO:CO2 interconversion. Despite these advances, the mechanism of CO oxidation has remained elusive. Herein, we report the structure of a distinct class of Ni-CODH from methanogenic archaea: the ?2?2 component from the ?8?8?8?8?8 CODH/acetyl-CoA decarbonylase/synthase complex, an enzyme responsible for the majority of biogenic methane production on Earth. The structure of this Ni-CODH component provides support for a hitherto unobserved state in which both CO and H2O/OH- bind to the Ni and the exogenous FCII iron of the C cluster, respectively, and offers insight into the structures and functional roles of the ?-subunit and FeS domain not present in nonmethanogenic Ni-CODHs.

  18. A series of oxyimine-based macrocyclic dinuclear zinc(II) complexes enhances phosphate ester hydrolysis, DNA binding, DNA hydrolysis, and lactate dehydrogenase inhibition and induces apoptosis.

    PubMed

    Anbu, Sellamuthu; Kamalraj, Subban; Varghese, Babu; Muthumary, Johnpaul; Kandaswamy, Muthusamy

    2012-05-21

    that the DNA cleavage acceleration promoted by 1-6 are due to the efficient cooperative catalysis of the two close proximate zinc(II) cation centers. The ligand L(1), dizinc(II) complexes 1, 3, and 6 showed cytotoxicity in human hepatoma HepG2 cancer cells, giving IC(50) values of 117, 37.1, 16.5, and 8.32 μM, respectively. The results demonstrated that 6, a dizinc(II) complex with potent antiproliferative activity, is able to induce caspase-dependent apoptosis in human cancer cells. Cytotoxicity of the complexes was further confirmed by the lactate dehydrogenase enzyme level in HepG2 cell lysate and content media.

  19. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  20. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  1. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    NASA Astrophysics Data System (ADS)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  2. Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds.

    PubMed

    Uhrig, R Glen; O'Leary, Brendan; Spang, H Elizabeth; MacDonald, Justin A; She, Yi-Min; Plaxton, William C

    2008-03-01

    The phosphoenolpyruvate carboxylase (PEPC) interactome of developing castor oil seed (COS; Ricinus communis) endosperm was assessed using coimmunopurification (co-IP) followed by proteomic analysis. Earlier studies suggested that immunologically unrelated 107-kD plant-type PEPCs (p107/PTPC) and 118-kD bacterial-type PEPCs (p118/BTPC) are subunits of an unusual 910-kD hetero-octameric class 2 PEPC complex of developing COS. The current results confirm that a tight physical interaction occurs between p118 and p107 because p118 quantitatively coimmunopurified with p107 following elution of COS extracts through an anti-p107-IgG immunoaffinity column. No PEPC activity or immunoreactive PEPC polypeptides were detected in the corresponding flow-through fractions. Although BTPCs lack the N-terminal phosphorylation motif characteristic of PTPCs, Pro-Q Diamond phosphoprotein staining, immunoblotting with phospho-serine (Ser)/threonine Akt substrate IgG, and phosphate-affinity PAGE established that coimmunopurified p118 was multiphosphorylated at unique Ser and/or threonine residues. Tandem mass spectrometric analysis of an endoproteinase Lys-C p118 peptide digest demonstrated that Ser-425 is subject to in vivo proline-directed phosphorylation. The co-IP of p118 with p107 did not appear to be influenced by their phosphorylation status. Because p118 phosphorylation was unchanged 48 h following elimination of photosynthate supply due to COS depodding, the signaling mechanisms responsible for photosynthate-dependent p107 phosphorylation differ from those controlling p118's in vivo phosphorylation. A 110-kD PTPC coimmunopurified with p118 and p107 when depodded COS was used. The plastidial pyruvate dehydrogenase complex (PDC(pl)) was identified as a novel PEPC interactor. Thus, a putative metabolon involving PEPC and PDC(pl) could function to channel carbon from phosphoenolpyruvate to acetyl-coenzyme A and/or to recycle CO(2) from PDC(pl) to PEPC.

  3. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    SciTech Connect

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  4. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide

    NASA Astrophysics Data System (ADS)

    Abou-Melha, Khlood S.

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO 2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO 2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria ( Staphylococcus aureus), Gram -ve bacteria (Escherichia coli) , and Fungi ( Candida albicans). The tested compounds exhibited higher antibacterial activities.

  5. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide.

    PubMed

    Abou-Melha, Khlood S

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.

  6. Lactate dehydrogenase test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  7. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  8. Diagnostic value of serum lactate dehydrogenase isoenzyme and amino acid patterns in several schistosomal and non-schistosomal disorders as compared to other biochemical parameters.

    PubMed

    Ahmed, S A; Gad, M Z

    1996-08-01

    Serum lactate dehydrogenase (LDH) isoenzyme and amino acid (a.a) patterns were evaluated in comparison to several other biochemical parameters for liver and renal function with the objective of clarifying the differential diagnosis of hepatic disorders and predicting the outcome of schistosomal infection in Egyptian patients. Patients examined included those with complicated hepatic disorders and others with different stages of schistosomal infestation, hepatoma or bladder cancer, in addition to a normal control group. Several biochemical parameters appeared to be useful in establishing consistent differences or similarities between the studied groups. Examples are; elevated serum AST/ALT ratio and methionine content in chronic schistosomiasis, elevated serum urea/creatinine ratio and leucine content in all schistosomal patients and extremely high levels of N-acetyl-beta-D-glucosaminidase (NAG) in the urine of non-schistosomal bladder cancer patients. In addition, characteristic LDH isoenzyme profiles distinguish between the studied groups, in particular separating chronic schistosomiasis from schistosomal bladder cancer and hepatoma from other hepatic disorders.

  9. An enzymatic bridge between carbohydrate and amino acid metabolism: regulation of glutamate dehydrogenase by reversible phosphorylation in a severe hypoxia-tolerant crayfish.

    PubMed

    Dawson, Neal J; Storey, Kenneth B

    2012-04-01

    Glutamate dehydrogenase (GDH) (EC 1.4.1.3) is a crucial enzyme involved in bridging two metabolic pathways, gating the use of glutamate for either amino acid metabolism, or carbohydrate metabolism. The present study investigated GDH from tail muscle of the freshwater crayfish Orconectes virilis exploring changes to kinetic properties, phosphorylation levels and structural stability between two forms of the enzyme (aerobic control and 20-h severe hypoxic). Evidence indicated that GDH was converted to a high phosphate form under oxygen limitation. ProQ Diamond phosphoprotein staining showed a 42% higher bound phosphate content on GDH from muscle of severely hypoxic crayfish compared with the aerobic form, and treatment of this GDH with commercial phosphatase (alkaline phosphatase), and treatments that stimulated the activities of different endogenous protein phosphatases (stimulating PP1 + PP2A, PP2B, and PP2C) yielded significant increases in the fold activation by ADP of GDH from both control and severe hypoxic conditions. By contrast, stimulation of the activities of endogenous protein kinases (AMPK, PKA or CaMK) significantly reduced the ADP fold activation from control animals. The physiological consequence of severe hypoxia-induced GDH phosphorylation may be to suppress GDH activity under low oxygen, shutting off this critical bridge point between two metabolic pathways.

  10. Crystallization and initial X-ray diffraction analysis of human pyruvate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, E.; Korotchkina, L. G.; Hong, Y. S.; Joachimiak, A.; Patel, M. S.

    2001-01-01

    Human pyruvate dehydrogenase (E1) is a component enzyme of the pyruvate dehydrogenase complex. The enzyme catalyzes the irreversible decarboxylation of pyruvic acid and the rate-limiting reductive acetylation of the lipoyl moiety linked to the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. E1 is an alpha(2)beta(2) tetramer ( approximately 154 kDa). Crystals of this recombinant enzyme have been grown in polyethylene glycol 3350 using a vapor-diffusion method at 295 K. The crystals are characterized as orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 64.2, b = 126.9, c = 190.2 A. Crystals diffracted to a minimum d spacing of 2.5 A. The asymmetric unit contains one alpha(2)beta(2) tetrameric E1 assembly; self-rotation function analysis showed a pseudo-twofold symmetry relating the two alphabeta dimers.

  11. Effect of inclusion complex on nitrous acid reaction with flavonoids

    NASA Astrophysics Data System (ADS)

    Khalafi, Lida; Rafiee, Mohammad; Sedaghat, Sajjad

    2011-10-01

    The kinetic of the nitrous acid reactions with quercetin and catechin has been studied using spectrophotometric method in aqueous solution. The results show that these antioxidants participate in oxidation reactions with nitrous acid which is derived from protonation of nitrite ion in mild acidic conditions. Corresponding o-quinones as relatively stable products were detected by spectrophotometric techniques. pH dependence of the reactions has been examined and the rate constants of reactions were obtained by non-linear fitting of kinetic profiles. The effect of β-cyclodextrin on the oxidation pathway was another object of this study. It is shown that β-cyclodextrin has an inhibitory effect on the oxidation reaction. The rate constants of oxidation reactions for complexed forms and their stability constants were obtained based on changes in the reaction rates as a function of β-cyclodextrin concentration.

  12. Quantification of acidic compounds in complex biomass-derived streams

    DOE PAGES

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; ...

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkalinemore » pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.« less

  13. Quantification of acidic compounds in complex biomass-derived streams

    SciTech Connect

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; Salvachúa, Davinia; Cywar, Robin M.; Beckham, Gregg T.

    2016-01-01

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkaline pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here too excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.

  14. Quantification of acidic compounds in complex biomass-derived streams

    SciTech Connect

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; Salvachúa, Davinia; Cywar, Robin M.; Beckham, Gregg T.

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkaline pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.

  15. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels.

    PubMed

    Stanley, C A; Hale, D E; Coates, P M; Hall, C L; Corkey, B E; Yang, W; Kelley, R I; Gonzales, E L; Williamson, J R; Baker, L

    1983-11-01

    Three children in two families presented in early childhood with episodes of illness associated with fasting which resembled Reye's syndrome: coma, hypoglycemia, hyperammonemia, and fatty liver. One child died with cerebral edema during an episode. Clinical studies revealed an absence of ketosis on fasting (plasma beta-hydroxybutyrate less than 0.4 mmole/liter) despite elevated levels of free fatty acids (2.6-4.2 mmole/liter) which suggested that hepatic fatty acid oxidation was impaired. Urinary dicarboxylic acids were elevated during illness or fasting. Total carnitine levels were low in plasma (18-25 mumole/liter), liver (200-500 nmole/g), and muscle (500-800 nmole/g); however, treatment with L-carnitine failed to correct the defect in ketogenesis. Studies on ketone production from fatty acid substrates by liver tissue in vitro showed normal rates from short-chain fatty acids, but very low rates from all medium and long-chain fatty acid substrates. These results suggested that the defect was in the mid-portion of the intramitochondrial beta-oxidation pathway at the medium-chain acyl-CoA dehydrogenase step. A new assay for the electron transfer flavoprotein-linked acyl-CoA dehydrogenases was used to test this hypothesis. This assay follows the decrease in electron transfer flavoprotein fluorescence as it is reduced by acyl-CoA-acyl-CoA dehydrogenase complex. Results with octanoyl-CoA as substrate indicated that patients had less than 2.5% normal activity of medium-chain acyl-CoA dehydrogenase. The activities of short-chain and isovaleryl acyl-CoA dehydrogenases were normal; the activity of long-chain acyl-CoA dehydrogenase was one-third normal. These results define a previously unrecognized inherited metabolic disorder of fatty acid oxidation due to deficiency of medium-chain acyl-CoA dehydrogenase.

  16. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants.

    PubMed

    Morris, Robert H

    2014-02-05

    A simple equation (pKa(THF) = ∑AL + Ccharge + Cnd + Cd6) can be used to obtain an estimate of the pKa of diamagnetic transition metal hydride and dihydrogen complexes in tetrahydrofuran, and, by use of conversion equations, in other solvents. It involves adding acidity constants AL for each of the ligands in the 5-, 6-, 7-, or 8-coordinate conjugate base complex of the hydride or dihydrogen complex along with a correction for the charge (Ccharge = -15, 0 or 30 for x = +1, 0 or -1 charge, respectively) and the periodic row of the transition metal (Cnd = 0 for 3d or 4d metal, 2 for 5d metal) as well as a correction for d(6) octahedral acids (Cd6 = 6 for d(6) metal ion in the acid, 0 for others) that are not dihydrogen complexes. Constants AL are provided for 13 commonly occurring ligand types; of these, nine neutral ligands are correlated with Lever's electrochemical ligand parameters EL. This method gives good estimates of the over 170 literature pKa values that range from less than zero to 50 with a standard deviation of 3 pKa units for complexes of the metals chromium to nickel, molybdenum, ruthenium to palladium, and tungsten to platinum in the periodic table. This approach allows a quick assessment of the acidity of hydride complexes found in nature (e.g., hydrogenases) and in industry (e.g., catalysis and hydrogen energy applications). The pKa values calculated for acids that have bulky or large bite angle chelating ligands deviate the most from this correlation. The method also provides an estimate of the base strength of the deprotonated form of the complex.

  17. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  18. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis

    PubMed Central

    1995-01-01

    The extraordinary specificity of bile duct destruction in primary biliary cirrhosis (PBC) and the presence of T cell infiltrates in the portal tracts have suggested that biliary epithelial cells are the targets of an autoimmune response. The immunodominant antimitochondrial response in patients with PBC is directed against the E2 component of pyruvate dehydrogenase (PDC-E2). Hitherto, there have only been limited reports on the characterization and V beta usage of PDC-E2-specific cloned T cell lines. In this study, we examined peripheral blood mononuclear cells (PBMC) for their reactivity to the entire PDC complex as well as to the E1- and E2-specific components. We also examined the phenotype, lymphokine profile, and V beta usage of PDC-specific T cell clones isolated from cellular infiltrates from the livers of PBC patients. We report that PBMC from 16/19 patients with PBC, but not 12 control patients, respond to the PDC-E2 subunit. Interestingly, this response was directed to the inner and/or the outer lipoyl domains, despite the serologic observation that the autoantibody response is directed predominantly to the inner lipoyl domain. Additionally, lymphokine analysis of interleukin (IL) 2/IL-4/interferon gamma production from individual liver-derived autoantigen-specific T cell clones suggests that both T helper cell Th1- and Th2-like clones are present in the liver. Moreover, there was considerable heterogeneity in the T cell receptor for antigen (TCR) V beta usage of these antigen- specific autoreactive T cell clones. This is in contrast to murine studies in which animals are induced to develop autoimmunity by specific immunization and have an extremely limited T cell V beta repertoire. Thus, our data suggest that in human organ-specific autoimmune diseases, such as PBC, the TCR V beta repertoire is heterogenous. PMID:7836925

  19. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates.

    PubMed

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F Scott

    2009-06-01

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed approximately 100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 A resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  20. A lead-207 nuclear magnetic resonance study of the complexation of lead by carboxylic acids and aminocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nakashima, Thomas T.; Rabenstein, Dallas L.

    The complexation of Pb(II) by carboxylic acids and aminocarboxylic acids was studied by 207Pb NMR. The results indicate that the 207Pb chemical shift provides a sensitive probe of the aqueous coordination chemistry of Pb(II). A single, exchange-averaged resonance is observed for lead in solutions containing Pb(NO 3) 2 and pivalic acid, acetic acid, formic acid, or chloroacetic acid, the chemical shift of which is sensitive to the Pb(NO 3) 2 to carboxylic acid ratio and to solution pH. Formation constants for the Pb(II)-carboxylate complexes were determined by fitting the chemical shift data to a model involving the complexes and ligand protonation. Chemical shift data for solutions containing Pb(NO 3) 2 and glycine, histidine, or glycylglycine indicate complexation of Pb(II) by the zwitterionic forms of these ligands. Formation constants for these complexes, which are difficult to study by other methods, were also determined from the chemical shift data. Complexation of Pb(II) by ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, nitrilotriacetic acid, and N-methyliminodiacetic acid causes a large deshielding of the 207Pb nucleus, e.g., the resonance for the ethylenediaminetetraacetic acid complex is deshielded by 2350 ppm. The chemical shift of the lead in these complexes is sensitive to protonation of the complex and to the formation of mixed complexes containing hydroxide ion.

  1. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade.

    PubMed

    Zeevalk, G D; Derr-Yellin, E; Nicklas, W J

    1995-12-01

    The effects of different severities of metabolic stress on dopamine (DA) and gamma-aminobutyric acid (GABA) cell loss were examined in rat mesencephalic culture. Partial metabolic inhibition was induced in 12-day-old cultures by a 24-hr treatment with various concentrations of 3-nitropropionic acid(3-NPA, 0.1-0.5 mM) or malonate (10-50 mM), irreversible and reversible inhibitors of the Krebs cycle enzyme, succinate dehydrogenase. Cell damage to the DA and GABA populations was assessed after a 48-hr recovery period by simultaneous measurement of high affinity uptake for 3H-DA and 14C-GABA. 3-NPA or malonate caused a dose-dependent loss of DA uptake (EC50 0.21 or 42 mM, respectively). 3-NPA treatment was equally detrimental to the GABA population, whereas malonate exposure did not cause any significant loss of GABA uptake. The presence of the NMDA antagonist, MK-801 (1 microM), during 24 hr of 3-NPA or malonate treatment fully protected against DA and GABA loss with 50 mM malonate or 0.25 mM 3-NPA and partially protected versus 0.5 mM 3-NPA. To determine the degree of metabolic stress imposed by 3-NPA and malonate, 12-day-old cultures were treated with 0.5 mM 3-NPA or 50 mM malonate for 3 hr and the rate of lactate formation was measured. lactate was increased nearly 2-fold at 3 hr of treatment with 3-NPA, but was not significantly elevated above basal with malonate treatment. SDH activity was decreased by 48 or 58% after 3 hr of treatment with 0.25 and 0.5 mM 3-NPA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics.

    PubMed

    Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH.

  3. Modelling of Rare Earth Elements Complexation With Humic Acid

    NASA Astrophysics Data System (ADS)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  4. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  5. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  6. Chemical modification of lysozyme, glucose 6-phosphate dehydrogenase, and bovine eye lens proteins induced by peroxyl radicals: role of oxidizable amino acid residues.

    PubMed

    Arenas, Andrea; López-Alarcón, Camilo; Kogan, Marcelo; Lissi, Eduardo; Davies, Michael J; Silva, Eduardo

    2013-01-18

    Chemical and structural alterations to lysozyme (LYSO), glucose 6-phosphate dehydrogenase (G6PD), and bovine eye lens proteins (BLP) promoted by peroxyl radicals generated by the thermal decomposition of 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) under aerobic conditions were investigated. SDS-PAGE analysis of the AAPH-treated proteins revealed the occurrence of protein aggregation, cross-linking, and fragmentation; BLP, which are naturally organized in globular assemblies, were the most affected proteins. Transmission electron microscopy (TEM) analysis of BLP shows the formation of complex protein aggregates after treatment with AAPH. These structural modifications were accompanied by the formation of protein carbonyl groups and protein hydroperoxides. The yield of carbonyls was lower than that for protein hydroperoxide generation and was unrelated to protein fragmentation. The oxidized proteins were also characterized by significant oxidation of Met, Trp, and Tyr (but not other) residues, and low levels of dityrosine. As the dityrosine yield is too low to account for the observed cross-linking, we propose that aggregation is associated with tryptophan oxidation and Trp-derived cross-links. It is also proposed that Trp oxidation products play a fundamental role in nonrandom fragmentation and carbonyl group formation particularly for LYSO and G6PD. These data point to a complex mechanism of peroxyl-radical mediated modification of proteins with monomeric (LYSO), dimeric (G6PD), and multimeric (BLP) structural organization, which not only results in oxidation of protein side chains but also gives rise to radical-mediated protein cross-links and fragmentation, with Trp species being critical intermediates.

  7. Structure for the Propiolic Acid - Formic Acid Complex from Microwave Spectra for Multiple Isotopologues

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Mitchell, Erik G.; Carey, Spencer J.; Sun, Ming; Sargus, Bryan M.

    2013-06-01

    New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH---HOOCH and HCCCOOD---DOOCH isotopologues. Transitions were measured in the 4.9-15.4 GHz range, providing accurate rotational constants which, combined with previous rotational constants allowed an improved structural fit for the propiolic acid - formic acid complex. The new structural fit yields orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å^2.The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations.The average of the two hydrogen bond lengths is R(exp) = 1.76 Å, in good agreement with R(theory) = 1.72 Å.

  8. Comprehensive Analysis of 5-Aminolevulinic Acid Dehydrogenase (ALAD) Variants and Renal Cell Carcinoma Risk among Individuals Exposed to Lead

    PubMed Central

    van Bemmel, Dana M.; Boffetta, Paolo; Liao, Linda M.; Berndt, Sonja I.; Menashe, Idan; Yeager, Meredith; Chanock, Stephen; Karami, Sara; Zaridze, David; Matteev, Vsevolod; Janout, Vladimir; Kollarova, Hellena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonilia; Mates, Dana; Slamova, Alena; Rothman, Nathaniel; Han, Summer S.; Rosenberg, Philip S.; Brennan, Paul; Chow, Wong-Ho; Moore, Lee E.

    2011-01-01

    Background Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD) gene affects lead toxicokinetics and may modify the adverse effects of lead. Methods The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs) tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC). Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression. Results The adjusted risk associated with the ALAD variant rs8177796CT/TT was increased (OR = 1.35, 95%CI = 1.05–1.73, p-value = 0.02) when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles (GGOR = 2.68, 95%CI = 1.17–6.12, p = 0.01; GAOR = 1.79, 95%CI = 1.06–3.04 with an interaction approaching significance (pint = 0.06).. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N). Haplotype analysis identified a region associated with risk supporting tagging SNP results. Conclusion A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure. PMID:21799727

  9. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant.

  10. Plasma amino acids changes in complex regional pain syndrome.

    PubMed

    Alexander, Guillermo M; Reichenberger, Erin; Peterlin, B Lee; Perreault, Marielle J; Grothusen, John R; Schwartzman, Robert J

    2013-01-01

    Complex regional pain syndrome (CRPS) is a severe chronic pain condition that most often develops following trauma. Blood samples were collected from 220 individuals, 160 CRPS subjects, and 60 healthy pain-free controls. Plasma amino acid levels were compared and contrasted between groups. L-Aspartate, L-glutamate, and L-ornithine were significantly increased, whereas L-tryptophan and L-arginine were significantly decreased in CRPS subjects as compared to controls. In addition, the L-kynurenine to L-tryptophan ratio demonstrated a significant increase, whereas the global arginine bioavailability ratio (GABR) was significantly decreased in the CRPS subjects. The CRPS subjects demonstrated a significant correlation between overall pain and the plasma levels of L-glutamate and the L-kynurenine to L-tryptophan ratio. CRPS subjects also showed a correlation between the decrease in plasma L-tryptophan and disease duration. This study shows that CRPS subjects exhibit significant changes in plasma levels of amino acids involved in glutamate receptor activation and in amino acids associated with immune function as compared to healthy pain-free controls. A better understanding of the role plasma amino acids play in the pathophysiology of CRPS may lead to novel treatments for this crippling condition.

  11. Physical chemistry of nucleic acids and their complexes.

    PubMed

    Ghirlando, Rodolfo; Felsenfeld, Gary

    2013-12-01

    Studies of the physical properties of nucleic acids began almost immediately following the discovery of the DNA structure. Early investigations focused on the stability and specificity of multi-strand polynucleotide complexes, then gradually on their interaction with other molecules, particularly proteins. As molecular and structural biology expanded to provide detailed information about biochemical mechanisms, physical studies eventually acquired the additional constraint that they should be relevant to functioning biological systems. We describe work in our laboratory that began with investigations of relatively simple questions about the role of electrostatic interactions in the stabilization of multi-strand nucleic acid structures, and evolved to studies of chromatin structure in vitro and within the nucleus.

  12. [PREPARATIONS OF PAMIDRONOVIC ACID IN COMPLEX TREATMENT ON OSTEOGENESIS IMPERFECTA].

    PubMed

    Zyma, A M; Guk, Yu M; Magomedov, O M; Gayko, O G; Kincha-Polishchuk, T A

    2015-07-01

    Modern view of drug therapy in the complex treatment of orthopedic manifestations of osteogenesis imperfecta (OI) was submitted. Developed and tested system of drug correction of structural and functional state of bone tissue (BT) using drugs pamidronovic acid, depending on osteoporosis severity and type of disease. Such therapy is appropriate to apply both independently and in conjunction with surgery to correct deformations of long bones of the lower extremities. Effectiveness and feasibility of the proposed methods of drug therapy was proved, most patients resume features walking and support.

  13. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  14. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.

    PubMed

    Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M

    2004-06-01

    A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.

  15. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.

  16. The complexation behavior of neptunium and plutonium with nitrilotriacetic acid

    SciTech Connect

    Nitsche, H.; Becraft, K.

    1990-08-01

    The first stability constant of NpO{sub 2}{sup +} with nitrilotriacetic acid (NTA) was determined at four ionic strengths (0.5, 1.0, 2.0, 3.0 M) using spectrophotometry. Nonlinear least-squares data fitting identified the complex as NpO{sub 2}NTA{sup 2-}. The Specific Ion Interaction Theory (S.I.T) approximation method was used to determine the stability constants at infinite dilution. First results on Pu{sup 4+} and PuO{sub 2}{sup 2+} complexation with NTA are reported. The stability constant for the Pu(NTA){sup +} complex at I = 0.1 M strength is given. From results for PuO{sub 2}{sup 2+} complexation with NTA (I = 1 M) at pH < 3, the stability constant was derived for PuO{sub 2} NTA{sup {minus}}. At pH > 3, NTA partially reduced PuO{sub 2}{sup 2+} to PuO{sub 2}{sup +}. 3 refs., 5 figs., 4 tabs.

  17. 78 FR 46265 - Complex Polymeric Polyhydroxy Acids; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... AGENCY 40 CFR Part 180 Complex Polymeric Polyhydroxy Acids; Exemption From the Requirement of a Tolerance... an exemption from the requirement of a tolerance for residues of Complex Polymeric Polyhydroxy Acids... level for residues of Complex Polymeric Polyhydroxy Acids (CPPA) under FFDCA. DATES: This regulation...

  18. Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of l-Lysine, l-Valine, and 2-Ketoisovalerate

    PubMed Central

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J.

    2013-01-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  19. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  20. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis

    PubMed Central

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779

  1. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.

    PubMed

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting.

  2. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    PubMed

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity.

  3. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    PubMed

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹).

  4. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

    PubMed

    Yuan, Dongjuan; Zou, Qiuqiong; Yu, Ting; Song, Cuikai; Huang, Shengfeng; Chen, Shangwu; Ren, Zhenghua; Xu, Anlong

    2014-09-01

    Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.

  5. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    PubMed

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering.

  6. Acetohydroxamic Acid Complexes with Trivalent f-Block Metal Cations

    SciTech Connect

    Sinkov, Serguei I.; Choppin, Gregory

    2003-11-01

    Acetohydroxamic acid has been studied by optical absorbance spectroscopy as a complex forming reagent for the lighter trivalent lanthanides and actinides (Pu(III) and Am(III)) in aqueous solution at 2.0 M (NaClO4) ionic strength. The highest stoichiometry in all the cases studied has been found to be a 1:4 metal-to-ligand ratio; formation of tetrahydroxamato species requires a high excess of the ligand and alkaline pH, Spectrophotometric monitoring confirmed the presence of Pu(III) by electrochemical reduction of Pu(IV) in the course of the pH titration experiment. The formation constants can be used for optimization of processing flowsheets in the advanced PUREX process.

  7. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  8. Detection of 11 beta-hydroxysteroid dehydrogenase type 1, the glucocorticoid and mineralocorticoid receptor in various adipose tissue depots of dairy cows supplemented with conjugated linoleic acids.

    PubMed

    Friedauer, K; Dänicke, S; Schulz, K; Sauerwein, H; Häussler, S

    2015-10-01

    Early lactating cows mobilize adipose tissue (AT) to provide energy for milk yield and maintenance and are susceptible to metabolic disorders and impaired immune response. Conjugated linoleic acids (CLA), mainly the trans-10, cis-12 isomer, reduce milk fat synthesis and may attenuate negative energy balance. Circulating glucocorticoids (GC) are increased during parturition in dairy cows and mediate differentiating and anti-inflammatory effects via glucocorticoid (GR) and mineralocorticoid receptors (MR) in the presence of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Activated GC are the main ligands for both receptors in AT; therefore, we hypothesized that tissue-specific GC metabolism is effected by varying amounts of GR, MR and 11βHSD1 and/or their localization within AT depots. Furthermore, the lipolytic and antilipogenic effects of CLA might influence the GC/GR/MR system in AT. Therefore, we aimed to localize GR and MR as well as the expression pattern and activity of 11βHSD1 in different AT depots during early lactation in dairy cows and to identify potential effects of CLA. Primiparous German Holstein cows were divided into a control (CON) and a CLA group. From day 1 post-partum (p.p.) until sample collection, the CLA group was fed with 100 g/d CLA (contains 10 g each of the cis-9, trans-11 and the trans-10, cis-12-CLA isomers). CON cows (n = 5 each) were slaughtered on day 1, 42 and 105 p.p., while CLA cows (n = 5 each) were slaughtered on day 42 and 105 p.p. Subcutaneous fat from tailhead, withers and sternum, and visceral fat from omental, mesenteric and retroperitoneal depots were sampled. The localization of GR and 11βHSD1 in mature adipocytes - being already differentiated - indicates that GC promote other effects via GR than differentiation. Moreover, MR were observed in the stromal vascular cell fraction and positively related to the pre-adipocyte marker Pref-1. However, only marginal CLA effects were observed in this study.

  9. Dynamics of palmitic acid complexed with rat intestinal fatty acid binding protein.

    PubMed

    Zhu, L; Kurian, E; Prendergast, F G; Kemple, M D

    1999-02-02

    Dynamics of palmitic acid (PA), isotopically enriched with 13C at the second, seventh, or terminal methyl position, were investigated by 13C NMR. Relaxation measurements were made on PA bound to recombinant rat intestinal fatty acid binding protein (I-FABP) at pH 5.5 and 23 degreesC, and, for comparison, on PA incorporated into 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPPC) micelles, and dissolved in methanol. The 13C relaxation data, T1, and steady-state nuclear Overhauser effect (NOE) obtained at two different magnetic fields were interpreted using the model-free approach [Lipari, G., and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall rotational correlation time of the fatty acid.protein complex was 2.5 +/- 0.4 ns, which is substantially less than the value expected for the protein itself (>6 ns). Order parameters (S2), which are a measure of the amplitude of the internal motion of individual C-H vectors with respect to the PA molecule, while largest for C-2 and smallest for the methyl carbon, were relatively small (<0.4) in the protein complex. S2 values for given C-H vectors also were smaller for PA in the MPPC micelles and in methanol than in the protein complex. Correlation times reflective of the time scale of the internal motion of the C-H vectors were in all cases <60 ps. These results support the view that the fatty acid is not rigidly anchored within the I-FABP binding pocket, but rather has considerable freedom to move within the pocket.

  10. The temporal relationship between glycogen phosphorylase and activation of the pyruvate dehydrogenase complex during adrenaline infusion in resting canine skeletal muscle

    PubMed Central

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-01-01

    The present study examined the effect of adrenaline infusion on the activation status of glycogen phosphorylase and the pyruvate dehydrogenase complex (PDC) and on the accumulation of glucose-6-phosphate (G-6-P) and acetylcarnitine in resting canine skeletal muscle. The study was performed in an effort to gain some insight into the temporal relationship between glycogen phosphorylase and PDC activation in vivo in skeletal muscle, which is currently unresolved. Multiple muscle samples were obtained from canine brachial muscle (n = 10) before and during (1, 3, 7 and 15 min) adrenaline infusion (0.14 μg (kg body mass)−1 min−1, i.v.). Adrenaline infusion increased glycogen phosphorylase ‘a’ by > 2-fold above basal levels after 3 min (pre-infusion = 9.2 ± 1.1 vs. 3 min = 22.3 ± 4.0 mmol glucosyl units (kg dry muscle)−1 min−1, P < 0.05). The concentration of G-6-P increased transiently from its basal concentration at 1 min (pre-infusion = 1.5 ± 0.2 vs. 1 min = 4.4 ± 0.9 mmol kg dry muscle)−1, P < 0.01), declined to its pre-infusion concentration at 3 min (P < 0.05), and then increased again after 7 min of infusion (P < 0.05). The PDC was activated following 7 min of adrenaline infusion (pre-infusion = 0.22 ± 0.04 vs. 7 min = 1.04 ± 0.15 mmol acetyl-CoA (kg wet muscle)−1 min−1, P < 0.01), and this degree of activation was maintained for the duration of infusion. During the first 3 min of infusion, the concentration of acetylcarnitine declined (pre-infusion = 3.8 ± 0.3 vs. 3 min = 1.6 ± 0.2 mmol (kg dry muscle)−1, P < 0.05), before transiently increasing at 7 min above the 3 min concentration (3 min = 1.6 ± 0.2 vs. 7 min = 5.1 ± 1.0 mmol (kg dry muscle)−1, P < 0.01). This is the first study to demonstrate that adrenaline can indirectly activate the PDC in skeletal muscle in vivo at rest. The results demonstrate that adrenaline increased glycogen phosphorylase activation and glycolytic flux within 3 min of infusion, but took several more

  11. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2012-12-01

    The complex of squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dion, H2SQ) with quinuclidine betaine (1-carboxymethyl-1-azabicyclo[2.2.2]octane inner salt, QNB), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies and by DFT calculations. In the crystal of 1, monoclinic space group P21/n, one proton from H2SQ is transferred to QNB. QNBH+ and HSQ- are linked together by a Osbnd H⋯O hydrogen bond of 2.553(2) Å. Two such QNBH+·HSQ- complexes form a centrosymmetric dimer bridged by two Osbnd H⋯O bonds of 2.536(2) Å. The FTIR spectrum is consistent with the X-ray results. The structures of monomer QNBH+·HSQ- (1a) and dimer [QNB·H2SQ]2 (2) have been optimized at the B3LYP/6-311++G(d,p) level of theory. Isolated dimer 2 optimized back to a molecular aggregate of H2SQ and QNB. The calculated frequencies for the optimized structure of dimer 2 have been used to explain the frequencies of the experimental FTIR spectrum. The interpretation of 1H and 13C NMR spectra has been based on the calculated GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants for monomer 1a.

  12. Fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum(III) and the fluorometry of nucleic acids

    SciTech Connect

    Cheng Zhi Huang; Ke An Li; Shen Yang Tong

    1996-07-01

    The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of PH 8.0-8.4 (controlled by NH{sub 3}-NH{sub 4}Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4 --3.6 {mu}g{sup .}ml{sup -1} for calf thymus DNA, 0.4 -- 4.0 {mu}g{sup .}ml{sup -1} for fish sperm DNA and 0.4 --4.0{mu}g{sup .}ml{sup -1} for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  13. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  14. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  15. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  16. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  18. Purification and characterization of dimeric dihydrodiol dehydrogenase from dog liver.

    PubMed

    Sato, K; Nakanishi, M; Deyashiki, Y; Hara, A; Matsuura, K; Ohya, I

    1994-09-01

    High NADP(+)-linked dihydrodiol dehydrogenase activity was detected in dog liver cytosol, from which a dimeric enzyme composed of M(r) 39,000 subunits was purified to homogeneity. The enzyme oxidized trans-cyclohexanediol, and trans-dihydrodiols of benzene and naphthalene, the [1R,2R]-isomers of which were selectively oxidized. In the reverse reaction in the presence of NADPH as a coenzyme, the enzyme reduced alpha-dicarbonyl compounds, such as methylglyoxal, 3-deoxyglucosone, and diacetyl, and some compounds with a carbonyl group, such as glyceraldehyde, lactaldehyde, and acetoin. 4-Hydroxyphenylketones and ascorbates inhibited the enzyme. The results of steady-state kinetic analyses indicated that the reaction proceeds through an ordered bi bi mechanism with the coenzyme binding to the free enzyme, and suggested that the inhibitors bind to the enzyme-NADP+ binary complex. The dimeric enzyme was detected in liver and kidney of dog, and was immunochemically similar to the dimeric enzymes from monkey kidney, rabbit lens, and pig liver. The sequences (total 127 amino acid residues) of eight peptides derived on enzymatic digestion of the dog liver enzyme did not show significant similarity with the primary structures of members of the aldo-keto reductase and short chain dehydrogenase superfamilies, which include monomeric dihydrodiol dehydrogenases and carbonyl reductase, respectively.

  19. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    PubMed

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  20. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  1. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components.

    PubMed

    Hiromasa, Yasuaki; Fujisawa, Tetsuro; Aso, Yoichi; Roche, Thomas E

    2004-02-20

    The subunits of the dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex can form a 60-mer via association of the C-terminal I domain of E2 at the vertices of a dodecahedron. Exterior to this inner core structure, E2 has a pyruvate dehydrogenase component (E1)-binding domain followed by two lipoyl domains, all connected by mobile linker regions. The assembled core structure of mammalian pyruvate dehydrogenase complex also includes the dihydrolipoyl dehydrogenase (E3)-binding protein (E3BP) that binds the I domain of E2 by its C-terminal I' domain. E3BP similarly has linker regions connecting an E3-binding domain and a lipoyl domain. The composition of E2.E3BP was thought to be 60 E2 plus approximately 12 E3BP. We have prepared homogenous human components. E2 and E2.E3BP have s(20,w) values of 36 S and 31.8 S, respectively. Equilibrium sedimentation and small angle x-ray scattering studies indicate that E2.E3BP has lower total mass than E2, and small angle x-ray scattering showed that E3 binds to E2.E3BP outside the central dodecahedron. In the presence of saturating levels of E1, E2 bound approximately 60 E1 and maximally sedimented 64.4 +/- 1.5 S faster than E2, whereas E1-saturated E2.E3BP maximally sedimented 49.5 +/- 1.4 S faster than E2.E3BP. Based on the impact on sedimentation rates by bound E1, we estimate fewer E1 (approximately 12) were bound by E2.E3BP than by E2. The findings of a smaller E2.E3BP mass and a lower capacity to bind E1 support the smaller E3BP substituting for E2 subunits rather than adding to the 60-mer. We describe a substitution model in which 12 I' domains of E3BP replace 12 I domains of E2 by forming 6 dimer edges that are symmetrically located in the dodecahedron structure. Twelve E3 dimers were bound per E248.E3BP12 mass, which is consistent with this model.

  2. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

  3. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  4. Sorbitol dehydrogenase inhibitors (SDIs): a new potent, enantiomeric SDI, 4-[2-1R-hydroxy-ethyl)-pyrimidin-4-yl]piperazine-1-sulfonic acid dimethylamide.

    PubMed

    Mylari, B L; Oates, P J; Beebe, D A; Brackett, N S; Coutcher, J B; Dina, M S; Zembrowski, W J

    2001-08-16

    We report here on our medicinal chemistry and pharmacology efforts to provide a potent sorbitol dehydrogenase inhibitor (SDI) as a tool to probe a recently disclosed hypothesis centered on the role of sorbitol dehydrogenase (SDH) in the second step of the polyol pathway, under conditions of high glucose flux. Starting from a weak literature lead, 2, and through newly developed structure-activity relationships, we have designed and executed an unambiguous synthesis of enantiomeric SDI, 6, which is at least 10x more potent than 2. Also, 6 potently inhibits SDH in streptozotocin-diabetic rat sciatic nerve. We have described an expedient synthesis of a key building template, 33, for future research in the SDI area that may facilitate the discovery of even more potent SDIs with longer duration of action in vivo.

  5. Complexation of NpO2+ with N-methyl-iminodiacetic Acid: in Comparison with Iminodiacetic and Dipicolinic Acids

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng

    2010-10-01

    Complexation of Np(V) with N-methyl-iminodiacetic acid (MIDA) in 1 M NaClO{sub 4} solution was studied with multiple techniques including potentiometry, spectrophotometry, and microcalorimetry. The 1:2 complex, NpO{sub 2}(MIDA){sub 2}{sup 3-} was identified for the first time in aqueous solution. The correlation between its optical absorption properties and symmetry was discussed, in comparison with Np(V) complexes with two structurally related nitrilo-dicarboxylic acids, iminodiacetic acid (IDA) and dipicolinic acid (DPA). The order of the binding strength (DPA > MIDA > IDA) is explained by the difference in the structural and electronic properties of the ligands. In general, the nitrilo-dicarboxylates form stronger complexes with Np(V) than oxy-dicarboxylates due to a much more favorable enthalpy of complexation.

  6. Stereospecific synthesis of (R)-2-hydroxy carboxylic acids using recombinant E. coli BL21 overexpressing YiaE from Escherichia coli K12 and glucose dehydrogenase from Bacillus subtilis.

    PubMed

    Yun, Hyungdon; Choi, Hyeon-Lok; Fadnavis, Nitin W; Kim, Byung-Gee

    2005-01-01

    The yiaE gene from Escherichia coli K12 was functionally expressed in E. coli BL21 using an IPTG inducible pET expression system (2.1 U/mg), and YiaE was purified to a specific activity of 18 U/mg. The purified enzyme catalyzes reduction of various aromatic and aliphatic 2-oxo carboxylic acids to the corresponding (R)-2-hydoxy carboxylic acids using NADPH. For practical applications, the problem of NADPH recycle was effectively solved by using recombinant E. coli overexpressing YiaE and glucose dehydrogenase from Bacillus subtilis in the same cell. The recombinant E. coli was used to prepare (R)-phenyllactic acid and (R)-2-hydroxy-4-phenylbutanoic acid from the corresponding 2-oxo carboxylic acids (98% ee) while the alpha-carbonyl group of 2,4-dioxo-4-phenylbutyric acid was reduced regio- and stereospecifically to give (R)-2-hydroxy-4-oxo-4-phenylbutyric acid (97% ee) in quantitative yields. The cells could be recycled for 3 days at room temperature in 100 mM phosphate buffer (pH 7.0) without loss of activity, which reduced to 70% after 1 week.

  7. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  8. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  9. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  10. Effects of chemical and enzymatic modifications on starch-linoleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2017-02-15

    This study investigated the complexation yield and physicochemical properties of soluble and insoluble starch complexes with linoleic acid when a β-amylase treatment was applied to acetylated and debranched potato starch. The degree of acetylation was generally higher in the soluble complexes than in the insoluble ones. The insoluble complexes from the acetylated starch displayed the V-type pattern, whereas, the soluble complexes displayed a mixture of either the A-/V-type or the B-/V-type pattern. Acetylation decreased onset and peak melting temperatures for the insoluble complexes, whereas no melting endotherm was observed in the soluble complexes. Acetylation substantially increased the amount of complexed linoleic acid in the insoluble complexes, but had little positive effect on the formation of the soluble complexes. The β-amylase treatment significantly increased the complexed linoleic content in both soluble and insoluble complexes for the low acetylated starch, but not for the high acetylated starch.

  11. A lipoamide dehydrogenase from Neisseria meningitidis has a lipoyl domain.

    PubMed

    Bringas, R; Fernandez, J

    1995-04-01

    A protein of molecular weight of 64 kDa (p64k) found in the outer membrane of Neisseria meningitidis shows a high degree of homology with both the lipoyl domain of the acetyltransferase and the entire sequence of the lipoamide dehydrogenase, the E2 and E3 components of the dehydrogenase multienzyme complexes, respectively. The alignment of the p64k with lipoyl domains and lipoamide dehydrogenases from different species is presented. The possible implications of this protein in binding protein-dependent transport are discussed. This is the first lipoamide dehydrogenase reported to have a lipoyl domain.

  12. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    SciTech Connect

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  13. Amylose inclusion complexation of ferulic acid via lipophilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid is an interesting phytochemical that exhibits antioxidant, anti-inflammatory, antimicrobial, UV-absorber, and anticarcinogenic activities. These properties make it of interest in food formulations, cosmetics, polymer, and pharmaceutical applications. However, delivery of ferulic acid in...

  14. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.

    PubMed

    Morris, Robert H

    2016-08-10

    Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.

  15. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  16. Characterization of retinaldehyde dehydrogenase 3

    PubMed Central

    Graham, Caroline E.; Brocklehurst, Keith; Pickersgill, Richard W.; Warren, Martin J.

    2005-01-01

    RALDH3 (retinal dehydrogenase 3) was characterized by kinetic and binding studies, protein engineering, homology modelling, ligand docking and electrostatic-potential calculations. The major recognition determinant of an RALDH3 substrate was shown to be an eight-carbon chain bonded to the aldehyde group whose kinetic influence (kcat/Km at pH 8.5) decreases when shortened or lengthened. Surprisingly, the β-ionone ring of all-trans-retinal is not a major recognition site. The dissociation constants (Kd) of the complexes of RALDH3 with octanal, NAD+ and NADH were determined by intrinsic tryptophan fluorescence. The similarity of the Kd values for the complexes with NAD+ and with octanal suggests a random kinetic mechanism for RALDH3, in contrast with the ordered sequential mechanism often associated with aldehyde dehydrogenase enzymes. Inhibition of RALDH3 by tri-iodothyronine binding in competition with NAD+, predicted by the modelling, was established kinetically and by immunoprecipitation. Mechanistic implications of the kinetically influential ionizations with macroscopic pKa values of 5.0 and 7.5 revealed by the pH-dependence of kcat are discussed. Analogies with data for non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans, together with the present modelled structure of the thioacyl RALDH3, suggest (a) that kcat characterizes deacylation of this intermediate for specific substrates and (b) the assignment of the pKa of the major ionization (approximating to 7.5) to the perturbed carboxy group of Glu280 whose conjugate base is envisaged as supplying general base catalysis to attack of a water molecule. The macroscopic pKa of the minor ionization (5.0) is considered to approximate to that of the carboxy group of Glu488. PMID:16241904

  17. 40 CFR 180.1321 - Complex Polymeric Polyhydroxy Acids; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RESIDUES IN FOOD Exemptions From Tolerances § 180.1321 Complex Polymeric Polyhydroxy Acids; exemption from... the residues of complex polymeric polyhydroxy acids in or on all food commodities when applied as a plant growth regulator and used in accordance with good agricultural practices....

  18. Calorimetric and laser induced fluorescence investigation of the complexation geometry of selected europium-gem-diphosphonate complexes in acidic solutions

    SciTech Connect

    Nash, K.L.; Rao, L.F.; Choppin, G.R.

    1995-05-10

    Details of the coordination chemistry of europium complexes with methanediphosphonic acid (MDPA), vinylidene-1,1-diphosphonic acid (VDPA), and 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic aqueous solutions have been investigated by titration calorimetry and laser-induced fluorescence. For the 1:1 complexes, thermodynamic parameters and complex hydration are consistent with those previously reported for europium complexes with the carboxylate structural analog malonate. In the 1:2 complexes, markedly different thermodynamic parameters and cation dehydration are observed. The second diphosphonate ligand adds to the 1:1 complex displacing four additional water molecules from the primary coordination sphere (as compared with two for the addition of a second malonate). This reaction is also characterized by a nearly zero entropy change. The results are rationalized using molecular mechanics to suggest an unusual geometry in which the diphosphonate ligands and bound water molecules are appreciably segregated in the europium coordination sphere. Intramolecular hydrogen bonding and second hydration sphere ordering are suggested to explain the low complexation entropies.

  19. Hydrogen bonding in proton-transfer complexes of cytosine with trimesic and pyromellitic acids

    NASA Astrophysics Data System (ADS)

    Thomas, Reji; Kulkarni, G. U.

    2008-02-01

    Protons-transfer complexes (1:1) of cytosine with trimesic and pyromellitic acids have been crystallized and single crystal structures have been solved by X-ray crystallography. Both cocrystals exhibit layered structures, each layer containing a plethora of N-H⋯O and O-H⋯O hydrogen bonds between the proton-transfer duplets. The cytosine-trimesic acid complex exhibits a bilayered structure (2.87 Å) in contrast to the commonly observed layered structure seen in the cytosine-pyromellitic acid complex (3.98 Å). Another layered system, an adduct of pyromellitic acid and 1,4-dihydroxy benzene, has also been studied.

  20. Effects of chemical and enzymatic modifications on starch-oleic acid complex formation.

    PubMed

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2015-04-29

    The solubility of starch-inclusion complexes affects the digestibility and bioavailability of the included molecules. Acetylation with two degrees of substitution, 0.041 (low) and 0.091 (high), combined without or with a β-amylase treatment was employed to improve the yield and solubility of the inclusion complex between debranched potato starch and oleic acid. Both soluble and insoluble complexes were recovered and analyzed for their degree of acetylation, complexation yields, molecular size distributions, X-ray diffraction patterns, and thermal properties. Acetylation significantly increased the amount of recovered soluble complexes as well as the complexed oleic acid in both soluble and insoluble complexes. High-acetylated debranched-only starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low-acetylated starch with or without the β-amylase treatment resulted in the highest complexed oleic acid in the insoluble complexes (37.6-42.9 mg/g). All acetylated starches displayed the V-type X-ray pattern, and the melting temperature generally decreased with acetylation. The results indicate that starch acetylation with or without the β-amylase treatment can improve the formation and solubility of the starch-oleic acid complex.

  1. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.

    PubMed Central

    Koenig, K; Andreesen, J R

    1990-01-01

    The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images PMID:2170335

  2. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  3. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    PubMed

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  4. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine.

    PubMed

    Rajeswari, Angusamy; Ramdass, Arumugam; Muthu Mareeswaran, Paulpandian; Rajagopal, Seenivasan

    2016-03-01

    The ruthenium(II) complexes having 2,2'-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

  5. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  6. New insights into the binding mode of coenzymes: structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase complexed with NADP+.

    PubMed

    Inagaki, Eiji; Ohshima, Noriyasu; Sakamoto, Keiko; Babayeva, Nigar D; Kato, Hiroaki; Yokoyama, Shigeyuki; Tahirov, Tahir H

    2007-06-01

    Delta(1)-Pyrroline-5-carboxylate dehydrogenase (P5CDh) is known to preferentially use NAD(+) as a coenzyme. The k(cat) value of Thermus thermophilus P5CDh (TtP5CDh) is four times lower for NADP(+) than for NAD(+). The crystal structure of NADP(+)-bound TtP5CDh was solved in order to study the structure-activity relationships for the coenzymes. The binding mode of NADP(+) is essentially identical to that in the previously solved NAD(+)-bound form, except for the regions around the additional 2'-phosphate group of NADP(+). The coenzyme-binding site can only accommodate this group by the rotation of a glutamate residue and subtle shifts in the main chain. The 2'-phosphate of NADP(+) increases the number of hydrogen bonds between TtP5CDh and NADP(+) compared with that between TtP5CDh and NAD(+). Furthermore, the phosphate of the bound NADP(+) would restrict the ;bending' of the coenzyme because of steric hindrance. Such bending is important for dissociation of the coenzymes. These results provide a plausible explanation of the lower turnover rate of NADP(+) compared with NAD(+).

  7. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene.

    PubMed Central

    Tso, J Y; Sun, X H; Kao, T H; Reece, K S; Wu, R

    1985-01-01

    Full length cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rat and man have been isolated and sequenced. Many GAPDH gene-related sequences have been found in both genomes based on genomic blot hybridization analysis. Only one functional gene product is known. Results from genomic library screenings suggest that there are 300-400 copies of these sequences in the rat genome and approximately 100 in the human genome. Some of these related sequences have been shown to be processed pseudogenes. We have isolated several rat cDNA clones corresponding to these pseudogenes indicating that some pseudogenes are transcribed. Rat and human cDNAs are 89% homologous in the coding region, and 76% homologous in the first 100 base pairs of the 3'-noncoding region. Comparison of these two cDNA sequences with those of the chicken, Drosophila and yeast genes allows the analysis of the evolution of the GAPDH genes in detail. Images PMID:2987855

  8. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions.

  9. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  10. Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene.

    PubMed Central

    Lampel, K A; Uratani, B; Chaudhry, G R; Ramaley, R F; Rudikoff, S

    1986-01-01

    The DNA sequence of the structural gene for glucose dehydrogenase (EC 1.1.1.47) of Bacillus subtilis was determined and comprises 780 base pairs. The subunit molecular weight of glucose dehydrogenase as deduced from the nucleotide sequence is 28,196, which agrees well with the subunit molecular weight of 31,500 as determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the 49 amino acids at the NH2 terminus of glucose dehydrogenase purified from sporulating B. subtilis cells matched the amino acid sequence derived from the DNA sequence. Glucose dehydrogenase was purified from an Escherichia coli strain harboring pEF1, a plasmid that contains the B. subtilis gene encoding glucose dehydrogenase. This enzyme has the identical amino acid sequence at the NH2 terminus as the B. subtilis enzyme. A putative ribosome-binding site, 5'-AGGAGG-3', which is complementary to the 3' end of the 16S rRNA of B. subtilis, was found 6 base pairs preceding the translational start codon of the structural gene of glucose dehydrogenase. No known promoterlike DNA sequences that are recognized by B. subtilis RNA polymerases were present immediately preceding the translational start site of the glucose dehydrogenase structural gene. The glucose dehydrogenase gene was found to be under sporulation control at the trancriptional level. A transcript of 1.6 kilobases hybridized to a DNA fragment within the structural gene of glucose dehydrogenase. This transcript was synthesized 3 h after the cessation of vegetative growth concomitant to the appearance of glucose dehydrogenase. Images PMID:3082854

  11. Anticoagulant Effects of Heparin Complexes with Prolyl-Glycine Peptide and Glycine and Proline Amino Acids.

    PubMed

    Grigorieva, M E; Obergan, T Yu; Maystrenko, E S; Kalugina, M D

    2016-05-01

    The study demonstrates the formation of heparin complexes with prolyl-glycine peptide and proline and glycine amino acids. The method was developed for in vitro production of these complexes at 1:1 dipeptide to heparin molar ratio and 2:1 amino acid to heparin molar ratio. These complexes, unlike the constituents, proline and glycine, exhibited significant anticoagulant, antiplatelet, and fibrin-depolymerization activities of varying degree in vitro and in vivo. The heparin-dipeptide complex produced maximum effect. The dipeptide by itself also showed anticoagulant properties, but less pronounced than in the complex with heparin.

  12. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  13. Regulation of heart muscle pyruvate dehydrogenase kinase

    PubMed Central

    Cooper, Ronald H.; Randle, Philip J.; Denton, Richard M.

    1974-01-01

    1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [32P]phosphate from [γ-32P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100μm) and cyclic 3′:5′-nucleotides (at 10μm) had no significant effect on kinase activity. 3. The Km for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76μm. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The Km for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9–25.4μm. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The Km for pyruvate in the pyruvate dehydrogenase reaction was 35.5μm. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25–500μm. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate

  14. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  15. [Thermal stability of lactate dehydrogenase and alcohol dehydrogenase incorporated into highly concentrated gels].

    PubMed

    Kulis, Iu Iu

    1979-03-01

    The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.

  16. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR...: (a) The additive is the product of the controlled reaction between ascorbic acid and...

  17. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    ERIC Educational Resources Information Center

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  18. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  19. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches.

  20. The influence of saturated fatty acids on complex index and in vitro digestibility of rice starch.

    PubMed

    Soong, Yean Yean; Goh, Hui Jen; Henry, C Jeya K

    2013-08-01

    In Asia, rice and rice products are the main sources of carbohydrate contributing to both dietary energy and glycaemic load. It is known that complexation of starch with lipids could potentially reduce the availability of starch to enzymatic degradation. The aim of this study was to investigate the effect of capric, lauric, myristic, palmitic and stearic acids, ranging from 0 to 2 mmol/g starch, on complexing index and in vitro digestibility of gelatinized rice starch. The results revealed that the ability of rice starch to complex with saturated fatty acids increased with increasing concentration; but reduced with increasing lipid chain length. The complexation of rice starch with capric, lauric, myristic and stearic acids did not reduce the in vitro starch digestibility, except rice starch-palmitic acid complexes.

  1. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... Elsevier Saunders; 2012:chap 42. Read More Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Review Date 2/11/2016 Updated by: ... A.M. Editorial team. Related MedlinePlus Health Topics G6PD Deficiency Browse the Encyclopedia A.D.A.M., Inc. ...

  2. Complexation of U(VI) with 1-Hydroxyethane-1,1-diphosphonicAcid (HEDPA) in Acidic to Basic Solutions

    SciTech Connect

    Reed, W A; Rao, L; Zanonato, P; Garnov, A; Powell, B A; Nash, K L

    2007-01-24

    Complexation of U(VI) with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO{sub 2}H{sub 3}L), 1:2 (UO{sub 2}H{sub j}L{sub 2} where j = 4, 3, 2, 1, 0 and -1) and 2:2 ((UO{sub 2}){sub 2}H{sub j}L{sub 2} where j = 1, 0 and -1) complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants, enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of U(VI) with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of U(VI) with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry (ESI-MS) and {sup 31}P NMR have confirmed the presence of 1:1, 1:2 and 2:2 U(VI)-HEDPA complexes.

  3. Identification of Novel Immunogenic Proteins from Mycoplasma bovis and Establishment of an Indirect ELISA Based on Recombinant E1 Beta Subunit of the Pyruvate Dehydrogenase Complex

    PubMed Central

    Wei, Kai; Zhang, Haiyan; Zhang, Yuewei; Xu, Jian; Jiang, Fei; Liu, Xu; Xu, Wei; Wu, Wenxue

    2014-01-01

    The pathogen Mycoplasma bovis (M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis. PMID:24520369

  4. Purification, Characterization, and Submitochondrial Localization of a 58-Kilodalton NAD(P)H Dehydrogenase.

    PubMed Central

    Luethy, M. H.; Thelen, J. J.; Knudten, A. F.; Elthon, T. E.

    1995-01-01

    An NADH dehydrogenase activity from red beet (Beta vulgaris L.) root mitochondria was purified to a 58-kD protein doublet. An immunologically related dehydrogenase was partially purified from maize (Zea mays L. B73) mitochondria to a 58-kD protein doublet, a 45-kD protein, and a few other less prevalent proteins. Polyclonal antibodies prepared against the 58-kD protein of red beet roots were found to immunoprecipitate the NAD(P)H dehydrogenase activity. The antibodies cross-reacted to similar proteins in mitochondria from a number of plant species but not to rat liver mitochondrial proteins. The polyclonal antibodies were used in conjunction with maize mitochondrial fractionation to show that the 58-kD protein was likely part of a protein complex loosely associated with the membrane fraction. A membrane-impermeable protein cross-linking agent was used to further show that the majority of the 58-kD protein was located on the outer surface of the inner mitochondrial membrane or in the intermembrane space. Analysis of the cross-linked 58-kD NAD(P)H dehydrogenase indicated that specific proteins of 64, 48, and 45 kD were cross-linked to the 58-kD protein doublet. The NAD(P)H dehydrogenase activity was not affected by ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime] -tetraacetic acid or CaCl2, was stimulated somewhat (21%) by flavin mononucleotide, was inhibited by p-chloromercuribenzoic acid (49%) and mersalyl (40%), and was inhibited by a bud scale extract of Platanus occidentalis L. containing platanetin (61%). PMID:12228370

  5. Rotational Spectroscopy of TETRAHYDRO-2-FUROIC Acid, its Chiral Aggregates and its Complex with Water

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2016-06-01

    Rotational spectra of Tetrahydro-2-furoic acid (THA), a chiral acid, and its homo- and heterochiral dimers, and its complex with water have been recorded using a chirped pulse Fourier transform microwave spectrometer. This chiral acid was predicted to have nine conformers, although only the most stable one was detected experimentally and its rotational spectrum assigned. We have analyzed its intramolecular H-bonding pattern in detail. Eleven conformers have been predicted for the 1:1 hydration complex between THA and water and 14 conformers for (THA)2. The assignments of these complexes are currently underway and will be presented.

  6. Luminescence study of complexation of europium and dicarboxylic acids

    SciTech Connect

    Barthelemy, P.P.; Choppin, G.R. )

    1989-08-23

    Luminescence lifetime measurements of Eu(III) have been used to study the hdration of Eu(III) when complexed by alkane-dicarboxylate ligands. In its mono(malonate) complex, Eu(III) was found to have 2.3 fewer water molecules than the uncomplexed hydrated cation. In the formation of its 1:1 complexes with succinate, glutartate, and adipate, Eu(III) lost 1.5 molecules of water. When these dicarboxylate ligands reacted with the EuNTA complex to form the 1:1:1 ternary species, the malonate anion replaced 2.2, the succinate 1.5, and the glutarate and adipate 1.0 water molecules (all these values have ca. {plus minus}0.5 uncertainty). These data are discussed in terms of the effect on chelation of increased alkyl chain length. 13 refs., 4 figs., 5 tabs.

  7. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  8. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  9. Genetics Home Reference: 2-methylbutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for ... methylbutyryl-CoA dehydrogenase deficiency cannot process a particular amino acid called isoleucine. Most cases of 2-methylbutyryl-CoA ...

  10. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  11. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  12. [Studies on the interaction of the metal complex of hydrazide of podophyllic acid with DNA].

    PubMed

    Wang, Ping-Hong; Zhang, Qi; Wang, Liu-Fang; Song, Yu-Min; Qu, Jian-Qiang; Liu, Ying-Qian

    2006-05-01

    The interaction between the metal complex of hydrazide of podophyllic acid and calf thymus (CT) DNA was studied by using absorption spectra, fluorescence spectra and DNA heat denaturation. It was found that the intensity of the maximal absorption peaks from absorption spectra is weakened in the presence of the metal complex of hydrazide of podophyllic acid compared with that in the absence of the metal complex. All the experimental results show that the intercalation mode was proved to exist between HDPP-Ni complexes and CT DNA.

  13. Down Regulation of Asparagine Synthetase and 3-Phosphoglycerate Dehydrogenase, and the Up-Regulation of Serine Dehydratase in Rat Liver from Intake of Excess Amount of Leucine Are Not Related to Leucine-Caused Amino Acid Imbalance.

    PubMed

    Yoshimura, Ryoji; Takai, Marie; Namaki, Hiroya; Minami, Kimiko; Imamura, Wataru; Kato, Hisanori; Kamei, Yasutomi; Kanamoto, Ryuhei

    2015-01-01

    Asparagine synthetase (ASNS), 3-phosphoglycerate dehydrogenase (PHGDH) and serine dehydratase (SDS) in rat liver are expressed in response to protein and amino acid intake. In the present study, we examined the expression of these enzymes in relation to amino acid imbalance caused by leucine. Rats were subjected to leucine administration in the diet or orally between meals. Consumption of more than 2% leucine in a 6% casein diet suppressed food intake and caused growth retardation in a dose-dependent manner, but this was not seen in a 12% or 40% casein diet. ASNS and PHGDH expression in the liver was significantly induced by the 6% casein diet and was suppressed by leucine in a dose-dependent manner, whereas the SDS expression was induced. These effects were leucine specific and not seen with ingestion of isoleucine or valine. However, leucine orally administered between meals did not change the food intake or growth of rats fed a 6% casein die, though it similarly affected the expression of ASNS, PHGDH and SDS in the liver. These results suggest that the growth retardation caused by leucine imbalance was mainly because of the suppression of food intake, and demonstrated that there are no causal relationships between ASNS, PHGDH and SDS expression and amino acid imbalance caused by leucine.

  14. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli.

    PubMed

    García, Sofía; Flores, Noemí; De Anda, Ramón; Hernández, Georgina; Gosset, Guillermo; Bolívar, Francisco; Escalante, Adelfo

    2017-01-01

    The culture of engineered Escherichia coli for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, ydiB) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of E. coli for SA production remains unclear. We report the effect of the inactivation or the overexpression of ydiB in E. coli strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of ydiB resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of ydiB caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative ydiB strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.

  15. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    PubMed

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.

  16. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes.

    PubMed

    Wei, Zihao; Gao, Yanxiang

    2016-05-01

    The objectives of the present study were to first synthesize chitosan-chlorogenic acid (CA) covalent complex and then compare structural and functional properties between chitosan-CA covalent complex and physical complex. First, chitosan-CA covalent complex was synthesized and its total phenolic content was as high as 276.5 ± 6.2 mg/g. Then structural and functional properties of chitosan-CA covalent and physical complexes were analyzed. The covalent reaction induced formation of both amide and ester bonds in chitosan. Data of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the complexations of CA changed crystallinity and morphology of chitosan, and covalent complexation induced a larger change of physical structure than physical complexation. In terms of functional properties, chitosan-CA covalent complex exhibited better thermal stability than physical complex in terms of antioxidant activity, and the viscosity of chitosan was significantly increased by covalent modification.

  17. Seven hexamethylenetetramine (HMTA) complexes with mono- and dicarboxylic acids: analysis of packing modes of HMTA complexes in the literature.

    PubMed

    Lemmerer, Andreas

    2011-04-01

    The crystal structures of seven hexamethylenetetramine (HMTA) complexes, or co-crystals, with carboxylic acid donor molecules are reported to explain the link between the molecular structure of HMTA and the crystal structure of the co-crystals, i.e. the dimension and shape of their hydrogen-bonded assembly. A comprehensive and detailed literature survey of HMTA complexes (38), be they neutral co-crystals or salts, with molecules containing carboxylic acid and phenol functional groups reveals that in general two N acceptors are used for strong O-H···N interactions. Owing to the relative arrangement of two of the four N atoms, the most common type of assembly features one-dimensional zigzag chains. Weak interactions of the C-H···N type are formed by N atoms not involved in strong interactions. These chains also form the basis of two-dimensional assemblies. These one- and two-dimensional assemblies feature either two or three functional groups. If only one functional group is on the donor molecule, then wing or V-shaped zero-dimensional assemblies are formed, which can be considered to be the building blocks for one- and two-dimensional assemblies. In general, the HMTA molecules form two-dimensional layers which are stabilized by weak hydrogen bonds. Co-crystals with cyclohexylcarboxylic acid (I), 4-fluorobenzoic acid (II), 4-methylbenzoic acid (III) and cinnamic acid (IV) all feature the V-shaped zero-dimensional assemblies. Co-crystals with cis-1,4-cyclohexyldicarboxylic acid (VI) and trans-1,4-cyclohexylcarboxylic acid (VII) feature the zigzag chains and can be structurally derived from co-crystal (I). Co-crystal (V), with 4-nitrobenzoic acid, has solvent water included and features hydrogen bonding to all four N atoms of the HMTA molecule.

  18. Metal complexes of cyclic tetra-azatetra-acetic acids.

    PubMed

    Delgado, R; da Silva, J J

    1982-10-01

    The cyclic tetra-aza complexones cDOTA ([12]ane N(4).4ac), cTRITA ([13]ane N(4).4ac) and cTETA ([14]ane N(4).4ac) have been synthesized and characterized by elemental analysis, titration, melting-point determination and NMR (and infrared) spectroscopy. The ionization constants and the stability constants of the MH(2)L, MHL and ML complexes formed with alkali, alkaline-earth and some transition metals were determined at 25.0 +/- 0.1 degrees and ionic strength 0.10M [KNO(3) and (CH(3))(4)NNO(3)]. It was confirmed that cDOTA forms the most stable Ca(2+) and Sr(2+) complexes but the reported inversion of the order of stability of the complexes of these two ions with cTRITA was not confirmed. Also, the values of the stability constants determined in this work differ substantially from those previously reported for ML species. cDOTA is an interesting alternative to classical non-cyclic complex-ones for the complexometric determination of Ca(2+) and Mg(2+) but neither this ligand nor the other two offer advantages over EDTA or DCTA for the complexometric titration of transition metals.

  19. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction.

    PubMed

    Korkmaz, Sevil; Atmanli, Ayhan; Li, Shiliang; Radovits, Tamás; Hegedűs, Peter; Barnucz, Enikő; Hirschberg, Kristóf; Loganathan, Sivakkanan; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2015-09-01

    The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17-22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical

  20. Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin.

    PubMed

    Kim, Sung Hyun; Lee, Gyun Min

    2007-02-01

    Lactate, one of the major waste products in mammalian cell culture, can inhibit cell growth and affect cellular metabolism at high concentrations. To reduce lactate formation, lactate dehydrogenase-A (LDH-A), an enzyme catalyzing the conversion of glucose-derived pyruvate to lactate, was down-regulated by an expression vector of small interfering RNAs (siRNA) in recombinant Chinese hamster ovary (rCHO) cells producing human thrombopoietin (hTPO). Three clones expressing low levels of LDH-A, determined by reverse transcription-PCR and an enzyme activity test, were established in addition to a negative control cell line. LDH-A activities in the three clones were decreased by 75-89%, compared with that of the control CHO cell line, demonstrating that the effect of siRNA is more significant than that of other traditional methods such as homologous recombination (30%) and antisense mRNA (29%). The specific glucose consumption rates of the three clones were reduced to 54-87% when compared to the control cell line. Similarly, the specific lactate production rates were reduced to 45-79% of the control cell line level. In addition, reduction of LDH-A did not impair either cell proliferation or hTPO productivity. Taken together, these results show that the lactate formation rate in rCHO cell culture can be efficiently reduced through the down-regulation of LDH via siRNA.

  1. Brønsted Acid Catalysis-Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes.

    PubMed

    Greindl, Julian; Hioe, Johnny; Sorgenfrei, Nils; Morana, Fabio; Gschwind, Ruth M

    2016-12-14

    Despite the huge success of enantioselective Brønsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Brønsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Brønsted acid catalyst R-TRIP (3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate) was investigated together with six aromatic imines. For each investigated system, an E-imine/R-TRIP complex and a Z-imine/R-TRIP complex were observed. Each of these complexes consists of two structures, which are in fast exchange on the NMR time scale; i.e., overall four structures were found. Both identified E-imine/R-TRIP structures feature a strong hydrogen bond but differ in the orientation of the imine relative to the catalyst. The exchange occurs by tilting the imine inside the complex and thereby switching the oxygen that constitutes the hydrogen bond. A similar situation is observed for all investigated Z-imine/R-TRIP complexes. Here, an additional exchange pathway is opened via rotation of the imine. For all investigated imine/R-TRIP complexes, the four core structures are highly preserved. Thus, these core structures are independent of electron density and substituent modulations of the aromatic imines. Overall, this study reveals that the absolute structural space of binary imine/TRIP complexes is large and the variations of the four core structures are small. The high mobility is supposed to promote reactivity, while the preservation of the core structures in conjunction with extensive π-π and CH-π interactions leads to high enantioselectivities and tolerance of different substrates.

  2. Brønsted Acid Catalysis—Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes

    PubMed Central

    2016-01-01

    Despite the huge success of enantioselective Brønsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Brønsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Brønsted acid catalyst R-TRIP (3,3′-bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogen phosphate) was investigated together with six aromatic imines. For each investigated system, an E-imine/R-TRIP complex and a Z-imine/R-TRIP complex were observed. Each of these complexes consists of two structures, which are in fast exchange on the NMR time scale; i.e., overall four structures were found. Both identified E-imine/R-TRIP structures feature a strong hydrogen bond but differ in the orientation of the imine relative to the catalyst. The exchange occurs by tilting the imine inside the complex and thereby switching the oxygen that constitutes the hydrogen bond. A similar situation is observed for all investigated Z-imine/R-TRIP complexes. Here, an additional exchange pathway is opened via rotation of the imine. For all investigated imine/R-TRIP complexes, the four core structures are highly preserved. Thus, these core structures are independent of electron density and substituent modulations of the aromatic imines. Overall, this study reveals that the absolute structural space of binary imine/TRIP complexes is large and the variations of the four core structures are small. The high mobility is supposed to promote reactivity, while the preservation of the core structures in conjunction with extensive π–π and CH−π interactions leads to high enantioselectivities and tolerance of different substrates. PMID:27960345

  3. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic activity, ATP or Survival

    PubMed Central

    MACK, NZINGA; MAZZIO, ELIZABETH A; BAUER, DAVID; ROZAS, HERNAN FLORES; SOLIMAN, KARAM F.A.

    2017-01-01

    Background In the US, African Americans have a high death rate from triple-negative breast cancer (TNBC), characterized by lack of hormone receptors (ER, PR, HER2/ERRB2) which are otherwise valuable targets of chemotherapy. There is a need to identify novel targets that negatively impact TNBC tumorigenesis. TNBCs release an abundance of lactic acid, under normoxic, hypoxic and hyperoxic conditions; this referred to as the Warburg effect. Accumulated lactic acid sustains peri-cellular acidity which propels metastatic invasion and malignant aggressive transformation. The source of lactic acid is believed to be via conversion of pyruvate by lactate dehydrogenase (LDH) in the last step of glycolysis, with most studies focusing on the LDHA isoform. Materials and Methods In this study, LDHA was silenced using long-term MISSION® shRNA lentivirus in human breast cancer MDA-MB-231 cells. Downregulation of LDHA transcription and protein expression was confirmed by Western Blot, immunocytochemistry and qPCR. A number of parameters were measured in fully viable vector controls versus knockdown (KD) clones, including levels of lactic acid produced, glucose consumed, ATP and basic metabolic rates. Results The data show lentivirus V-165 generated a knock-down clone most effective in reducing both gene and protein levels to less than 1% of vector controls. Stable KD showed absolutely no changes in cell viability, lactic acid production, ATP, glucose consumption or basic metabolic rate. Given the complete absence of impact on any observed parameter by LDH-A KD and this being somewhat contrary to findings in the literature, further analysis was required to determine why. Whole-transcriptome analytic profile on MDA-MB-231 for LDH subtypes using Agilent Human Genome 4×44k microarrays, where the data show the following component breakdown. Transcripts 30.47 % LDHA, 69.36% LDHB, 0.12% LDHC and 0.05% LDHD. Conclusion These findings underscore the importance of alternative isoforms of

  4. Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid.

    PubMed

    Nagae, Masamichi; Ikeda, Akemi; Hane, Masaya; Hanashima, Shinya; Kitajima, Ken; Sato, Chihiro; Yamaguchi, Yoshiki

    2013-11-22

    Polysialic acid is a linear homopolymer of α2-8-linked sialic acids attached mainly onto glycoproteins. Cell surface polysialic acid plays roles in cell adhesion and differentiation events in a manner that is often dependent on the degree of polymerization (DP). Anti-oligo/polysialic acid antibodies have DP-dependent antigenic specificity, and such antibodies are widely utilized in biological studies for detecting and distinguishing between different oligo/polysialic acids. A murine monoclonal antibody mAb735 has a unique preference for longer polymers of polysialic acid (DP >10), yet the mechanism of recognition at the atomic level remains unclear. Here, we report the crystal structure of mAb735 single chain variable fragment (scFv735) in complex with octasialic acid at 1.8 Å resolution. In the asymmetric unit, two scFv735 molecules associate with one octasialic acid. In both complexes of the unit, all the complementarity-determining regions except for L3 interact with three consecutive sialic acid residues out of the eight. A striking feature of the complex is that 11 ordered water molecules bridge the gap between antibody and ligand, whereas the direct antibody-ligand interaction is less extensive. The dihedral angles of the trisialic acid unit directly interacting with scFv735 are not uniform, indicating that mAb735 does not strictly favor the previously proposed helical conformation. Importantly, both reducing and nonreducing ends of the bound ligand are completely exposed to solvent. We suggest that mAb735 gains its apparent high affinity for a longer polysialic acid chain by recognizing every three sialic acid units in a paired manner.

  5. Complexation of di-amides of dipicolinic acid with neodymium

    SciTech Connect

    Lapka, J.L.; Paulenova, A.

    2013-07-01

    Di-amides have undergone significant studies as possible ligands for use in the partitioning of trivalent minor actinides and lanthanides. The binding affinities of three isomeric ligands with neodymium in acetonitrile solution have been investigated. The stability constants of the metal-ligand complexes formed between different isomers of N,N'-diethyl-N,N'- ditolyl-di-picolinamide (EtTDPA) and trivalent neodymium in acetonitrile have been determined by spectrophotometric and calorimetric methods. Each isomer of EtTDPA has been found to be capable of forming three complexes with trivalent neodymium, Nd(EtTDPA), Nd(EtTDPA){sub 2}, and Nd(EtTDPA){sub 3}. Values from spectrophotometric and calorimetric titrations are within reasonable agreement with each other. The order of stability constants for each metal:ligand complex decreases in the order Et(m)TDPA > Et(p)TDPA > Et(o)TDPA. The obtained values are comparable to other di-amidic ligands obtained under similar system conditions and mirror previously obtained solvent extraction data for EtTDPA at low ionic strengths. (authors.

  6. Sorption of chlorophenoxy propionic acids by organoclay complexes.

    PubMed

    Liao, Chiu-Jung; Chen, Chou-Pin; Wang, Ming-Kuang; Chiang, Po-Neng; Pai, Chuan-Wen

    2006-02-01

    The organoclays Wyoming montmorillonite (SWy-1, Mon), W. R. Grace vermiculite (Ver), and Tung-Wei (Tw) soil montmorillonite were prepared to sorb or remove chlorophenoxy propionic acids (CPA) pollutants such as 2,4-dichlorophenoxy acid (2,4-DP), 2,4,6-tri chlorophenoxy acid (2,4,6-TCP), and pentachlorophenoxy propionic acid (PCP). The objective of this study was to evaluate the behavior of organoclays that have sorbed three types of CPA and to assess the applicability to basaltic-developed iron-rich calcareous soil. This type of soil contains high amounts of montmorillonite. The mean-layer charge per formula unit of Mon, Ver, and Tw clays, characterized by the alkylammonium method, was 0.27, 0.70, and 0.52 mol(c)/O(10)(OH)(2), respectively. The sorption isotherms of 2,4-DP, 2,4,6-TCP, and PCP sorbed by hexadecyltrimethyl-ammonium (HDTMA organoclay, 150% cation-exchange capacity) were evaluated. The data on sorption of CPAs fit well with the Freundlich isotherm equation. In general, the sorption of three types of CPA by the organoclays showed a linear relationship, with a high correlation coefficient (r > 0.935). The K(f) value of PCP was the same as that of 2,4,6-TCP sorbed by the organoclays and was higher than that of 2,4-DP. However, the 1/n(f) values of the three CPAs sorbed by the organoclays did not show significant differences. In general, maximum CPA sorption occurred at a pH of approximately 3, but very significant differences were observed for the 2,4,6-TCP and PCP sorbed by the organoclays. However, there was no significant difference in pH for 2,4-DP sorption. This should be related to the solubility and pKa of each CPA. The experimental results showed that solubility of 2,4-DP, 2,4,6-TCP, and PCP is a function of pH, ionic strength, and temperature.

  7. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics

    PubMed Central

    Her, Yeng F.; Maher, L. James

    2015-01-01

    It is counterintuitive that metabolic defects reducing ATP production can cause, rather than protect from, cancer. Yet this is precisely the case for familial paraganglioma, a form of neuroendocrine malignancy caused by loss of succinate dehydrogenase in the tricarboxylic acid cycle. Here we review biochemical, genetic, and epigenetic considerations in succinate dehydrogenase loss and present leading models and mysteries associated with this fascinating and important tumor. PMID:26294907

  8. Assignment of the Perfluoropropionic Acid-Formic Acid Complex and the Difficulties of Including High K_a Transitions.

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Lin, Wei; Novick, Stewart E.; Cooke, S. A.

    2016-06-01

    We recently began an investigation into the perfluoropropionic acid\\cdotsformic acid complex using broadband microwave spectroscopy. This study aims to examine the possible double proton transfer between the two interacting carboxcyclic acid groups. The spectrum presented as a doubled set of lines, with spacing between transitions of < 1 MHz. Transitions appeared to be a-type, R branch transitions for an asymmetric top. Assignment of all K_a=1,0 transitions yields decent fits to a standard rotational Hamiltonian. Treatment of the doubling as either a two state system (presumably with a double proton transfer) or as two distinct, but nearly identical conformations of the complex produce fits of similar quality. Including higher K_a transitions for the a-type, R-branch lines greatly increases the error of these fits. A previous study involving the trifluoroacetic acid\\cdotsformic acid complex published observed similar high K_a transitions, but did not include them in the published fit. We hope to shed more light on this conundrum. Similarities to other double-well potential minimum systems will be discussed. Martinache, L.; Kresa, W.; Wegener, M.;, Vonmont, U.; and Bauder, A. Chem. Phys. 148 (1990) 129-140.

  9. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes.

  10. Chirped Pulse and Cavity FT Microwave Spectroscopy of the Formic Acid - Trimethylamine Weakly Bound Complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Becca; Dewberry, Chris; Leopold, Ken

    2015-06-01

    Amine-carboxylic acid interactions are important in many biological systems and have recently received attention for their role in the formation of atmospheric aerosols. Here, we study the molecular and electronic structure of the formic acid - trimethylamine complex, using it as a model for amine-carboxylic acid interactions. The microwave spectrum of the complex has been observed using chirped pulse and conventional cavity-type Fourier transform microwave spectroscopy. The degree of proton transfer has been assessed using the 14N nuclear quadrupole hyperfine structure. Experimental results will be compared to DFT calculations.

  11. Kinetic study of the complexation of gallic acid with Fe(II)

    NASA Astrophysics Data System (ADS)

    Lu, Li-li; Li, Ying-hua; Lu, Xiu-yang

    2009-10-01

    Kinetic study on the complexation of gallic acid with ferrous sulfate was performed using UV-Vis absorption spectroscopy. Under the experimental conditions, the stoichiometric composition of the formed complex is 1:1. The complexation reaction was found to be a second-order one. The influences of temperature, ionic strength and solvents on the complexation reaction were investigated. According to the Arrhenius equation, the apparent activation energy of the complexation reaction was evaluated to be 71.64 kJ × mol -1. A three-step reaction mechanism was proposed, which can well explain the kinetic results obtained.

  12. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.

    PubMed

    Kuo, Yang-Cheng; Yuan, Shuo-Fu; Wang, Chun-An; Huang, Yin-Jung; Guo, Gia-Luen; Hwang, Wen-Song

    2015-12-01

    The use of lignocellulosic feedstock for lactic acid production with a difficulty is that the release of inhibitory compounds during the pretreatment process which inhibit the growth of microorganism. Thus we report a novel lactic acid bacterium, Lactobacillus paracasei 7 BL, that has a high tolerance to inhibitors and produced optically pure l-lactic acid after the interruption of ldhD gene. The strain 7 BL fermented glucose efficiently and showed high titer of l-lactic acid (215 g/l) by fed-batch strategy. In addition, 99 g/l of l-lactic acid with high yield (0.96 g/g) and productivity (2.25-3.23 g/l/h) was obtained by using non-detoxified wood hydrolysate. Rice straw hydrolysate without detoxification was also tested and yielded a productivity rate as high as 5.27 g/l/h. Therefore, L. paracasei 7 BL represents a potential method of l-lactic acid production from lignocellulosic biomass and has attractive application for industries.

  13. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  14. [Interaction of succinate dehydrogenase and oxaloacetate].

    PubMed

    Kotliar, A B; Vinogradov, A D

    1984-04-01

    The equilibrium and rate constants for interaction of the reduced and oxidized membrane-bound succinate dehydrogenase (EC 1.3.99.1) with oxaloacetate were determined. The 10-fold decrease in the oxaloacetate affinity for the reduced enzyme was shown to be due to the 10-fold increase of the enzyme-inhibitor complex dissociation rate, which occurs upon its reduction. The rate of dissociation induced by succinate is 10 times higher than that induced by malonate in the submitochondrial particles, being equal in the soluble enzyme preparations. The rates of dissociation induced by malonate excess, or by the enzyme irreversibly utilizing oxaloacetate (transaminase in the presence of glutamate) are also equal. The data obtained suggest that succinate dehydrogenase interaction with succinate and oxaloacetate results from the competition for a single dicarboxylate-specific site. In submitochondrial particles all succinate dehydrogenase molecules are in redox equilibrium provided for by endogenous ubiquinone. No electronic equilibrium between the individual enzyme molecules exists, when succinate dehydrogenase is solubilized.

  15. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  16. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  17. C{sub 2}-symmetric Copper(II) complexes as chiral Lewis acids

    SciTech Connect

    Evans, D.A.; Murry, J.A.; Matt, P. von

    1995-12-01

    Two new Cu(II)-derived Lewis acid catalysts 1 and 2 have been prepared and their utility as catalysts in the Diels-Alder reaction documented. While complex 1 is effective in catalyzing the cycloaddition of unsaturated aldehyde dienophiles with cyclopentadiene complex 2 is optimal for imide dienophiles. This study provides a rational basis for the design of Lewis acids based on the coordinating capacity of cationic Cu(II) complexes which possess sufficient Lewis acidity to catalyze a range of synthetically useful Diels-Alder reactions. In particular, documentation of the importance of counterion structure in the use of cationic metal centers as Lewis