Science.gov

Sample records for acid deposition control

  1. Acid deposition control benefits as problematic

    SciTech Connect

    Crocker, T.D.

    1985-01-01

    The author argues that the government's mistaken beliefs downgrade the benefits of acid deposition control, and may misdirect research of the effects of acid rain upon natural and human systems. It can be argued as to whether or not the factors (generally existing prices and yield changes from current standing stocks of environmental goods) upon which the $5 billion estimate for control was built have a major or minor influence upon the true economic consequences of acid deposition. As the application of Bayes' rule demonstrates, any lessening in arbitrariness of numerical assignments to the factors could lead to a major revision in the estimate. Assessment stories probably contribute to the paralysis of political will even though their truth value is small.

  2. ADVANCES IN CONTROL TECHNOLOGY FOR ACID DEPOSITION

    EPA Science Inventory

    Causes and effects of acid deposition are the subject of widespread discussion both in the U.S. and Europe. Two major concerns are the acidification of lakes and streams, and forest damage. The proposed mechanism for acidification of lakes and streams is the deposition of acidic ...

  3. Ancillary effects of selected acid deposition control policies

    SciTech Connect

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  4. A mechanistic study of phosphinocarboxylic acid for boiler deposit control

    SciTech Connect

    Chang, K.Y.; Patel, S.

    1995-11-01

    A laboratory study has been carried out to identify the key properties of phosphinocarboxylic acid polymers to control boiler water deposits. These multifunctional properties are its ability to: transport iron, disperse boiler water sludge that contains iron oxide, silica and calcium phosphate and dissolution of deposits. The thermal and hydrolytic stability of the phosphinocarboxylic acid polymers was investigated in autoclave studies up to 1,500 psig. The post-autoclave samples were analyzed by Nuclear Magnetic Resonance Spectroscopy and Aqueous Gel Permeation Chromatography to ascertain the polymer integrity. In addition performance tests were carried out for pre- and post-autoclave polymer samples. The performance testing clearly shows that phosphinocarboxylic acid polymers are effective in maintaining deposit control in a boiler due to their inherent thermal stability.

  5. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  6. Reactive Iron deposition and ground water inflow control neutralization processes in acidic mine lakes

    NASA Astrophysics Data System (ADS)

    Blodau, C.

    2002-12-01

    The controls on the internal neutralization of highly acidified waters by iron sulphide accumulation are yet poorly understood. To elucidate the influence of ground water inflow on neutralization processes, inventories of solid phase iron and sulphur, pore water profiles and rates of ferrous iron and sulphate production and consumption were analyzed in different areas of an acidic mine lake. Ground water inflow had previously been determined by ground water modelling and chamber measurements (Knoll et al., 1999). The investigated sediments adjacent to mine tailings, which were subject to the inflow of groundwater (10-30 L d-1 m-2), were richer in dissolved ferrous iron iron (30 vs. 5 mmol L-1) and sulphate (30 vs. 10 mmol L-1) and showed higher pH values (6 vs. 4) than the sediments in areas of the lake not being influenced by groundwater inflow. Sediments adjacent to the mine tailings also showed higher rates of sulphate reduction and iron sulphide accumulation (Fig. 1). From these data it is suggested that neutralization processes in iron rich, acidic mine lakes neutralization processes primarily occur in areas influenced by the inflow of acid mine groundwater. These waters usually have considerably higher pH values than the surface waters in the lakes due to buffering processes in the tailings. The seepage of this water through the sediment might thus lead to higher pH values and thus to a higher thermodynamic competitiveness of sulfate reduction vs. iron reduction (Blodau and Peiffer 2002). This causes increased neutralization rates. These findings have consequences for remediation measures in highly acidic lakes. In areas influenced by the inflow of mine drainage increases in carbon availability, for example by the deposition of particulate organic matter, should enhance iron sulphide formation rates, whereas in other areas increases in carbon availability would only result in enhanced rates of iron reduction without a lasting gain in alkalinity. Blodau, C

  7. DRY DEPOSITION MODULE FOR REGIONAL ACID DEPOSITION

    EPA Science Inventory

    Methods to compute surface dry deposition velocities for sulfur dioxide, sulfate, ozone, NO plus NO2, and nitric acid vapor over much of the North American continent have been developed for use with atmospheric numerical models of long-range transport and deposition. The resultin...

  8. ACIDIC DEPOSITION AND CISTERN DRINKING WATER SUPPLIES

    EPA Science Inventory

    The Water quality charecteristics, including the trace element Cd, cu, Pb, and Zn, in rainwater cistern supplies representing an area receiving acidic deposition were compared to cistern water chemistry in a control area that does not receive a significant input of acidic deposit...

  9. SOIL REACTION AND ACIDIC DEPOSITION

    EPA Science Inventory

    This chapter discusses the major chemical processes by which acidic deposition interacts with soils. he focus is on forest soils, as the effects of acidic deposition on soils used for production of food and fiber are generally small compared to effects of agricultural practices s...

  10. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy; Fowler, David

    2002-01-01

    The effect of acid rain SO42- deposition on peatland CH4 emissions was examined by manipulating SO42- inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha-1 yr-1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m-2 from the controls and (in order of increasing SO42- dose size) 10.7, 13.2, and 9.8 g m-2 from the three SO42- treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42- at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42- from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

  11. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  12. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  13. ACID DEPOSITION AND FOREST DECLINE

    EPA Science Inventory

    The location, topography and other characteristics of the high-elevation forests of eastern North America cause them to be receptors of high levels of acid deposition and airborn trace metals. No other major forested areas in the U.S. are subjected to such intensely acid cloud mo...

  14. (Acidic deposition and the environment)

    SciTech Connect

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  15. (International conference on acidic deposition)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1990-10-05

    The traveler took the opportunity to participate in a mini-sabbatical at the Institute of Terrestrial Ecology (ITE) in Edinburgh, Scotland, as a part of planned travel to Glasgow, Scotland, to attend the International Conference on Acidic Precipitation. The purpose of the sabbatical was to provide quality time for study and interchange of ideas with scientists at ITE working on physiological effects of acidic deposition and to allocate significant time for writing and synthesizing of results of physiological studies from the National Forest Response Program's Spruce/Fir Research Cooperative. The study focused on the very significant cytological and physiological effects of calcium deficiency in trees, a response that appears to be amplified in spruce by acidic deposition.

  16. ACID DEPOSITION STRATEGIES, THE LIMB (LIMESTONE INJECTION/MULTISTAGE BURNERS) PROGRAM AND IMPLICATIONS FOR CONTROL TECHNOLOGY REQUIREMENTS

    EPA Science Inventory

    The paper summarizes the various acid deposition bills introduced in the U.S. Congress during the past 2 years and discusses emission sources. A rapidly emerging technology called Limestone Injection/Multistage Burners (LIMB), which has the potential for simultaneous SO2 and NOx ...

  17. Acid deposition in east Asia

    SciTech Connect

    Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.

    1996-12-31

    A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long in winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.

  18. CASTNet mountain acid deposition monitoring program

    SciTech Connect

    Bowser, J.J.; Anderson, J.B.; Edgerton, E.S.; Mohnen, V.; Baumgardener, R.

    1994-12-31

    Concern over the influence of air pollution on forest decline has led the USEPA to establish the Mountain Acid Deposition Monitoring Program (MADMP) to quantify total deposition at high altitudes, i.e., above cloud base. Clouds can be a major source of atmospheric deposition to sensitive, mountain ecosystems. This program is a part of the Clean Air Status and Trends Network (CASTNet), a national assessment of the effects of the 1990 Clean Air Act. The objectives of MADMP are to estimate total deposition, measure cloud chemistry, and characterize spacial and temporal trends at four selected high altitude sites in the Eastern US. Four MADMP sites have been established for the 1994 field season: Clingman`s Dome, Great Smoky Mountain Nat. Park, TN; Slide Mountain, Catskill State Park, NY; Whiteface Mountain, Adirondack State Park, NY; and Whitetop Mountain, Mt. Rogers Nat`l Recreational Area, VA. An automated cloud collection system will be utilized in combination with continuous measurements of cloud liquid water content in order to estimate cloudwater deposition. Other relevant data will include continuous meteorological measurements, ozone and sulfur dioxide concentrations, wet deposition from rainfall analysis, and dry deposition from filter pack analysis. Quality assurance and quality control measures will be employed to maximize accuracy and precision.

  19. Deposition System Controller

    SciTech Connect

    Conley, Ray; Liu, Chian

    2005-10-01

    This software is a complete thin film deposition controller. The software takes as its input a script file that dictates enablinig/disabling of sputtering power supplies, pause times, velocities and distances to move a substrate. An emulator has been created and built into the software package that can debug in advance any deposition script and decide if there is an overrun condition, accidental infinite look, and can estimate a time for completion. All necessary process variables are data logged and recorded for later inspection. This emulator currently interfaces to a Parker-Compumotor SX6 stepper moror indexer, but the software is written in such a way that it is easily modifiable for interface to othe brand and models of motor drivers. Other process I/O variables may be easily added. The software uses any multifunction DAQ card from National Instruments via their free NIDAQ API package, but again, the software is written such that othe brand DAQ cards may be used.

  20. Deposition System Controller

    2005-10-01

    This software is a complete thin film deposition controller. The software takes as its input a script file that dictates enablinig/disabling of sputtering power supplies, pause times, velocities and distances to move a substrate. An emulator has been created and built into the software package that can debug in advance any deposition script and decide if there is an overrun condition, accidental infinite look, and can estimate a time for completion. All necessary process variablesmore » are data logged and recorded for later inspection. This emulator currently interfaces to a Parker-Compumotor SX6 stepper moror indexer, but the software is written in such a way that it is easily modifiable for interface to othe brand and models of motor drivers. Other process I/O variables may be easily added. The software uses any multifunction DAQ card from National Instruments via their free NIDAQ API package, but again, the software is written such that othe brand DAQ cards may be used.« less

  1. (Acidic deposition: Its nature and impacts)

    SciTech Connect

    Cook, R.B.; Turner, R.S. ); Ryan, P.F. )

    1990-10-18

    The travelers presented papers on various aspects of modeling performed as part of the US National Acidic Precipitation Assessment Program (NAPAP) at the Fourth International Conference on Acidic Deposition: Its Nature and Impacts. The meeting was sponsored by the Royal Society of Edinburgh and was attended by over 800 scientists, primarily from Europe and North America. The conference focused on nine aspects of the nature and impacts of atmospheric pollutants, including ozone: chemistry of atmospheric pollutants; processes controlling the deposition of pollutants; effects of pollutants on soils; physiology of plant responses to pollutants; effects of pollutants in agricultural and natural or seminatural ecosystems; atmospheric pollutants and forests; effects of pollutants on the chemistry of freshwater streams and lakes; effects of pollutants on freshwater plants and animals; and effects of pollutants, indoors and outdoors, on materials and buildings.

  2. Emerging acid deposition research and monitoring issues

    SciTech Connect

    Birnbaum, R.

    1997-12-31

    The research baselines established for acid rain in the 1980s position scientists and policy makers to evaluate the environmental effectiveness of the acid rain control program and to test the variety of scientific hypotheses made regarding the chemical, transport and biological processes involved in acidic deposition. Several new research questions have evolved. How effective are the emissions reductions? What is the residual risk? How have ecological recovery rates been affected and what other environmental factors influence recovery? What are the critical requirements to measure ecological change including the extent and rate while also capturing the extent and severity of emerging ecological stressors (such as watershed nitrogen saturation)? These and other questions are currently being synthesized within and outside of EPA to develop a long-term strategy to provide guidance to emerging research and monitoring issues.

  3. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  4. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  5. ACIDIC DEPOSITION PHENOMENON AND ITS EFFECTS: CRITICAL ASSESSMENT DOCUMENT

    EPA Science Inventory

    The Acidic Deposition Phenomenon and Its Effects: Critical Assessment Document (CAD) is a summary, integration, and interpretation of the current scientific understanding of acidic deposition. It is firmly based upon The Acidic Deposition Phenomenon and Its Effects: Critical Asse...

  6. ATMOSPHERIC ACID DEPOSITION DAMAGE TO PAINTS

    EPA Science Inventory

    Available data from laboratory and field studies of damage to paints by erosion have been analyzed to develop an atmospheric acid deposition damage function for exterior house paints containing calcium carbonate or silicate extenders. Regression analysis coefficients associated w...

  7. Florida acid deposition study - an overview

    SciTech Connect

    Henderson, C.D.; Hendrickson, E.R.

    1983-01-01

    Comprehensive literature searches were performed in the areas of source attribution and long-range transport and ecological and material effects. The literature searches were designed to determine the impacts of acid deposition that are specific to Florida. In January 1982 the results of Phase I programs were issued. These reports were: (1) Monitoring Program Phase I Summary Report; (2) Source Attribution Phase I Summary Report; and (3) A Literature Review of the Ecological and Materials Effects of Acid Deposition.

  8. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed. PMID:25119487

  9. Acidic deposition and soil processes

    SciTech Connect

    Newton, R.M.; April, R.H.

    1985-08-01

    The results of the Integrated Lake-Watershed Acidification Study (ILWAS) show that the sensitivity of a watershed to surface water acidification is determined by the flow paths of water through the terrestrial system. If the water infiltrates through the soils into the groundwater system, acid neutralization occurs through weathering reactions involving minerals in the soils and till. Runoff and shallow interflow result in acid surface waters. Flow paths are determined in the ILWAS watersheds by the thickness of the glacial till. Complete neutralization can occur even in areas underlain by sensitive bedrock if the flow path through the mineral horizons is long enough. This appears to hold even in areas outside of the Adirondacks. 11 references, 5 figures.

  10. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  11. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  12. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  13. Acidic Depositions: Effects on Wildlife and Habitats

    USGS Publications Warehouse

    1993-01-01

    The phenomenon of 'acid rain' is not new; it was recognized in the mid-1800s in industrialized Europe. In the 1960s a synthesis of information about acidification began in Europe, along with predictions of ecological effects. In the U.S. studies of acidification began in the 1920s. By the late 1970s research efforts in the U.S. and Canada were better coordinated and in 1980 a 10-year research program was undertaken through the National Acid Precipitation Assessment Plan (NAPAP) to determine the causes and consequences of acidic depositions. Much of the bedrock in the northeastern U.S. and Canada contains total alkalinity of 20 kg/ha/yr of wet sulphate depositions and are vulnerable to acidifying processes. Acidic depositions contribute directly to acidifying processes of soil and soil water. Soils must have sufficient acid-neutralizing capacity or acidity of soil will increase. Natural soil-forming processes that lead to acidification can be accelerated by acidic depositions. Long-term effects of acidification are predicted, which will reduce soil productivity mainly through reduced availability of nutrients and mobilization of toxic metals. Severe effects may lead to major alteration of soil chemistry, soil biota, and even loss of vegetation. Several species of earthworms and several other taxa of soil-inhabiting invertebrates, which are important food of many vertebrate wildlife species, are affected by low pH in soil. Loss of canopy in declining sugar maples results in loss of insects fed on by certain neotropical migrant bird species. No definitive studies categorically link atmospheric acidic depositions with direct or indirect effects on wild mammals. Researchers have concentrated on vegetative and aquatic effects. Circumstantial evidence suggests that effects are probable for certain species of aquatic-dependent mammals (water shrew, mink, and otter) and that these species are at risk from the loss of foods or contamination of these foods by metals

  14. ANTHROPOGENIC EMISSIONS INVOLVED IN ACIDIC DEPOSITION PROCESSES

    EPA Science Inventory

    The paper describes the methodology that was used to develop the 1985 National Acid Precipitation Assessment Program (NAPAP) Emissions Inventory, including quality control procedures. and summarizes the inventory contents. evelopment of the 1985 inventory required detailed invest...

  15. Digital electrospray for controlled deposition.

    PubMed

    Deng, Weiwei; Waits, C Mike; Gomez, Alessandro

    2010-03-01

    Many novel functional structures are now fabricated by controlled deposition as a maskless, bottom-up fabrication technique. These applications require rapid and precise deposition of minute amounts of solutions/suspensions or their ultimate particle products in predefined patterns. The electrospray is a promising alternative to the commonly used inkjet printing because it can easily handle highly viscous liquid, avoid high shear rates, and has low risk of clogging. We demonstrate a proof-of-concept digital electrospray. This system consists of a 61-nozzle array microfabricated in silicon and a 61-element digital extractor fabricated using flexible polyimide substrates. "Digital" refers to the state of each electrospray source that can be tuned either on or off independently and responsively. We showed a resolution of 675 mum and a response frequency up to 100 Hz. With similar design and industry standard fabrication procedures, it is feasible to scale up the system to O(1000) sources with spatial resolution better than 250 mum and a O(kHz) response frequency. The latter is controlled by the viscous damping time. PMID:20370220

  16. Deposition of salicylic acid into hamster sebaceous.

    PubMed

    Motwani, M R; Rhein, L D; Zatz, J L

    2004-01-01

    In an earlier paper, we identified vehicles that are miscible with sebum, using differential scanning calorimetry (DSC). In this paper, the potential of these vehicles to deliver salicylic acid (SA) into the sebum-filled follicles of hamster ears is examined. The main objective of this study is to correlate the melting transitions of a model sebum with the follicular delivery of SA, using two different types of vehicles (fatty and polar). Generally, the fatty vehicles show higher deposition than the polar vehicles. Follicular delivery of salicylic acid correlates well with its solubility in the respective vehicles. This extent of deposition also shows a relationship with the effect of the vehicle on thermal behavior of the model sebum. The nature of the relationship depends on the vehicle (polar or fatty) tested. We conclude that DSC could be used to identify appropriate vehicles for drugs whose follicular delivery depends on solubility. The results also suggest that delivery into the sebaceous glands occurs by two different mechanisms, depending upon the polarity of the vehicle and the physicochemical properties of the drug. The results of these experiments are further extended to investigate follicular delivery of SA from two different types of oil-in-water emulsion formulations. From these studies we conclude that either increasing the volume of the oil phase or changing the emulsion to a water-in-oil emulsion would increase follicular deposition. Our research highlights the role of sebum, its compatibility with drug molecules, and vehicle selection in the transport of drugs into the follicles. The overall results of these experiments provide a reasonable understanding of the mechanisms underlying the transport of drugs to, and subsequently through, the sebaceous follicle. PMID:15645108

  17. Role of acid rain in atmospheric deposition. Final report

    SciTech Connect

    Winchester, J.W.

    1990-12-31

    A study was conducted to assess the potential importance of atmospheric nitrate deposition for a north Florida estuary. A comparison, based on statistical analysis of fluxes of ten dissolved constituents of rain water and river water, has been carried out for the watershed of the Apalachicola River, utilizing weekly rain water chemical data from the National Acid Deposition Program (NADP) for five sites within the watershed area, monitored from 1978-84 until late 1989, and less frequent river water chemical data from the U.S. Geological Survey for one site at Chattahoochee, Florida, monitored from 1965 until late 1989. Similar statistical analysis was performed on monitoring data for the Sopchoppy and Ochlockonee Rivers of north Florida. Atmospheric deposition to the watershed appears to be sufficient to account for essentially all the dissolved nitrate and ammonium and total organic nitrogen flow in the three rivers. However, after deposition most of the nitrate may be transformed to other chemical forms during the flow of the rivers toward their estuaries. In an additional statistical analysis of rain water monitoring data from the eight state southeastern USA region, it was found that both meteorological conditions and transport from pollution sources appear to control deposition fluxes of nitrate and sulfate acid air pollutants.

  18. STATUS OF RESEARCH TO DEVELOP ACIDIC DRY DEPOSITION MONITORING CAPABILITY

    EPA Science Inventory

    Dry deposition is thought to be as important as wet deposition in acidifying ecosystems. However, at present acidic dry deposition of relevant particles and gases cannot be monitored directly in a quantitative manner. The U.S. EPA Workshop on Dry Deposition (Report No. EPA-600/9-...

  19. Acid deposition in aquatic ecosystems: Setting limits empirically

    NASA Astrophysics Data System (ADS)

    Newcombe, Charles P.

    1985-07-01

    The problem of acid deposition and its harmful effects on aquatic ecosystems has created a new branch of science that is called upon to provide the knowledge on which legislative controls can be based. However, because of the nature of existing legislation, which requires evidence of cause and effect between industrial emissions and pollution, and because of science's inability to provide this information over the short term, considerable controversy has arisen about whether sufficient information exists to warrant control measures at this time. Among those who advocate controls, there is genuine divergence of opinion about how stringent the controls must be to achieve any desired level of protection. The controversy has led to an impasse between the scientific and political participants, which is reflected in the slow pace of progress toward an effective management strategy. Resolution of the impasse, at least in the short term, may demand that science and politics rely on empirical models rather than explanatory ones. The empirical model, which is the major proposal in this article, integrates all of the major variables and many of the minor ones, and constructs a three-dimensionally curved surface capable of representing the status of any waterbody subjected to the effects of acid deposition. When suitably calibrated—a process involving the integration of knowledge and data from aquatic biology, geochemistry, meteorology, and limnology—it can be used to depict limits to the rate of acid deposition required for any level of environmental protection. Because it can generate a pictorial display of the effects of management decisions and legislative controls, the model might serve as a basis for enhancing the quality of communication among all the scientific and political participants and help to resolve many of their controversies.

  20. Acid deposition: Atmospheric processes in Eastern North America

    SciTech Connect

    Not Available

    1983-01-01

    This report examines scientific evidence on the relationship between emissions of acid-forming pollutants and damage to sensitive ecosystems from acid rain and other forms of acid deposition. The report's conclusions represent the most authoritative statement yet that reductions in emissions of these pollutants will result in proportional reductions in acid rain.

  1. Acid deposition and the acidification of soils and waters

    SciTech Connect

    Reuss, J.O.; Johnson, D.W.

    1985-01-01

    A conceptual model of acid deposition is presented consistent with established physicochemical principles and the bulk of available information. The authors seek to provide insight into probable long-term effects of acid deposition; a testable hypotheses; plus design and interpretation of the research. (PSB)

  2. Controlling acid rain

    SciTech Connect

    Cannon, J.S.

    1987-01-01

    This book examines recent transfer of electric power among 48 states and present evidence of significant transfers of electric power from so-called ''perpetrator'' to ''victim'' states. The book compares the efforts of several midwestern and northeastern states during the 1970's to control the sulfur dioxide (SO/sub 2/) emissions causing acid rain. The report includes utility and government data on electricity production and sales, on purchase of out-of-state electricity, and on coal use and sulfur dioxide emissions, state by state, for 48 states.

  3. Feedback control of pulsed laser deposition processes

    NASA Astrophysics Data System (ADS)

    Laube, S. J. P.; Stark, E. F.

    1993-10-01

    Implementation of closed loop feedback on PLD (pulsed laser deposition) requires actuators and sensors. Improvements in quality and reproducibility of material depositions are achieved by actuating the process towards desired operating regions. Empirical relationships are experimentally determined for describing the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder.

  4. ROCKY MOUNTAIN ACID DEPOSITION MODEL ASSESSMENT: EVALUATION OF MESOSCALE ACID DEPOSITION MODELS FOR USE IN COMPLEX TERRAIN

    EPA Science Inventory

    The report includes an evaluation of candidate meteorological models and acid deposition models. The hybrid acid deposition/air quality modeling system for the Rocky Mountains makes use of a mesoscale meteorological model, which includes a new diagnostic wind model, as a driver f...

  5. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  6. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil. PMID:12046292

  7. ROCKY MOUNTAIN ACID DEPOSITION MODEL ASSESSMENT: ACID RAIN MOUNTAIN MESOSCALE MODEL (ARM3)

    EPA Science Inventory

    The Acid Rain Mountain Mesoscale Model (ARM3) is a mesoscale acid deposition/air quality model that was developed for calculating incremental acid deposition (sulfur and nitrogen species) and pollutant concentration impacts in complex terrain. The model was set up for operation w...

  8. Geochemical investigations of selected Eastern United States watersheds affected by acid deposition.

    USGS Publications Warehouse

    Bricker, O.P.

    1986-01-01

    The effects of acid deposition on surface waters in eastern USA watersheds of similar size, physiography, climate and land-use are related to the composition of the underlying bedrock. Watersheds developed on greenstone, calcareous shale, sandstone, granite and schist differ in their ability to neutralize acid rain; consequently, stream acidity is similar to that of precipitation. Watersheds developed on granite and schist are intermediate in their capacity to neutralize acid deposition. Bedrock composition appears to be the major property controlling surface-water chemistry in these systems; hydrological flowpaths and the nature of surficial materials and vegetation also influence chemical responses to acid deposition in watersheds. 453This and the following 10 abstracts are for papers forming a thematic set on geochemical aspects of acid rain. -P.Br.

  9. ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

  10. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  11. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  12. Factors affecting response of surface waters to acidic deposition

    SciTech Connect

    Turner, R.S.; Johnson, D.W.; Elwood, J.W.; Van Winkle, W.; Clapp, R.B.; Reuss, J.O.

    1986-04-01

    Knowledge of watershed hydrology and of the biogeochemical reactions and elemental pools and fluxes occurring in watersheds can be used to classify the response of watersheds and surface waters to acidic deposition. A conceptual mosel is presented for classifying watersheds into those for which (1) surface water chemistry will change rapidly with deposition quality (direct response) (2) surface water chemistry will change only slowly over time (delayed response), and (3) surface water chemistry will not change significantly, even with continued acidic deposition (capacity-protected). Techniques and data available for classification of all watersheds in a region into these categories are discussed.

  13. EMISSION INVENTORY APPLICATIONS TO REGIONAL ACID DEPOSITION MODELING

    EPA Science Inventory

    A comprehensive Regional Acid Deposition Model (RADM) is being developed and a simpler fast-turn-around 'engineering' model(s) (EM) is being designed by the National Center for Atmospheric Research as part of the National Acid Precipitation Assessment Program (NAPAP). This paper ...

  14. ACID PRECIPITATION IN NORTH AMERICA: 1984 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1984 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  15. ACID PRECIPITATION IN NORTH AMERICA: 1983 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1983 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  16. Localized flow control with energy deposition

    NASA Astrophysics Data System (ADS)

    Adelgren, Russell Gene

    A series of experiments with energy deposition via laser-induced optical breakdown of air, i.e., a laser spark, have been performed. These experiments have demonstrated the possibility of using a laser spark for supersonic flow control. In the first of these experiments, Rayleigh scattering flow visualization was taken for energy deposition into quiescent air. A time sequence of images showed the post breakdown fluid motion created by the laser spark for different laser energy levels. Blast wave radius and wave speed measurements were made and correlated to five different laser energy deposition levels. Laser energy was deposited upstream of a sphere in Mach 3.45 flow. The energy was deposited one sphere diameter and 0.6 diameters upstream of the front of the sphere. The frontal surface pressure on the sphere was recorded as the laser spark perturbed region interacted with the flow about the sphere. Tests for three different energy levels and two different incident laser beam diameters were completed. It has been demonstrated that the peak surface pressure associated with the Edney IV interaction can be momentarily reduced by 30% by the interaction with the thermal spot created by the laser spark. The effects of laser energy deposition on another shock interaction phenomena were studied. Laser energy deposition was used to modify the shock structure formed by symmetric wedges at Mach 3.45 within the dual solution domain. It was demonstrated experimentally that the Mach reflection could be reduced by 80% momentarily. The numerical simulations show a transition from the stable Mach reflection to a stable regular reflection. Two energy deposition methods (electric arcing and laser energy deposition) were used to force and control compressible mixing layers of axisymmetric jets. The energy deposition forcing methods have been experimentally investigated with the schlieren technique, particle image velocimetry, Mie scattering, and static pressure probe diagnostic

  17. Acid rain: Controllable?

    NASA Astrophysics Data System (ADS)

    Machta, Lester

    Acid rain is one of a growing number of environmental issues in which impacts are far removed from the source o f the irritants. Those who suffer may differ in geographical area from those who benefit from the activity which releases pollution to the atmosphere. Like the issue concerning the depletion of ozone by manufactured chemicals, the acid rain issue further emphasizes the need for continuing atmospheric chemistry research, a science whose history dates back but a few decades. Examination of the acid rain issue also calls for intimate collaboration of atmospheric scientists with ecologists, biologists, and other scientists, who must advise the geophysicists regarding what chemicals in the environment produce damage, their mode of entry into an ecosystem, and the need to understand acute or chronic impacts.

  18. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  19. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  20. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits. PMID:16418890

  1. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    PubMed

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression. PMID:26582037

  2. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  3. Controlling asphaltene deposition in oil wells

    SciTech Connect

    Thomas, D.C.; Becker, H.L.; Del Real Soria, R.A.

    1995-05-01

    The deposition of asphaltenes in oil producing formations and production systems has caused problems for years. Selection of chemical control agents in the past has been limited to bulk dissolution studies on samples retrieved from production systems. Until recently, the accepted way to treat these problems has been through the use of xylene, toluene or other aromatic solvents. This method requires the use of large amounts of these solvents, as well as a high frequency of treatment. This paper describes the results of field testing and application of asphaltene control chemicals, and the use of laboratory tests to select asphaltene deposition removal and prevention chemicals. Preliminary dispersant and solvency tests are conducted by an asphaltene dispersant test in hexane. Chemical which provide promising results in dissolving and dispersing asphaltenes in the non-solvent medium of hexane are selected as candidates for field application, or for additional testing in a core flow deposition removal test. The core flow test apparatus provides a method to introduce asphaltene fouling into a core and study its removal by the use of chemical magnets. Using core samples and asphaltenes from the reproduction resource under consideration allows the selection of the best removal chemical.

  4. PARAMETRIC METHODOLOGIES OF CLOUD VERTICAL TRANSPORT FOR ACID DEPOSITION MODELS

    EPA Science Inventory

    A CUmulus VENTing (CUVENT) cloud module has been developed that calculates the vertical flux of mass from the boundary layer to the cloud layer by an ensemble of nonprecipitating subgrid-scale air mass clouds. This model will be integrated into the Regional Acid Deposition Model ...

  5. POLLUTANT SAMPLER FOR MEASUREMENTS OF ATMOSPHERIC ACIDIC DRY DEPOSITION

    EPA Science Inventory

    An acidic pollutant sampler for dry deposition monitoring has been designed and evaluated in laboratory and field studies. The system, which is modular and simple to operate, samples gaseous HNO3, NH3, SO2 and NO2 and particulate SO4(-2), NO3(1-) and NH4(1+) and is made of Teflon...

  6. Deposition control using transpiration: Final report

    SciTech Connect

    Kozlu, H.; Louis, J.F.

    1986-11-01

    An experimental and theoretical study of deposition of small particles is presented to evaluate the concept of transpiration as a deposition control strategy. The application of this work is the control of the deposition of small particles (0.5 to 3 ..mu..m) in turbines burning fuels derived from coal. The study is carried out in a wind tunnel facility containing a flat porous transpired section. Similar flows and particle motions are achieved by choosing the proper Reynolds and Stokes numbers representative of the conditions found in industrial gas turbines. Measurements of the velocity profiles were conducted for high injection rates (1.5% < F < 3%). A theory developed for the transpired turbulent boundary layer, which is described by an ''outer boundary layer'' entraining the transpired flow for large injection rates, agrees well with the experimental data. Concentration profiles of glass particles of both very narrow and wide size distributions were conducted for different injection rates under isothermal conditions. The measurements indicate clearly the conditions under which transpiration can prevent the deposition of particles and they show the effect of particle size. The interaction between transpiration and the inertial impaction of particulates is determined in an experimental set-up using an identical inclined transpired plate. Using the experimental data, the effect of the density of particles on concentration profiles is predicted. Present study also provides a clear insight into the turbulent diffusion of particles for a Stokes number of between 1 and 3.5 (and a turbulent Schmidt number range of 2 to 6). The turbulent Schmidt numbers obtained from the measurements are in agreement with the theoretical prediction of Tchen. 26 refs., 25 figs.

  7. Emissions involved in acidic deposition processes: Methodology and results

    SciTech Connect

    Placet, M.

    1990-01-01

    Data on the emissions involved in atmospheric acid-base chemistry are crucial to the assessment of acidic deposition and its effects. Sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and volatile organic compounds (VOCs) are the primary chemical compounds involved in acidic deposition processes. In addition, other emission species -- e.g., ammonia, alkaline dust particles, hydrogen chloride, and hydrogen fluoride -- are involved in atmospheric acid-base chemistry, either by contributing acidic constituents or by neutralizing acidic species. Several emissions data bases have been developed under the auspices of the National Acid Precipitation Program (NAPAP). In addition to those developed by NAPAP, emissions data bases and emissions trends estimates also have been developed by organizations such as the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA). This paper briefly describes and compares the methods used in developing these emissions data bases and presents an overview of their emissions estimates. A more detailed discussion of these topics can be found in the State-of-Science Report on emissions recently released by NAPAP and in the references cited in that report. 14 refs., 4 figs., 1 tab.

  8. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites. PMID:26878711

  9. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  10. MOUNTAIN ACID DEPOSITION PROGRAM (MADPRO): CLOUD DEPOSITION TO THE APPALACHIAN MOUNTAINS, 1994 THROUGH 1999

    EPA Science Inventory

    The mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the requirements of the Clean Air Act Amendments (CAAA). The two ma...

  11. Estimates of cloud water deposition at Mountain Acid Deposition Program sites in the Appalachian Mountains.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A

    2003-03-01

    Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition. PMID:12661689

  12. An overview of a 5-year research program on acid deposition in China

    NASA Astrophysics Data System (ADS)

    Wang, T.; He, K.; Xu, X.; Zhang, P.; Bai, Y.; Wang, Z.; Zhang, X.; Duan, L.; Li, W.; Chai, F.

    2011-12-01

    Despite concerted research and regulative control of sulfur dioxide in China, acid rain remained a serious environmental issue, due to a sharp increase in the combustion of fossil fuel in the 2000s. In 2005, the Ministry of Science and Technology of China funded a five-year comprehensive research program on acid deposition. This talk will give an overview of the activities and the key findings from this study, covering emission, atmospheric processes, and deposition, effects on soil and stream waters, and impact on typical trees/plants in China. The main results include (1) China still experiences acidic rainfalls in southern and eastern regions, although the situation has stabilized after 2006 due to stringent control of SO2 by the Chinese Government; (2) Sulfate is the dominant acidic compound, but the contribution of nitrate has increased; (3) cloud-water composition in eastern China is strongly influenced by anthropogenic emissions; (4) the persistent fall of acid rain in the 30 years has lead to acidification of some streams/rivers and soils in southern China; (5) the studied plants have shown varying response to acid rain; (6) some new insights have been obtained on atmospheric chemistry, atmospheric transport, soil chemistry, and ecological impacts, some of which will be discussed in this talk. Compared to the situation in North America and Europe, China's acid deposition is still serious, and continued control of sulfur and nitrogen emission is required. There is an urgent need to establish a long-term observation network/program to monitor the impact of acid deposition on soil, streams/rivers/lakes, and forests.

  13. The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition

    NASA Astrophysics Data System (ADS)

    Mulder, Jan; Stein, Alfred

    1994-01-01

    Despite the ecological and pedogenic importance of Al, its solubility control in acidic forest soils is poorly understood. Here we discuss the solubility of Al and its development with time in three acid brown forest soils in The Netherlands, which are under extreme acidification from atmospheric deposition. All soil solutions (to a 60 cm depth) were undersaturated with respect to synthetic gibbsite (Al(OH) 3; log K = 9.12 at 8°C), with the highest degree of undersaturation occurring in the surface soil. In about one third of the individual soil layers a significant positive correlation existed between the activity of Al 3+ and H +, but this relationship was far less than cubic. Kinetically constrained dissolution of Al is unlikely to explain the disequilibrium with respect to gibbsite, because undersaturation was highest through summer when water residence times were longest and temperatures greatest. Time series analysis of six year data sets for several soil layers revealed a significant annual decline in soil solution pH and Al solubility (defined as log Al + 3 pH) despite a constant concentration of strong acid anions. The annual decline of both pH and Al solubility was greatest in the surface soil and was positively correlated with the relative depletion of reactive organically bound soil Al. The results support our earlier hypothesis that in strongly acidified forest soils complexation by solid phase organics controls the solubility of Al even in mineral soil layers, relatively low in organic C. The data lend no support to the current widespread and often uncritical use of gibbsite as a model for the Al solubility in highly acidic forest soils (pH < 4.5) of the temperate zone.

  14. Simulated seasonal variations in wet acid depositions over East Asia.

    PubMed

    Ge, Cui; Zhang, Meigen; Zhu, Lingyun; Han, Xiao; Wang, Jun

    2011-11-01

    The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental

  15. ACIDIC DEPOSITION IN THE NORTHEASTERN U.S.: SOURCES AND INPUTS, ECOSYSTEM EFFECTS, AND MANAGEMENT STRATEGIES

    EPA Science Inventory

    Acidic deposition results from the emissions of air pollutants. Effects of acidic deposition in the northeastern US include the acidification of soil and water, causing stresses to terrestrial and aquatic biota.

  16. Global impacts of sulfate deposition from acid rain on methane emissions from natural wetlands.

    NASA Astrophysics Data System (ADS)

    Gauci, V.

    2003-04-01

    Natural wetlands form the largest methane (CH_4) source to the atmosphere. A collection of recent field and laboratory studies point to an anthropogenic control on CH_4 emissions from these systems: acid rain sulfate (SO_42-) deposition. These studies ranging from the UK, USA, Canada, Sweden and Czech Republic demonstrate that low rates of SO_42- deposition, within the range commonly experienced in acid rain impacted regions, can suppress CH_4 emissions by as much as 40% and that the response of CH_4 emissions to increasing rates of SO_42- deposition closely mirrors changes in sulfate reduction rates with SO_42- deposition. This indicates that the suppression in CH_4 flux is the result of acid rain stimulating a competitive exclusion of methanogenesis by sulfate reducing bacteria, resulting in reduced methane production. These findings were extrapolated to the global scale by combining modelled, spatially explicit data sets of CH_4 emission from wetlands across the globe with modelled S deposition. Results indicate that this interaction may be important at the global scale, suppressing CH_4 emissions from wetlands in 2030 by as much as 20--28Tg, and, in the process, offsetting predicted climate induced growth in the wetland CH_4 source.

  17. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  18. Acid Deposition From Stratospheric Geoengineering With Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Oman, L.; Stenchikov, G.

    2008-12-01

    We used a general circulation model of the Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide [Robock et al., 2008] and analyzed the resulting deposition of sulfate. When sulfur is injected into the tropical or Arctic stratosphere, the main additional surface deposition occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions, and there are some larger local increases, specifically in Northern Canada and the Western Pacific Ocean. We used critical load studies to determine the effects of this increase in acid deposition on terrestrial ecosystems. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, the additional surface sulfate deposition is not enough to negatively impact most ecosystems. Robock, Alan, Luke Oman, and Georgiy Stenchikov (2008), Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.

  19. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  20. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    PubMed

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-01-01

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions. PMID:25732934

  1. Distribution and effects of acidic deposition on wildlife and ecosystems

    USGS Publications Warehouse

    Stromborg, K.L.; Longcore, J.R.

    1987-01-01

    Acidic deposition occurs over most of the United States and the deposition patterns and theoretical vulnerabilities of aquatic ecosystems to chemical changes can be delineated, but few data exist on concomitant biological effects. Hypothetical direct effects are limited primarily to toxicity of various heavy metals mobilized at reduced pH. Results of studies in Scandinavia suggest that aluminum interferes with avian reproduction near acidified lakes. Some amphibian populations located on acid-vulnerable substrates may be adversely affected by reduced pH in the vernal pools used for egg laying and larval growth. Indirect effects on populations are difficult to detect because few historical data exist for wildlife populations and trophic relationships in vulnerable areas. Current research in the U.S.A. focuses on measuring habitat characteristics, food availability, and avian use of vulnerable wetland habitats. Results of Scandinavian studies suggest that some species of waterfowl may prefer acidified, I fish-free habitats because invertebrates essential for meeting nutritional requirements are more easily obtained in the absence of competition from fish. However, avian species dependent on fish would be absent from these habitats. Alteration of either the vegetative structure or primary productivity of wetlands might indirectly affect avian populations by causing decreased invertebrate productivity and consequent food limitations for birds.

  2. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  3. Quantifying the micrometorological controls on fog deposition

    NASA Astrophysics Data System (ADS)

    Farlin, J. P.; Paw U, K. T.; Underwood, J.

    2014-12-01

    Fog deposition has been shown to be a significant water input into many arid ecosystems. However, deposition of fog onto foliage depends on many factors. Previously, characterizing fog droplet size distributions was labor intensive, but currently we can characterize changes in fog droplet composition in the 2-50 μm in 2 μm intervals in real time. Evaluating how droplet size and ambient micrometeorological conditions affect deposition rates will allowing tremendous new insight into fog formation and deposition processes. Previous work has characterized fog deposition as it alters with wind speed in natural systems, but extensively testing how droplet size, wind speed, angle of interception all co-vary would be impossible in a natural setting. We utilized a wind tunnel with artificial fog generating nebulizers to simulate fog events across micrometeorological conditions. Using a weighing lysimeter, we were able to quantify the differential rates of deposition on different theoretical leaf types as droplet size and micrometeorological conditions vary. We hope to inform fog collector designs with this information to ensure we are accurately quantifying the fluxes of fog-derived water into these systems.

  4. Effects of acid deposition on calcium nutrition and health of Southern Appalachian spruce fir forests

    SciTech Connect

    McLaughlin, S.B.; Wullschleger, S.; Stone, A.; Wimmer, R.; Joslin, J.D.

    1995-02-01

    The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an important component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.

  5. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  6. COMPREHENSIVE EXPERIMENTAL DESIGN PLAN TO RELATE POLLUTANT SOURCES TO ACIDIC DEPOSITION

    EPA Science Inventory

    Because verifiable numerical models that incorporate all processes determining the dispersion, transformations, and deposition of emitted pollutants associated with acidic deposition from the atmosphere are only now under development, it was deemed worthwhile to determine whether...

  7. Deposition- controlled uniformity of multilayer mirrors

    NASA Astrophysics Data System (ADS)

    Jankowski, Alan F.; Makowiecki, Daniel M.; McKernan, M. A.; Foreman, R. J.; Patterson, R. G.

    1991-02-01

    The widely used physical vapor deposition techniques to produce multilayer x-ray optics with uniform layer pair spacings (<1% variation) over large areas (> 10cm x 10 cm) have all been limited by the geometry of the vapor source. Magnetron sputtering sources, geometrically a convolution of point sources in a circular or rectangular array, provide uniformly thick regions of coating only within the boundaries of the erosion track. To maximize uniformity over large regins requires target materials equally as large, proving a costly proposition. Electron beam or molecular beam sources are similarly limited by the size of the melt pooi or effusion cell diameter. For ion beam deposition, spatial divergence from typical ion sources results in coating thickness variations of 5%or more for large areas as previously described. To minimize the ultimate expense of designing a necessarily large, single deposition source to provide a small thickness variation (without the use of compensating substrate motion or elaborate shielding over the deposition sources), several small sources arranged in an appropiate array may provide a viable alternative. To this end, the use of a linear array of one-inch magnetron sources has proven effective. Material has been deposited within the limitations of 1.5% thickness variation, along the axis of a linear gun array, over 15cm in length. The feasibility of using two linear arrays of magnetron sources is investigated to prepare large area multilayer mirrors with minimal layer pair spacing variations. Such a deposition system also allows for gradually varying the layer pair spacings across the surface of an optic, in a designed manner, which proves useful for focusing applications.

  8. Acidic deposition and its effects on forest productivity: a review of the present state of knowledge, research activities, and information needs

    SciTech Connect

    Pinkerton, J.E.

    1981-01-01

    The present state of knowledge with regard to acid deposition is reviewed. Sources include the literature and direct contact with persons responsible for carrying out all completed, ongoing, and planned research activities, national and international, related to acidic deposition and its effects, with emphasis on forest productivity. In addition, a list of information needs in seven areas was developed, these include: a characterization of forest soils to define their sensitivity to acidic deposition; effects on forest soil chemical and biological processes; development of improved dry deposition measurement methods; changes in precipitation composition due to forest canopies; more extensive monitoring of acidic deposition in industry owned forest lands; expansion of long-term greenhouse and controlled field experiments; and the relationship of acidic deposition and intensive forestry management practices. 85 references. (MDF)

  9. USING THE REGIONAL ACID DEPOSITION MODEL TO DETERMINE THE NITROGEN DEPOSITION AIRSHED OF THE CHESAPEAKE BAY WATERSHED

    EPA Science Inventory

    The Regional Acid Deposition Model, RADM, an advanced Eulerian model, is used to develop an estimate of the primary airshed of nitrogen oxide (NOx) emissions that is contributing nitrogen deposition to the Chesapeake Bay watershed. rief description of RADM together with a summary...

  10. ACID PRECIPITATION IN NORTH AMERICA: 1985 ANNUAL AND SEASONAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1985 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  11. Anthropogenic Oxidation of Seafloor Massive Sulfide (SMS) deposits: Implications for Localized Seafloor Acid Generation

    NASA Astrophysics Data System (ADS)

    Bilenker, L.; Romano, G. Y.; Mckibben, M. A.

    2011-12-01

    A rapid increase in the price of transition metals in recent years has piqued interest in deep sea in situ mining of seafloor massive sulfide (SMS) deposits. There are important unanswered questions about the potential environmental effects of seafloor mining, particularly localized sulfuric acid generation. Currently there is a paucity of data on the oxidation kinetics of sulfide minerals in seawater. Seafloor massive sulfides oxidize rapidly via irreversible, acid-producing reactions. The oxidation kinetics of these minerals need to be quantified to estimate the significance of acid production. Laboratory experiments have been performed to evaluate the effects of pH, temperature, oxidant concentration, and mineral surface area on the rate of oxidation of chalcopyrite (CuFeS2) and pyrrhotite (Fe1-xS) in seawater. Temperature controlled circulation baths, Teflon reaction vessels, synthetic seawater, and pure, hand sorted natural sulfide mineral crystals are used in experiments. Both batch and flow-through reactor methods are employed. Reaction products are analyzed using ICP-MS. The rate law is expressed as follows: R = k (MO2,aq)a(MH+)b where R is the specific mineral oxidation rate (moles/m2/sec), k is the rate constant (a function of temperature), and a and b are reaction orders for molar aqueous species' concentrations (M). The initial rate method is used to determine the reaction order of each variable. Chalcopyrite and pyrrhotite are being studied because as the slowest- and fastest-oxidizing of the common sulfide minerals found in SMS deposits, they bound the range of rates seen in seafloor settings and can be used to place lower and upper limits on abiotic rates of metal release and sulfuric acid production. Experiments to date indicate an oxidation rate of pyrrhotite several times faster than that of chalcopyrite. The rate laws, when incorporated into reactive-transport computer codes, will enable the prediction of localized anthropogenic sulfuric acid

  12. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  13. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  14. Do the paleolimnological reconstructions reflect the influence of acid deposition?

    SciTech Connect

    Smirnov, D.Y.

    1996-12-31

    The using possibility of paleolimnological analyses was considered with the documentation aim of acid-forming substances distant transfer on territory of Northern Fennoscandia. The Holocene and ancient interglacial lakes pH-and alkalinity trends, reconstructed by means of bottom sediments diatomic analyses, were studied. It has been made evident that the tendency to sharp changes of these data is revealed on final stages of interglacial periods. At that time the high amplitude of climatic changes with low periodicity is resulting in catastrophic changes of landscapes in the frames of water-catchments bodies. During the last millennium the climatic situation in the Northern Fennoscandia was changing repeatedly (Medieval Warm Epoch, Little Ice Age, the rise in temperature in 20-40`s of XXth century). In the Little Ice Age (XVI-XIX centuries) the decrease of average annual temperature and intensification of winds velocity have caused a rapid retreat of latitudinal and high-altitude forest boundaries, accompanied by sharp reconstruction of tundra-,forest-tundra-and northern taiga landscapes. These processes have accelerated due to the enforcement of economic activity which caused the destruction of vegetation cover (salt-working, and ship-building since the XIXth century, pasture of reindeer herds since the end of XIXth century). Acidifying of ground and surface waters in the current century could be caused by the increased entry of organic acids, as a result of plant residues decomposition. The decomposition process was activated in the end of XIXth - beginning of XXth century in connection with the rise of temperature and increase of precipitation. Thus, the trends in pH and alkalinity changes in this region can not be used as indicators of acid-forming substances atmospheric deposition increase.

  15. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability. PMID:26797956

  16. Poly(oxyalkylene) aminoether carbamates as deposit control additives

    SciTech Connect

    Plavac, F.

    1987-09-22

    This patent describes deposit control additives to maintain cleanliness in internal combustion engines which are provided. The additives are hydrocarbyl-terminated poly(oxyalkylene) aminohydrocarbyloxyhydrocarbyl carbamates, also referred to as polyether aminoether carbamates.

  17. A modeling study on acid rain and recommended emission control strategies in China

    NASA Astrophysics Data System (ADS)

    Wang, T. J.; Jin, L. S.; Li, Z. K.; Lam, K. S.

    This paper presents a brief description of the sources and characteristics of air pollution in China, documenting acid rain aggravation and its regional distribution in the past years. Simulation of SO 2 ground-level concentration and sulfur deposition in 1995 was performed with the Nanjing University developed acid deposition model system (NJUADMS) and compared with the national observations and the model output of the RAINS-ASIA. Furthermore, the acid rain control policy and its countermeasures adopted for the country are presented.

  18. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  19. Self-directed control of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stark, E. F.; Laube, S. J. P.

    1993-10-01

    Implementation of self-directed control of pulsed laser deposition (PLD) requires actuators, sensors, and a materials and processing knowledge base. Improvements in quality and reproducibility of material deposits are achieved by driving the process toward desired operating regions. Empirical relationships are determined experimentally to describe the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder and effectively produce consistent coatings with desired properties.

  20. More on Effects Controlling Carboxylic Acidity.

    ERIC Educational Resources Information Center

    Schwartz, Lowell M.

    1981-01-01

    Gas phase acidity data shown are offered to writers of elementary organic chemistry texts for replacement of the aqueous phase data that are universally used. Relative acidities in the gas phase are controlled virtually exclusively by enthalpic factors. Structural-energetic explanations of acidic trends can therefore be used. (SK)

  1. The influence of a small amount of maleic acid on crystal deposition phenomena of methacrylic acid in melt crystallization

    NASA Astrophysics Data System (ADS)

    Hino, Tomomichi; Kato, Shinpei; Takiyama, Hiroshi

    2013-06-01

    Crystal deposition phenomena were investigated in the suspension melt crystallization of an organic acid. Methacrylic acid was used as the target substance, a certain amount of methanol was used as the solvent, and the effect of a small amount of maleic acid by-produced in methacrylic acid synthesis was focused on. Batch crystallizations were carried out on a laboratory scale using various concentrations of maleic acid. In the presence of maleic acid, a certain deviation from equilibrium of the pure binary system was observed in the final composition of mother liquor. Moreover, nevertheless the final temperature in the crystallizer was same, the amount of crystal deposition in the presence of maleic acid was smaller than in the absence of maleic acid. It was suggested that the final amount of crystal deposition decreased in the presence of maleic acid. Additionally, it was observed that the obtained crystal size was smaller in the presence of maleic acid. Hence, a simplified kinetic analysis of crystal deposition rates was carried out to make the effect of maleic acid clear. Consequently, it was suggested that the cause of the above-mentioned phenomena was the existence of the maleic acid concentration dependent pseudo-liquidus line.

  2. U.S. EPA WORKSHOP TO DEVELOP A SIMPLE MODEL FOR ACID DEPOSITION

    EPA Science Inventory

    The Acid Deposition Planning Staff in the Office of Acid Deposition/EPA requested that the Atmospheric Sciences Research Laboratory undertake the development of a low-computational-demanding model suitable for educational use in understanding the linear or non-linear nature of th...

  3. PROTOTYPE CONCENTRATION MONITOR FOR ESTIMATING ACIDIC DRY DEPOSITION

    EPA Science Inventory

    Dry deposition contributes significantly to the acidification of the ecosystem. However, difficulties in measuring dry deposition of reactive gases and fine particles make routine direct monitoring impractical. An alternate approach is to use the 'concentration monitoring' method...

  4. Acid deposition and air quality related values in north central Colorado wilderness areas. Final report

    SciTech Connect

    Hidy, G.M.

    1995-05-01

    Terrestrial and aquatic ecosystem response to atmospheric acid, sulfur, and nitrate deposition has been studied only in a very limited way in Colorado wilderness areas. However, the observed deposition rates in north central Colorado remain low relative to affected areas in the eastern United States and well within a range where no adverse ecological effects are expected. This report presents a survey of scientific information describing acid deposition and air quality related values, which may have implications for utility plant operations.

  5. Identification of research relating to the critical loads concept and its potential application to the regulation of acidic deposition

    SciTech Connect

    Bhatti, N.

    1993-12-01

    The overwhelming majority of strategies currently implemented to regulate acidic deposition have focused on source-based or emission-control techniques. In the past few years, however, the fact that such source-based. strategies may not be sufficient to prevent adverse ecological effects and may therefore need to be supplemented with other control options, such as receptor-based strategies, has become apparent. Partly in response to this insufficiency of regulatory controls, the US Congress has required the National Acid Precipitation Assessment Program to determine (1) what deposition levels are needed to prevent such ecological damage, (2) whether such safe deposition levels (i.e., critical loads) can realistically be identified, and (3) what the costs and benefits of attaining such deposition levels are. This report reviews and culls the existing research on these alternative control strategies, emphasizing the critical loads concept, to determine the advantages and limitations and the cost-benefit relationships associated with receptor-based control options. The results of this study indicate that in spite of the significant limitations associated with the critical loads concept, this strategy dominates all discussions of non-source-based control options and offers considerable advantages, including cost-effectiveness, over the more traditional source-based control methods. Summaries of 10 of the most relevant studies dealing with alternative control strategies and the costs and benefits associated with them are also presented in this report.

  6. Electrokinetic control of bacterial deposition and transport.

    PubMed

    Qin, Jinyi; Sun, Xiaohui; Liu, Yang; Berthold, Tom; Harms, Hauke; Wick, Lukas Y

    2015-05-01

    Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices. PMID:25844535

  7. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  8. ACID PRECIPITATION IN NORTH AMERICA: 1987 ANNUAL AND SEASONAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    This report summarizes the 1987 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. nterpretative statistical analyses are not a focus of this report; however, users of the report will learn about maj...

  9. ACID PRECIPITATION IN NORTH AMERICA: 1980, 1981 AND 1982 ANNUAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The Acid Deposition System (ADS) data base for North American wet deposition data is used to provide an overview of the major North American monitoring networks: NADP, CANSAP, APN, MAP3S/PCN, EPRI/SURE, UAPSP and APIOS daily and cumulative. Individual site annual statistical summ...

  10. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  11. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  12. Application of a Depositional Facies Model to an Acid Mine Drainage Site▿ †

    PubMed Central

    Brown, Juliana F.; Jones, Daniel S.; Mills, Daniel B.; Macalady, Jennifer L.; Burgos, William D.

    2011-01-01

    Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with 60Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies. PMID:21097582

  13. Relative contributions of sulfuric and nitric acids in acid rain to the acidification of the ecosystem: implications for control strategies

    SciTech Connect

    McLean, R.A.N.

    1981-11-01

    Much of northeastern North America has been receiving precipitation of pH 4.6 or less, i.e. more than ten times more acid than normal rain (pH = 5.6) for at least the past 20 to 30 years. Originally, this acidity was almost totally due to sulfuric acid. These inputs of sulfuric acid in the very acid sensitive Adirondacks may have removed much of the neutralizing and nitrate-utilizing ability of the soils and water. Thus, this area may now be more sensitive to atmospheric inputs of nitric acid. Further work is required on the impact of acid nitrate deposition on the ecosystem but with equal certainty it can be stated that sulfur deposition remains the princpial long term threat to acid sensitive ecosystems. It can be concluded that: much of the nitric acid in acid rain is decomposed in the soils and waterway, and is not a significant contributor to long-term acidification of soils and waters; although in the long term, nitric acid in atmospheric deposition is not likely to be contributing to the overall acidification of the environment, during the spring thaw, in areas which have been heavily impacted by acid rain for a number of years, nitric acid which has concentrated in the snow pack over the winter may cause ecological damage, especially to fish populations; though there is little doubt that tighter control strategies are necessary to diminish the effects of acid rain on remote ecosystems the existing control strategies, which have put more emphasis on the control of emissions of sulfur oxides than nitrogen oxides, have a reasonable scientific basis given our present limited knowledge of their effects on the ecosystem.

  14. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  15. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  16. The emerging role of NO{sub x} in acid deposition

    SciTech Connect

    Price, D.A.; Birnbaum, R.E.

    1997-12-31

    The oxides of nitrogen (NO{sub x}) have long been recognized as a principal precursor to acid deposition. Until recently, however, scientific knowledge about the nature and extent of NO{sub x}`s contribution to acidity in the atmosphere and to acid deposition damages on earth has been nascent; the National Acid Precipitation Assessment Program (NAPAP) and related research during the 1980s focused primarily on the linkage between sulfur dioxide (SO{sub 2}) emissions with acid deposition. This paper summarizes an integrative assessment on the science of NO{sub x} and acid deposition and the multiple environmental benefits associated with decreases in NO{sub x} emissions from coal-fired power plants. The Acid Rain Program performed this staff assessment to support the Phase II Acid Rain NO{sub x} Emission Reduction Rule, proposed on January 19, 1996 (61 FR 1442), and the Office of Air and Radiation (OAR) Integrated NO{sub x} Strategy. Model projections from EPA`s Acid Deposition Standard Feasibility Study (October 1995) provided the initial indication of the important role of NO{sub x} in the future chronic acidification of certain sensitive watershed ecosystems. Corroborative findings from the Bear Brook Watershed Manipulation Experiment and other recent field studies are discussed. This paper also presents an overview discussion of the current state-of-knowledge with respect to NO{sub x}`s role in the acidification of forests, soils, and vegetation as well as acidic-related damage to materials and structures. Basic terms and processes such as {open_quotes}atmospheric nitrogen deposition,{close_quotes} {open_quotes}nitrogen saturation,{close_quotes} {open_quotes}chronic vs. episodic acidification,{close_quotes} and {open_quotes}direct vs. soil-mediated acidification effects{close_quotes} are defined in context so as to facilitate understanding of the emerging role of NO{sub x} in acid deposition.

  17. Vacuolar deposition of ascorbate-derived oxalic acid in barley

    SciTech Connect

    Wagner, G.J.

    1981-03-01

    L-(1-/sup 14/C)Ascorbic acid was supplied to detached barley seedlings to determine the subcellular location of oxalic acid, one of its metabolic products. Intact vacuoles isolated from protoplasts of labeled leaves contained (/sup 14/C)oxalic acid which accounted for about 70% of the intraprotoplast soluble oxalic acid. Tracer-labeled oxalate accounted for 36 and 72% of the /sup 14/C associated with leaf vacuoles of seedlings labeled for 22 and 96 hours, respectively.

  18. Acidity control in the North Branch Potomac

    SciTech Connect

    Sheer, D.P.; Harris, D.C.

    1982-11-01

    The North Branch of the Potomac River is polluted by acid drainage from abandoned coal mines. Recent studies have shown an improvement in water quality since the construction of a large dam near Bloomington, MD; the reservoir formed by the dam intercepts and dilutes slugs of acid. In addition, secondary treatment of pulp and paper industry waste waters at Westernport, MD, results in the production of bicarbonate which also helps to neutralise the acid. The authors propose a method for determining the optimal operation of the reservoir to control acidity.

  19. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.

    PubMed

    Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-01-01

    Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail. PMID:20851443

  20. A Calculation of Spatial Range of Colloidal Silicic Acid Deposited Downstream from the Alkali Front

    NASA Astrophysics Data System (ADS)

    Niibori, Yuichi; Iijima, Kazuki; Tamura, Naoyuki; Mimura, Hitoshi

    A high alkali domain spreads out due to the use of cement materials for the construction of the repository of radioactive wastes. Sudden change of pH at this alkali front produces colloidal silicic acid (polymeric silicic acid) in addition to the deposition of supersaturated monomeric silicic acid onto the fracture surface of flow-pathway. The colloidal silicic acid also deposits with relatively small rate-constant in the co-presence of solid phase. Once the flow-path surface is covered with the amorphous silica, the surface seriously degrades the sorption behavior of radionuclides (RNs). Therefore, so far, the authors have examined the deposition rates of supersaturated silicic acid. This study summarized the deposition rate-constants defined by the first-order reaction equation under various conditions of co-presence of amorphous silica powder. Then, using the smallest rate-constant (1.0×10-12 m/s in the co-presence of calcium ions of 1 mM) and a simulation code, COLFRAC-MRL, the spatial range of colloidal silicic acid deposited downstream from the alkali front was estimated. The results suggested the clogging caused by the deposition of colloidal silicic acid in flow-path. The altered spatial range in the flow-path was limited to around 30 m in fracture and to several centimeters in rock matrix.

  1. Acidic Deposition along the Appalachian Trail Corridor and its Effects on Acid-Sensitive Terrestrial and Aquatic Resources

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Sullivan, T. J.; Burns, D. A.; Bailey, S. W.; Cosby, B. J., Jr.; Dovciak, M.; Ewing, H. A.; McDonnell, T. C.; Riemann, R.; Quant, J.; Rice, K. C.; Siemion, J.; Weathers, K. C.

    2015-12-01

    The Appalachian National Scenic Trail (AT) spans 3,500 km from Georgia to Maine. Over its length, the trail passes through a corridor with wide variations in climate, bedrock type, soils, and stream water quality. These factors create a diverse range of ecosystems. The health of these ecosystems is a cause for concern because the AT passes through the heavily populated eastern U.S. with its many sources of sulfur (S) and nitrogen (N) emissions that produce acidic deposition. To address concerns about the health of the AT, a study was designed to evaluate the condition and sensitivity of the AT corridor with respect to acidic deposition. Collections of stream water (265 sites), soil (60 sites), tree cores (15 sites) and atmospheric deposition samples (4 sites) were made along with understory and overstory vegetation measurements (30 sites) over the full trail length within a 40 km-wide corridor. Existing data on atmospheric deposition, geology, vegetation, stream chemistry, and soil chemistry were also used in the analysis. Mean acid-neutralizing capacity (ANC) was lowest in the streams in the North section, intermediate in the Central section and highest the South section, despite the South having the highest acid rain levels. At least 40% of the study streams exhibited pH and/or Ali measurements that indicated potential harm to biota. Approximately 70% of the soil sites had values of base saturation under 20%, the threshold below which acidic deposition can mobilize inorganic aluminum (Ali), the form harmful to terrestrial and aquatic life. Compositional similarity of understory and canopy species was positively correlated with acidic deposition, suggesting that during past decades, species poorly adapted to acidic deposition were replaced with tolerant species. Target loads modeling indicated that exceedance of sulfur target loads to achieve stream ANC = 50 μeq/L by the year 2100occurred throughout the trail corridor.

  2. DEPOSITION OF SULFATE ACID AEROSOLS IN THE DEVELOPING HUMAN LUNG

    EPA Science Inventory

    Computations of aerosol deposition as affected by (i) aerosol hygroscopicity, (ii) human age, and (iii) respiratory intensity are accomplished using a validated mathematical model. he interactive effects are very complicated but systematic. ew general observations can be made; ra...

  3. Student Knowledge of Scientific and Natural Resource Concepts Concerning Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    1989-01-01

    Assessed is the level of scientific and natural resource knowledge possessed by fourth-, eighth- and eleventh-grade students. Misconceptions are noted. Discussed are implications for teaching about acidic deposition. (CW)

  4. LABORATORY AND FIELD EVALUATIONS OF EXTRANSENSITIVE SULFUR DIXOIDE AND NITROGEN DIOXIDE ANALYZERS FOR ACID DEPOSITION MONITORING

    EPA Science Inventory

    Studies of environmental acid deposition require monitoring of very low levels of several atmospheric pollutants. arious passive and active samplers have been used to collect integrated atmospheric samples for such studies. ontinuous analyzers offer an advantage because of their ...

  5. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  6. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions...

  7. Electrostatic control of acid mist emissions

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    This paper describes a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP is used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase I of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  8. A new look at liming as an approach to accelerate recovery from acidic deposition effects.

    PubMed

    Lawrence, Gregory B; Burns, Douglas A; Riva-Murray, Karen

    2016-08-15

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment. PMID:27092419

  9. PROJECTION OF RESPONSE OF TREES AND FORESTS TO ACIDIC DEPOSITION AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    In 1986 the National, Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern an...

  10. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  11. Technological options for acid rain control

    SciTech Connect

    Princiotta, F.T.; Sedman, C.B.

    1993-01-01

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. One key consideration is the effect of fuel switching or control technology upon the existing dust collector, with additional air toxics legislation looming ahead. A number of likely SO2 and NOx retrofit technologies and estimated costs are presented, along with results of retrofit case studies. New hybrid particulate controls are also being developed to meet future requirements.

  12. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  13. SPODOSOL VARIABILITY AND ASSESSMENT OF RESPONSE TO ACIDIC DEPOSITION

    EPA Science Inventory

    Variability in forest soils makes it difficult to observe short-term changes in chemical properties under field conditions. uried soil-bag technique was developed to examine the chemical response of a Maine forest soil to loadings of strong acids (HNO3 and H2SO4). cids were added...

  14. EFFECTS OF ACID DEPOSITION ON PAINTED WOOD SUBSTRATES

    EPA Science Inventory

    This report describes the progress that has been made within the Coatings Effect Research Program that EPA conducts for Task Group VII within the National Acid Precipitation Assessment Program (NAPAP). The major objective of this phase of the research program is to identify early...

  15. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  16. Amino acid geochemistry of fossil bones from the Rancho La Brea asphalt deposit, California

    USGS Publications Warehouse

    McMenamin, M.A.S.; Blunt, D.J.; Kvenvolden, K.A.; Miller, S.E.; Marcus, L.F.; Pardi, R.R.

    1982-01-01

    Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 ?? 10-6yr-1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 ?? 10-6yr-1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits. ?? 1982.

  17. Growth of and mineral deposition in young rats fed saturated and unsaturated fatty acids

    SciTech Connect

    Magee, A.; D'Souza, D. John Hopkins Univ., Baltimore, MD )

    1991-03-15

    Male weanling rats were used in 4 week experiments to study effects of saturated and unsaturated fatty acids on growth and mineral deposition in several organs (bone, kidneys, liver, spleen, testes). Minerals evaluated were calcium, copper, iron, magnesium, manganese, phosphorus, and zinc, and levels of these minerals in tests diets were appropriate for growing rats. Two levels of dietary fat were used, and fatty acids included in the study were butyric/capronic, palmitic/stearic, oleic, and linoleic/linolenic acids. Decreased weight gains were observed in rats fed saturated fatty acids or 10% fat, while increases in weight gains were associated with increases in polyunsaturated/saturated (P/S) ratios. Copper, iron, or zinc levels tended to be higher in organs of rats fed saturated fatty acids. P/S ratios had no effect on copper or zinc deposition, but decreases in liver iron and increases in spleen iron were observed in rats fed the higher P/S ratios. Manganese levels were generally unaffected by fatty acid types, fat level, or P/S ratio, although liver manganese levels were higher in rats fed unsaturated fatty acids. Dietary fatty acids, fat level, or P/S ratios had no apparent effects on calcium, magnesium, phosphorus, or zinc deposition in femurs and tibias of rats.

  18. Study of deposition control using transpiration. Technical progress report

    SciTech Connect

    Louis, J.F.; Kozlu, H.

    1986-03-01

    The purpose of this project is to determine the conditions under which transpiration may be actually used to avoid deposition of small particles. The application of this work is the control of the deposition of small particles over a surface kept at a temperature below the melting point of compounds likely to exist in the combustion products. A combined experimental and theoretical research program will be carried out to evaluate the concept of transpiration as a deposition control strategy. A first order theory will be refined by introducing an appropriate turbulence model. The experimental program is designed to evaluate and refine the theoretical model under conditions which provide the correct Reynolds and Stokes numbers. The experimental set up consists of a wind tunnel with a test section containing a flat porous transpired section. The measurements will determine the distribution of velocity and of particle concentration in the boundary layer. The experiments will be conducted for different particle sizes under conditions sumulating gas turbine conditions.

  19. Chronic hyperuricemia, uric acid deposit and cardiovascular risk.

    PubMed

    Grassi, Davide; Ferri, Livia; Desideri, Giovambattista; Di Giosia, Paolo; Cheli, Paola; Del Pinto, Rita; Properzi, Giuliana; Ferri, Claudio

    2013-01-01

    Hyperuricemia is commonly associated with traditional risk factors such as dysglicemia, dyslipidemia, central obesity and abnormal blood pressure, i.e. the metabolic syndrome. Concordantly, recent studies have revived the controversy over the role of circulating uric acid, hyperuricemia, and gout as an independent prognostic factor for cardiovascular morbidity and mortality. In this regard, different studies also evaluated the possible role of xanthine inhibitors in inducing blood pressure reduction, increment in flow-mediated dilation, and improved cardiovascular prognosis in various patient settings. The vast majority of these studies have been conducted with either allopurinol or its active metabolite oxypurinol, i.e. two purine-like non-selective inhibitors of xanthine oxidase. More recently, the role of uric acid as a risk factor for cardiovascular disease and the possible protective role exerted by reduction of hyperuricemia to normal level have been evaluated by the use of febuxostat, a selective, non purine-like xanthine oxidase inhibitor. In this review, we will report current evidence on hyperuricemia in cardiovascular disease. The value of uric acid as a biomarker and as a potential therapeutic target for tailored old and novel "cardiometabolic" treatments will be also discussed. PMID:23173592

  20. Chronic Hyperuricemia, Uric Acid Deposit and Cardiovascular Risk

    PubMed Central

    Grassi, Davide; Ferri, Livia; Desideri, Giovambattista; Giosia, Paolo Di; Cheli, Paola; Pinto, Rita Del; Properzi, Giuliana; Ferri, Claudio

    2013-01-01

    Hyperuricemia is commonly associated with traditional risk factors such as dysglicemia, dyslipidemia, central obesity and abnormal blood pressure, i.e. the metabolic syndrome. Concordantly, recent studies have revived the controversy over the role of circulating uric acid, hyperuricemia, and gout as an independent prognostic factor for cardiovascular morbidity and mortality. In this regard, different studies also evaluated the possible role of xanthine inhibitors in inducing blood pressure reduction, increment in flow-mediated dilation, and improved cardiovascular prognosis in various patient settings. The vast majority of these studies have been conducted with either allopurinol or its active metabolite oxypurinol, i.e. two purine-like non-selective inhibitors of xanthine oxidase. More recently, the role of uric acid as a risk factor for cardiovascular disease and the possible protective role exerted by reduction of hyperuricemia to normal level have been evaluated by the use of febuxostat, a selective, non purine-like xanthine oxidase inhibitor. In this review, we will report current evidence on hyperuricemia in cardiovascular disease. The value of uric acid as a biomarker and as a potential therapeutic target for tailored old and novel “cardiometabolic” treatments will be also discussed. PMID:23173592

  1. Iron-control additives improve acidizing

    SciTech Connect

    Walker, M.; Dill, W. ); Besler, M. )

    1989-07-24

    Iron sulfide and sulfur precipitation in sour wells can be controlled with iron-sequestering agents and sulfide modifiers. Oil production has been routinely increased in sour wells where precipitation of iron sulfide and elemental sulfur has been brought under control. Production increases have been especially noteworthy on wells that had a history of rapid production decline after acid stimulation. Twenty-fold production increases have been recorded. Key to the production increase has been to increase permeability with: Iron chelating agents that control precipitation of iron sulfide. A sulfide modifier that reduces precipitation of solids in the presence of excessive amounts of hydrogen sulfide and prevents precipitation of elemental sulfur.

  2. Transonic flow control by means of local energy deposition

    NASA Astrophysics Data System (ADS)

    Aul'Chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.

    2011-11-01

    Experimental data for the feasibility of transonic flow control by means of energy deposition are generalized. Energy supplied to the immediate vicinity of a body in stream before a compression shock is found to result in the nonlinear interaction of introduced disturbances with the shock and the surface in zones extended along the surface. A new, explosive gasdynamic mechanism behind the shift of the compression shock is discovered. It is shown that the nonlinear character of the interaction may considerably decrease the wave resistance of, e.g., transonic airfoils. It is found that energy supply from without stabilizes a transonic flow about an airfoil—the effect similar to the Khristianovich stabilization effect. The dependence of the energy deposition optimal frequency on the energy source parameters and Mach number of the incoming flow at which the resistance drops to the greatest extent is obtained. The influence of the real thermodynamic properties and viscosity of air is studied.

  3. Effects of acidic deposition on paint: A chamber study

    SciTech Connect

    Spence, J.W.; Lemmons, T.J.; Hou, Y.; Schadt, R.J.; Fornes, R.E.

    1993-08-01

    Exterior acrylic latex and alkyd architectural coatings were exposed to different conditions in a chamber exposure system involving simulated sunlight, dew, and photochemical smog-containing sulfur dioxide (SO2). A simulated sunlight exposure of the coating films in the presence of clean air was also incorporated into the experimental design. Changes in surface features after 1,370 hours of exposure were characterized by scanning electron microscope (SEM) and energy dispersive analysis of x-rays (EDAX). Gaseous species that deposited to the films were determined by ion chromatography of the dew collections. Color-change measurements of the exposed films were recorded as Delta E values. Latex and alkyd films that were formulated with calcium carbonate (CACO3) as an extender pigment were found to undergo the most change in surface features, composition, and color.

  4. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  5. Dry acid deposition on leaves of Ligustrum and a new surrogate leaf

    SciTech Connect

    Ondo, J.L.; John, W.; Wall, S.M.

    1984-01-01

    The dry deposition of acidic particles and gases on plants depends on micrometeorology in the canopy and on the surface structure of the leaves. The authors chose two methods to collect and analyze this deposition: washing sulfate and nitrate deposits from the leaves of two species of Ligustrum, an ornamental shrub, and using a surrogate leaf which would absorb acidic gases through pores into a reservoir. The plants are kept in 5-gallon pots in order to be transportable. The leaves are washed, then exposed for a given length of time. Then the leaves are harvested and extracted in distilled water. This extract is analyzed by ion chromatography for sulfate and nitrate. The surrogate leaf is constructed with a nuclepore filter membrane simulating the stomatal openings of a leaf. There is a moist filter in the interior leading to a reservoir. Sulfur dioxide and other acidic gases diffuse through the nuclepore pores and are absorbed in the moist filter. After exposure the exterior surfaces are washed to extract any dry particulate, and the interior filter is analyzed for dissolved acidic gases. The ''leaf'' is small enough to be placed in the canopy in field studies. This surrogate leaf has also been used as a passive monitor in indoor air pollution studies. The surrogate leaves and the ligustrum have been exposed side by side at sites in Berkeley and in the Los Angeles air basin. A comparison has been made between the deposition on natural leaves and the deposition on the artificial leaves.

  6. Nitric Acid-Sea Salt Reactions: Implications for Nitrogen Deposition to Water Surfaces.

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Sørensen, L. L.

    2000-05-01

    Many previous studies have indicated the importance of nitric acid (HNO3) reactions on sea salt particles for flux divergence of HNO3 in the marine surface layer. The potential importance of this reaction in determining the spatial and temporal patterns of nitrogen dry deposition to marine ecosystems is investigated using models of sea spray generation and particle- and gas-phase dry deposition. Under horizontally homogeneous conditions with near-neutral stability and for wind speeds between 3.5 and 10 m s1, transfer of HNO3 to the particle phase to form sodium nitrate may decrease the deposition velocity of nitrogen by over 50%, leading to greater horizontal transport prior to deposition to the sea surface. Conversely, for wind speeds above 10 m s1, transfer of nitrogen to the particle phase would increase the deposition rate and hence decrease horizontal transport prior to surface removal.

  7. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  8. Descriptive risk assessment of the effects of acidic deposition on Rocky Mountain amphibians

    USGS Publications Warehouse

    Corn, Paul Stephen; Vertucci, Frank A.

    1992-01-01

    We evaluated the risk of habitat acidification to the six species of amphibians that occur in the mountains of Colorado and Wyoming. Our evaluation included extrinsic environmental factors (habitat sensitivity and amount of acidic atmospheric deposition) and species-specific intrinsic factors (sensitivity to acid conditions, habitat preferences, and timing of breeding). Only one of 57 surveyed localities had both acid neutralizing capacity μeq/L and sulfate deposition >10 kg/ha/yr, extrinsic conditions with a possible risk of acidification. Amphibian breeding habitats in the Rocky Mountains do not appear to be sufficiently acidic to kill amphibian embryos. Some species breed in high-elevation vernal pools during snowmelt, and an acidic pulse during snowmelt may pose a risk to embryos of these species. However, the acidic pulse, if present, probably occurs before open water appears and before breeding begins. Although inherent variability of amphibian population size may make detection of declines from anthropogenic effects difficult, acidic deposition is unlikely to have caused the observed declines of Bufo boreas and Rana pipiens in Colorado and Wyoming. Amphibians in the Rocky Mountains are not likely to be at risk with acidification inputs at present levels.

  9. Low-cost silica, calcite and metal sulfide scale control through on-site production of sulfurous acid from H{sub 2}S or elemental sulfur

    SciTech Connect

    Gallup, D.L.; Kitz, K.

    1997-12-31

    UNOCAL Corporation currently utilizes brine pH modification technology to control scale deposition. Acids utilized in commercial operations include, sulfuric and hydrochloric. A new process reduces costs by producing acid on-site by burning hydrogen sulfide or elemental sulfur. Hydrogen sulfide in non-condensible gas emissions is reduced by oxidization to sulfurous acid. Brine or condensate is treated with sulfurous acid to control scale deposition, mitigate corrosion and improve gas partitioning in condensers.

  10. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions. PMID:26866280

  11. Projection of response of trees and forests to acidic deposition and associated pollutants

    SciTech Connect

    Kiester, A.R.; Ford, E.D.; Avery, A.; Gay, C.; Droessler, T.

    1990-09-01

    In 1986 the National Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern and trends of forest condition and physiological studies of seedlings, saplings, and branches of mature trees. The goals of the modeling effort were to simulate the dynamics of the processes by which acidic deposition and ozone affect tree physiological processes and therefore lead to changes in growth. Results from models of the physiological function of leaves, branches, roots, xylem, and canopies are presented here. These models illustrate three aspects of the dynamics of these processes. First, growth and the effects of pollutants are stochastic processes; that is, they vary randomly over time. The models help to account for the large amount of variability seen in normal field conditions. Second, some physiological processes can compensate for the effects of acidic deposition or ozone. Third, pollutants may have more than one effect on tree growth, and these effects may be synergistic. The potential nonlinearities and the variabilities demonstrated by these models lead to the conclusions that forest health effects may be developing that are not yet apparent; and for regulation of acidic deposition and associated pollutants to have a detectable effect, regulatory changes will probably have to be of substantial magnitude.

  12. Eustatic control of tertiary hydrocarbon deposits, Central California borderline basins

    SciTech Connect

    Cousminer, H.L. )

    1994-04-01

    In the central California borderland basins, the Vail-Haq Cenozoic Global Eustatic Cycle appears to have influenced depositional patterns that have fundamental significance in the present distribution of hydrocarbon source and reservoir beds. Coupled with tectonic events, traps were created that now control the distribution of hydrocarbon accumulations. Seismic data combined with subsurface lithostratigraphic, biostratigraphic, and log data from wells drilled on the central California outer continental shelf (OCS) were used to date and correlate Tertiary stratigraphic sequences in the Santa Maria, Bodega-La Honda, and Point Arena basins. Benthic foraminiferal assemblages also served to reconstruct each basin's paleobathymetric history. The west coast benthic foram stages, commerically used to solve subsurface stratigraphic problems for over 60 yr, occur with planktonic microfossil groups that now serve to calibrate the provincial stages with the absolute geologic time scale. The Miocene through Pliocene stratigraphic sequences in these three depocenters are markedly similar, and record a parallel marine onlap and offlap pattern that correlates closely with the Vail-Haq Cenozoic Global Eustatic Cycle. The highstand depositional cycles are generally dominated by organic-rich sediments of good to excellent are generally dominated by organic-rich sediments of good to excellent source-bed potential. Lowstand regressive to transgressive clastic deposits have good reservoir potential. The middle Miocene siliceous Monterey Formation was deposited during maximum Tertiary global sea levels and is present in all of these basins. In addition to being a prolific source bed, the Monterey is unique in that when diagnetically altered, it fractures and also becomes an excellent hydrocarbon reservoir.

  13. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  14. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  15. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  16. The deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid profile.

    PubMed

    Raes, Katleen; Huyghebaert, Gerard; De Smet, Stefaan; Nollet, Lode; Arnouts, Sven; Demeyer, Daniel

    2002-02-01

    The objective of this study was to investigate the incorporation of conjugated linoleic acid (CLA) into eggs and its effect on the fatty acid metabolism when layers are fed diets with different fat sources and fat levels. Layers were fed either a low fat diet (LF) or one of three high fat diets based on soybean oil (SB), animal fat (AF) or flaxseed oil (FSO). CLA was added at a concentration of 1 g/100 g feed from two different CLA premixes with a different CLA profile. For the trial, 144 laying hens were allocated to 12 treatments (4 basal fat sources x 3 CLA treatments) with 3 replicates of 4 hens each. No significant differences were observed in feed intake, egg weight, feed conversion or laying rate between chickens fed control and CLA-supplemented diets. Differences in yolk fat, cholesterol or yolk color were not clearly related to the dietary CLA. However, the supplementation of CLA to the diets had clear effects on the fatty acid composition, i.e., a decrease in monounsaturated fatty acids (MUFA) and an increase in saturated fatty acids (SFA) was observed, whereas the polyunsaturated fatty acids (PUFA) content were essentially unaffected. The results suggest that CLA may influence the activity of the desaturases to a different extent in the synthesis of (n-6) and (n-3) long-chain fatty acids. These effects of CLA depend on the level of (n-6) and (n-3) fatty acids available in the feed. The apparent deposition rate (%) is clearly higher for the c9, t11 isomer than for the t10, c12 isomer. Adding CLA to layers diets rich in (n-3) fatty acids produces eggs that could promote the health of the consumer in terms of a higher intake of (n-3) fatty acids and CLA. PMID:11823576

  17. Hypersonic Flow Control Using Upstream Focused Energy Deposition

    NASA Technical Reports Server (NTRS)

    Riggins David W.; Nelson, H. F.

    1999-01-01

    A numerical study of centerline and off-centerline power deposition at a point upstream of a two-dimensional blunt body at Mach 6.5 at 30 km altitude are presented. The full Navier-Stokes equations are used. Wave drag, lift, and pitching moment are presented as a function of amount of power absorbed in the flow and absorption point location. It is shown that wave drag is considerably reduced. Modifications to the pressure distribution in the flow field due to the injected energy create lift and a pitching moment when the injection is off-centerline. This flow control concept may lead to effective ways to improve the performance and to stabilize and control hypersonic vehicles.

  18. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  19. Preparation of waxes and humic acids from brown coal from the Sergeevskoe deposit

    SciTech Connect

    L.P. Noskova; A.V. Rokhin; A.P. Sorokin

    2007-06-15

    The comparative extraction of coal with organic solvents was performed. Humic acids were separated from solid residues. The yields, particle-size distributions, and chemical compositions of the resulting products were analyzed. It was demonstrated that brown-coal wax and humic fertilizers can potentially be obtained using coal from the Sergeevskoe deposit.

  20. EFFECT OF SOIL PROCESSES ON THE ACIDIFICATION OF WATER BY ACID DEPOSITION

    EPA Science Inventory

    The mechanism whereby acid deposition can cause acidification of surface waters via equilibrium processes in soil solution was investigated using chemical equilibrium models. These models show that for soils with low to moderately low exchangeable bases the soil solution pH is on...

  1. Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?

    PubMed Central

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-01-01

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449

  2. DISCOVERING THE CAUSES, CONSEQUENCES, AND IMPLICATIONS OF ACID RAIN AND ATMOSPHERIC DEPOSITION

    EPA Science Inventory

    Much has been learned in recent years about air pollution, acid precipitation and atmospheric deposition and their effects on public welfare. There are still unanswered questions about certain aspects of these problems and possible strategies for their solution. Public concern ab...

  3. FIELD COMPARISON OF METHODS FOR THE MEASUREMENT OF CONTRIBUTORS TO ACIDIC DRY DEPOSITION

    EPA Science Inventory

    A field study was conducted to compare methods for sampling and analysis of atmospheric constituents that are important contributors to acidic dry deposition. hree multicomponent samplers were used: the Canadian filter pack (FP), the annular denuder system (ADS), and the transiti...

  4. EFFECTS OF ACIDIC DEPOSITION ON NORTH AMERICAN LAKES: PALAEOLIMNOLOGICAL EVIDENCE FORM DIATOMS AND CHRYSOPHYTES

    EPA Science Inventory

    Analysis of sediment diatom and chrysophyte assemblages is the best technique currently available for inferring past lakewater pH trends, and use of the approach for assessing the ecological effects of acidic deposition is increasing rapidly. s of August 1989, sediment core infer...

  5. ACIDIFICATION AND RECOVERY OF A SPODOSOL BS HORIZON FROM ACIDIC DEPOSITION

    EPA Science Inventory

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. echanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40...

  6. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  7. EVALUATING CHANGES IN FOREST CONDITION POTENTIALLY RELATED TO ACIDIC DEPOSITION: AN EXAMPLE USING RED SPRUCE

    EPA Science Inventory

    As a result of concern about forest decline in Europe and the USA, research has been conducted to investigate changes in forest condition that might be associated with acidic deposition and related pollutants (principally ozone). ymptoms of tree decline observed in the field typi...

  8. ANALYTICAL TECHNIQUES FOR MEASURING THE EFFECTS OF ACID DEPOSITION ON COATINGS ON WOOD

    EPA Science Inventory

    Preliminary experiments have been carried out to characterize the potential deleterious effects of acidic deposition on three representative paints: an oil alkyd paint and two acrylic latex formulations. The base polymer latex common to both latex paints was also studied individu...

  9. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  10. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  11. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy B.; Howell, Graham; Jenkins, Meaghan E.

    2008-09-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO42- deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO42- consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO42- at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO42- may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO42- limitation had been lifted by the simulated acid rain S deposition.

  12. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  13. SPECTRAL REFLECTANCE METHOD TO MEASURE ACID DEPOSITION EFFECTS ON BUILDING STONE.

    USGS Publications Warehouse

    Kingston, Marguerite J.; Ager, Cathy M.

    1985-01-01

    As part of the National Acid Precipitation Assessment Program (NAPAP), the U. S. Geological Survey is cooperating with other agencies to test the effects of acid deposition on building stone. A 10-year test-site study has been organized for the purpose of correlating possible stone deterioration with environmental factors. In Summer 1984, slabs of building stone, 3 by 2 by 2 inches, were exposed to the atmosphere at four test sites where the pH of precipitation and other meteorological variables are continuously monitored. This paper examines the development of one experimental technique used in this study - the application of diffuse spectral reflectance methods for laboratory and in situ measurement of those properties of stone which may be affected by acid deposition.

  14. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice.

    PubMed

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-01-01

    Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression. PMID:27618097

  15. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  16. Use of stream chemistry for monitoring acidic deposition effects in the Adirondack region of New York

    USGS Publications Warehouse

    Lawrence, G.B.; Momen, B.; Roy, K.M.

    2004-01-01

    Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO42- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.

  17. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    SciTech Connect

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-06-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development.

  18. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers.

    PubMed

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming; Qu, Ming-Ren

    2016-06-01

    Nicotinic acid (NA) acting as the precursor of NAD(+)/NADH and NADP(+)/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  19. Synthetic clay-magnetite aggregates designed for controlled deposition experiments

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Galindo-Gonzalez, C.; Kasama, T.; Cervera, L.; Posfai, M.; Harrison, R. J.; Dunin-Borkowski, R. E.

    2007-12-01

    The behavior of magnetic particles in fluid environments is key to the acquisition of detrital remanence magnetization and is essential to a multitude of industrial applications. This study introduces a series of synthetic clay-magnetite aggregates whose physical attributes can be tailored for controlled depositional experiments. We describe the mineralogical structure and magnetic behavior of montmorillonite platelets coated with nanometer-scale magnetite crystals using both electron microscopy and rock magnetism techniques. Selected area electron diffraction of the magnetite and the montmorillonite host shows no evidence of preferred orientation or oriented aggregation. Grain size distributions of magnetite in three different clay-magnetite assemblages were directly measured using conventional bright-field transmission electron microscopy. The spacing of the magnetite grains and their three-dimensional distribution around individual clay platelets was imaged using a tomographic reconstruction generated from high-angle annular dark-field (HAADF) images. The grain size distributions determined from the bright-field images and the tomographic reconstruction agree within error with estimates derived from magnetic granulometry techniques based on magnetic hysteresis and low-field susceptibility measurements. All three samples behave superparamagnetically at room temperature, and display increasing levels of single domain behavior as the samples are cooled to liquid nitrogen temperatures (- 195°C). Off-axis electron holography images show that superparamagnetic grains are also stabilized into flux closure structures at -195°C. The average spacing between adjacent magnetite crystals and the overall platelet shape of the aggregates creates an anisotropy of magnetic susceptibility that allows assemblages to align with external magnetic fields at room temperature. By adjusting the dimensions and concentrations of the magnetite grains in these aggregates, we can create

  20. Acid deposition sensitivity map of the Southern Appalachian Assessment area; Virginia, North Carolina, South Carolina, Tennessee, Georgia, and Alabama

    USGS Publications Warehouse

    Pepper, John D.; Grosz, Andrew E.; Kress, Thomas H.; Collins, Thomas K.; Kappesser, Gary B.; Huber, Cindy M.; Webb, James R.

    1995-01-01

    Project Summary: The following digital product represents the Acid Deposition Sensitivity of the Southern Appalachian Assessment Area. Areas having various susceptibilities to acid deposition from air pollution are designated on a three tier ranking in the region of the Southern Appalachian Assessment (SAA). The assessment is being conducted by Federal agencies that are members of the Southern Appalachian Man and Biosphere (SAMAB) Cooperative. Sensitivities to acid deposition, ranked high, medium, and low are assigned on the basis of bedrock compositions and their associated soils, and their capacities to neutralize acid precipitation.

  1. Giant uranium deposits formed from exceptionally uranium-rich acidic brines

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Rozsypal, Christophe; Mercadier, Julien; Banks, David A.; Cuney, Michel; Boiron, Marie-Christine; Cathelineau, Michel

    2012-02-01

    Giant uranium deposits were formed during the Mesoproterozoic era, 1.6-1.0 Gyr ago, in both Canada and Australia. The deposits are thought to have formed from large-scale circulation of brines at temperatures of 120-200 °C that percolated between sedimentary basins and underlying crystalline basement rocks. However, the precise conditions for transport of the uranium in these brines are poorly understood. Here we use mass spectrometry to analyse the uranium content of brines preserved in naturally occurring fluid inclusions in ore deposits from the Athabasca Basin, Canada. We measure concentrations of uranium in the range 1.0×10-6-2.8×10-3moll-1. These concentrations are three orders of magnitude above any other common crustal fluids. Experimentally, we measure the solubility of uranium as a function of NaCl content and pH, in mixtures that are analogous to ore-forming brines at 155°C. To account for the high uranium content observed in the Athabasca deposits, we find that the brines must have been acidic, with a pH between 2.5 and 4.5. Our results strongly suggest that the world's richest uranium deposits formed from highly concentrated uranium-bearing acidic brines. We conclude that these conditions are a necessary requirement for the formation of giant uranium deposits in relatively short periods of time of about 0.1-1 Myr, similar to other world-class deposits of lead-zinc and gold.

  2. A Study of Effects of Acid Deposition on Pine Forest Ecosystem in Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, F.; Lv, Z.; Song, W.; Yang, S.

    2013-12-01

    We used a long-term soil acidification model (LTSAM) and a terrestrial biogeochemical model (CENTURY) coupled to simulate the effects of acid deposition on pine forest ecosystem in southwestern China, based on indoor experiment results of aluminum toxicity to individual plant growth. The results of indoor aluminum experiments show that high aluminum concentration may restrict the plant growth and the acidic condition may aggravate it. The behavior of restriction of plant growth includes decreases of pine seedling biomass, root elongation and the sorption of soil cations (e.g. Ca2+, Mg2+, Na+ and K+). The model simulation results about soil chemistry show that, as acid deposition increases more, the pH value decreases faster, the soil aluminum ion concentration increase more rapidly, and the nutrition ions in soil solution decrease more quickly. The increased acid deposition also has negative impacts on the forest ecosystem according to the biogeochemical model simulation, for example, decreases of vegetation biomass, net primary productivity (NPP) and net CO2 uptake. Furthermore, the decrease of plant biomass will result in the decrease of the soil organic carbon content for the limited decomposition material supply.

  3. Influence of alkaline suspended particles on the chemical composition of acid deposition in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Lin, Z.J.; Wu, M.Y.; Liu, J.I.; Yuan, C.

    1998-12-31

    This study investigated the influence of alkaline suspended particles on the chemical composition of acid deposition both temporally and spatially in Kaohsiung metropolitan area in Taiwan. During the period of January--December, 1996, both wet and dry deposition samples were collected by automatic acid precipitation samplers at six sampling sites which covered the entire metropolitan area. Major cations (NH{sub 4}{sup +}, K{sup +}, Na{sup +}, Ca{sup +2}, and Mg{sup +2}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup {minus}2}) of acid deposition samples were analyzed in a central laboratory, while the pH value and conductivity of rainwater samples were measured in situ. Results from chemical analysis indicated that Ca{sup +2} was the most abundant cation in acid deposition samples. Major cations were Ca{sup +2} and NH{sub 4}{sup +}, while major anions were SO{sub 4}{sup {minus}2} and NO{sub 3}{sup {minus}}. This study also revealed that the pH value, suspended solids, Ca{sup +2}, and NH{sub 4}{sup +} of rainwater decreased with rainy time in a sequential rainwater sampling process. It was estimated that approximately 80% of suspended particles could be washed out by rain droplets in the first hour of raining process. Therefore, alkaline suspended particles in the atmosphere played an very important role on the chemical composition of acid precipitation in Kaohsiung metropolitan area in Taiwan.

  4. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  5. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Urstöger, Georg; Resel, Roland; Koller, Georg; Coclite, Anna Maria

    2016-04-01

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm-1. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  6. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    Instrumental records and monitoring of high elevation lakes began in most areas of the western US in the early 1980s. Much effort has been devoted to detecting changes in these aquatic ecosystems resulting from increased atmospheric deposition of acids and nutrients. However, there is growing evidence that thresholds for atmospheric pollutants were crossed much earlier in the 20th Century and that some of the subsequent hydrochemical and ecological changes observed in these lakes may be the result of recovery from earlier atmospheric forcing. We examine responses of high elevation lakes to atmospheric deposition on annual to century timescales using data from a 29-year study of Emerald Lake (Sequoia National Park) and paleolimnological analyses of other high elevation lakes incorporating diatom species analyses and geochemical proxies for fossil-fuel burning. At Emerald Lake, we have observed multiple transitions between nitrogen and phosphorus limitation of phytoplankton, the earliest of which occurred in the beginning of the 1980s and may be the result of reduction in N deposition due to the Clean Air Act. Critical loads analyses incorporating diatom species in lake sediments suggest that thresholds for N deposition were crossed in the period of 1950-1980 in the Rocky Mountains and likely much earlier, 1900-1920, in the Sierra Nevada. Diatom species composition is strongly controlled by acid neutralizing capacity (ANC) in the Sierra Nevada and we have observed a pronounced decline and recovery of ANC over the period of 1920-1980 in some Sierra Nevada lakes that coincides with the abundance of spheroidal carbonaceous particles (i.e., a diagnostic tracer of fossil fuel combustion) preserved in lake sediments; these patterns appear to be driven by increased emissions of oxidized N and S in the mid-20th Century and reductions in acid precursor levels caused by the Clean Air Act in the 1970s. Thus, when interpreting observational records from western high elevation

  7. Regional relationships between geomorphic/hydrologic parameters and surface water chemistry relative to acidic deposition

    SciTech Connect

    Rochelle, B.P.; Liff, C.I.; Campbell, W.G.; Cassell, D.L.; Church, M.R.

    1989-01-01

    The authors determined geomorphic and hydrologic parameters for 144 forested, lake watersheds in the Northeast (NE) of the United States based primarily on measurements from topographic maps. These parameters were used to test for relationships with selected surface water chemistry relevant to acidic deposition. Analyses were conducted on regional and subregional scales delineated based on soils, land use, physiography, total sulfur deposition and statistical clustering of selected geomorphic/hydrologic parameters. Significant relationships were found among the geomorphic/hydrologic parameters and the surface water chemistry for the NE. Elevation had the most significant relationship with surface water chemistry, particularly in the mountainous areas of the NE. Other factors occurring consistently as significant predictors of surface water chemistry were maximum relief, relief ratio, runoff, and estimates of basin elongation. Results suggest that elevational parameters might be surrogates for other watershed characteristics, such as soils or spatial deposition patterns.

  8. Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays.

    PubMed

    Boehm, Ryan D; Jaipan, Panupong; Skoog, Shelby A; Stafslien, Shane; VanderWal, Lyndsi; Narayan, Roger J

    2016-03-01

    Poly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether-co-maleic anhydride), a water-soluble drug release layer, and itraconazole (an antifungal agent), were applied to the microneedles by piezoelectric inkjet printing. Microscopic evaluation of the microneedles indicated that the modified microneedles contained the piezoelectric inkjet printing-deposited agents and that the surface coatings were released in porcine skin. Energy dispersive x-ray spectrometry aided in confirmation that the piezoelectric inkjet printing-deposited agents were successfully applied to the desired target areas of the microneedle surface. Fourier transform infrared spectroscopy was used to confirm the presence of the component materials in the piezoelectric inkjet printing-deposited material. Itraconazole-modified microneedle arrays incubated with agar plates containing Candida albicans cultures showed zones of growth inhibition. PMID:26869165

  9. Studies of acid deposition and its effects in two small catchments in Hunan, China

    NASA Astrophysics Data System (ADS)

    Xue, Nandong; Seip, Hans Martin; Liao, Bohan; Vogt, Rolf D.

    Acid deposition and its effects were studied by analysing the chemistry in precipitation, stream water, soil water and soils in two catchments in Hunan. One site, Linkesuo (denoted LKS), is on the outskirts of Changsha, the provincial capital of Hunan, the other (Bailutang, denoted BLT) on the outskirts of Chenzhou in southern Hunan. Volume-weighted average pH values and sulphate concentrations in wet deposition were 4.58 (BLT) and 4.90 (LKS) and 174 μmolc L-1 and 152 μmolc L-1, respectively. Wet deposition of sulphate has been estimated as 4.3 gS m-2yr-1 and 3.4 gS m-2yr-1 at BLT and LKS, respectively. Estimates of the corresponding total depositions (dry + wet) are 6.1 gS m-2yr-1 and 5.3 gS m-2yr-1. In precipitation and throughfall, sulphate was the major anion and calcium the major cation. In stream and soil water, nitrate was slightly higher than sulphate on an equivalent basis and magnesium (Mg) not much lower than calcium (Ca). Important soil properties, such as soil pH, soil organic matter (SOM) content, exchangeable acidic cations, exchangeable base cations, effective cation exchange capacity (CECe), base saturation (BS), and aluminium (Al) and iron (Fe) pools, were determined for five forest soil profiles (consisting of four horizons) in each of the two catchments. The soils in BLT are generally more acid, have lower BS and higher Al and Fe pools than the LKS soils. The Al- and Fe-pools were generally higher in the topsoils (i.e. the O and A horizons) than in deeper soils (i.e. E and B horizons) especially at the most acidic site (BLT). There are significant correlations between Fe-pools and the corresponding Al-pools in both catchments except between the amorphous Feox and Alox. Considering the long-term high deposition of sulphate, there is a risk of future ecological damage due to acidification, especially in the BLT catchment, although vegetation damage has yet to be observed in the catchments. This condition appears to be representative of a large

  10. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  11. Modeling the contribution of soil fauna to litter decomposition influenced by acidic deposition

    SciTech Connect

    Cai, B.; Loucks, O.L; Kuperman, R. Argonne National Lab., IL )

    1993-06-01

    The effect of acidic deposition on soil pH and therefore on soil invertebrates and litter decomposition is being investigated in oak-hickory forests across a three-state, midwest, pollution gradient. The role of soil invertebrates has been assessed previously through the use of feeding, assimilation and respiratory rates. These energetic parameters depend strongly on the form of the allometric equations which have been improved here by incorporating uncertainties in body and population size. Results show that changes in reproduction and turnover dynamics of soil invertebrates (particularly of earthworms) due to acid-induced changes in soil pH explains observed patterns in litter depth.

  12. Valuation of damages to recreational trout fishing in the Upper Northeast due to acidic deposition

    SciTech Connect

    Englin, J.E.; Cameron, T.A.; Mendelsohn, R.E.; Parsons, G.A.; Shankle, S.A.

    1991-04-01

    This report documents methods used to estimate economic models of changes in recreational fishing due to the acidic deposition. The analysis was conducted by Pacific Northwest Laboratory (PNL) and its subcontractors for the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE) in support of the National Acidic Precipitation Assessment Program (NAPAP). The primary data needed to estimate these models were collected in the 1989 Aquatic Based Recreation Survey (ABRS), which was jointly funded by the DOE and the EPA's Office of Policy Planning and Evaluation. 11 refs., 5 figs., 15 tabs.

  13. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    SciTech Connect

    Not Available

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  14. Dry deposition and heavy acid loading in the vicinity of Masaya Volcano, a major sulfur and chlorine source in Nicaragua.

    PubMed

    Delmelle, P; Stix, J; Bourque, C P; Baxter, P J; Garcia-Alvarez, J; Barquero, J

    2001-04-01

    Certain volcanoes constitute the world's largest sources of SO2, HCl, and HF emissions and contribute significantly to regional acid deposition. However, the impact of volcanic acid emissions to nearby ecosystems remain poorly documented. In this paper, the spatial pattern of acid dry depositions was monitored within 44 km of Masaya Volcano, Nicaragua, with a network of sulfation plates. Measured SO2 deposition rates were <2-791 mg m(-2) day(-1). The plates also collected the dry deposition of HCI at rates of <1-297 mg m(-2) day(-1). A similar deposition velocity Vd (gas transfer) of 1.6 +/- 0.8 cm/s was calculated for SO2 and HCl above the plate surfaces. Quantities of SO2 and HCI deposited daily within the area surveyed amounted to 1.5 x 10(8) g and 5.7 x 10(7) g, respectively, which correspond to about 10% of the total SO2 and HCl released by the volcano. These depositions may generate an equivalent hydrogen flux ranging from <1 to 30 mg m(-2) day(-1). Our results demonstrate that volcano emissions can dramatically affect acid deposition downwind and in turn cause extreme acid loading of the local ecosystems. This study opens exciting prospects for investigating the sensivity of volcanic ash soils to acid inputs. PMID:11348058

  15. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings.

    PubMed

    Nijhuis, Arnold W G; Nejadnik, M Reza; Nudelman, Fabio; Walboomers, X Frank; te Riet, Joost; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Li, Yubao; Bomans, Paul H H; Jansen, John A; Sommerdijk, Nico A J M; Leeuwenburgh, Sander C G

    2014-02-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium concentration and conductivity of the aqueous solutions as a function of time, urease concentration and initial concentrations of calcium and phosphate ions. Cryogenic transmission electron microscopy was used to study the process of homogeneous CaP precipitation in solution, whereas CaP deposition on conventional acid-etched titanium and micropatterned polystyrene (PS) surfaces was studied using scanning electron microscopy. The data presented in this study confirm that the substrate-enzyme combination urea-urease offers strong control over the rate of pH increase by varying the concentrations of precursor salts and urease. Formation of biomimetic CaP coatings was shown to proceed via formation of ionic polymeric assemblies of prenucleation complexes. The process of deposition and corresponding coating morphology was strongly dependent on the concentration of calcium, phosphate and urease. Finally, it was shown that the substrate-enzyme combination urea-urease allowed for spatial distribution of CaP crystals along the grooves of micropatterned PS surfaces at low concentrations of calcium, phosphate and urease, stressing the sensitivity of the presented method. PMID:24095783

  16. A 120-year record of the spatial and temporal distribution of gravestone decay and acid deposition

    NASA Astrophysics Data System (ADS)

    Mooers, Howard D.; Cota-Guertin, Avery R.; Regal, Ronald R.; Sames, Anthony R.; Dekan, Amanda J.; Henkels, Linnea M.

    2016-02-01

    This investigation examines the spatial and temporal variability of marble gravestone decay throughout West Midlands County and adjacent portions of Warwickshire, Staffordshire, and Worcestershire. Gravestone decay has been used effectively as a quantitative measure of acid deposition. Numerous techniques have been used to assess gravestone decay and each is subject to different sources of error. To minimize error we focus only on marble gravestones that use the flush lead lettering technique. Decay of the marble leaves the lead lettering raised above the surface, and the distance can be measured with the use of a digital micrometer. Gravestone decay can be used to quantify the spatial and temporal distribution of acid deposition. Our gravestone decay database consists of 1417 individual measurements on 591 tombstones in 33 cemeteries and covers the period from 1860 to 2010. Sites range from industrial and residential areas to rural settings. These data allow us to establish the natural background rates of decay, the effects of urban/residential expansion, and the efficacy of environmental regulations. Decay rates vary from a minimum of 0.2 mm/century in remote rural areas to nearly 3.0 mm/century in the Birmingham City Center. The data are corrected for environmental variables, converted to acid deposition rates, and plotted at 10-year intervals from 1890 to 2010.

  17. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  18. CHEMICAL AND BIOLOGICAL STATUS OF LAKES AND STREAMS IN THE UPPER MIDWEST: ASSESSMENT OF ACIDIC DEPOSITION EFFECTS

    EPA Science Inventory

    Many lakes in three areas in the Upper Midwest--northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan--have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. These acidic lakes are precipitation-dominated, clearw...

  19. Shape-controllable, bottom-up fabrication of microlens using oblique angle deposition.

    PubMed

    Choi, Hee Ju; Kang, Eun Kyu; Ju, Gun Wu; Song, Young Min; Lee, Yong Tak

    2016-07-15

    This Letter reports a novel method for the simple fabrication of microlens arrays with a controlled shape and diameter on glass substrates. Multilayer stacks of silicon dioxide deposited by oblique angle deposition with hole mask patterns enable microlens formation. Precise control of mask height and distance, as well as oblique angle steps between deposited layers, supports the controllability of microlens geometry. The fabricated microlens arrays with designed geometry exhibit uniform optical properties. PMID:27420527

  20. The systematic tunability of nanoparticle dimensions through the controlled loading of surface-deposited diblock copolymer micelles.

    PubMed

    Krishnamoorthy, S; Pugin, R; Hinderling, C; Brugger, J; Heinzelmann, H

    2008-04-30

    The continuous tunability of iron oxide nanoparticle dimensions is demonstrated using the pH controlled loading of ferric nitrate from aqueous solution into polystyrene-block-polyacrylic acid reverse micelles deposited on a silicon substrate. Quasi-hexagonally ordered two-dimensional arrays of iron oxide nanoparticles with a systematic tunability of particle heights in the sub-10 nm regime and a constant periodicity are obtained and characterized with atomic force microscopy and x-ray photoelectron spectroscopy. PMID:21825665

  1. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  2. Controlled nanoporous Pt morphologies by varying deposition parameters

    SciTech Connect

    Misra, Amit; Nastasi, Michael A; Baldwin, J Kevin; Goodwin, Peter M; Bhattacharyya, Dhriti; Antoniou, Antonia

    2009-01-01

    Typically, dealloying of an alloy can result in an open cell nanoporous structure of the least electrochemically active element. Here, we show that a wider range of nanoporous structures is possible by controlling the composition and deposition parameters of the as-synthesized alloy as a way to provide sites for preferential etching. We demonstrate this by synthesizing nanoporous platinum (np-Pt) through electrochemical dealloying in aqueous HF from co-sputtered Pt{sub x}Si{sub 1-x} amorphous films. For increased Pt fraction of the amorphous alloy, silicon dissolution is favored along pre-existing features of the amorphous film (e.g. column boundaries or surface asperities). The resulting np-Pt depends on the manner in which silicon is preferentially removed. In addition to the expected isotropic open cell structure, columnar and Voronoi (radial) np-Pt are observed. A processing-structure map is developed to correlate np-Pt morphology to the initial composition and thickness of the amorphous Pt{sub x}Si{sub 1-x} film and the negative substrate bias used in magnetron sputtering.

  3. Lysobisphosphatidic acid controls endosomal cholesterol levels.

    PubMed

    Chevallier, Julien; Chamoun, Zeina; Jiang, Guowei; Prestwich, Glenn; Sakai, Naomi; Matile, Stefan; Parton, Robert G; Gruenberg, Jean

    2008-10-10

    Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes. PMID:18644787

  4. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  5. Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

    PubMed Central

    Altintoprak, Klara; Seidenstücker, Axel; Welle, Alexander; Eiben, Sabine; Atanasova, Petia; Stitz, Nina; Plettl, Alfred; Bill, Joachim; Gliemann, Hartmut; Jeske, Holger; Rothenstein, Dirk; Geiger, Fania

    2015-01-01

    Summary The coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures. Nanotubular tobacco mosaic virus (TMV) templates have proved particularly suitable towards this goal: Their multivalent protein coating can be modified by high-surface-density conjugation of peptides, inducing and governing silica deposition from precursor solutions in vitro. In this study, TMV has been equipped with mineralization-directing peptides designed to yield silica coatings in a reliable and predictable manner via precipitation from tetraethoxysilane (TEOS) precursors. Three peptide groups were compared regarding their influence on silica polymerization: (i) two peptide variants with alternating basic and acidic residues, i.e. lysine–aspartic acid (KD)x motifs expected to act as charge-relay systems promoting TEOS hydrolysis and silica polymerization; (ii) a tetrahistidine-exposing polypeptide (CA4H4) known to induce silicification due to the positive charge of its clustered imidazole side chains; and (iii) two peptides with high ZnO binding affinity. Differential effects on the mineralization of the TMV surface were demonstrated, where a (KD)x charge-relay peptide (designed in this study) led to the most reproducible and selective silica deposition. A homogenous coating of the biotemplate and tight control of shell thickness were achieved. PMID:26199844

  6. RAINS-ASIA: An assessment model for acid deposition in Asia

    SciTech Connect

    Downing, R.J.; Ramankutty, R.; Shah, J.J.

    1997-08-31

    Asia`s rapid economic growth has fueled a growing appetite for commercial energy, which is satisfied by fossil fuels that emit pollutants. These pollutants are oxidized and transported into the atmosphere, creating acidic depositions known as acid rain that can damage foliage, soils, and surface waters. At current energy consumption growth rates, by the year 2000 sulfur dioxide emissions from Asia will surpass the emissions of North America and Europe combined. RAINS-ASIA is an assessment tool developed by the World Bank, the Asian Development Bank, and donors to study the implications of alternative energy development strategies for air pollution and acid rain and to help identify cost-effective abatement methods. This report provides an overview of the model and some results of analyses that have been conducted as part of the RAINS-ASIA program.

  7. Acid rain control: the costs of compliance

    SciTech Connect

    Gilleland, D.S.; Swisher, J.H.

    1985-01-01

    This document is the proceedings from a conference sponsored by the Illinois Energy Resources Commission and the Coal Extraction and Utilization Research Center, Southern Illinois University at Carbondale and held in Carbondale on March 18, 1984. Topics addressed include: the sources and impacts of acid rain, the problems inherent in modeling the impacts of acid rain legislation, the effects of acid rain legislation on the socio-economic sector, compliance costs, and the impact of acid rain legislation on related industries (railroads).

  8. REGIONAL AIR QUALITY AND ACID DEPOSITION MODELING AND THE ROLE FOR VISUALIZATION

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. his paper p...

  9. Factors affecting weed control with pelargonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pelargonic acid is a fatty acid naturally occurring in many plants and animals, and present in many foods we consume. Producers and researchers are interested in pelargonic acid as a broad-spectrum post-emergence or burn-down herbicide. The objective of this research was to determine the effect of p...

  10. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA.

    PubMed

    Josephson, Daniel C; Robinson, Jason M; Chiotti, Justin; Jirka, Kurt J; Kraft, Clifford E

    2014-07-01

    Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries. PMID:24671614

  11. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  12. ACIDIC DEPOSITION AND THE CORROSION AND DETERIORATION OF MATERIALS IN THE ATMOSPHERE: A BIBLIOGRAPHY, 1880-1982

    EPA Science Inventory

    The bibliography contains more than 1300 article citations and abstracts on the effects of acidic deposition, air pollutants, and biological and meteorological factors on the corrosion and deterioration of materials in the atmosphere. The listing includes citations for the years ...

  13. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    NASA Astrophysics Data System (ADS)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  14. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration. PMID:17492359

  15. Mineralogical transformations controlling acid mine drainage chemistry

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Gassman, Paul L.; Arey, Bruce W.; Burgos, William D.

    2009-05-30

    The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GB sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.

  16. Factors controlling water movement in acid spoils

    SciTech Connect

    Evangelou, V.P.; Grove, J.H.; Phillips, R.E.

    1982-12-01

    The rate of water movement through toxic spoils plays a major role in reclamation. The toxic chemical constituents found in spoils need to be leached beyond the six inch depth (the usual depth of lime incorporation) since they can easily move upward during periods of high evapotranspiration. The rate of water infiltration plays a role in effective utilization of rain water, and conversely, the amount of surface runoff dictates the degree of surface erosion. Underground water quality may be affected by rates of water movement through a toxic spoil zone. Factors that control water movement through acid spoils were investigated through the use of a column one meter long and 8.0 cm in internal diameter. The maximum hydraulic conductivity was observed in the upper portion of the column where minimum salt buildup occurred. The hydraulic conductivity in this region was 0.5 cm/hr. In the middle portion of the column where a salty (14.0 mmhos/cm) solution was encountered, the hydraulic conductivity was 0.08 cm/hr. In the lower portion of the column where the maximum salt buildup took place (16.8 mmhos/cm), the hydraulic conductivity was found to be 0.03 cm/hr. Similar results were obtained with a small column experiment using calcite and dolomite as different lime sources. The hydraulic conductivity in the dolomitic small column remained relatively unchanged with time and salt depletion.

  17. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  18. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    USGS Publications Warehouse

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  19. Declining Acidic Deposition Begins Reversal of Forest-Soil Acidification in the Northeastern U.S. and Eastern Canada.

    PubMed

    Lawrence, Gregory B; Hazlett, Paul W; Fernandez, Ivan J; Ouimet, Rock; Bailey, Scott W; Shortle, Walter C; Smith, Kevin T; Antidormi, Michael R

    2015-11-17

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse. PMID:26495963

  20. Tissue deposition and residue depletion in rainbow trout following continuous voluntary feeding with various levels of melamine or a blend of melamine and cyanuric acid.

    PubMed

    Liu, Haiyan; Xue, Min; Wang, Jia; Qiu, Jing; Wu, Xiufeng; Zheng, Yinhua; Li, Junguo; Qin, Yuchang

    2014-11-01

    This study determined the deposition and depletion in rainbow trout after continuous administration of melamine (MEL) alone or a blend of MEL and cyanuric acid (CYA). The plasma, muscles, kidneys, liver and gills were sampled at 0, 3, 7, 13, 21, 28 and 42d. After the final sampling at 42d, fish from the MEL0.05, MEL20 and MCA groups were fed the control diet (MEL0) for the depletion test. Co-administration with cyanuric acid accelerated the deposition time to the Css for melamine; during the withdrawal phrase, the melamine and CYA concentrations in the tissues decreased exponentially. Compared to the t(½) for single oral administration, the t(½) for melamine and cyanuric acid after 42d continuous feeding was prolonged. The presence of trace CYA in the plasma and kidneys of trout was detected in the MEL20 group, indicating that MEL can convert into CYA in rainbow trout. PMID:25038476

  1. Improving Productivity and Quality by Controlling Organic, Inorganic and Microbiological Deposits

    NASA Astrophysics Data System (ADS)

    Hassler, Thord

    The modern papermaking process is very sensitive to disturbances. The formation of deposits is one of the most important factors limiting the productivity on a paper machine today. Further, paper defects such as breaks, holes and spots very often caused by deposits represent one of the most common complaints of a user/buyer of paper. The origin and mechanism of deposit formation and how these deposits affect quality and productivity are reviewed in this chapter. The most commonly used methods to eliminate or reduce deposition are summarised for each type of deposit. The guidelines are intended to give pragmatic advice for the realist working to maximise productivity and quality in real-life situations. This chapter reviews the source and control of paper machine deposits and the alternative methods of application of chemicals to minimise/eliminate these troublesome deposits. It is intended to give pragmatic guidelines for the realist working to maximise productivity and quality in real-life situations.

  2. Sensitivity of stream basins in Shenandoah National Park to acid deposition

    USGS Publications Warehouse

    Lynch, D.D.; Dise, N.B.

    1985-01-01

    Six synoptic surveys of 56 streams that drain the Shenandoah National Park, Virginia, were conducted in cooperation with the University of Virginia to evaluate sensitivity of dilute headwater streams to acid deposition and to determine the degree of acidification of drainage basins. Flow-weighted alkalinity concentration of most streams is below 200 microequivalents per liter, which is considered the threshold of sensitivity. Streams draining resistant siliceous bedrocks have an extreme sensitivity (alkalinity below 20 microequivalents/L); those draining granite and granodiorite have a high degree of sensitivity (20 to 100 microequivalents/L); and streams draining metamorphosed volcanics have moderate to marginal sensitivity (100 to 200 microequivalents/L). A comparison of current stream water chemistry to that predicted by a model based on carbonic acid weathering reactions suggests that all basins in the Park shows signs of acidification by atmospheric deposition. Acidification is defined as a neutralization of stream water alkalinity and/or an increase in the base cation weathering rate. Acidification averages 50 microequivalents/L, which is fairly evenly distributed in the Park. However, the effects of acidification are most strongly felt in extremely sensitive basins, such as those underlain by the Antietam Formation, which have stream water pH values averaging 4.99 and a mineral acidity of 7 microequivalents/L. (USGS)

  3. Implications of a gradient in acid and ion deposition across the northern Great Lakes states

    SciTech Connect

    Glass, G.E.; Loucks, O.L.

    1986-01-01

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. This answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, H/sup +/, NH/sub 2//sup +/) that increase from west to east. Except for higher concentrations of Ca/sup 2 +/ and Mg/sup 2 +/ observed at one site in the cultivated areas of southwestern Minnesota, the contribution of soil-related metal cations to the total ions in solution is small (17%) and relatively uniform across the region. Significant seasonal and geographic patterns in precipitation chemistry and deposition values are observed. Close correspondence of the sums of strong acid anions with the sums of hydrogen and ammonium ions in precipitation is observed, indicating anthropogenic sources of sulfur and nitrogen oxides. Present atmospheric inputs show close chemical correspondence when precipitation chemistry values are compared to the resulting ionic composition of weakly buffered lakes in north central Wisconsin and northern Michigan. The wet deposition of total acidity in the middle and eastern part of the region is comparable to that of impacted sites in the Adirondacks and in regions of Scandinavia. 39 references, 3 figures, 6 tables.

  4. 40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Port and throttle body fuel injector deposit control test data will also be considered to be adequate... Effects of Fuel Composition and Additives on Multiport Fuel Injector Deposits”, Jack Benson et al., SAE... detergent certification. (3) The composition of the test fuel used in carburetor deposit control...

  5. Control technologies for remediation of contaminated soil and waste deposits at Superfund lead-battery recycling sites

    SciTech Connect

    Royer, M.D.; Selvakumar, A.; Gaire, R.

    1992-01-01

    The paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. Metallic lead and lead compounds are generally the principal contaminants of concern in soils and waste deposits. Other metals (e.g., cadmium, copper, arsenic, antimony, and selenium) are often present at LBRS. The article is primarily based on experience gained from: (1) Superfund site investigation, removal, and remedial actions, and (2) development and demonstration of control technologies under the Superfund Innovative Technology Evaluation (SITE) Program. The primary remedial options for lead contaminated soils and waste deposits include: (1) no action, (2) off-site disposal, (3) containment, (4) immobilization, (5) separation with resource recovery, and (6) separation without resource recovery.

  6. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-01

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  7. Effects of some components of acid-mine drainage and acid deposition on the spermatozoa of longear sunfish, Lepomis megalotis

    SciTech Connect

    Pearson, B.J.

    1983-01-01

    The effects of low pH and the metals aluminum, zinc, and cadmium, components of acid-mine effluents and acid deposition, on spermatozoa of longear sunfish, Lepomis megalotis, were investigated. Sperm were exposed to solutions of 400 ppm aluminum chloride, 50 ppm zinc chloride, 2 ppm cadmium chloride, separately and in combination, at pH values of 6.9, 4.8, and 3.8. Sperm were additionally exposed to test solutions in which the metal salt concentration was reduced by one-half and observed for changes in motility and in the ability to exclude stain. All test solutions at a low pH were deleterious, the greatest damage occurring in solutions of a combination of all 3 metal chlorides and of aluminum chloride separately. Motility tests showed that both full and reduced metal concentrations had significant effects on motility. Staining tests were supportive of motility test results and indicated that in most cases shorter exposure times did not significantly improve survival rates. It was generally found that a decrease in pH increased the effects of each metal separately and when combined. Aluminum, zinc, and cadmium chlorides appeared to act antagonistically when tested in combination. It was concluded that the components of acid waters which were tested have deleterious effects on longer spermatozoa, reducing their viability and thereby reducing reproductive success of the species.

  8. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  9. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects

    SciTech Connect

    Brezonik, P.L.; Hendry, C.D. Jr.; Edgerton, E.S.; Schulze, R.L.; Crisman, T.L.

    1983-06-01

    A monitoring network of 21 bulk and 4 wet/dry collectors located throughout Florida measured spatial and temporal trends during a one-year period from May 1978 to April 1979. The project summary notes that statewide deposition rates of nitrogen and phosphorus were below the loading rates associated with eutrophication, although nutrient concentrations were higher during the summer. Overall, pH appears to have relatively small effects (in the range 4.7-6.8) on community structure in soft-water Florida lakes. More dramatic effects could occur under more acidic conditions in the future. 4 references, 5 figures, 1 table.

  10. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  11. Does deposition depth control the OSL bleaching of fluvial sediment?

    NASA Astrophysics Data System (ADS)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2014-07-01

    The Optically Stimulated Luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could potentially provide insights into geomorphic processes. However, comparison of bleaching between samples is complicated by sample-to-sample variation in aliquot size and luminescence sensitivity. Here we develop an age model to account for these effects. With measurement data from multi-grain aliquots, we use Bayesian computational statistics to estimate the burial dose and bleaching parameters of the single-grain dose distribution. We apply the model to 46 samples taken from fluvial sediment of Rhine branches in the Netherlands, and compare the results with environmental predictor variables (depositional energy and environment, sample depth, depth relative to mean water level, dose rate). We find no significant correlations between any predictor variable and the bleaching parameters, although large uncertainties may be obscuring relationships. However, the best bleached samples are found close to the mean water level. Based on these results, we hypothesize that bleaching occurs mainly during fluvial transport rather than upon deposition, with extra bleaching possible for sediments near the transition of channel to overbank deposits due to local reworking after deposition either by wind or water.

  12. Cloud acidity and acidic deposition in the lower troposphere and ozone depletion in the Antarctic stratosphere: Modeling and data analysis regarding the role of atmospheric aerosol

    SciTech Connect

    Lin, Nenghuei.

    1991-01-01

    This study focused on the role of atmospheric aerosols in determining the cloud acidity and acidic deposition in the lower troposphere and the ozone depletion in the Antarctic stratosphere. For the former, a cloud chemistry model is developed to study the in-cloud chemistry and acidity in cloud droplets. The cloud chemistry model includes the absorption of trace gases, the oxidation of aqueous phase SO{sub 2}, and the scavenging of atmospheric aerosols. A new scheme is developed to differentiate the acidity and chemical composition distributing in individual cloud droplets. The above cloud chemistry model is incorporated into a two-layer flow model in order to investigate the effects of mountain waves on the cloud acidity. Using the three-year database acquired at Mt. Mitchell site, the in-cloud chemistry and acidic deposition through dry, wet and cloud deposition pathways are investigated. The in-cloud scavenging of submicron aerosols such as sulfates and nitrates is parameterized as a function of cloud deposition rate. The deposition fluxes of sulfur (S) compounds are found primarily contributed by cloud capture mechanism followed by incident precipitation and dry deposition. A comparison of deposition estimates at Mt. Mitchell with those at other sites shows that the sulfate deposition at sites exceeding 1,200 m MSL in elevation in Bavaria (Germany) and eastern USA is almost identical within error limits. The features of the Antarctic stratospheric aerosols during the ozone depletion episode of October 1987 are investigated based on the SAGE 2 (Stratospheric Aerosol and Gas Experiment 2) data. The study focuses on (1) inferring the aerosol size spectrum using a modified randomized minimization-search-technique (RMST), and (2) investigating the vertical, zonal and columnar averages of aerosol properties, together with the ozone concentration.

  13. Thermal and trophic stability of deeper Maine lakes in granite waterhsheds implacted by acid deposition

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1990-09-01

    Acid deposition can lead to lake and watershed acidification, increases in lake transparency, and reduction in thermal stability and hypolimnetic oxygen deficits. On the basis of lake surveys during August-September 1985, we determined to what extent the deeper (maximum depth z{sub m}{gt}17 m) Maine lakes in acid-sensitive granitic watersheds have registered changes in temperature and oxygen stratification, as compared to 1938-1942, when G.P. Cooper performed the earliest scientific surveys of the state's lakes. After correcting for small but geographically consistent interannual differences in summer hypolimnetic temperatures related to spring turnover, and weather-dependent differences in mixed layer depth, there has been no significant change in thermal stratification in these Maine lakes over approximately 43 years. On the basis of specific historical contrasts in the late summer metalimnetic, hypolimnetic, and bathylimnetic oxygen concentrations there has been no significant change in lake trophic state or transparency.

  14. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.

    2006-05-01

    An important result of the Mars Exploration Rover's (MER) mission has been the images of sedimentary structures and diagenetic features in the Burns Formation at Meridiani Planum. Bedding, cross-bedding, ripple marks, mud cracks, displacive evaporite crystal molds, and hematite concretions are contained in these Martian strata. Together, these features are evidence of past saline groundwater and ephemeral shallow surface waters on Mars. Geochemical analyses of these Martian outcrops have established the presence of sulfates, iron oxides, and jarosite, which strongly suggests that these waters were also acidic. The same assemblage of sedimentary structures and diagenetic features is found in the salt-bearing terrestrial red sandstones and shales of the middle Permian (ca. 270 Ma) Nippewalla Group of Kansas, which were deposited in and around acid saline ephemeral lakes. These striking sedimentological and mineralogical similarities make these Permian red beds and evaporites the best-known terrestrial analog for the Martian sedimentary rocks at Meridiani Planum.

  15. Assessing biogeographic patterns in the changes in soil invertebrate biodiversity due to acidic deposition

    SciTech Connect

    Sugg, P.M.; Kuperman, R.G.; Loucks, O.L. |

    1995-09-01

    We are studying the response of soil faunal communities to a gradient in acidic deposition across midwestern hardwood forests. We have documented a pattern of population decrease and species loss for soil invertebrates along the acidification gradient. We now ask the following question: When confronted with apparent diversity changes along a region-wide pollution gradient, how can one assess the possibility of natural biogeographic gradients accounting for the pattern? As a first approximation, we use published range maps from taxonomic monographs to determine the percent of the regional fauna with ranges encompassing each site. For staphylinid beetles, range data show no sign of a biogeographic gradient. Yet for soil staphylinids, a large decrease is seen in alpha diversity (as species richness) from low to high acid dose sites (from 20 species to 8). Staphylinid species turnover is greatest in the transition from low to intermediate dose sites.

  16. Acid fog deposition and the declining forest in Tanzawa mountains, Japan.

    NASA Astrophysics Data System (ADS)

    Igawa, M.; Shigihara, A.; Goto, S.; Nanzai, B.

    2010-07-01

    Since 1988, we have investigated fog chemistry in Mt. Oyama, Tanzawa mountains, Japan, and acid fog has been frequently observed there. We have observed fog on Mt. Oyama by using a night view video camera placed at the base of the mountain, by using a visibility meter at the top of the mountain, and by an active fog sampler at the mountainside. We have reported the fog frequency at the top of Mt. Oyama to be 46% measured by the video camera, but it was overestimated. The visibility measured at the top of the mountain is the most reliable index, and the top of the mountain is covered with fog for about 30%. The frequency of about 15% was added for the case of the visibility of a few km when it was measured by a night view video camera placed at the base of the mountain (8.5 km far from the top). Fog-water deposition increases with the increasing altitude to be much larger than the rain-water deposition. The factors affecting on the occult precipitation intensity were investigated by the simultaneous measurement of the rainfall intensity under a canopy, the wind speed and direction, and the visibility at the top of the mountain. Air pollution has been improved recently in Japan, but acid fog is not improved and has been affecting the leaves of the trees. In Tanzawa mountains, many fir trees and beech trees are declining, while cedar trees show no decline symptoms. We have investigated the effect of acid fog on the trees of these species by exposing simulated acid fog on the seedlings of the species. Seedlings of fir and beech are much damaged by the long term exposure of pH 3 fog, while cedar seedlings are not affected by the acid fog. By the exposure of simulated acid fog, the epicuticle wax is eroded at first, then the cross linking polycation between sugar chains of cell wall is ion-exchanged with proton and the cell wall is swollen, and the membrane calcium is desorbed from the membrane, which lowers the tolerance of the trees to the climate change. Fir and beech

  17. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  18. IMPACTS OF ACIDIC DEPOSITION: CONTEXT AND CASE STUDIES OF FOREST SOILS IN THE SOUTHEASTERN U.S.

    EPA Science Inventory

    The authors designed their assessment to include both the basic foundation needed by non-experts and the detailed information needed by experts. Their assessment includes background information on acidic deposition (Chap. 1), an in-depth discussion of the nature of soil acidity a...

  19. EFFECTS OF ACIDIC DEPOSITION ON STREAMS IN THE APPALACHIAN MOUNTAINS AND PIEDMONT REGION OF THE MID-ATLANTIC UNITED STATES

    EPA Science Inventory

    Streams in the Appalachian Mountain area of the Mid-Atlantic receive some of the largest acidic deposition loadings of any region of the United States. ompilation of survey data from the Mid-Appalachians yields a consistent picture of the acid-base status of streams. cidic stream...

  20. Chemical recovery of surface waters across the northeastern united states from reduced inputs of acidic deposition: 1984-2001.

    PubMed

    Warby, Richard A F; Johnson, Chris E; Driscoll, Charles T

    2005-09-01

    Changes in lake water chemistry between 1984 and 2001 at 130 stratified random sites across the northeastern United States were studied to evaluate the population-level effects of decreases in acidic deposition. Surface-water S04(2-) concentrations decreased across the region at a median rate of -1.53 microequiv L(-1) year(-1). Calcium concentrations also decreased, with a median rate of -1.73 microequiv L(-1) year(-1). This decrease in Ca2+ retarded the recovery of surface water acid neutralizing capacity (Gran ANC), which increased at a median rate of 0.66 microequiv L(-1) year(-1). There were small increases in pH in all subregions except central New England and Maine, where the changes were not statistically significant. Median NO3- trends were not significant except in the Adirondacks, where NO3- concentrations increased at a rate of 0.53 microequiv L(-1) year(-1). A regionwide decrease in the concentration of total Al, especially in ponds with low ANC values (ANC < 25 microequiv L(-1)), was observed in the Adirondack subregion. These changes in Al were consistent with the general pattern of increasing pH and ANC. Despite the general pattern of chemical recovery, many ponds remain chronically acidic or are susceptible to episodic acidification. The continued chemical and biological recovery at sites in the northeastern United States will depend on further controls on S and N emissions. PMID:16190211

  1. Tectonic control of Eocene arkosic sediment deposition, Oregon and Washington

    SciTech Connect

    Armentrout, J.M.; Ulrich, A.R.

    1983-03-01

    Chronostratigraphic and geographic studies of Eocene arkosic sandstones suggest deposition during a volcanically quiet interval resulting from the westward jump of the Farallon-Kula plate subduction zone in Oregon and Washington. The Eocene arkosic sandstones were deposited as part of a broad fluvial plain-coastal plain-shelf margin basin complex extending throughout Oregon and Washington between uplands of Mesozoic rocks. Feldspathic-quartzose sediments were transported from the east by river systems draining granitic terrains perhaps as far away as the Idaho Batholith. Chronostratigraphic correlations suggest that the arkosic sandstones were deposited along the margins of the depositional system during the early Eocene, prograded westward during the middle Eocene, and then regressed during the latest Eocene and Oligocene simultaneously with the influx of abundant pyroclastic debris. During the early Eocene, a northwest-southeast seamount chain was extruded on the Farallon and Kula plates west of an eastward-dipping subduction zone. Subduction of the oceanic plates moved the seamount chain obliquely toward the subduction zone. In middle Eocene time-49 to 40 m.y.b.p-the seamount chain reached the subduction zone creating instability in the subduction system and resulting in the westward jump of the underthrust boundary between the Farallon-Kula and North American plates. Coincident with and continuing after the subduction zone jump and seamount accretion, eastwardly derived arkosic sediments prograded across Oregon and Washington spilling into the new fore-arc basin and enveloping the seamounts.

  2. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  3. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus

    PubMed Central

    Oikawa, Naoto; Matsubara, Teruhiko; Fukuda, Ryoto; Yasumori, Hanaki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sato, Toshinori; Suzuki, Akemi; Yanagisawa, Katsuhiko

    2015-01-01

    Amyloid deposition, a crucial event of Alzheimer’s disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition. PMID:25798597

  4. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  5. The distribution of common construction materials at risk to acid deposition in the United States

    NASA Astrophysics Data System (ADS)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  6. Use of Soil-Streamwater Relationships to Assess Regional Patterns of Recovery from Acidic Deposition Effects

    NASA Astrophysics Data System (ADS)

    Siemion, J.; Lawrence, G. B.; Murdoch, P. S.

    2012-12-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the Northeastern United States, but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in the Catskill region of New York, where acidic deposition levels are among the highest in the East. More than 40% of streams sampled in the southwestern Catskill Mountains were determined to be acidified with inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota and more than 80% likely to exceed this threshold during the highest flows, but less than 10% were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50-80% across the region, but median base saturation in the upper 10cm of the B horizon was less than 20% across the region and was only 2% in the southwestern area. Therefore, aluminum is likely to be interfering with calcium uptake in the mineral horizon by trees in half the watersheds where soils were collected. These results indicate stream chemistry over the Catskill region does not reflect the calcuim depletion of the B horizon that our sampling suggests is ubiquitous throughout the region.

  7. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Mehdi, S. M.; Cho, K. H.; Kang, C. N.; Choi, K. H.

    2015-07-01

    This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

  8. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer. PMID:27061365

  9. Heavy metals and acidic components in total deposited matter in Sibenik and National Park Kornati, Croatia.

    PubMed

    Cacković, Mirjana; Kalinić, Natasa; Vadjić, Vladimira; Pehnec, Gordana

    2009-01-01

    This article presents the results of 6 years (1999-2004) of monitoring acidic components (fluoride, chloride, nitrate, sulfate) and heavy metals (lead, cadmium, thallium) in total deposited matter (TDM) in the town of Sibenik and the National Park Kornati, Croatia, in order to determine their levels, spatial and temporal variations, and possible emission source. Bulk deposition samples were collected using the Bergerhoff samplers. TDM matter was determined gravimetrically. Acidic anions were analyzed using ion chromatography. Metallic components were determined by atomic absorption spectrometry. Results show that the levels of measured pollutants were relatively low compared to those reported in other investigations. Statistical analysis indicates that the measured pollutants originate from several sources such as resuspended soil, industry, road dust, traffic, and secondary aerosols as the most important. The levels of TDM show a slightly increasing trend at all sampling sites. A significant increasing trend in the levels of nitrate and sulfate in TDM could be the consequence of increasing traffic activity and urbanization. The significant increasing trend in the ratio between nitrate and sulfate in TDM indicates that the nitrate and sulfate relative contribution to acidification is increasing. The level of heavy metals in TDM was in order of lead > thallium > cadmium at all sampling sites with slightly decreasing trend. PMID:18414927

  10. Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition.

    PubMed

    Cao, Yan-Qiang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-09-01

    Ti-based fumaric acid hybrid thin films were successfully prepared using inorganic TiCl4 and organic fumaric acid as precursors by molecular layer deposition (MLD). The effect of deposition temperature from 180 °C to 350 °C on the growth rate, composition, chemical state, and topology of hybrid films has been investigated systematically by means of a series of analytical tools such as spectroscopic ellipsometry, atomic force microscopy (AFM), high resolution X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The MLD process of the Ti-fumaric acid shows self-limiting surface reaction with a reasonable growth rate of ∼0.93 Å per cycle and small surface roughness of ∼0.59 nm in root-mean-square value at 200 °C. A temperature-dependent growth characteristic has been observed in the hybrid films. On increasing the temperature from 180 °C to 300 °C, the growth rate decreases from 1.10 to 0.49 Å per cycle and the XPS composition of the film's C : O : Ti ratio changes from 8.35 : 7.49 : 1.00 to 4.66 : 4.80 : 1.00. FTIR spectra indicate that the hybrid films show bridging bonding mode at a low deposition temperature of 200 °C and bridging/bidentate mixed bonding mode at elevated deposition temperatures of 250 and 300 °C. The higher C and O amounts deviating from the ideal composition may be ascribed to increased organic incorporation into the hybrid films at lower deposition temperature and temperature-dependent density of reactive sites (-OH). The composition of hybrid films grown at 350 °C shows a dramatic decrease in C and O elemental composition (C : O : Ti = 1.97 : 2.76 : 1.00) due to the thermal decomposition of the fumaric acid precursor. The produced by-product H2O changes the structure of the hybrid films, resulting in the formation of more Ti-O bonds at high temperatures. The stability of the hybrid films against chemical and thermal treatment, and long-term storage by

  11. Response of DOC in Acid-Sensitive Maine Lakes to Decreasing Sulfur Deposition (1993 - 2009)

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Sanclements, M.; McKnight, D. M.; Stoddard, J. L.

    2010-12-01

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, there has been a concurrent increase in dissolved organic carbon (DOC) concentrations in many lakes and streams which has been difficult to interpret. To assess the biogeochemical processes driving increasing DOC concentrations we analyzed archived samples from 9 acid-sensitive lakes in Maine collected between 1993 and 2009 using UV-Vis and fluorescence spectroscopy. The fluorescence index (FI) was calculated for all samples. The FI represents the ratio of the emission intensity at 450 nm to 550 nm at an excitation wavelength of 370 nm and provides information regarding the source of dissolved organic matter (DOM). This index has a value of approximately 1.9 for microbially derived fluvic acids and a value of approximately 1.4 for terrestrially (higher-plant) derived fluvic acids. All four lakes with increasing DOC trends had concomitant decreases in the FI index. Two of five lakes with no significant DOC trend also demonstrated no trend in FI values over time, while three lakes revealed a decrease in FI values. To confirm that the FI measured in whole water was primarily reflective of fulvic acids (FA), XAD-resin was used to isolate FA from a subset of samples. Analysis of the FA indicates that the FI values for the humic substances are slightly higher, yet well correlated with whole water samples. This suggests that despite prolonged storage in plastic, the FI trends are meaningful. The FI trends suggest a terrestrial source for the increasing DOC and may be driven by increased DOM production from soils experiencing decreased acid loading. Decreases in sulfate deposition can increase soil pH and soil organic matter solubility, as well as decrease the ionic strength of the soil solution, and

  12. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  13. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    SciTech Connect

    Kuperman, R.G.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  14. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future. PMID:25544337

  15. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  16. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  17. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets

    PubMed Central

    2013-01-01

    Background Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. Results The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and β-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. Conclusions Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and

  18. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. PMID:26944797

  19. MULTIPOLLUTANT MERCURY AND ACID GASES CONTROL TECHNOLOGY

    EPA Science Inventory

    Plans are to continue testing for acid gas, mercury and NOx removal on baseline CFB operation with lime slurry, then use modified lime hydrates and slurries, and modified calcium silicates as additives for enhanced mercury and SO2 removal. Also, data from a coal-fired utility b...

  20. Inert gas jets for growth control in electron beam induced deposition

    SciTech Connect

    Henry, M. R.; Kim, S.; Rykaczewski, K.; Fedorov, A. G.

    2011-06-27

    An inert, precursor free, argon jet is used to control the growth rate of electron beam induced deposition. Adjustment of the jet kinetic energy/inlet temperature can selectively increase surface diffusion to greatly enhance the deposition rate or deplete the surface precursor due to impact-stimulated desorption to minimize the deposition or completely clean the surface. Physical mechanisms for this process are described. While the electron beam is also observed to generate plasma upon interaction with an argon jet, our results indicate that plasma does not substantially contribute to the enhanced deposition rate.

  1. Analysis of southeastern Canada lake-water chemistry data in relation to acidic deposition

    SciTech Connect

    Olson, R.J.; Cook, R.B.; Ross-Todd, B.M.; Beauchamp, J.J.

    1990-05-01

    Lake-water chemistry data were obtained for lakes in southeastern Canada to study relationships between atmospheric deposition and acid-base chemistry as part of the National Acid Precipitation Assessment Program State of Science and Technology reports. Quality assurance checks were made to ensure that the data used were of sufficient quality and were comparable to data from the United States. Ninety-eight percent of the 8506 sampled lakes had pH, ANC, and SO{sub 4}{sup 2 {minus}} data and were used in our analyses. Of these, we created a subset of 4017 lakes having data for more variable (Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, DOC, and conductivity) to analyze potential sources of lake-water acidity. The objectives of this work were to determine the geographical extent and number of potentially affected systems and to infer causes of acidification based on ion ratios. 35 refs., 28 figs., 12 tabs.

  2. Acidification and recovery of a Spodosol BS horizon from acidic deposition

    SciTech Connect

    Dahlgren, R.A.; McAvoy, D.C.; Driscoll, C.T.

    1990-01-01

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. A mechanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40, 100, or 160 micromol/L SO4(2-). Following 44 d of leaching, all treatments were decreased to the 40 micromol/L SO4(2-) level to examine recovery from acidification. Acidic additions were initially neutralized by release of basic cations and sulfate adsorption. Following attainment of steady state conditions for basic cations and SO4(2-) with respect to the soil adsorption complex, Al dissolution was the primary neutralization mechanism. Aqueous Al activities appeared to be regulated by equilibrium with an Al(OH)3 mineral phase. Following decreases in acid loadings, recovery was rapid resulting in retention of basic cations, reversible release of SO4(2-) and a marked reduction in the concentrations of soluble Al.

  3. Acidification and recovery of a spodosol Bs horizon from acidic deposition

    SciTech Connect

    Dahlgren, R.A.; McAvoy, D.C.; Driscoll, C.T. )

    1990-04-01

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. A mechanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40, 100, or 160 {mu}mol/L SO{sub 4}{sup 2{minus}}. Following 44 days of leaching, all treatments were decreased to the 40 {mu}mol/L SO{sub 4}{sup 2{minus}} level to examine recovery from acidification. Acid additions were initially neutralized by release of basic cations and sulfate adsorption. Following attainment of steady-state conditions for basic cations and SO{sub 4}{sup 2{minus}} with respect to the soil adsorption complex, Al dissolution was the primary neutralization mechanism. Aqueous Al activities appeared to be regulated by equilibrium with an Al(OH){sub 3} mineral phase. Following decreases in acid loadings, recovery was rapid resulting in retention of basic cations, reversible release of SO{sub 4}{sup 2{minus}}, and a marked reduction in the concentrations of soluble Al.

  4. Trends in visibility, PM{sub 2.5}, and deposition expected from the Acid Rain Provisions of the 1990 Clean Air Act Amendments

    SciTech Connect

    Shannon, J.D.; Hanson, D.A.

    1997-08-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (CAAA) are designed to reduce the deposition of SO{sub 2} and sulfate and, to a lesser extent, the deposition of NO{sub x} and nitrate through reduction of SO{sub 2} and NO{sub x} emissions. However, other important benefits are anticipated from the emission control strategies, including improvement of regional visibility and reductions in concentrations of fine particles (PM2.5). In this study, the authors coupled utility emissions forecasts with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and the Visibility Assessment Scoping Model (VASM) to calculate and compare the relative improvements by 2010 in visual impairment, PM2.5 concentrations, and sulfate wet deposition at selected sites in the eastern United States.

  5. Control of TTIP Solution for Atmospheric Pressure Plasma Jet and Deposition of TiO2 Micro-particles

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masahiro; Parajulee, Shankar; Ikezawa, Shunjiro

    TiO2 deposition-methods are versatile and are expected to be more simple and easy, however, in recent years the industrial photocatalytic products have been developed enormously. In this work, photocatalytic TiO2 micro-particles are deposited using the atmospheric pressure plasma jet device. Here, deposition-method is carried out in two steps, at first, the hydrolysis reaction time has been able to control which will resolve the TTIP coagulating trouble during the transportation, by acidifying the solution with AA (Acetic acid) and DEA (Diethanolamine). An experiment was performed to measure the hydrolysis reaction time of TTIP (Titanium tetraisopropoxide) solution by He-Ne laser. Secondly, the deposition of TiO2 micro-particles was carried out using the atmospheric pressure plasma jet with the controlled TTIP solution in reaction time. Based on SEM and water contact angle measurement, it is found that the smaller the mixing ratios of TTIP and DEA the smaller the TiO2 particle size. Also, the smaller the TiO2 particles the smaller the contact angle under the UV irradiation which suffices the photocatalytic behavior.

  6. Formation of polymer thin films and interface control by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Usui, Hiroaki

    2009-08-01

    Some strategies of physical vapor deposition (PVD) of polymer thin films have been proposed. Direct vapor deposition can be applied for simple polymers like polyethylene and Teflon. Coevaporation of bifunctional monomers can be achieved to deposit polyimide, polyurea etc., while chain polymerization assisted by ultraviolet or electron irradiation can be used to form vinyl or acryl polymers from single evaporation source. Surface-initiated deposition polymerization, which combines the self-assembled monolayer and vapor deposition, is another unique method to grow polymer thin films that are chemically bound to the substrate surface. The last method is also effective in controlling the interface between polymer films and inorganic substrates. The solvent-free nature of PVD is convenient for the formation of nanometer-thick films and especially multilayers that are required for device fabrication. Application of vapor deposition polymerization for fabrication of organic light-emitting diode is also described.

  7. Scalable control program for multiprecursor flow-type atomic layer deposition system

    SciTech Connect

    Selvaraj, Sathees Kannan; Takoudis, Christos G.

    2015-01-01

    The authors report the development and implementation of a scalable control program to control flow type atomic layer deposition (ALD) reactor with multiple precursor delivery lines. The program logic is written and tested in LABVIEW environment to control ALD reactor with four precursor delivery lines to deposit up to four layers of different materials in cyclic manner. The programming logic is conceived such that to facilitate scale up for depositing more layers with multiple precursors and scale down for using single layer with any one precursor in the ALD reactor. The program takes precursor and oxidizer exposure and purging times as input and controls the sequential opening and closing of the valves to facilitate the complex ALD process in cyclic manner. The program could be used to deposit materials from any single line or in tandem with other lines in any combination and in any sequence.

  8. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  9. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  10. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  11. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    NASA Astrophysics Data System (ADS)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  12. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  13. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    USGS Publications Warehouse

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  14. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    experiments with mixed acidophiles at higher temperatures. Further depleted Fe(III) values coinciding with decreasing pH may point to precipitation of secondary phases (i.e. jarosite). This study revealed that the metals (Fe, Cu, Co and Zn) released during short term leaching of the ore (34 days) are generally caused by acid produced by dissolution reactions rather than oxidation. In the long term experiments a more complex biogeochemical reactions (oxidation and dissolution) take place in conjunction. Key words: Bioleaching, AMD, heavy metal release, environment, acidophilic bacteria, Küre copper ore deposits, volcanogenic massive sulfide deposits

  15. Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China

    NASA Astrophysics Data System (ADS)

    Huang, Xianyu; Meyers, Philip A.; Xue, Jiantao; Gong, Linfeng; Wang, Xinxin; Xie, Shucheng

    2015-04-01

    Progressively more evidence reveals the abundant occurrence of the C31 homohopane with a 17α, 21β-configuration (C31 αβ) in immature peats. This compound is commonly considered to be an indicator of thermal maturity in petroleum source rocks, but in peats it has also been interpreted to reflect the oxidation and subsequent decarboxylation reactions of bacteriohopanepolyols with microbially mediated epimerization at C-17 that is catalyzed by the acidic peat conditions. To learn more about the environmental factors that affect the low-temperature isomerization of homohopanes, we investigated the distribution patterns of homohopanes in a well-studied peat core from the Dajiuhu peatland, central China, together with data from modern surface peat samples from Dajiuhu and three other locations. From comparison with paleotemperature and paleohydrologic records in the peat core, we hypothesize that the ratio of C31 αβ hopane relative to the ββ isomer (C31 αβ/ββ) is mainly influenced on a centennial to millennial timescale by ambient temperature with a secondary effect from redox conditions that are defined by peatland water levels. The surface peat samples revealed that relatively high C31 αβ/ββ values occurred under pH < 6. These results suggest that pH is indeed an important factor in the low-temperature isomerization of C31 homohopanes, although the magnitude of the pH effect may be less than those of ambient temperature and redox conditions. In both surface peat and peat horizons from the Dajiuhu peatland, the amount of the C31 αβ compound with R configuration relative to that with S configuration (C31 R/S) varied closely with C31 αβ/ββ, suggesting that the epimerization at both C-17 and C-22 may happen synchronously and at similar rates. This study reveals that the isomerization of homohopanes has the potential to reflect paleoenvironmental changes in acidic peat deposits. In addition, acidic peat samples investigated in this and previous studies

  16. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  17. Scythe (pelargonic acid) weed control in squash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season-long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, and y...

  18. Post-depositional migration and preservation of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, M.; Marchal, O.; Guo, W.; Das, S. B.; Evans, M. J.

    2015-12-01

    Methanesulfonic acid (MSA; CH3SO3-) in ice cores is a unique, high-resolution proxy of regional sea ice behavior, marine primary productivity, and synoptic climatology. Significant uncertainties remain, however, in both our understanding of the production and transfer of MSA to the ice sheet, as well as its preservation over time, compromising the paleoclimatological utility of the proxy. Here we apply a numerical modeling approach to quantitatively investigate the post-depositional processes affecting MSA migration and preservation within the firn and ice column, building on recent observational and theoretical studies. Our model allows us to evaluate the timing and magnitude of the vertical movement of MSA in response to varying influences, including the competing effects of 1) concentration gradients of sea-salts typically deposited asynchronously to MSA, 2) snow accumulation and densification rates, and 3) in situ temperature gradients. We first test the model against a recently collected ice core from a high accumulation site in coastal West Antarctica, where monthly-resolved MSA records show an abrupt shift from a summer-to-winter maximum in MSA at ~23m depth (ρ ≈ 650 kg/m3), near the firn-ice transition. We find our model to be a robust predictor of the observed migrational features in this record, capturing both (i) the abrupt shift in summer-to-winter maximal concentrations of MSA (steady state ≈ 3.2 yrs), and (ii) the depression of the seasonal amplitude at depth. Further, our modeling results suggest post-depositional effects can lead to substantial interannual alteration of the MSA signal, contrary to previous assumptions that MSA migration is confined within annual layers at high accumulation sites. Using a broad range of polar MSA records and their associated, site-specific environmental conditions, we will evaluate the fidelity of subannual to interannual variability of MSA records and systematically determine the factors conducive to its

  19. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  20. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    PubMed

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA

  1. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  2. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. efunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations we...

  3. Ribonucleic acid interference (RNAi) and control of citrus pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...

  4. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  5. Patterns of acid deposition variability in the Eastern United States, 1981-84

    USGS Publications Warehouse

    Lins, H.F.; Lanfear, K.J.; Schertz, T.L.

    1987-01-01

    An increase in pH and a decrease in sulfate concentration of precipitation were recorded at National Atmospheric Deposition Program and National Trends Network (NADP/NTN) monitoring sites in the Eastern United States between 1981 and 1984. The decline in acidity, however, was not spatially or temporally uniform. The range in acidity and sulfate concentrations decreased during the four-yr period. Variations in the area of constant pH surfaces take the general form of area reductions in both the lower (pH 4.01-4.40) and upper (pH 4.91-5.40) range of values with concomitant area increases in the middle (pH 4.41-4.90) range. The pattern for sulfate is simpler, with area increases occurring in the lower (1.0-1.9 mg/L) range, decreases in the upper (2.5-4.4 mg/L) range, with approximate stability in the middle (2.0-2.4 mg/L) range of values. (Author 's abstract)

  6. Acid deposition in the Athabasca Oil Sands Region: a policy perspective.

    PubMed

    Whitfield, Colin J; Watmough, Shaun A

    2015-12-01

    Industrial emissions of sulphur (S) and nitrogen (N) to the atmosphere associated with the oil sands industry in north-eastern Alberta are of interest as they represent the largest localized source in Canada (with potential for future growth) and the region features acid-sensitive upland terrain. Existing emission management policy for the Regional Municipality of Wood Buffalo, where the industry is located, is based on a time-to-effect approach that relies on dynamic model simulations of temporal changes in chemistry and features highly protective chemical criteria. In practice, the policy is difficult to implement and it is unlikely that a scientifically defensible estimate of acidification risk can be put forward due to the limitations primarily associated with issues of scale, chemical endpoint designation (selection of chemical limit for ecosystem protection from acidification) and data availability. A more implementable approach would use a steady-state critical load (CL) assessment approach to identify at-risk areas. The CL assessment would consider areas of elevated acid deposition associated with oil sands emissions rather than targeted political jurisdictions. Dynamic models should only be (strategically) used where acidification risk is identified via CL analysis, in order to characterize the potential for acidification-induced changes that can be detrimental to sensitive biota within the lifespan of the industry. PMID:26607154

  7. Controllable nitrogen doping in as deposited TiO{sub 2} film and its effect on post deposition annealing

    SciTech Connect

    Deng, Shaoren; Devloo-Casier, Kilian; Devulder, Wouter; Dendooven, Jolien; Deduytsche, Davy; Detavernier, Christophe; Lenaerts, Silvia; Martens, Johan A.; Van den Berghe, Sven

    2014-01-15

    In order to narrow the band gap of TiO{sub 2}, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO{sub 2} and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO{sub 2} and PEALD TiN, the as synthesized TiO{sub x}N{sub y} films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO{sub 2} films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO{sub 2} along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.

  8. Chemical recovery of surface waters across the Northeastern United States from reduced inputs of acidic deposition: 1984-2001

    SciTech Connect

    Richard A.F. Warby; Chris E. Johnson; Charles T. Driscoll

    2005-09-01

    Changes in lake water chemistry between 1984 and 2001 at 130 stratified random sites across the northeastern United States were studied to evaluate the population-level effects of decreases in acidic deposition. Surface-water SO{sub 4}{sup 2-} concentrations decreased across the region at a median rate of -1.53 {mu}equiv L{sup -1} year{sup -1}. Calcium concentrations also decreased, with a median rate of -1.73 {mu}equiv L{sup -1} year{sup -1}. This decrease in Ca{sub 2+} retarded the recovery of surface water acid neutralizing capacity (Gran ANC), which increased at a median rate of 0.66 {mu}equiv L{sup -1} year{sup -1}. There were small increases in pH in all subregions except central New England and Maine, where the changes were not statistically significant. Median NO{sub 3}{sup -} trends were not significant except in the Adirondacks, where NO{sub 3}{sup -} concentrations increased at a rate of 0.53 equiv L{sup -1} year{sup -1}. A regionwide decrease in the concentration of total Al, especially in ponds with low ANC values (ANC {lt} 25 {mu}equiv L{sup -1}), was observed in the Adirondack subregion. These changes in Al were consistent with the general pattern of increasing pH and ANC. Despite the general pattern of chemical recovery, many ponds remain chronically acidic or are susceptible to episodic acidification. The continued chemical and biological recovery at sites in the northeastern United States will depend on further controls on S and N emissions. 27 refs., 4 figs., 3 tabs.

  9. Acetic acid and weed control in onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control is a major challenge in conventional and organic production systems, especially for organically produced sweet onion (Allium cepa L.). Although corn gluten meal shows great promise as an organic preemergent herbicide for onions, research has shown the need for supplemental, postemergen...

  10. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses.

    PubMed

    Jiang, J; Walters, D M; Zhou, D; Ediger, M D

    2016-04-01

    Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glass transition temperature of the mixture. These findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid. PMID:26922903

  11. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  12. Deposition of finely disseminated gold mineralization in black shales: A hypothesis of microstructural control

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.; Safonov, Yu. G.

    2011-06-01

    The deposition of finely disseminated gold in the deposits hosted in black shales is considered. It is suggested that gold deposition is controlled by microstructure of pore space in host rocks. The pore space structure of tight shales indicates that most pore volume is occupied by nanopores with hundredths of micrometers in characteristic dimension. The balance calculations show that deposition of native gold in nanopore channels of filtration is hampered by shortage of number of atoms necessary to overcome a nucleation threshold of the future gold crystal in the pore volume. When ore-transporting solution meets on its way the cavities (pores, micro- and macrofractures), whose volume is sufficient to overcome the nucleation threshold, the excess content of ore component, which exceeds equilibrium concentration, is released with formation of crystallization centers and further precipitation of gold. The conditions of ore deposition are exemplified in the reference Sukhoi Log deposit hosted in black shales. On the basis on the PT conditions of ore deposition and physical features of fluid heat and mass transfer, it is suggested that ore disseminations were deposited at the early high-temperature stage under a fluid pressure close to lithostatic and at a host rock permeability markedly exceeding its present-day value.

  13. CHARACTERIZATION OF PAINTED SURFACES IN THE UNITED STATES FROM THE PERSPECTIVE OF POTENTIAL DAMAGE FROM ACIDIC DEPOSITION

    EPA Science Inventory

    Data on the types and applications of exterior paints used in the United States are reviewed from the perspective of potential damage by air pollution or acidic deposition. The data indicate that, of the painted structures in the U.S., the costs of painting residential buildings ...

  14. Controlled Structure of Electrochemically Deposited Pd Nanowires in Ion-Track Templates

    NASA Astrophysics Data System (ADS)

    Duan, Jinglai; Lyu, Shuangbao; Yao, Huijun; Mo, Dan; Chen, Yonghui; Sun, Youmei; Maaz, K.; Maqbool, M.; Liu, Jie

    2015-12-01

    Understanding and controlling structural properties of the materials are crucial in materials research. In this paper, we report that crystallinity and crystallographic orientation of Pd nanowires can be tailored by varying the fabrication conditions during electrochemical deposition in polycarbonate ion-track templates. By changing the deposition temperature during the fabrication process, the nanowires with both single- and poly-crystallinities were obtained. The wires with preferred crystallographic orientations along [111], [100], and [110] directions were achieved via adjusting the applied voltage and temperature during electrochemical deposition.

  15. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios. PMID:24035981

  16. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    SciTech Connect

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype

  17. Variation of Atmospheric Deposition of Acid Species and Yellow Sand Particles From 1987 to 1999 Through Modeling Studies and Observations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Uno, I.; Zhang, M.; Akimoto, H.

    2002-05-01

    Acid deposition is of serious environmental concern in East Asia. Wet and dry deposition monitoring datasets have been collected for long enough to understand the deposition distribution and its variation in time and space in this region Field observations indicate that acid precipitation often occurs in the southern part of China, even though emissions of the precursors are stronger in the north, where such high levels of strong acids in precipitation have not been widely. The acidity of rainwater is heavily influenced and modified by natural soil dust from desert and semi-arid areas. This soil aerosol, or _gKOSA", is lifted from Asian deserts and the Loess plateau, and then carried by the prevailing wind over East Asia. A comprehensive Air Quality Prediction Modeling System (AQPMS) is used to perform year-long, quantitative simulation of rainwater pH in East Asia for 1987 and 1999, respectively with emissions of Akimoto et al.(1987) and Street et al.(2000), to discuss the variation of deposition of acid species and yellow sand particles due to the emission change in the past dozen years. Monitoring data at 17 sites of EANET (the Acid Deposition Monitoring Network in East Asia) in addition to the field observation data of SEPA(State Environmental Protection Agency) of China are used to evaluate the model, and a reasonable agreement is obtained. Emission in Sichuan province has decreased and emission in central China including Hubei province and Hunan province has increased. Model simulation shows the change of emission pattern caused the serious acid-rain-hit area moving southeastward as observed. In the west part of Sichuan province, the pH value increased, this is partly due to the success of countermeasures against acid rain in China since 1996, which reduce the emission in Sichuan area much more than expected. The variations of annual distribution of rain pH, sulfate, nitrite and yellow sand particles deposition are also discussed in detail, so do the

  18. Molecular controls on kaolinite surface charge and organic acid adsorption

    SciTech Connect

    Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Ward, D.B.

    1996-10-01

    pH-dependent multi-site kaolinite surface charge can be explained by proton donor-acceptor reactions occurring simultaneously on Si and Al sites exposed on edge sites. Si site acidity at the kaolinite-solution interface differs minimally from that of pure SiO{sub 2}, whereas Al sites became appreciably more acidic when a part of the kaolinite matrix. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites, to independently confirm the crystallochemical controls on surface acidity, and to establish likely bonding geometries for adsorbed organic acids, such as oxalate.

  19. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina; Shaw, Mike; Ro, Chul-Un; Aas, Wenche; Baker, Alex; Bowersox, Van C.; Dentener, Frank; Galy-Lacaux, Corinne; Hou, Amy; Pienaar, Jacobus J.; Gillett, Robert; Forti, M. Cristina; Gromov, Sergey; Hara, Hiroshi; Khodzher, Tamara; Mahowald, Natalie M.; Nickovic, Slobodan; Rao, P. S. P.; Reid, Neville W.

    2014-08-01

    A global assessment of precipitation chemistry and deposition has been carried out under the direction of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Scientific Advisory Group for Precipitation Chemistry (SAG-PC). The assessment addressed three questions: (1) what do measurements and model estimates of precipitation chemistry and wet, dry and total deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity, and phosphorus show globally and regionally? (2) has the wet deposition of major ions changed since 2000 (and, where information and data are available, since 1990) and (3) what are the major gaps and uncertainties in our knowledge? To that end, regionally-representative measurements for two 3-year-averaging periods, 2000-2002 and 2005-2007, were compiled worldwide. Data from the 2000-2002 averaging period were combined with 2001 ensemble-mean modeling results from 21 global chemical transport models produced in Phase 1 of the Coordinated Model Studies Activities of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). The measurement data and modeling results were used to generate global and regional maps of major ion concentrations in precipitation and deposition. A major product of the assessment is a database of quality assured ion concentration and wet deposition data gathered from regional and national monitoring networks. The database is available for download from the World Data Centre for Precipitation Chemistry (http://wdcpc.org/)

  20. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  1. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  2. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  4. Controlled deposition of plasma activated coatings on zirconium substrates

    NASA Astrophysics Data System (ADS)

    Akhavan, Behnam; Bilek, Marcela

    2015-12-01

    Zirconium-based alloys are promising materials for orthopedic prostheses due to their low toxicity, superb corrosion resistivity, and favorable mechanical properties. The integration of such bio-implantable devices with local host tissues can strongly be improved by the development of a plasma polymerized acetylene and nitrogen (PPAN) that immobilizes bio-active molecules. The surface chemistry of PPAN is critically important as it plays a key role in affecting the surface free energy that alters the functionality of bio-active molecules at the surface. The cross-linking degree of PPAN is another key property that directly influences the water-permeability and thus also the stability of films in aqueous media. In this study we demonstrate that by simply tuning the zirconium bias voltage, control over the surface chemistry and cross-linking degree of PANN is achieved.

  5. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  6. Aqueous solution deposition kinetics of iron oxyhydroxide on sulfonic acid terminated self-assembled monolayers

    SciTech Connect

    Rieke, P.C.; Marsh, B.D.; Wood, L.L.; Tarasevich, B.J.; Liu, J.; Song, L.; Fryxell, G.E. )

    1995-01-01

    The deposition kinetics of iron oxyhydroxide on sulfonic acid terminated self-assembled monolayers were studied. The thin films of FeOOH were formed on the substrates by thermal hydrolysis of millimolar aqueous solutions of Fe(NO[sub 3])[sub 3] at a pH of approximately 2.0. The thickness of the films was measured ellipsometrically at various times. Both Fe(NO[sub 3])[sub 3] and HNO[sub 3] concentrations were independently varied to provide varying degrees of solution supersaturation. Depending on these concentrations, an induction time was observed before film growth commenced. The correlation between supersaturation and induction time was modeled using classical nucleation theory. Very good agreement was observed regardless of whether supersaturation was varied via the concentration of Fe(NO[sub 3])[sub 3] or HNO[sub 3]. From these results an interfacial free energy for nucleation of 148 mJ/m[sup 2] was calculated. The critical nucleus species was identified as a tetrameric iron species by considering the order of nucleation. 49 refs., 11 figs., 1 tab.

  7. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  8. Preliminary study of the acid deposition in the Tijuana Area (Mexico)

    SciTech Connect

    Bravo, H.; Sosa, R.; Torres, R. )

    1988-01-01

    Transboundary air pollution is of widespread international concern. Tijuana, Mexico, and San Diego, California, form one of the fastest growing border communities in the world. Projections place the current population of three million residents at nearly five million by the year 2000. Although the two cities are divided by an international border they share a common air base. Tijuana and southern portions of San Diego County are particularly affected by the exchange of air flow through the Tijuana River Canyon. The development of an air pollution acid rain monitoring and sampling program across the border, particularly in Tijuana is imperative because of a planned new Tijuana industrial city, large numbers of existing industries without adequate emission controls, and thousands of vehicles generated pollutants on both sides of the border. The first steps toward an acid rain study along the mexican border began in 1985, with a project between the National Council of Science and Technology - (CONACYT) and the Center of the Atmospheric Sciences of the University of Mexico (CCA, UNAM). The goal of this project is to obtain acid rain data from five sites along the border. One of these sites is Tijuana, B.C., Mexico. The data obtained are reported in the paper.

  9. The regional costs and benefits of acid rain control

    SciTech Connect

    Berkman, M.P.

    1991-01-01

    Congress recently enacted acid rain control legislation as part of the 1990 Clean Air Act Amendments following a decade-long debate among disparate regional interests. Although Congress succeeded in drafting a law acceptable to all regions, the regional costs and benefits of the legislation remain uncertain. The research presented here attempts to estimate the regional costs and benefits and the economic impacts of acid rain controls. These estimates are made using a modeling system composed of econometric, linear programming and input-output models. The econometric and linear programming components describe markets for electricity and coal. The outputs of these components including capital investment, electricity demand, and coal production are taken as exogenous inputs by a multiregional input-output model. The input-output model produces estimates of changes in final demand, gross output, and employment. The utility linear programming model also predicts sulfur dioxide emissions (an acid-rain precursor). According to model simulations, the costs of acid rain control exceed the benefits for many regions including several regions customarily thought to be the major beneficiaries of acid rain control such as New England.

  10. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    PubMed Central

    Schneider, Andreas M; Eiden, Stefanie

    2015-01-01

    Summary In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  11. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition.

    PubMed

    Waltz, Florian; Schwarz, Hans-Christoph; Schneider, Andreas M; Eiden, Stefanie; Behrens, Peter

    2015-01-01

    In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  12. Phase control of iridium and iridium oxide thin films in atomic layer deposition

    SciTech Connect

    Kim, Sung-Wook; Kwon, Se-Hun; Kwak, Dong-Kee; Kang, Sang-Won

    2008-01-15

    The atomic layer deposition of iridium (Ir) and iridium oxide (IrO{sub 2}) films was investigated using an alternating supply of (ethylcyclopentadienyl)(1,5-cyclooctadiene) iridium and oxygen gas at temperatures between 230 and 290 deg. C. The phase transition between Ir and IrO{sub 2} occurred at the critical oxygen partial pressure during the oxygen injection pulse. The oxygen partial pressure was controlled by the O{sub 2}/(Ar+O{sub 2}) ratio or deposition pressures. The resistivity of the deposited Ir and IrO{sub 2} films was about 9 and 120 {mu}{omega} cm, respectively. In addition, the critical oxygen partial pressure for the phase transition between Ir and IrO{sub 2} was increased with increasing the deposition temperature. Thus, the phase of the deposited film, either Ir or IrO{sub 2}, was controlled by the oxygen partial pressure and the deposition temperature. However, the formation of a thin Ir layer was detected between the IrO{sub 2} and SiO{sub 2} substrate. To remove this interfacial layer, the oxygen partial pressure is increased to a severe condition. And the impurity contents were below the detection limit of Auger electron spectroscopy in both Ir and IrO{sub 2} films.

  13. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  14. Three Electrode Control of the NanoDeposition of Gold Nanoparticles With Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2011-03-01

    Controlled deposition of the metallic features such as nanoparticles with high spatial accuracy has a great interest in different applications such as surface plasmons, surface enhanced Raman scattering (SERS), nanophotonics and nano biophysics. Lithography based scanning probe microscopy techniques have been shown as a potential methodology for accurate and localized deposition of material in the nanometer scale. Here we report an accurate deposition of high resolution features of single gold nanoparticles using Three Electrodes and atomic force microscopy (AFM) controlled capillary based fountain pen nanolithography. In this methodology three electrodes are attahced one on the outside of the metal coated glass probe, one on the inside of the hollow probe in the solution contained in the capillary and a third electrode on the surface on which the writing is to take place. The three electrodes provide electrical pulses for accurate control of the deposition and retraction of the liquid from the surface. We will demonstrate depositing of single gold nanoparticle with size of 1.2nm onto surfaces such as semiconductors.

  15. Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures

    SciTech Connect

    Nikulina, E.; Idigoras, O.; Porro, J. M.; Berger, A.; Vavassori, P.; Chuvilin, A.; Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao

    2013-09-16

    We demonstrate the existence and control of inter-particle magnetic exchange coupling in densely packed nanostructures fabricated by focused electron beam induced deposition. With Xe beam post-processing, we have achieved the controlled reduction and eventual elimination of the parasitic halo-like cobalt deposits formed in the proximity of intended nanostructures, which are the identified source of the magnetic exchange coupling. The elimination of the halo-mediated exchange coupling is demonstrated by magnetic measurements using Kerr microscopy on Co pillar arrays. Electron microscopy studies allowed us to identify the mechanisms underlying this process and to verify the efficiency and opportunities of the described nano-scale fabrication approach.

  16. Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Jin; Lyu, Seung Chul; Cho, Young Rae; Lee, Jin Ho; Cho, Kyoung Ik

    2001-06-01

    The diameter and the growth rate of vertically aligned carbon nanotubes (CNTs) are controlled by modulating the size of catalytic particles using thermal chemical vapor deposition (CVD). The size of iron catalytic particles deposited on silicon oxide substrate is varied in a controlled manner by adjusting the condition of ammonia pretreatment. We found an inverse relation between the diameter and growth rate of carbon nanotubes. As the diameter increases, the compartment layers of bamboo-shaped carbon nanotubes appear more frequently, which is suitably explained by the base growth mechanism.

  17. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning

    NASA Astrophysics Data System (ADS)

    Basu, Nandita; Cross, Graham L. W.

    2015-12-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries.

  18. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning.

    PubMed

    Basu, Nandita; Cross, Graham L W

    2015-12-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries. PMID:26559042

  19. The routes and kinetics of trichloroacetic acid uptake and elimination in Sitka spruce ( Picea sitchensis) saplings via atmospheric deposition pathways

    NASA Astrophysics Data System (ADS)

    Heal, M. R.; Dickey, C. A.; Cape, J. N.; Heal, K. V.

    A major flux of trichloroacetic acid (TCA) to forests is via wet deposition, but the transfer of TCA into tree foliage may occur by an above- or below-ground pathway. To investigate the routes and kinetics of TCA uptake, two groups of 10 Sitka spruce saplings (with an equivalent number of controls) were exposed to a single application of 200 μg TCA in solution, either to the soil only, or sprayed as a mist to the foliage only. The needle foliage was subsequently analysed regularly for TCA for 3 months during the growing season. Significant uptake into current year ( C) needles was observed from both routes just a few days after application, providing direct evidence of an above-ground uptake route. Uptake of TCA was also observed in the previous year needle class ( C+1). Kinetic modelling of the data indicated that the half-life for within-needle elimination (during the growing season) was ˜50±30 days. Most of the applied TCA appeared to be degraded before uptake, either in the soil, or externally on the sapling foliage.

  20. Effects of dietary combination of n-3 and n-9 fatty acids on the deposition of linoleic and arachidonic acid in broiler chicken meats.

    PubMed

    Shin, D; Choi, S H; Go, G; Park, J H; Narciso-Gaytán, C; Morgan, C A; Smith, S B; Sánchez-Plata, M X; Ruiz-Feria, C A

    2012-04-01

    To minimize the amount of n-6 fatty acids in broiler chicken meat, 120 Cobb × Ross male broilers were divided into 6 different groups and fed a basal corn-soybean meal diet containing 5% fat from 5 different lipid sources: 1) a commercial mix of animal and vegetable oil, 2) soybean oil and olive oil (2.5% each), 3) flaxseed oil and olive oil (2.5% each), 4) flaxseed oil, eicosapentaenoic acid (C20:5; EPA; n-3), and olive oil (2.45, 0.05, and 2.5% respectively; FEO), 5) flaxseed oil, docosahexaenoic acid (C22:6; DHA; n-3), and olive oil (2.45, 0.05, and 2.5% respectively; FDO), and 6) fish oil and olive oil (2.5% each; FHO). At 6 and 9 wk, one bird per pen (4 pens per treatment) was processed, and liver, breast, and thigh samples were collected and used for fatty acid profiles or Δ6- and Δ9-desaturase mRNA gene expression levels. The deposition of linoleic acid (C18:2; n-6) or arachidonic acid (C20:4; n-6) was decreased in breast and thigh muscles of chickens fed n-3 fatty acids for 9 wk compared with chickens fed animal and vegetable oil and soybean oil and olive oil diets (P < 0.05). The addition of EPA to the diet (FEO; P > 0.05) did not reduce the deposition of linoleic acid and arachidonic acid as much as DHA (FDO; P < 0.05), and it suppressed the expression of Δ6- and Δ9-desaturase. When EPA and DHA were blended (FHO) and supplied to broiler chickens for 9 wk, EPA and DHA combination effects were observed on the deposition of LA and arachidonic acid in breast and thigh muscles. Thereby, the addition of a mixed EPA and DHA to a broiler chicken diet may be recommendable to reduce arachidonic acid accumulation in both broiler chicken breast and thigh meats, providing a functional broiler chicken meat to consumers. PMID:22399741

  1. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Cappellari, Paula S.; García, Gonzalo; Florez-Montaño, Jonathan; Barbero, Cesar A.; Pastor, Elena; Planes, Gabriel A.

    2015-11-01

    Formic acid and adsorbed carbon monoxide electrooxidation on polycrystalline Pt and Au-modified Pt surfaces were studied by cyclic voltammetry, lineal sweep voltammetry and in-situ Fourier transform infrared spectroscopy techniques. With this purpose, a polycrystalline Pt electrode was modified by spontaneous deposition of gold atoms, achieving a gold surface coverage (θ) in the range of 0 ≤ θ ≤ 0.47. Results indicate the existence of two main pathways during the formic acid oxidation reaction, i.e. dehydration and dehydrogenation routes. At higher potentials than 0.5 V the dehydrogenation pathway appears to be the operative at both Pt and Au electrodes. Meanwhile, the dehydration reaction is the main pathway for Pt at lower potentials than 0.5 V. It was found that reaction routes are easily tuned by Au deposition on the Pt sites responsible for the formic acid dehydration reaction, and hence for the catalytic formation of adsorbed carbon monoxide. Gold deposition on these Pt open sites produces an enhanced activity toward the HCOOH oxidation reaction. In general terms, the surface inhibition of the reaction by adsorbed intermediates (indirect pathway) is almost absent at gold-modified Pt electrodes, and therefore the direct pathway appears as the main route during the formic acid electrooxidation reaction.

  2. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  3. Control of acid mist emissions from FGD systems

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    Improved control of acid mist emissions can be achieved by replacing or augmenting the conventional mist eliminators with a wet electrostatic precipitator (WESP). This paper describes a two-phased study performed to determine the degree of control that can be achieved with this approach. Phase I was a study of the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  4. Controlling fungus on channel catfish eggs with peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in the use of peracetic acid (PAA) to treat pathogens in aquaculture. It is a relatively new compound and is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish Ictalurus punctatus egg...

  5. Acid deposition, land-use change and global change: MAGIC 7 model applied to Aber, UK (NITREX project) and Risdalsheia, Norway (RAIN and CLIMEX projects)

    NASA Astrophysics Data System (ADS)

    Wright, R. F.; Emmett, B. A.; Jenkins, A.

    Nitrogen processes are now included in a new version of MAGIC (version 7), a process-oriented catchment-scale model for simulating runoff chemistry. Net retention of nitrogen (N) is assumed to be controlled by plant uptake and the carbon/nitrogen (C/N) ratio of soil organic matter, the latter as evidenced by empirical data from forest stands in Europe. The ability of this version of MAGIC 7 to simulate and predict inorganic N concentrations in runoff is evaluated by means of data from whole-ecosystem manipulation experiments at Aber, Wales, UK, (nitrogen addition as part of the NITREX project) and Risdalsheia, Norway (exclusion of acid deposition as part of the RAIN project and climate change as part of the CLIMEX project). MAGIC 7 simulated the changes in N leaching satisfactorily as well as changes in base cations and acid neutralising capacity observed at these two sites. MAGIC 7 offers a potential tool for regional assessments and scenario studies of the combined effects of acid deposition, land-use and climate change.

  6. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    PubMed Central

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-01-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it’s deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide. PMID:26883576

  7. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    PubMed

    Sun, Guo-Xin; Meharg, Andrew A; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-01-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it's biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it's deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide. PMID:26883576

  8. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-02-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it’s deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide.

  9. Tectonic control of Cretaceous gravity deposits and submarine Valleys in the subalpine basin, French western Alps

    SciTech Connect

    Philippe, J.; Beaudoin, B.; Fries, G.; Parize, O.

    1988-08-01

    The Late Jurassic-Early Cretaceous series of the French subalpine basin is characterized by alternating limestones and marls with numerous, thick gravity-flow deposits (carbonate debris flows and slumps, siliciclastic grain flows, turbidites). These gravity deposits originate from platforms and slopes and come through the basin via several parallel canyons and submarine valleys. Some carbonate (Berriasian) and siliciclastic (Aptian) deep-sea fans are built at the canyon mouth during intense activity of the canyons and reworking of the sediments. The tectonic control of the gravity deposits is demonstrated by the position and filling of the submarine valleys all along the Cretaceous. The submarine valleys correspond systematically to the lower part of extensional tilted blocks; the gravity deposits come along the main syn-sedimentary normal faults delimiting these tilted blocks. The gravity deposits go from one tilted block to another through some synsedimentary passes which are induced by slight folding, perhaps related to an early diapirism at some nodes of extensional faults. The canyon-like valleys are due to very strong erosion when a submarine valley cuts of the higher part of a tilted block. The gravity deposits are stacked atop each other and progressively fill the valleys. Thus the cutting and filling of the submarine valleys and canyons on occasions during the Early Cretaceous are explained by a permanent synsedimentary activity. These Jurassic and Cretaceous extensional structures are later reactivated by inversion during Tertiary compressional movements.

  10. Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum.

    PubMed

    Hsiao, Sheng-Yi; Lin, Hong-Lin; Lee, Wei-Hung; Tsai, Wei-Lun; Chiang, Kai-Ming; Liao, Wei-Yu; Ren-Wu, Chen-Zheng; Chen, Chien-Yu; Lin, Hao-Wu

    2016-08-01

    All-vacuum-deposited perovskite solar cells produced by controlling reagent partial pressure in high vacuum with newly developed multi-layer electron and hole transporting structures show outstanding power conversion efficiency of 17.6% and smooth, pinhole-free, micrometer-sized perovskite crystal grains. PMID:27226143

  11. 40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test and test fuel guidelines. 80.166 Section 80.166 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.166 Carburetor deposit control performance test and test fuel guidelines. EPA will use...

  12. Different responses of two Mosla species to potassium limitation in relation to acid rain deposition*

    PubMed Central

    Wang, Meng; Gu, Bao-jing; Ge, Ying; Liu, Zhen; Jiang, De-an; Chang, Scott X.; Chang, Jie

    2009-01-01

    The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (P n), soluble protein content, and superoxide dismutase (SOD) activity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on P n, soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis. PMID:19650194

  13. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery.

    PubMed

    Woo, J O; Misran, M; Lee, P F; Tan, L P

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  14. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  15. Stress assessment and spectral characterization of suspected acid deposition damage in red spruce (Picea Rubens) from Vermont

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.

    1985-01-01

    The effects of acid deposition on Picea rubens are studied. The Picea rubens located at Camels Hump Mt., Mt. Ascutney, and Ripton, VT were analyzed using stress level evaluations, in situ spectral data, pressure bomb analysis, and aircraft sensors. Spruce stress per circular plot and percent spruce mortality are calculated. The relation between stress levels and elevation and exposure and weather patterns is examined. It is observed that variations in the reflectance curves of the foliage and branches are related to cellular health, the type of cellular arrangement, and the degree of leaf tissue hydration; the leaf and twig specimens from high stress sites are more reflective in the red portion of the visible and less reflective in the NIR portion of the spectrum. The pressure bomb data reveal that the xylem water tension is higher in specimens from high stress sites. It is noted that remote sensing permits discrimination and mapping of suspected acid deposition damage.

  16. Comparison among model estimates of critical loads of acidic deposition using different sources and scales of input data.

    PubMed

    McDonnell, T C; Cosby, B J; Sullivan, T J; McNulty, S G; Cohen, E C

    2010-09-01

    The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earth's surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance approach based on both national and site-specific data and using different approaches for estimating base cation weathering. Results suggested that the scale and source of input data can have large effects on the calculated CL and that the most important parameter in the steady-state model used to estimate CL is base cation weathering. These results suggest that the data and approach used to estimate weathering must be robust if the calculated CL is to be useful for its intended purpose. PMID:20609503

  17. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  18. The role of matrix proteins in the control of nacreous layer deposition during pearl formation

    PubMed Central

    Liu, Xiaojun; Li, Jiale; Xiang, Liang; Sun, Juan; Zheng, Guilan; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO3) deposition on the bare nucleus and (ii) CaCO3 deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO3 deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process. However, significant expression of matrix proteins in the pearl sac was detected by day 30–35 after implantation. On day 30, a thin layer of CaCO3, which we believe was amorphous CaCO3, covered large aragonites. By day 35, the nacreous layer had formed. The whole process is similar to that observed in shells, and the temporal expression of matrix protein genes indicated that their bioactivities were crucial for pearl development. Matrix proteins controlled the crystal phase, shape, size, nucleation and aggregation of CaCO3 crystals. PMID:21900328

  19. Evaluation of Acid Tolerance of Drugs Using Rats and Dogs Controlled for Gastric Acid Secretion.

    PubMed

    Kosugi, Yohei; Yamamoto, Syunsuke; Sano, Noriyasu; Furuta, Atsutoshi; Igari, Tomoko; Fujioka, Yasushi; Amano, Nobuyuki

    2015-09-01

    We attempted to establish animal models to evaluate the effects of drug degradation in the stomach on oral bioavailability. In addition, we assessed the utilization of animal studies in determining the need for enteric-coated formulations. In order to control the gastric pH in rats and dogs, appropriate dosing conditions were investigated using pentagastrin and rabeprazole, which stimulate and inhibit gastric acid secretion. Using animals controlled for gastric acid secretion, the area under curve (AUC) ratios (AUC with rabeprazole/AUC with pentagastrin) of all compounds unstable under acidic conditions were evaluated. The AUC ratios of omeprazole and erythromycin, which are administered orally to humans, as enteric-coated tablets, were greater than 1.9 in the rats and dogs controlled for gastric acid secretion. On the contrary, the AUC ratios of clarithromycin, azithromycin, and etoposide (commercially available as a standard immediate-release form) were less than 1.3 each. In conclusion, in vivo models using rats and dogs were optimized to evaluate the effects of gastric acid on the oral bioavailability of drugs, and demonstrated that in vivo models can lead to a better understanding of the oral bioavailability, with respect to the formulation development. PMID:25720462

  20. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  1. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    PubMed Central

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit

    2014-01-01

    Summary Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281

  2. Integration of in situ RHEED with magnetron sputter deposition for atomic layer controlled growth

    NASA Astrophysics Data System (ADS)

    Podkaminer, Jacob P.

    Epitaxial thin films continue to be one of the most promising topics within electronic materials research. Sputter deposition is one process by which these films can be formed and is a widely used growth technique for a large range of technologically important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages associated with sputter deposition, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the strong permanent magnets in magnetron sputter sources and their effect on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer by layer control during sputter deposition by in situ RHEED. A novel growth chamber that can seamlessly change between pulsed laser deposition and sputtering with RHEED for the growth of complex heterostructures has been designed and implemented. Epitaxial thin films of LaAlO3, La1-xSrxMnO3, and SrRuO3 have all been deposited by sputtering and shown to exhibit clear and extended RHEED oscillations. To solve the magnet issue, a finite element model has been

  3. Seizure control by decanoic acid through direct AMPA receptor inhibition.

    PubMed

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A; Hardege, Jörg D; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2016-02-01

    The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  4. Seizure control by decanoic acid through direct AMPA receptor inhibition

    PubMed Central

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A.; Hardege, Jörg D.; Chen, Philip E.

    2016-01-01

    See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  5. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  6. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-01

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality. PMID:25621941

  7. Application of Controlled Radical Polymerization for Nucleic Acid Delivery

    PubMed Central

    CHU, DAVID S.H.; SCHELLINGER, JOAN G.; SHI, JULIE; CONVERTINE, ANTHONY J.; STAYTON, PATRICK S.; PUN, SUZIE H.

    2012-01-01

    CONSPECTUS Nucleic acid-based therapeutics can potentially address otherwise untreatable genetic disorders and have significant potential for a wide range of diseases. Therapeutic gene delivery can restore protein function by replacing defunct genes to restore cellular health while RNA interference (RNAi) can mask mutated and harmful genes. Cationic polymers have been extensively studied for nucleic acid delivery applications due to their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, but toxicity and particle stability have limited their clinical applications. The advent of controlled radical polymerization has improved the quality, control and reproducibility of synthesized materials. Controlled radical polymerization yields well-defined, narrowly disperse materials of designable architectures and molecular weight, allowing study of the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity for improved design of next-generation vectors. Robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) have been used to engineer materials that specifically enhance extracellular stability, cellular specificity, and decrease toxicity. This Account reviews findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. In addition, polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release are also discussed. Finally, promising materials with in vivo applications ranging from pulmonary gene delivery to DNA vaccines are described. PMID:22242774

  8. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  9. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  10. Initial results from the Pawnee eddy correlation system for acid deposition research

    SciTech Connect

    Zeller, K.; Massman, W.; Stocker, D.; Fox, D.G.; Stellman, D.; Hazlett, D.

    1989-01-01

    The Pawnee grassland eddy correlation dry deposition project is described. Instrumentation, methods of analysis, and initial data and research findings are presented. Data from this eddy correlation system show agreement with previous observations of deposition velocities for atmospheric ozone, NO{sub 2}, and NO{sub x}; micrometeorological theory; and micrometeorological site characteristics.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the

  12. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    Rainfall samples were collected over a period of 3 years and 8 months in subtropical East Asia. They are categorized into different rainfall types and analyzed to assess the ionic composition and its effect on the acidity of wet deposition in southern Taiwan. Only 4% of samples had a pH of <5.0, indicating that the study area is not impacted significantly by acid rain. The volume-weighted mean (VWM) pH by rainfall type was Spring Rain 5.74, Typhoon Rain 5.56, Summer Rain 5.46, Typhoon Outer Circulation (TOC) Rain 5.45, Plum Rain 5.32 and Autumn-Winter Rain 5.29. Dilution effects were important to the equivalent ionic concentration of different rainfall types. HCO 3-, SO 42- and Cl - were detected as major anions whereas NH 4+, Na + and Ca 2+ were major cations. CO 2-derived HCO 3- was the major ionic species in all but Typhoon Rain and Spring Rain, in which the major species were Na + and Cl - and Ca 2+, respectively. Excluding HCO 3-, the major species were NH 4+, Na + and Ca 2+ in Plum Rain, the secondary photochemical products SO 42-, NO 3- and NH 4+ in TOC Rain and Summer Rain, and Na + and Ca 2+ in Autumn-Winter Rain. Calculation of arithmetic means showed that dicarboxylic acids contributed between 0.25% and 0.53% of the total ionic concentration and of these, oxalic acid contributed the least (81.3% of the dicarboxylic acid) to TOC Rain and the most (96.1% of the dicarboxylic acid) to Spring Rain, suggestive of long-range transport in the latter. Differences in wet deposition composition were shown to be a result of differences in local emissions and long-range transport (hence of prevailing wind direction) during the period of rainfall and of the frequency and volume of rain that typifies each rainfall type. Principal component analysis (PCA) further revealed that traffic-related and industrial organic and inorganic pollutants, their secondary photochemical products, sea salts, and dust are important contributors to wet deposition. Moreover, the ratio of

  13. Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Drukteinis, Saulius E.

    Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were

  14. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  15. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  16. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    SciTech Connect

    Podestà, Alessandro E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo E-mail: pmilani@mi.infn.it

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  17. Method for controlling energy density for reliable pulsed laser deposition of thin films

    SciTech Connect

    Dowden, P. C. E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X. E-mail: qxjia@lanl.gov

    2014-02-15

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  18. Simple evaporation controller for thin-film deposition from a resistively heated boat

    NASA Astrophysics Data System (ADS)

    Scofield, John H.; Bajuk, Lou; Mohler, William

    1990-07-01

    A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.

  19. Simple evaporation controller for thin-film deposition from a resistively heated boat

    NASA Technical Reports Server (NTRS)

    Scofield, John H.; Bajuk, Lou; Mohler, William

    1990-01-01

    A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.

  20. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    USGS Publications Warehouse

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia

  1. Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    SciTech Connect

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan

    2015-07-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO{sub 3} thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO{sub 3} stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10{sup −2} mbars and 10{sup −1} mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.

  2. Controlling the work function of molybdenum disulfide by in situ metal deposition.

    PubMed

    Zhou, Peng; Song, Xiongfei; Yan, Xiao; Liu, Chunsen; Chen, Lin; Sun, Qingqing; Zhang, David Wei

    2016-08-26

    Control of the work function of molybdenum disulfide (MoS2) under ultrathin metal was investigated using in situ metal deposition and direct ultraviolet photoelectron spectroscopy measurement in an ultra-high vacuum system. When the metal thickness turned from two dimensional into bulk, the work function was also raised up at the nickel-MoS2 interface, barely changed at the titanium-MoS2 interface and lowered at the hafnium-MoS2 interface. Meanwhile, the mechanisms of charge transfer and band alignment with metal deposition were also discussed. The Schottky barrier at metal-MoS2 interfaces could be tailored by both types and thicknesses of deposited metal. The low work function metal was a good indicator for MoS2 contact electrodes. It paved the way towards future high performance MoS2 device applications. PMID:27419644

  3. Controlling the work function of molybdenum disulfide by in situ metal deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Song, Xiongfei; Yan, Xiao; Liu, Chunsen; Chen, Lin; Sun, Qingqing; Zhang, David Wei

    2016-08-01

    Control of the work function of molybdenum disulfide (MoS2) under ultrathin metal was investigated using in situ metal deposition and direct ultraviolet photoelectron spectroscopy measurement in an ultra-high vacuum system. When the metal thickness turned from two dimensional into bulk, the work function was also raised up at the nickel‑MoS2 interface, barely changed at the titanium‑MoS2 interface and lowered at the hafnium‑MoS2 interface. Meanwhile, the mechanisms of charge transfer and band alignment with metal deposition were also discussed. The Schottky barrier at metal‑MoS2 interfaces could be tailored by both types and thicknesses of deposited metal. The low work function metal was a good indicator for MoS2 contact electrodes. It paved the way towards future high performance MoS2 device applications.

  4. Numerical Laser Energy Deposition on Supersonic Cavity Flow and Sensor Placement Strategies to Control the Flow

    PubMed Central

    Aradag, Selin

    2013-01-01

    In this study, the impact of laser energy deposition on pressure oscillations and relative sound pressure levels (SPL) in an open supersonic cavity flow is investigated. Laser energy with a magnitude of 100 mJ is deposited on the flow just above the cavity leading edge and up to 7 dB of reduction is obtained in the SPL values along the cavity back wall. Additionally, proper orthogonal decomposition (POD) method is applied to the x-velocity data obtained as a result of computational fluid dynamics simulations of the flow with laser energy deposition. Laser is numerically modeled using a spherically symmetric temperature distribution. By using the POD results, the effects of laser energy on the flow mechanism are presented. A one-dimensional POD methodology is applied to the surface pressure data to obtain critical locations for the placement of sensors for real time flow control applications. PMID:24363612

  5. Numerical laser energy deposition on supersonic cavity flow and sensor placement strategies to control the flow.

    PubMed

    Yilmaz, Ibrahim; Aradag, Selin

    2013-01-01

    In this study, the impact of laser energy deposition on pressure oscillations and relative sound pressure levels (SPL) in an open supersonic cavity flow is investigated. Laser energy with a magnitude of 100 mJ is deposited on the flow just above the cavity leading edge and up to 7 dB of reduction is obtained in the SPL values along the cavity back wall. Additionally, proper orthogonal decomposition (POD) method is applied to the x-velocity data obtained as a result of computational fluid dynamics simulations of the flow with laser energy deposition. Laser is numerically modeled using a spherically symmetric temperature distribution. By using the POD results, the effects of laser energy on the flow mechanism are presented. A one-dimensional POD methodology is applied to the surface pressure data to obtain critical locations for the placement of sensors for real time flow control applications. PMID:24363612

  6. National Acid Precipitation Assessment Program: Acidic deposition: An inventory of non-Federal research, monitoring, and assessment information

    SciTech Connect

    Herrick, C.N.

    1990-01-01

    The Acid Precipitation Act of 1990 (Title VII of the Energy Security Act of 1980, P.L. 96-294) established the Interagency Task Force on Acid Precipitation to develop and implement the National Acid Precipitation Assessment Program (NAPAP). The information included in the document was provided to NAPAP's Task Group Leaders and State-of-Science and State-of-Technology authors in July 1989. The early release was intended to assure that the authors would be aware of the information at an early phase in the assessment production process.

  7. Phenological controls on inter-annual variability in ozone dry deposition velocity

    NASA Astrophysics Data System (ADS)

    Clifton, Olivia; Fiore, Arlene; Munger, J. William; Shevliakova, Elena; Horowitz, Larry; Malyshev, Sergey; Griffin, Kevin

    2016-04-01

    Our understanding of ozone removal by northern mid-latitude temperate deciduous forests is largely based on short-term observational studies, and thus year-to-year variations of this sink have received little attention. The specific pathways for ozone dry deposition include stomatal uptake and other non-stomatal processes that are poorly understood. Given the importance of ozone dry deposition to model accurately the tropospheric ozone budget and regional air quality, an improved mechanistic understanding of this ozone sink is needed. We investigate here the physical and biological controls on inter-annual variations in seasonal and diurnal cycles of ozone dry deposition velocity using nine years of hourly observations of eddy covariance ozone flux and concentration measurements at Harvard Forest, a northern mid-latitude temperate deciduous forest. We also use coincident eddy covariance water vapor flux and sensible heat flux and other micrometeorological measurements to infer stomatal conductance in order to separate the impacts of stomatal versus non-stomatal pathways on ozone deposition. There is a difference of approximately a factor of two between minimum and maximum monthly daytime mean ozone dry deposition velocities at Harvard Forest. The highest summertime mean ozone dry deposition velocities occur during 1998 and 1999 (0.72 cm/s), and similar seasonal and diurnal cycles occur in both years. The similar dry deposition velocities during these two years, however, may reflect compensation between different processes as mean daytime summertime stomatal conductance during 1998 is roughly 1.5 times higher than for 1999, suggesting large year-to-year variations in non-stomatal as well as stomatal uptake of ozone. We partition the onset and decline of the growing season each year into different periods using spring and fall phenology observations at Harvard Forest. Combining the dry deposition velocities across years during each phenological period, we find that

  8. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  9. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  10. Vertical Continuity and Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Hu, Hanqiong; Woo, Youngwoo; Feng, Xunda; Osuji, Chinedum; Osuji Lab Team

    2015-03-01

    We report the fabrication of vertically aligned cylindrical block copolymer (BCP) domains using continuous electrospray deposition (ESD) onto bare wafer surfaces. The out-of-plane orientation of hexagonally packed styrene cylinders was achieved in a ``fast-wet'' deposition regime where rapid evaporation of solvent in droplets of polymer solution drove the vertical alignment of SBS domains. The deposition conditions were optimized such that thermally activated crosslinking of the polybutadiene matrix provided kinetic control of the morphology, locking in the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the non-treated substrate. Physically continuous and vertically oriented domains is achieved over several microns of film thickness. We describe the effects of flow rate, collection distance and substrate temperature on thin film morphology and demonstrate selective etching capabilities. The ability of ESD to fabricate well-ordered and aligned BCP films on non-treated substrates, the low utilization of material relative to spin-coating and the continuous nature of the deposition may open up new opportunities for BCP thin films. We are exploring ESD as a new platform for sequential deposition of BCPs with different functionalities.

  11. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  12. Characterization and properties of controlled nucleation thermochemical deposited (CNTD) silicon carbide

    NASA Technical Reports Server (NTRS)

    Dutta, S.; Rice, R. W.; Graham, H. C.; Mendiratta, M. C.

    1978-01-01

    The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200,000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably below those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress.

  13. How heterogeneity in the shear dilation of a deposit controls the mechanics of breaching slope failure

    NASA Astrophysics Data System (ADS)

    You, Yao; Flemings, Peter; Mohrig, David; Germaine, John

    2014-11-01

    Breaching is a type of retrogressive submarine slope failure associated with pore pressure drops in both space and time, and this drop strengthens the failing deposit. Breaching is characterized by a near-vertical failure surface that retreats with a relatively constant velocity, on the order of a millimeter per second. Breaching is controlled by interactions between shear-dilation-generated pore pressure drops and pore pressure dissipation through intergranular fluid flow. Laboratory measurements show that shear dilation in a deposit increases with increasing effective stress ratio between the major principal effective stress and the minor principal effective stress as well as decreasing confining stress. We present a two-dimensional numerical model that indicates how effective stress ratio and confining stress produce spatially varying dilation, affecting the mechanics of breaching. Experimental results show that dilation in a breaching deposit increases with proximity to the failure surface. As a result, the maximum magnitude of pore pressure drop is very close to the failure surface. The numerical model confirms that the sediment release is dominated by pore pressure dissipation through intergranular fluid flow in the horizontal direction. This allows the erosion rate to be treated as a constant in the vertical direction. Numerical model results also show that because dilation decreases with increasing vertical depth, the deposit becomes less stable with depth, suggesting a potential upper limit for the thickness of the deposit undergoing breaching.

  14. Patterns of wet deposition of acidic matter in Maryland: January-June 1984. Final report

    SciTech Connect

    Maxwell, C.; Bartoshesky, J.; Pfeffer, N.; Campbell, S.

    1987-03-03

    A data base containing precipitation-chemistry data collected by multiple monitoring programs in and around Maryland for the January through June 1984 time period was compiled. Isopleth maps were constructed showing the spatial variation in the precipitation concentrations and depositions of hydrogen ion, sulfate, nitrate, ammonium, calcium, sodium, chloride, potassium, and magnesium. For each parameter, the concentration pattern was very similar to its deposition pattern. The patterns suggest the occurrence of a ridge of high sulfate, nitrate, and hydrogen ion concentrations and depositions extending from south-central Pennsylvania, south into Maryland along the western shore of the Chesapeake Bay.

  15. Complexity of Ore-controlling Fracture System of Dajishan Tungsten Deposit, China

    NASA Astrophysics Data System (ADS)

    LIU, Ningqiang; YU, Chongwen

    To understand the complexity of the development and evolution of ore-controlling fracture system in Dajishan tungsten deposit, Quannan County, Jiangxi Province, we collected rock samples in different depth of deposit and carried out experimental work on rock acoustic emission. Results show that the sequence of rock acoustic emission events follows a clear process of occurrence, quiescence, and burst. The onset and development of fracture system has a cascade of avalanches-punctuated equilibrium hierarchic fractal structure, and the breaking process is very discontinuous, the energy released is also discontinuous, and it becomes smaller with the increase of depth, which reflects the development of mineralization. The author applies the theory of complexity to study the ore-controlling fractures of the vein-type tungsten ore deposits in Dajishan. The following conclusions are drawn. The dynamics of the onset and development of fracture system is similar to the ore-forming system. That is, it consists of the self-organization arising from the coupling of random motion, the coherent behavior produced by interaction between subsystems, the realization of cooperative synchronization, the occurrence of critical transition point, and the attainment of self-organized criticality. These result from the coupling and interaction of physical movement of minerals, time, and space. The formation of vein-type tungsten ore deposit in Dajishan is closely related to critical rupture of ore-controlling fracture system and its avalanches-punctuated equilibrium cascade fractal growth, that is, metallogenic model of vein-type tungsten ore deposit in Dajishan follows generalized "five-storeyed type" metallogenic model.

  16. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A.; Hogle, Richard E.

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  17. Optimization of deposition rate in HiPIMS by controlling the peak target current

    NASA Astrophysics Data System (ADS)

    Tiron, V.; Velicu, I.-L.; Vasilovici, O.; Popa, G.

    2015-12-01

    High power impulse magnetron sputtering (HiPIMS) is a very attractive ionized physical vapour deposition technique which has been of great interest over the last decade. Thanks to the high ionization degree of the sputtered material (typically  >50%), this technique is used mainly for enhancing and tailoring coating properties. However, the lower deposition rate compared to the conventional direct-current (dc) magnetron sputtering process still represents a major drawback of HiPIMS. In this contribution, a study of the ability to control the peak target current in HiPIMS discharge through certain experimental parameters and, thus, to overcome the deposition rate limitation is presented. The HiPIMS was operated with ultra-short pulse durations (<20 μs) and two different operation modes have been used: single-pulse mode and multi-pulse mode, respectively. The peak target current was controlled by changing the target voltage, pulse duration, magnetic field, and target erosion depth. For a certain favorable combination of experimental parameters, it was found that the deposition rate value can be increased by a factor of up to 3.5, reaching values only 20% lower than those found in dc.

  18. Characterization of a controlled electroless deposition of copper thin film on germanium and silicon surfaces

    NASA Astrophysics Data System (ADS)

    Scudiero, Louis; Fasasi, Ayuba; Griffiths, Peter R.

    2011-02-01

    Nanofilms of copper were deposited on silicon and, for the first time, on polycrystalline germanium substrates by electroless deposition. Germanium or silicon disks were immersed in a 10 mM copper sulfate solution containing dilute hydrofluoric acid at room temperature. This simple one-step deposition does not require the use of laborious operations or expensive equipment, that the reaction medium be degassed, or that the film be annealed. The copper film grows in a few minutes, producing a film on both Ge and Si that covers a very large area of the substrate in contrast to other metals such as Au, Ag, Pt and Pd for which deposition on Ge and Si produces islands or dendrites. Atomic force microscopy, X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) were used to characterize the microstructure and confirmed the formation of elemental copper nanofilms. The AFM micrographs reveal a Stranski-Krastanov type of film growth (layers + islands) that varies with the length of time the Ge or Si substrate is immersed in the CuSO4 solution. Thicker films were observed on the Ge than on the Si substrate resulting in larger particles and rougher surface than on Si. XPS analysis shows that the elemental copper is deposited on both Ge and Si substrates and that the films oxidize over a period of weeks with air exposure at room temperature. Finally, PXRD data reveal two preferential orientations (1 1 1) and (2 0 0) for the copper crystallites grown on both Ge and Si. The same intensity of the (1 1 1)-texture was measured on both Ge and Si substrate which is an important result because it has been shown that the (1 1 1) texture reduces stress-induced voiding and increases resistance to electromigration in metal interconnects.

  19. Acid deposition coverage in five North American newspapers, 1979-1982

    SciTech Connect

    Kauffeld, J.A.; Fortner, R.W.

    1987-01-01

    Daily newspapers in some areas receiving acid rain, in some areas reported to be producing acid rain, and in some areas apparently ''neutral'' in the issue were content analyzed for their coverage of acid rain between 1979 and 1982. Of the five papers, the greatest amount of coverage was in the Cleveland Plain Dealer and the Toronto Globe and Mail. Coverage of acid rain effects was greatest in the Washington Post, as was the number of items suggesting remedies for the problem. Articles from papers in areas receiving acid rain contained more indications of urgency than those from areas blamed for the problem.

  20. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  1. Control of Meloidogyne incognita Using Mixtures of Organic Acids.

    PubMed

    Seo, Yunhee; Kim, Young Ho

    2014-12-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  2. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. Photoswitchable click amino acids: light control of conformation and bioactivity.

    PubMed

    Hoppmann, Christian; Schmieder, Peter; Heinrich, Nadja; Beyermann, Michael

    2011-11-25

    Click the switch: By using a photoswitchable click amino acid (PSCaa) a light-induced intramolecular thiol-ene click reaction with a neighboring cysteine under very mild conditions results in an azobenzene bridge. By expanding the genetic code for PSCaa the specific incorporation of photoswitch units into proteins in living cells can result in an exciting approach for studying light-controllable activity, in vivo. PMID:21998087

  4. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    PubMed

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses. PMID:26599955

  5. Acid deposition: atmospheric processes in eastern North America, a review of current scientific understanding

    SciTech Connect

    Not Available

    1983-01-01

    There is no observational evidence of a strong nonlinearity in the relationship between annual average total emissions and total deposition of sulfur in eastern North America. The finding is supported by theoretical calculations using the best available laboratory measurements of photochemical rate parameters. Currently available models of long-range atmospheric transport and transformation are not sufficiently developed to assess relationships between emissions from specific sources and deposition at specific receptor sites with high reliability.

  6. Quantification of hydrochloric acid and particulate deposition resulting from space shuttle launches at John F. Kennedy space center, Florida, USA

    NASA Astrophysics Data System (ADS)

    Dreschel, Thomas W.; Hall, Carlton R.

    1990-07-01

    Observations of damage to vegetation, acute reductions in surface water pH, and kills of small fish prompted the Biomedical Operations and Research Office at the John F. Kennedy Space Center to initiate intensive environmental evaluations of possible acute and long-term chronic impacts that may be produced by repeated launches of the space shuttle. An important step in this evaluation was the identification of deposition patterns and the quantification of ecosystem loading rates of exhaust constituents from the solid rocket motors (SRMs) in the area of the launch pad. These constituents are primarily aluminum oxide (Al2O3) and hydrochloric acid (HCl). During three launches of the space transportation system (STS-11, 13, and 14) up to 100 bulk deposition collectors, 83 mm in diameter containing 100 ml of deionized water, were deployed in a grid pattern covering 12.6 ha north of launch pad 39-A. Estimates of HCl and particulate deposition levels were made based on laboratory measurements of items entrained in the collectors. Captured particulates consisted of a variety of items including Al2O3, sand grains, sea shell fragments, paint chips, and other debris ablated from the launch pad surface by the initial thrust of the SRMs. Estimated ranges of HCl and particulate deposition in the study area were 0-127 g/m2 and 0-246 g/m2, respectively. Deposition patterns were highly influenced by wind speed and direction. These measurements indicate that, under certain meteorological conditions, up to 7.1 × 103 kg of particulates and 3.4 × 103 kg of HCl can be deposited to the near-field environment beyond the launch pad perimeter fence.

  7. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

    PubMed

    Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary

    2013-07-01

    The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. PMID:23422173

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  9. Atomic layer controlled deposition of Al 2O 3 films using binary reaction sequence chemistry

    NASA Astrophysics Data System (ADS)

    Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S. M.

    1996-11-01

    Al 2O 3 films with precise thicknesses and high conformality were deposited using sequential surface chemical reactions. To achieve this controlled deposition, a binary reaction for Al 2O 3 chemical vapor deposition (2Al(CH 3) 3 + 3H 2O → Al 2O 3 + 6CH 4) was separated into two half-reactions: (A) AlOH ∗ + Al(CH 3) 3 → AlOAl(CH 3) 2∗ + CH 4, (B) AlCH 3∗ + H 2O → AlOH ∗ + CH 4, where the asterisks designate the surface species. Trimethylaluminum (Al(CH 3) 3) (TMA) and H 2O reactants were employed alternately in an ABAB … binary reaction sequence to deposit Al 2O 3 films on single-crystal Si(100) and porous alumina membranes with pore diameters of ˜ 220 Å. Ellipsometric measurements obtained a growth rate of 1.1 Å/AB cycle on the Si(100) substrate at the optimal reaction conditions. The Al 2O 3 films had an index of refraction of n = 1.65 that is consistent with a film density of ϱ = 3.50 g/cm 3. Atomic force microscope images revealed that the Al 2O 3 films were exceptionally flat with a surface roughness of only ±3 Å ( rms) after the deposition of ˜ 270 Å using 250 AB reaction cycles. Al 2O 3 films were also deposited inside the pores of Anodisc alumina membranes. Gas flux measurements for H 2 and N 2 were consistent with a progressive pore reduction versus number of AB reaction cycles. Porosimetry measurements also showed that the original pore diameter of ˜ 220 Å was reduced to ˜ 130 Å after 120 AB reaction cycles.

  10. Controlled Assembly of Hybrid Bulk-Heterojunction Solar Cells bySequential Deposition

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Alivisatos, A. Paul

    2006-08-13

    This work presents a technique to create ordered and easily characterized hybrid nanocrystal-polymer composites by sequential deposition of tetrapod-shaped cadmium telluride (CdTe) nanocrystals and poly(3-hexlythiophene). With controlled fabrication and composite morphology, these devices offer several advantages over traditional codeposited hybrid cells, and provide a model system for detailed investigation into the operation of bulk-heterojunction cells.

  11. Controlling Degree of Crystalline Boron Carbide by Plasma Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Sandstrom, Joseph

    2007-03-01

    There has been a recent resurgence in the interest of semiconducting boron carbide, based on its use as a radiation hard semiconductor. Here, we present growth character and commensurate structural and electronic properties from the low temperature but large area (6" wafer) deposition of boron carbide from the solid source precursor, 1,2 - dicarbadodecaborane. Of special interest is the control over the degree of crystallinity as provided from changing plasma pressure growth.

  12. Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces

    NASA Technical Reports Server (NTRS)

    Chameides, William L.

    1987-01-01

    A formalism is developed to describe the dry deposition of soluble reactive gases to wetted surfaces in terms of the relevant meteorological conditions, the surface roughness, the total amount of liquid water present on the surface, the rate of accumulation of this water, and the species' solubility and reactivity in the surface water. This formulation is then incorporated into a model designed to simulate the generation of acidic dew from the deposition of HNO3, SO2, S(IV) oxidants, H2O2, and O3. Similar to the observations of dew in the continental U.S., the model generates a dewdrop pH of about 4 by the end of the night; the pH can rapidly fall to toxic levels due to rapid evaporation after sunrise. Relatively low deposition velocities are predicted for the SO2 and O3 because of their lower solubilities and hence larger surface resistances than those of the other oxidants. Because the chemical lifetime of the SO2 in the dew is influenced by the atmospheric levels of H2O2, O3, and SO2, the SO2 deposition velocity is a strong function of these species' atmospheric abundances.

  13. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    NASA Astrophysics Data System (ADS)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  14. Fabrication and morphology control of BaWO{sub 4} thin films by microwave assisted chemical bath deposition

    SciTech Connect

    Wang Rui; Liu Chen; Zeng Jia; Li KunWei; Wang Hao

    2009-04-15

    Highly crystallized barium tungstate (BaWO{sub 4}) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO{sub 4} films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies. - Graphical abstract: Highly crystallized BaWO{sub 4} thin films with controllable morphologies have been synthesized via mild microwave assisted chemical bath deposition. The oriented aggregation mechanism has been proposed as the possible formation mechanism of specific films.

  15. Trajectory analysis of acid deposition data from the new jersey pine barrens

    NASA Astrophysics Data System (ADS)

    Budd, William W.

    This research provides an example of the application of a simple method for evaluating regional interrelationships using air parcel trajectory analysis. An assessment of trajectories associated with storms affecting McDonald's Branch watershed (39°50'N, 74°30'W) is presented. A simple classification system is used to examine regional contributions of acid precursors. The results of the work suggest that major regional sources of acid precursor emissions dominated precipitation acidity for the Pine Barrens region from 1978 to 1981. An incremental approach to acid precipitation policy is suggested.

  16. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  17. First year sugar maple (Acer saccharum, Marsh. ) seedling nutrition, vesicular-arbuscular mycorrhizal colonization, physiology, and growth along an acidic deposition gradient in Michigan

    SciTech Connect

    McLaughlin, J.W.

    1992-01-01

    A field study was conducted to evaluate the use of foliar amino acid and root reducing sugar accumulations to separate acidic deposition from natural (i.e., soil phosphorus, mycorrhizae, and temperature) ecosystem stressors on first-year sugar maple seedling growth in three Michigan forests. Seedling growth was greatest at the sites exposed to highest levels of acidic deposition. However, sites receiving greatest acidic deposition rates also had high available soil phosphorus contents. No significant differences occurred, suggesting increased nitrogen loadings were not reflected in seedling tissue nitrogen. Seedling root or foliar calcium, magnesium, or potassium also were not significantly different, suggesting those elements were not growth limiting. Significant differences, however, occurred for seedling arginine and glutamine concentrations in foliage and reducing sugar concentrations in roots and were negatively correlated with seedling tissue phosphorus concentrations, suggesting phosphorus was limiting seedling growth at the low acidic deposition site. Vesicular-arbuscular mycorrhizal colonization of seedling roots was greater at the low acidic deposition site and positively correlated with seedling amino acid and reducing sugar accumulation but negatively correlated with sucrose concentrations in seedling roots, indicating that the fungal partner may have stimulated sucrose degradation to reducing sugars. Both air and soil temperatures were positively correlated with total sugar and sucrose concentrations in seedling roots. High levels of arginine, glutamine, and reducing sugars were negatively correlated with seedling growth indicating that seedlings at the low acidic deposition site were more stressed than seedlings at the sites receiving higher levels of pollutant loads. The results suggest differences in foliar arginine and glutamine and root reducing sugars in the forests in this study are likely due to natural rather than acidic deposition stress.

  18. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    PubMed

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. PMID:27154668

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  20. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  1. Controlled Cu nanoparticle growth on wrinkle affecting deposition of large scale graphene

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohsin; Uddin, Md Jasim; Rahman, Muhammad Anisur; Kishi, Naoki; Soga, Tetsuo

    2016-09-01

    For Chemical Vapor Deposition (CVD) grown graphene on Cu substrate, deviation from atomic orientation in crystals may be resulted from diffusion of abnormalities in the form of Cu nanoparticle (NP) formation or defects and affects graphene quality and properties drastically. However, for the uniform graphene deposition, mechanism of nanoparticle formation and its suppression procedure need to be better understood. We report growth of graphene, affected by Cu nanoparticles (NPs) emergence on Cu substrates. In the current study, growth of these nanoparticles has been suppressed by fine tuning of carrier gas by two-fold gas insertion mechanism and hence, quality and uniformity of graphene is significantly improved. It has been also observed that during the deposition by CVD, Cu nanoparticles cluster preferentially on wrinkles or terrace of the Cu surface. Composition of NP is extensively studied and found to be the oxide nanoparticle of Cu. Our result, controlled NP growth affecting deposition of graphene layer would provide useful insight on the growth of uniform and high quality Single layer or bilayer graphene for numerous electronics applications.

  2. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    PubMed

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed. PMID:26351731

  3. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  4. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    Goss, Lisa M.

    2003-01-01

    A demonstration showing acid rain and lake acidification is described. In this demonstration, SO2 gas is generated in a large graduated cylinder and then dissolved in water droplets from a simple spray bottle. The droplets carry the acid into simulated lakes, one of which includes solid CaCO3 to mimic limestone's natural buffering capacity.

  5. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado

    USGS Publications Warehouse

    Rattray, G.; Sievering, H.

    2001-01-01

    Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70ngNm-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200ngNm-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20ngNm-3. Large deposition velocities (>2cms-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols. Copyright (C) 2001 Elsevier Science B.V.Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200 ng N m-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to

  6. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf

    NASA Astrophysics Data System (ADS)

    Kazil, J.; McKeen, S.; Kim, S.-W.; Ahmadov, R.; Grell, G. A.; Talukdar, R. K.; Ravishankara, A. R.

    2014-12-01

    Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (≥100μgL-1), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89μgL-1, with peak values of 7.8μgL-1, for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations.

  7. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    PubMed Central

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-01-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1−xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1−xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1−xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1−xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1−xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C–320 °C) on MgO using PLD. This offers a broad scope of various applications. PMID:26548645

  8. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  9. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition.

    PubMed

    Wang, Tuo; Luo, Zhibin; Li, Chengcheng; Gong, Jinlong

    2014-11-21

    Photoelectrochemical (PEC) water splitting is an attractive approach to generate hydrogen as a clean chemical fuel from solar energy. But there remain many fundamental issues to be solved, including inadequate photon absorption, short carrier diffusion length, surface recombination, vulnerability to photo-corrosion, and unfavorable reaction kinetics. Owing to its self-limiting surface reaction mechanism, atomic layer deposition (ALD) is capable of depositing thin films in a highly controllable manner, which makes it an enabling technique to overcome some of the key challenges confronted by PEC water splitting. This tutorial review describes some unique and representative applications of ALD in fabricating high performance PEC electrodes with various nanostructures, including (i) coating conformal thin films on three-dimensional scaffolds to facilitate the separation and migration of photocarriers and enhance light trapping, as well as realizing controllable doping for bandgap engineering and forming homojunctions for carrier separation; (ii) achieving surface modification through deposition of anti-corrosion layers, surface state passivation layers, and surface catalytic layers; and (iii) identifying the main rate limiting steps with model electrodes with highly defined thickness, composition, and interfacial structure. PMID:24500041

  10. Controlled Formation of Surface Patterns in Metal Films Deposited on Elasticity-Gradient PDMS Substrates.

    PubMed

    Yu, Senjiang; Sun, Yadong; Ni, Yong; Zhang, Xiaofei; Zhou, Hong

    2016-03-01

    Controlled surface patterns are useful in a wide range of applications including flexible electronics, elastomeric optics, fluidic channels, surface engineering, measurement technique, biological templates, stamps, and sensors. In this work, we report on the controlled formation of surface patterns in metal films deposited on elasticity-gradient polydimethylsiloxane (PDMS) substrates. Because of the temperature gradient during the curing process, the PDMS substrate in each sample successively changes from a purely liquid state at one side to a purely elastic state at the opposite side. It is found that surface folds appear in the liquid or viscous PDMS region while wrinkles form in the elastic region. In the transition region from the liquid to elastic PDMS, a nested pattern (i.e., the coexisting of folds and wrinkles) can be observed. The folding wave is triggered by the intrinsic stress during the film deposition and its wavelength is independent of the film thickness. The wrinkling wave is induced by the thermal compression after deposition and its wavelength is proportional to the film thickness. The report in this work could promote better understanding of the effect of substrate elasticity on the surface patterns and fabrication of such patterns (folds and wrinkles) by tuning the substrate property. PMID:26859513

  11. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M.; Sturchio, N.; Lotfy, Z.; Mahmood, A.M.; El Alfy, Z.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  12. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  13. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely

  14. Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge

    PubMed Central

    2013-01-01

    Catalytic iron nanoparticles generated by spark discharge were used to site-selectively grow carbon nanotubes (CNTs) and control their density. The generated aerosol nanoparticles were deposited on a cooled substrate by thermophoresis. The shadow mask on top of the cooled substrate enabled patterning of the catalytic nanoparticles and, thereby, patterning of CNTs synthesized by chemical vapor deposition. The density of CNTs could be controlled by varying the catalytic nanoparticle deposition time. It was also demonstrated that the density could be adjusted by changing the gap between the shadow mask and the substrate, taking advantage of the blurring effect of the deposited nanoparticles, for an identical deposition time. As all the processing steps for the patterned growth and density control of CNTs can be performed under dry conditions, we also demonstrated the integration of CNTs on fully processed, movable silicon microelectromechanical system (MEMS) structures. PMID:24090218

  15. Optically monitored spray coating system for the controlled deposition of the photoactive layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Vak, Doojin; van Embden, Joel; Wong, Wallace W. H.; Watkins, Scott

    2015-01-01

    A spray deposition process equipped with an in situ optical thickness monitoring system has been developed to fabricate the photoactive layer of solar cells. Film thickness is monitored by a photodiode-LED couple after each deposition cycle. Using optimized conditions, the thickness of the spray deposited photoactive films can be tuned to increase linearly with the number of deposition cycles over a wide range of deposition conditions. After instrument calibration, optimization of the active layer thickness can be accomplished by simply setting the desired absorbance of the film. The simple process outlined here may be used for the rapid optimization of thin film photovoltaic devices. As proof of this, we fabricate a poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester as well as a P3HT and indene-C60 bis-adduct organic solar cells, which achieve a champion power conversion efficiency of 4.2%.

  16. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    NASA Astrophysics Data System (ADS)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-05-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar+ ion beam, we cleaned the polymer residue without damaging the graphene network. HfO2 grown by atomic layer deposition on graphene cleaned using an Ar+ ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar+ ion cleaning) showed a non-uniform structure. A graphene-HfO2-metal capacitor fabricated by growing 20-nm thick HfO2 on graphene exhibited a very low leakage current (<10-11 A/cm2) for Ar+ ion-cleaned graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  17. Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation.

    PubMed

    Ta, V D; Carter, R M; Esenturk, E; Connaughton, C; Wasley, T J; Li, J; Kay, R W; Stringer, J; Smith, P J; Shephard, J D

    2016-05-18

    Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates. PMID:27094902

  18. Structural control of oil and gas deposits in southwest Gissar and Tadzhik depression

    SciTech Connect

    Chitalin, A.F.; Irinarkhova, N.V.; Stor, M.A. )

    1993-09-01

    Computer analysis of the space image (scale 1:1,000,000) has been done for the Surkhandar'ya part of the Tadzhik depression and southwest Gissar region using a program of automatic apportionment and statistical analysis of lineaments. The lineaments correspond to faults in the Paleozoic basement of the depression and to faults and joint systems in the overlying deformed Mesozoic-Cenozoic cover. Oil and gas deposits occur both in the crests of folds in the cover and in subthrust structures which occur at the intersection of different trends of lineaments. The deposits are localized in the zones of intersecting trends. We suggest that the migration of hydrocarbons from basement rocks toward the anticlinal culminations was controlled by the fault zones and joint systems. The most prospective areas are the zones of west-northwest and northwest extension which trend at right angles to the fold axes.

  19. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets.

    PubMed

    Lin, Zhijian; Zhang, Bing; Liu, Xiaoqing; Jin, Rui; Zhu, Wenjing

    2014-11-01

    Inulin, a group of dietary fibers, is reported to improve the metabolic disorders. In the present study, we investigated the effects of chicory inulin on serum metabolites of uric acid (UA), lipids, glucose, and abdominal fat deposition in quail model induced by a purine-rich diet. In this study, 60 male French quails were randomly allocated to five groups: CON (control group), MOD (model group), BEN (benzbromarone-treated group), CHI-H (high-dosage chicory inulin-treated group), and CHI-L (low-dosage chicory inulin-treated group). The serum UA level was significantly increased in the model group from days 7 to 28, as well as triglyceride (TG) and free fatty acid (FFA) increased later in the experimental period. The abdominal fat ratio was increased on day 28. Benzbromarone can decrease UA levels on days 14 and 28. The high and low dosage of chicory inulin also decreased serum UA levels on days 7, 14, and 28. The abdominal fat ratio, activity, and protein of acetyl-CoA carboxylase (ACC) were decreased in chicory inulin-treated groups. The activities of xanthine oxidase (XOD) and fatty acid synthase (FAS) were increased in the model group and decreased in the benzbromarone and chicory inulin groups. This study evaluated a quail model of induced hyperuricemia with other metabolic disorders caused by a high-purine diet. The results indicated that a purine-rich diet might contribute to the development of hyperuricemia, hypertriglyceridemia, and abdominal obesity. Chicory inulin decreased serum UA, TG, and abdominal fat deposition in a quail model of hyperuricemia by altering the ACC protein expression and FAS and XOD activities. PMID:25314375

  20. Analysis of WC/Ni-Based Coatings Deposited by Controlled Short-Circuit MIG Welding

    NASA Astrophysics Data System (ADS)

    Vespa, P.; Pinard, P. T.; Gauvin, R.; Brochu, M.

    2012-06-01

    This study investigates the recently developed controlled short-circuit metal inert gas (CSC-MIG) welding system for depositing WC/Ni-based claddings on carbon steel substrates. WC/Ni-based coatings deposited by CSC-MIG were analyzed by optical light microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) capabilities. X-ray diffraction (XRD) and hardness measurements of depositions are also reported. The CSC-MIG welding system provides a significant amount of user control over the current waveform during welding and has lower heat input when compared with traditional MIG welding. Heat input for the analyzed coatings ranged from 10.1 to 108.7 J/mm. Metallurgically bonded coatings free from spatter and with 0.75% average porosity were produced. It was found that the detrimental decarburization of the WC particles seen in thermal spray systems does not occur when welding with the CSC-MIG. Precipitation of a reaction layer around the reinforcing phase was identified as WC; the average thickness of which increases from 3.8 to 7.2 μm for the low and high heat input condition, respectively. Precipitation of newly formed WC particles was observed; their size distribution increased from D 50 of 2.4 μm in the low heat input weldment to 6.75 μm in the high heat input weldment. The level of dilution of the reinforcing phase increases significantly with heat input. The hardness of the deposited coatings decreases from 587 HV10 to 410 HV10 when the energy input was increased from 10.1 to 108.7 J/mm.

  1. Skeletal Muscle Lipid Deposition and Insulin Resistance: Impact of Dietary Fatty Acids and Exercise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence has mounted indicating that elevated intramuscular triacylglycerol levels are associated with diminished insulin sensitivity in skeletal muscle. This lipid accumulation is most likely due to enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid oxidation. Th...

  2. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RETIREMENT SYSTEM-BASIC ANNUITY Law Enforcement Officers, Firefighters, and Air Traffic Controllers Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air traffic... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Deposits for second-level supervisory...

  3. Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Kekkonen, Ville; Chaudhuri, Saumyadip; Clarke, Fergus; Kaisto, Juho; Liimatainen, Jari; Pandian, Santhosh Kumar; Piirto, Jarkko; Siltanen, Mikael; Zolotukhin, Aleksey

    2016-03-01

    Recent results of properties and performance of {WO}_3 gas sensing layers produced by industrial picosecond pulsed laser deposition process developed by Picodeon Ltd Oy are presented in this paper. {WO}_3 layers with controllable porosity and nanostructure were successfully deposited on commercial sensor platforms, and basic measurements to characterize their performance as gas sensors gave promising results.

  4. The Effect of Slaughter Season on the Fatty Acid Profile in Four Types of Fat Deposits in Crossbred Beef Bulls

    PubMed Central

    Sobczuk-Szul, Monika; Wroński, Marek; Wielgosz-Groth, Zofia; Mochol, Magdalena; Rzemieniewski, Arkadiusz; Nogalski, Zenon; Pogorzelska-Przybyłek, Paulina; Purwin, Cezary

    2013-01-01

    The objective of this study was to determine the effect of slaughter season on the fatty acid profile in four types of fat deposits in crossbred (Polish Holstein Friesian Black-and-White×Limousine) beef bulls. The percentage share of fatty acids was determined by gas chromatography and were divided into the following categories of fatty acids: saturated (SFAs), unsaturated (UFAs), monounsaturated (MUFAs), polyunsaturated (PUFAs), desirable hypocholesterolemic (DFAs) and undesirable hypercholesterolemic (OFAs), n-3 and n-6. Perinephric fat was characterized by the highest SFA concentrations (59.89%), and subcutaneous fat had the highest MUFA content (50.63%). Intramuscular fat was marked by a high percentage share of PUFAs and the highest PUFA/SFA ratio. The slaughter season had a significant effect on the levels of C18:3, C20:4 (p≤0.01) and conjugated linoleic acid (p≤0.05). There was an interaction between the slaughter season and fat type for the content of C20:4 (p≤0.01) and C20:5 (p≤0.05). The results of this study show that beef from cattle slaughtered in the summer season has a higher nutritional value and more health-promoting properties. PMID:25049787

  5. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment.

    PubMed

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  6. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea. PMID:18758977

  7. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  8. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose

    SciTech Connect

    Selig, M. J.; Viamajala, S.; Decker, S. R.; Tucker, M. P.; Himmel, M. E.; Vinzant, T. B.

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these lignin droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  9. Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery

    PubMed Central

    Yuan, Hong; Bao, Xin; Du, Yong-Zhong; You, Jian; Hu, Fu-Qiang

    2012-01-01

    Purpose: Both polymer micelles and mesoporous silica nanoparticles have been widely researched as vectors for small molecular insoluble drugs. To combine the advantages of copolymers and silica, studies on the preparation of copolymer-silica composites and cellular evaluation were carried out. Methods: First, a stearic acid-g-chitosan (CS-SA) copolymer was synthesized through a coupling reaction, and then silicone oxide (SiO2)-deposited doxorubicin (DOX)-loaded stearic acid-g-chitosan (CS-SA/SiO2/DOX) nanoparticles were prepared through the sol-gel reaction. Physical and chemical properties such as particle size, zeta potential, and morphologies were examined, and small-angle X-ray scattering (SAXS) analysis was employed to identify the mesoporous structures of the generated nanoparticles. Cellular uptake and cytotoxicity studies were also conducted. Results: CS-SA/SiO2/DOX nanoparticles with different amounts of SiO2 deposited were obtained, and SAXS studies showed that mesoporous structures existed in the CS-SA/SiO2/DOX nanoparticles. The mesoporous size of middle-ratio and high-ratio deposited CS-SA/SiO2/DOX nanoparticles were 4–5 nm and 8–10 nm, respectively. Based on transmission electron microscopy images of CS-SA/SiO2/DOX nanoparticles, dark rings around the nanoparticles could be observed in contrast with CS-SA/DOX micelles. Furthermore, CS-SA/SiO2/DOX nanoparticles exhibited faster release behavior in vitro than CS-SA/DOX micelles; cellular uptake research in A549 indicated that the CS-SA/SiO2/DOX nanoparticles were taken up by A549 cells more rapidly, and that CS-SA/SiO2/DOX nanoparticles entered the cell more easily when the amount of SiO2 was higher. IC50 values of CS-SA/DOX micelles, CS-SA/SiO2/DOX-4, CS-SA/SiO2/DOX-8, and CS-SA/SiO2/DOX-16 nanoparticles against A549 cells measured using the MTT assay were 1.69, 0.93, 0.32, and 0.12 μg/mL, respectively. Conclusion: SiO2-deposited stearic acid-g-chitosan organic–inorganic composites show promise

  10. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  11. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the

  12. Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control.

    PubMed

    Serna, Martha I; Yoo, Seong H; Moreno, Salvador; Xi, Yang; Oviedo, Juan Pablo; Choi, Hyunjoo; Alshareef, Husam N; Kim, Moon J; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A

    2016-06-28

    A scalable and catalyst-free method to deposit stoichiometric molybdenum disulfide (MoS2) films over large areas is reported, with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation, including single-crystal (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2) substrates. The films are deposited using carefully designed MoS2 targets fabricated with excess sulfur and variable MoS2 and sulfur particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 10(4) Ω cm(-1), were achieved. The MoS2 stoichiometry was confirmed by high-resolution Rutherford backscattering spectrometry. With the method reported here, in situ graded MoS2 films ranging from ∼1 to 10 monolayers can be deposited. PMID:27219117

  13. Formation of Acid Mine Drainage Water at Sb (Au) Deposit Pezinok

    NASA Astrophysics Data System (ADS)

    Rusko, Miroslav; Andráš, Peter; Kušnierová, Mária; Aschenbrenner, Štefan; Krnáč, Jozef; Dubiel, Ján

    2011-01-01

    The article presents the results of leaching experiments regarding the comparison of chemical and biological-chemical leaching of ores from the Sb-(Au-) base metal deposit Pezinok (Malé Karpaty., the Western Carpathians) under the same conditions in solution. Discussed are the differences between chemical and biological-chemical leaching activity. The extent and the kinetics of the biological-chemical leaching of the technogenous sediments from the setting-pits are significantly higher than those without bacteria.

  14. The importance of acid digestion of urine prior to spontaneous deposition of 210Po.

    PubMed

    Fellman, A; Ralston, L; Hickman, D; Ayres, L; Cohen, N; Spitz, H; Robinson, B

    1989-10-01

    Historically, radiochemical analysis of 210Po in urine has used spontaneous deposition of the nuclide directly from raw urine onto a suitable metal disc. Consequently, the urinary excretion fraction for Po in some current metabolic and dosimetric models is based on studies which inherently assume that metabolized (i.e., filtered out of the blood by the kidneys) 210Po is plated with the same efficiency as tracer 210Po which has been added to urine samples. Urine samples collected after intravenous administration of 210Po citrate to two species of nonhuman primates were divided and simultaneously analyzed via two methods: the historical procedure of plating 210Po from raw urine for one sample and a method which includes the addition of 208Po tracer and sample digestion with concentrated HNO3 prior to 210Po deposition for the other sample. A more significant amount of 210Po was consistently recovered when the urine was wet ashed then when it was not wet ashed. A temporal relationship was found to describe the change in the ratio of the deposition recoveries for the two methods. Possible mechanisms for this phenomenon and its dosimetric implications are discussed. PMID:2507478

  15. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment. PMID:26413704

  16. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective

    PubMed Central

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  17. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective.

    PubMed

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  18. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  19. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition.

    PubMed

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications. PMID:26813143

  20. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  1. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGESBeta

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulatormore » transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  2. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  3. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGESBeta

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  4. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    PubMed Central

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications. PMID:26813143

  5. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires.

    PubMed

    Hou, Wen Chi; Hong, Franklin Chau-Nan

    2009-02-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 degrees C. PMID:19417353

  6. Stable Drop Formation and Deposition Control in Ink Jet Printing of Polyvinylidene Fluoride Solution

    NASA Astrophysics Data System (ADS)

    Thorne, Nathaniel; Yang, Xin; Sun, Ying; Complex Fluids and Multiphase Transport Lab-Drexel University Team

    2013-11-01

    Using inkjet printing as an additive fabrication method is an enabling technology for low-cost, high-throughput production of flexible electronics and photonics. Polymeric materials, such as Polyvinylidene fluoride (PVDF), are widely used as dielectric materials for microelectronics, batteries, among others. However, due to its large molecular weight and incompatibility with moisture in air, the stable drop formation of PVDF solution is quite challenging. In this study, we examine the effects of solute concentration, nozzle back pressure, ejection waveform, and ambient moisture on the formation of PVDF droplets. The deposition dynamics of inkjet-printed PVDF solutions are then examined as a function of the solvent concentration. Bi-solvents of different surface tensions and vapor pressures are used to induce Marangoni flows in order to suppress the coffee-ring effect. The deposition of a single droplet and the interactions between multiple drops are examined for a better control of the deposition uniformity. Printing of lines and patterns with reduced instability is also discussed.

  7. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  8. Continuous clarification and thickening of activated sludge by electrolytic bubbles under control of scale deposition.

    PubMed

    Cho, Kang Woo; Chung, Chong Min; Kim, Yun Jung; Chung, Tai Hak

    2010-05-01

    Electroflotation (EF) was investigated as a final clarification of an activated sludge process, to intensify its novel clarification and thickening efficiency. During operation of a biological reactor combined with an EF clarifier, deterioration of clarification efficiency was observed. Scale deposition on electrodes caused a coarse electrode surface, significantly increasing the size of the electrolytic bubbles. The average bubble size was initially 34 microm and increased to 80 microm after bulk cell electrolysis for 150 h. X-ray diffractometry and scanning electron microscopy further characterized the scale deposition as a cluster of calcite (CaCO(3)) and brucite (Mg(OH)(2)). Switching the polarity of electrical current clearly alleviated the increase of bubble size, when applied before scale growth. Under the control of scale deposition, excellent clarification was observed, with the effluent turbidity consistently lower than 2 NTU. An efficient thickening, with the concentration of return activated sludge higher than 15 g L(-1), was additional advantage of the EF clarifier. PMID:20071165

  9. CAPSULE REPORT: CONTROL OF ACIDIC AIR POLLUTANTS BY COATED BAGHOUSES

    EPA Science Inventory

    Emissions from the aluminum, glass, phosphate, fertilizer, and sulfuric acid industries and from waste incineration share several common problems, including combined particulate, corrosive acid vapor, and acid mist emissions. his capsule report presents an approach to alleviate t...

  10. A Model for Phosphosilicate Glass Deposition via POCl3 for Control of Phosphorus Dose in Si

    SciTech Connect

    Chen, Renyu; Wagner, Hannes; Dastgheib-Shirazi, Amir; Kessler, Michael; Zhu, Zihua; Shutthanandan, V.; Altermatt, Pietro P.; Dunham, Scott T.

    2012-12-27

    Effective control of diffused phosphorus profiles in crystalline silicon requires detailed understanding of the doping process. We develop a model and analyze concentration profiles within the deposited phosphosilicate glass (PSG) for a range of POCl3 conditions. During predeposition, a PSG layer with composition nearly independent of process conditions forms. This layer is separated from Si by a thin SiO2 layer. There is also strong accumulation of P at the SiO2-Si interface. A simple linear-parabolic model cannot fully explain the kinetics of thickness and dose; while an improved model including oxygen dependence and dose saturation gives better fits to the experiments.

  11. Sn migration control at high temperature due to high deposition speed for forming high-quality GeSn layer

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Capellini, Giovanni; von den Driesch, Nils; Buca, Dan; Zaumseil, Peter; Schubert, Markus Andreas; Klesse, Wolfgang Matthias; Montanari, Michele; Schroeder, Thomas

    2016-03-01

    A key factor for controlling Sn migration during GeSn deposition at a high temperature of 400 °C was investigated. Calculated results with a simple model for the Sn migration and experimental results clarified that low-deposition-speed (vd) deposition with vd’s of 0.68 and 2.8 nm/min induces significant Sn precipitation, whereas high-deposition-speed (vd = 13 nm/min) deposition leads to high crystallinity and good photoluminescence spectrum of the GeSn layer. These results indicate that vd is a key parameter, and that control of Sn migration at a high temperature is possible. These results are of great relevance for the application of high-quality Sn-based alloys in future optoelectronics devices.

  12. Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization

    SciTech Connect

    Ghosal, S; Baumann, T F; King, J S; Kucheyev, S; Wang, Y; Worsley, M A; Biener, J; Bent, S F; Hamza, A V

    2009-03-09

    This report demonstrates a chemical functionalization method for controlling atomic layer deposition (ALD) of TiO{sub 2} in low-density nanoporous materials. Functionalization of silica aerogel with trimethylsilane is shown to strongly suppress TiO{sub 2} growth via ALD. Subsequent modification of the functionalization through selective removal of the hydrocarbon groups reactivates the aerogel towards TiO{sub 2} deposition. These results demonstrate the potential use of ALD as a selective tool for creating novel nanoporous materials. Nanoporous materials present significant technological advantage for a wide range of applications, including catalysis, energy storage and conversion, nanoelectronics to name just a few (1-4). Hence, there is considerable interest in developing synthetic pathways for the fabrication of nanoporous materials with tailored properties. Aerogels (AGs) are unique low-density, open-cell porous materials consisting of submicrometer pores and ligaments that can be used as a robust material platform for designing novel nanoporous materials. In recent years, a synthetic approach based on ALD on AG templates has emerged as a promising method for the directed growth of nanoporous materials (5-11, 18). This approach has been used successfully to prepare millimeter-sized high aspect ratio aerogels coated uniformly with zinc oxide (ZnO), tungsten (W) and alumina (Al{sub 2}O{sub 3}) (10, 11). The ALD process utilizes two sequential, self-limiting surface reactions resulting in a layer-by-layer growth mode. The self limiting nature of the surface reactions makes ALD a particularly suitable technique for uniform deposition onto high aspect ratio porous substrates. Additionally, chemical specificity of the surface reactions in ALD enables one to control the deposition process through selective functionalization of the substrate surface. In fact the functionalization of planar substrates such as silicon wafers with organosilane groups (R{sub n}SiX{sub 4-n

  13. Control of carbon content in amorphous GeTe films deposited by plasma enhanced chemical vapor deposition (PE-MOCVD) for phase-change random access memory applications

    NASA Astrophysics Data System (ADS)

    Aoukar, M.; Szkutnik, P. D.; Jourde, D.; Pelissier, B.; Michallon, P.; Noé, P.; Vallée, C.

    2015-07-01

    Amorphous and smooth GeTe thin films are deposited on 200 mm silicon substrates by plasma enhanced—metal organic chemical vapor deposition (PE-MOCVD) using the commercial organometallic precursors TDMAGe and DIPTe as Ge and Te precursors, respectively. X-ray photoelectron spectroscopy (XPS) measurements show a stoichiometric composition of the deposited GeTe films but with high carbon contamination. Using information collected by Optical Emission Spectroscopy (OES) and XPS, the origin of carbon contamination is determined and the dissociation mechanisms of Ge and Te precursors in H2 + Ar plasma are proposed. As a result, carbon level is properly controlled by varying operating parameters such as plasma radio frequency power, pressure and H2 rate. Finally, GeTe films with carbon level as low as 5 at. % are obtained.

  14. IMPLICATIONS OF A GRADIENT IN ACID AND ION DEPOSITION ACROSS THE NORTHERN GREAT LAKES STATES

    EPA Science Inventory

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. The answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (S...

  15. PRELIMINARY EXPOSURE STUDY TO DETERMINE THE EFFECTS OF ACID DEPOSITION ON COATED STEEL SUBSTRATES

    EPA Science Inventory

    This report describes the progress that has been made within the Coatings Effect Research Program that the Environmental Protection Agency conducts for Task Group VII within the National Acidic Precipitation Assessment Program. his project involves the evaluation of the effects o...

  16. ACID DEPOSITION SYSTEM (ADS) FOR STATISTICAL REPORTING: SYSTEM DESIGN AND USER'S CODE MANUAL

    EPA Science Inventory

    This document is a general purpose description of the ADS data management system. It explains to acid precipitation monitoring network managers how their data is being merged with that from other networks. For the researcher, this document defines what information is available in...

  17. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 1. THE GAS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for the gas-phase reactions that lead to the production of acidic substances in the environment. A master mechanism is designed that treats oxides, sulfur dioxide, ozone, hydrogen peroxide, ammonia, t...

  18. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 2. THE AQUEOUS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for aqueous-phase reactions that lead to the production of acidic substances in the environment. The intent of this research is to provide a framework that can be used to develop a state-of-the-art aq...

  19. ELECTROCHEMICALLY DEPOSITED POLYMER-COATED GOLD ELECTRODES SELECTIVE FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Electropolymerized membranes on gold electrodes doped with 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared from a solution containing resorcinol, o-phenylenediamine and 2,4-D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interact...

  20. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes.

    PubMed

    Cheong, Mi Sun; Park, Hyeong Cheol; Hong, Mi Ju; Lee, Jiyoung; Choi, Wonkyun; Jin, Jing Bo; Bohnert, Hans J; Lee, Sang Yeol; Bressan, Ray A; Yun, Dae-Jin

    2009-12-01

    SIZ1 (for yeast SAP and MIZ1) encodes the sole ortholog of mammalian PIAS (for protein inhibitor of activated STAT) and yeast SIZ SUMO (for small ubiquitin-related modifier) E3 ligases in Arabidopsis (Arabidopsis thaliana). Four conserved motifs in SIZ1 include SAP (for scaffold attachment factor A/B/acinus/PIAS domain), PINIT (for proline-isoleucine-asparagine-isoleucine-threonine), SP-RING (for SIZ/PIAS-RING), and SXS (for serine-X-serine, where X is any amino acid) motifs. SIZ1 contains, in addition, a PHD (for plant homeodomain) typical of plant PIAS proteins. We determined phenotypes of siz1-2 knockout mutants transformed with SIZ1 alleles carrying point mutations in the predicted domains. Domain SP-RING is required for SUMO conjugation activity and nuclear localization of SIZ1. Salicylic acid (SA) accumulation and SA-dependent phenotypes of siz1-2, such as diminished plant size, heightened innate immunity, and abscisic acid inhibition of cotyledon greening, as well as SA-independent basal thermotolerance were not complemented by the altered SP-RING allele of SIZ1. The SXS domain also controlled SA accumulation and was involved in greening and expansion of cotyledons of seedlings germinated in the presence of abscisic acid. Mutations of the PHD zinc finger domain and the PINIT motif affected in vivo SUMOylation. Expression of the PHD and/or PINIT domain mutant alleles of SIZ1 in siz1-2 promoted hypocotyl elongation in response to sugar and light. The various domains of SIZ1 make unique contributions to the plant's ability to cope with its environment. PMID:19837819

  1. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    PubMed Central

    Marques, Cláudia N. H.; Davies, David G.; Sauer, Karin

    2015-01-01

    Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA) that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation. PMID:26610524

  2. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  3. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act. PMID:18075075

  4. Fabrication of nickel and gold nanowires by controlled electrodeposition on deoxyribonucleic acid molecules

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Jin, Helena; Dai, Kun

    2009-01-01

    Magnetic and electrical nanowires are two important materials in the development of futuristic nanoelectronics, data storage media and nanosensors. Ni and Au nanowires with a diameter of a few tens of nanometres have been fabricated using deoxyribonucleic acid (DNA) molecules as a template through nanoparticle-controlled electroless deposition (ELD). Nanowire precursors, 1-3 nm Pt(0)-DNA and 1.4 nm Au(0)-DNA, were assembled using two different methods. Chemical reduction was used to deposit Pt(0) particles on DNA which catalyzed Ni nanowire growth. Positively charged Au nanoparticles were directly assembled on phosphate groups of DNA which were stretched and anchored between micrometre-spaced electrodes. Electrical measurement has shown that Au nanowires, catalyzed by Au(0)-DNA in a subsequent ELD, are highly conductive and show linear I-V characteristics. The major factors for the resistivity of nanowires were discussed in detail. This work involves important aspects in the field of DNA-based self-assembly, such as DNA and surface interaction, DNA nanoparticle assembly and electrical property of fabricated nanowires.

  5. Going natural: Effective weed control in squash with pelargonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pelargonic acid, a natural, but not certified organic herbicide, has been shown to be phytotoxic, acting as a contact herbicide, injuring and killing plants through cell membrane disruption. Pelargonic acid, a fatty acid also known as nonanoic acid, is a nine-carbon chained organic compound found in...

  6. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired. PMID:18258282

  7. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules.

    PubMed

    Vecchione, Raffaele; Iaccarino, Giulia; Bianchini, Paolo; Marotta, Roberto; D'autilia, Francesca; Quagliariello, Vincenzo; Diaspro, Alberto; Netti, Paolo A

    2016-06-01

    Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields. PMID:27060934

  8. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation. PMID:26699906

  9. Decision support system for optimal reservoir operation modeling within sediment deposition control.

    PubMed

    Hadihardaja, Iwan K

    2009-01-01

    Suspended sediment deals with surface runoff moving toward watershed affects reservoir sustainability due to the reduction of storage capacity. The purpose of this study is to introduce a reservoir operation model aimed at minimizing sediment deposition and maximizing energy production expected to obtain optimal decision policy for both objectives. The reservoir sediment-control operation model is formulated by using Non-Linear Programming with an iterative procedure based on a multi-objective measurement in order to achieve optimal decision policy that is established in association with the development of a relationship between stream inflow and sediment rate by utilizing the Artificial Neural Network. Trade off evaluation is introduced to generate a strategy for controlling sediment deposition at same level of target ratio while producing hydroelectric energy. The case study is carried out at the Sanmenxia Reservoir in China where redesign and reconstruction have been accomplished. However, this model deals only with the original design and focuses on a wet year operation. This study will also observe a five-year operation period to show the accumulation of sediment due to the impact of reservoir storage capacity. PMID:19214002

  10. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  11. Precise control of interface anisotropy during deposition of Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.; Slater, T. J. A.; Haigh, S. J.; Rowan-Robinson, R. M.; Atkinson, D.

    2014-11-28

    We demonstrate the control of perpendicular magnetic anisotropy (PMA) in multilayer films without modification of either the microstructure or saturation magnetization by tuning the Ar{sup +} ion energy using remote plasma sputtering. We show that for [Co/Pd]{sub 8} multilayer films, increasing the Ar{sup +} ion energy results in a strong decrease in PMA through an increase in interfacial roughness determined by X-ray reflectivity measurements. X-ray diffraction and transmission electron microscope image data show that the microstructure is independent of Ar{sup +} energy. This opens a different approach to the in-situ deposition of graded exchange springs and for control of the polarizing layer in hybrid spin transfer torque devices.

  12. A novel approach in controlling the conductivity of thin films using molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Lushington, Andrew; Liu, Jian; Bannis, Mohammad N.; Xiao, Biwei; Lawes, Stephen; Li, Ruying; Sun, Xueliang

    2015-12-01

    Here we present a novel way to grow aluminum alkoxide films with tunable conductivity with molecular level accuracy with the use of molecular layer deposition (MLD). Alternating exposures of trimethylaluminum (TMA), ethylene glycol (EG), and terephthaloyl chloride (TC) are used to grow the aluminium alkoxide films. Control over film composition was accomplished by alternating cycles of EG and TC between cycles of TMA and EG. In this fashion the aluminum to carbon ratio can be accurately controlled. These films were then pyrolyzed under a reducing atmosphere to yield a conductive Al2O3/carbon composite. Raman spectroscopy determined that nanocrystalline sp2-graphitic carbon was formed following pyrolysis while sheet resistance measurements determined that conductivity of the film is directly related to aluminium-carbon ratio. To further elucidate the origin of conductivity within the film, synchrotron based XPS was performed.

  13. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  14. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines.

    PubMed

    Ibáñez-Escriche, N; Magallón, E; Gonzalez, E; Tejeda, J F; Noguera, J L

    2016-01-01

    The aim of this study was to estimate the genetic and environmental parameters and crossbreeding effects on fatty acid and fat traits in the Iberian pig. Our final goal is to explore target selection traits and define crossbreeding strategies. The phenotypes were obtained under intensive management from 470 animals in a diallelic experiment involving Retinto, Torbiscal, and Entrepelado lines. The data set was composed of backfat thickness at the fourth rib (BFT), intramuscular fat (IMF) in the longissimus thoracis (LT), and the fatty acid profile for IMF and subcutaneous fat (SCF) traits. Data were analyzed through a Bayesian bivariate animal model by using a reparameterization of Dickerson's model. The results obtained showed an important genetic determinism for all traits analyzed with heritability ranging from 0.09 to 0.67. The common environment litter effect also had an important effect on IMF (0.34) and its fatty acid composition (0.06-0.53) at slaughter. The additive genetic correlation between BFT and IMF (additive genetic correlation [] = 0.31) suggested that it would be possible to improve lean growth independent of the IMF with an appropriate selection index. Furthermore, the high additive genetic correlation ( = 0.68) found between MUFA tissues would seem to indicate that either the LT or SCF could be used as the reference tissue for MUFA selection. The relevance of the crossbreeding parameters varied according to the traits analyzed. Backfat thickness at the fourth rib and the fatty acid profile of the IMF showed relevant differences between crosses, mostly due to line additive genetic effects associated with the Retinto line. On the contrary, those for IMF crosses were probably mainly attributable to heterosis effects. Particularly, heterosis effects were relevant for the Retinto and Entrepelado crosses (approximately 16% of the trait), which could be valuable for a crossbreeding system involving these lines. PMID:26812309

  15. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits

    NASA Astrophysics Data System (ADS)

    Danilov, F. I.; Protsenko, V. S.; Gordiienko, V. O.; Kwon, S. C.; Lee, J. Y.; Kim, M.

    2011-07-01

    The paper is devoted to the structure, composition and properties investigations of coatings obtained from a sulfate trivalent chromium bath containing formic acid and carbamide as the complexing agents. The results indicate that the deposits have a nanocrystalline type of structure-there are regions with atomic ordered arrangement in bulk material with the average size of 3-5 nm. Carbon is present as chromium carbide within the coating and it is distributed uniformly inside of the deposit. The deposits under study exhibit particular electrochemical behavior (absence of the active dissolution range in acid solution). The hardness of these coatings does not differ noticeably from that typical of coatings obtained in Cr(VI)-based baths. The wear characteristics of the deposits from the proposed bath are somewhat better than in the case of a common hexavalent chromium bath.

  16. ICP-Enhanced Sputter Deposition for Reactivity Control and Low-Temperature Formation of a-IGZO Films

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Nakata, Keitaro; Satake, Yoshikatsu; Takenaka, Kosuke; Uchida, Giichiro; Ebe, Akinori

    2015-09-01

    Inductively coupled plasma (ICP) - enhanced sputter deposition for a-IGZO channel TFTs fabrication have been performed. This advantage of fine control of reactivity during the deposition process is of great significance for film deposition of the transparent amorphous oxide semiconductor, a-InGaZnOx (a-IGZO), whose electrical properties are significantly sensitive to the reactivity during the film deposition. The a-IGZO film deposition with addition of H2 gas were performed in order to control oxidation process during a-IGZO film formation via balance between oxidation-reduction. The results of optical emission spectrum indicate the possibility for the suppression of oxidation by oxygen atoms of a-IGZO films during deposition due to addition of H2 gas. The characteristics of TFT fabricated with IGZO film via plasma-enhanced magnetron sputter deposition system have been investigated. The result exhibits that the possibility of expanding process window for control of balance between oxidization and reduction by addition of H2 gas. The a-IGZO channel TFTs fabricated plasma-enhanced reactive sputtering system with addition of H2 gas exhibited good performance of field-effect mobility 15.3 cm2(Vs)-1 and subthreshold gate voltage swing (S) of 0.48 V decade-1. This work was partly supported by ASTEP (JST) and Grant-in-Aid for Challenging Exploratory Research (JSPS).

  17. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution

    NASA Astrophysics Data System (ADS)

    Guido, Diego M.; Campbell, Kathleen A.

    2011-06-01

    The Deseado Massif, Santa Cruz Province, Argentinean Patagonia, hosts numerous Middle to Late Jurassic age geothermal and epithermal features represented by siliceous and calcareous chemical precipitates from hot springs (sinters and travertines, respectively), hydrothermal breccias, quartz veins, and widespread hydrothermal silicification. They indicate pauses in explosive volcanic activity, marking the final stages in the evolution of an extensive Jurassic (ca. 178-151 Ma) volcanic complex set in a diffuse extensional back-arc setting heralding the opening of the Atlantic Ocean. Published paleo-hot spring sites for the Deseado Massif, plus additional sites identified during our recent field studies, reveal a total of 23 locations, five of which were studied in detail to determine their geologic and facies associations. They show structural, lithologic, textural and biotic similarities with Miocene to Recent hot spring systems from the Taupo and Coromandel volcanic zones, New Zealand, as well as with modern examples from Yellowstone National Park, U.S.A. These comparisons aid in the definition of facies assemblages for Deseado Massif deposits - proximal, middle apron and distal siliceous sinter and travertine terraces and mounds, with preservation of many types of stromatolitic fabrics - that likely were controlled by formation temperature, pH, hydrodynamics and fluid compositions. Locally the mapped hot spring deposits largely occur in association with reworked volcaniclastic lacustrine and/or fluvial sediments, silicic to intermediate lava domes, and hydrothermal mineralization, all of which are related to local and regional structural lineaments. Moreover, the numerous geothermal and significant epithermal (those with published minable resources) deposits of the Deseado Massif geological province mostly occur in four regional NNW and WNW hydrothermal-structural belts (Northwestern, Northern, Central, and Southern), defined here by alignment of five or more hot

  18. Interrelationships among hydrologic-budget components of a northern Wisconsin seepage lake and implications for acid-deposition modeling

    USGS Publications Warehouse

    Wentz, D.A.; Rose, W.J.

    1989-01-01

    Components of the hydrologic budget for a northern Wisconsin seepage lake were analyzed by applying correlation and regression techniques to monthly data. Analyses for the 1981-83 water years revealed a statistically significant, direct relationship between storage change and precipitation-evaporation balance. Ground-water outflow was negatively correlated with ground-water inflow, and this relationship was influenced by similar relationships for both hydraulic gradients and cross-sectional areas in outflow versus inflow regions of the lake. Neither ground-water outflow nor inflow was significantly related to precipitation, evaporation, storage change, or lake stage; this may reflect a lag in response time of the ground-water system compared to the lake. The results (1) emphasize the complexity of factors that influence ground-water interactions with seepage lakes and (2) suggest the importance of completing detailed hydrologic studies of these systems before mechanistic models, such as those developed to predict effects of acid deposition, are applied.

  19. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    USGS Publications Warehouse

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East. More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region.

  20. Growth and reproductive ecology of the eastern brook trout, Salvelinus fontinalis, in streams of differing vulnerability to acidic atmospheric deposition

    SciTech Connect

    Light, R.W.

    1983-01-01

    Three naturally infertile streams of differing vulnerability to acidic atmospheric deposition were studied to determine the status of their brook trout, Salvelinus fontinalis, populations and associated benthic communities. Of the three streams, Upper Three Runs was judged to be the least fertile, followed by Little Fishing Creek, with Roaring Run being the most fertile. The median weighted pH of acidic deposition impacting the watersheds was 3.8 for Upper Three Runs and 4.0 for Little Fishing Creek and Roaring Run. Brook trout from Roaring Run grew at a similar rate to those from Little Fishing Creek, with trout from Upper Three Runs showing the slowest growth. Roaring Run brook trout also had the highest relative condition of the three streams. Brook trout from Roaring Run and Little Fishing Creek generally matured one year later (age group II) than those from Upper Three Runs. Early maturity may be selected for in Upper Three Runs due to small annual increases in fecundity in higher age groups. Although the data were limited, there was a trend for brook trout from Upper Three Runs to produce fewer and larger ova. Roaring Run had higher volumes of benthos during fall and summer, and higher numbers during fall. Roaring Run and Little Fishing Creek had more, larger crayfish present, which added significantly to the volume of benthos in these streams. Qualitatively, Upper Three Runs had more shredders and fewer scrapers on a volume basis than the other two streams. On a per fish basis, the drift available to the fish in Roaring Run was always highest in volume, and highest in number during fall and spring. The brook trout from Roaring Run therefore had an advantage over those in the other two streams, by having a higher drift available per fish.

  1. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  2. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    SciTech Connect

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulation in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.

  3. Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer's disease.

    PubMed

    Xuan, Ai-Guo; Pan, Xue-Bing; Wei, Peng; Ji, Wei-Dong; Zhang, Wen-Juan; Liu, Ji-Hong; Hong, Le-Peng; Chen, Wen-Liang; Long, Da-Hong

    2015-02-01

    In the brains of patients with Alzheimer's disease (AD) and transgenic AD mouse models, astrocytes and microglia activated by amyloid-β (Aβ) contribute to the inflammatory process that develops around injury in the brain. Valproic acid (VPA) has been shown to have anti-inflammatory function. The present study intended to explore the therapeutic effect of VPA on the neuropathology and memory deficits in APPswe/PS1ΔE9 (APP/PS1) transgenic mice. Here, we report that VPA-treated APP/PS1 mice markedly improved memory deficits and decreased Aβ deposition compared with the vehicle-treated APP/PS1 mice. Moreover, the extensive astrogliosis and microgliosis as well as the increased expression in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the hippocampus and cortex of APP/PS1 transgenic mice were significantly reduced following administration of VPA, which attenuated neuronal degeneration. Concomitantly, VPA alleviated the levels of p65 NF-κB phosphorylation and enhanced the levels of acetyl-H3, Bcl-2, and phospho-glycogen synthase kinase (GSK)-3β that occurred in the hippocampus of APP/PS1 transgenic mice. These results demonstrate that VPA could significantly ameliorate spatial memory impairment and Aβ deposition at least in part via the inhibition of inflammation, suggesting that administration of VPA could provide a therapeutic approach for AD. PMID:24854198

  4. Influence of the organic solvents on the properties of the phosphoric acid dopant emulsion deposited on multicrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Bouhafs, D.; Moussi, A.; Boumaour, M.; Abaïdia, S. E. K.; Mahiou, L.; Messaoud, A.

    2007-05-01

    This study is devoted to the formation of an n+p emitter for multicrystalline silicon (mc-Si) solar cells for photovoltaic (PV) application. The atomization technique has been used to make the emitter from H3PO4 phosphoric acid as a doping source. The doping emulsion has been optimized using several organic solvents. H3PO4 was mixed with one of these solutions: ethanol, 2-butanol, isopropanol alcohol and deionized water. The volume concentration of H3PO4 does not exceed 20% of the total volume emulsion. The deposit characteristics of the emulsion change with the organic solvent. H3PO4 : 2-butanol gives the best deposited layer with acceptable adherence and uniformity on silicon surface. Fourier transform infrared characterizations show the presence of organic and mineral phosphorous bonds in the formed layer. The obtained emitters are characterized by a junction depth in the range 0.2-0.75 µm and a sheet resistance of about 10-90 Ω/square. Such a low cost dopant source combined with a continuous spray process can effectively reduce the cost per Wp of the PV generator.

  5. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  6. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    SciTech Connect

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  7. Genetic control of abscisic acid biosynthesis in maize.

    PubMed

    Tan, B C; Schwartz, S H; Zeevaart, J A; McCarty, D R

    1997-10-28

    Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants. PMID:9342392

  8. Photoswitchable fatty acids enable optical control of TRPV1

    PubMed Central

    Frank, James Allen; Moroni, Mirko; Moshourab, Rabih; Sumser, Martin; Lewin, Gary R.; Trauner, Dirk

    2015-01-01

    Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1), a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein–lipid interactions. PMID:25997690

  9. Photoswitchable fatty acids enable optical control of TRPV1.

    PubMed

    Frank, James Allen; Moroni, Mirko; Moshourab, Rabih; Sumser, Martin; Lewin, Gary R; Trauner, Dirk

    2015-01-01

    Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1), a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein-lipid interactions. PMID:25997690

  10. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEcontrolled by the appropriate choice of crosslinker, and the pH of releasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained. PMID:26970821

  11. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  12. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    SciTech Connect

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  13. Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens.

    PubMed

    Velasco, S; Ortiz, L T; Alzueta, C; Rebolé, A; Treviño, J; Rodríguez, M L

    2010-08-01

    A study was conducted to evaluate the effect of adding inulin to diets containing 2 different types of fat as energy sources on performance, blood serum metabolites, liver lipids, and fatty acids of abdominal adipose tissue and breast and thigh meat. A total of 240 one-day-old female broiler chicks were randomly allocated into 1 of 6 treatments with 8 replicates per treatment and 5 chicks per pen. The experiment consisted of a 3 x 2 factorial arrangement of treatments including 3 concentrations of inulin (0, 5, and 10 g/kg of diet) and 2 types of fat [palm oil (PO) and sunflower oil (SO)] at an inclusion rate of 90 g/kg of diet. The experimental period lasted from 1 to 34 d. Dietary fat type did not affect BW gain but impaired feed conversion (P < 0.001) in birds fed the PO diets compared with birds fed the SO diets. The diets containing PO increased abdominal fat deposition and serum lipid and glucose concentrations. Triacylglycerol contents in liver were higher in the birds fed PO diets. Dietary fat type also modified fatty acids of abdominal and i.m. fat, resulting in a higher concentration of C16:0 and C18:1n-9 and a lower concentration of C18:2n-6 in the birds fed PO diets. The addition of inulin to diets modified (P = 0.017) BW gain quadratically without affecting feed conversion. Dietary inulin decreased the total lipid concentration in liver (P = 0.003) and that of triacylglycerols and very low density lipoprotein cholesterol (up to 31%) in blood serum compared with the control groups. The polyunsaturated fatty acid:saturated fatty acid ratio increased in abdominal and i.m. fat when inulin was included in the SO-containing diets. The results from the current study suggest that the addition of inulin to broiler diets has a beneficial effect on blood serum lipids by decreasing triacylglyceride concentrations The results also support the use of inulin to increase the capacity of SO for enhancing polyunsaturated fatty acid:saturated fatty acid ratio of i.m. fat

  14. Compositions and method for controlling precipitation when acidizing sour wells

    SciTech Connect

    Dill, W.R.; Walker, M.L.

    1989-12-19

    This patent describes an acidizing composition for treating a sour well. It comprises: a base acid solution having an initial ph below 1.9; an iron sequestering agent to combine with iron present in the solution comprising at least one compound selected from the group consisting of aminopolycarboxylic acids, hydroxycarboxylic acids, cyclic polyethers and derivatives of the acids and ethers present in an amount of from about 0.25 to about 5 percent by weight of the acid solution; and a sulfide modifier to combine with sulfides present in the solution comprising at least one member selected from the group consisting of an aldehyde, acetal, hemiacetal and any other compound capable of forming an aldehyde in solution, present in an amount of from about 1 to about 4 percent by weight of the acid solution, whereby precipitation of ferric hydroxide, ferrous sulfide and elemental sulfur is inhibited as acid spending occurs.

  15. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors

    SciTech Connect

    Klemme, H.D. ); Ulmishek, G.F. )

    1991-12-01

    Six stratigraphic intervals, representing one-third of Phanerozoic time, contain petroleum source rocks that have provided more than 90% of the world's discovered original reserves of oil and gas (in barrels of oil equivalent). The six intervals are (1) Silurian (generated 9% of the world's reserves), (2) Upper Devonian-Tournaisian (8% of reserves), (3) Pennsylvanian-Lower Permian (8% of reserves), (4) Upper Jurassic (25% of reserves), (5) middle Cretaceous (29% of reserves), and (6) Oligocene-Miocene (12.5% of reserves). This uneven distribution of source rocks vary from interval to interval. Maps that show facies, structural forms, and petroleum source rocks were prepared for this study. Analysis of the maps indicates that several primary factors controlled the areal distribution of source rocks, their geochemical type, and their effectiveness (i.e., the amounts of discovered original conventionally recoverable reserves of oil and gas generated by these rocks). These factors are geologic age, paleolatitude of the depositional areas, structural forms in which the deposition of source rocks occurred, and the evolution of biota. The maturation time of these source rocks demonstrates that majority of discovered oil and gas is very young; almost 70% of the world's original reserves of oil and gas has been generated since the Coniacian, and nearly 50% of the world's petroleum{sup 4} has been generated and trapped since the Oligocene.

  16. An Adirondack Watershed Data Base: Attribute and mapping information for regional acidic deposition studies

    SciTech Connect

    Rosen, A.E.; Olson, R.J.; Gruendling, G.K.; Bogucki, D.J.; Malanchuk, J.L.; Durfee, R.C.; Turner, R.S.; Adams, K.B.; Wilson, D.L.; Coleman, P.R.

    1988-12-01

    The Adirondack Watershed Data Base (AWDB) provides a means to test hypotheses concerning the relative importance of various watershed attributes that may contribute to increased acidification of Adirondack surface waters. The AWDB is a valuable resource for the study of other ecological phenomena. The AWDB consists of digital watershed boundaries and digital geographic data, stored within a geographic information system, and watershed/lake attribute data stored in a data management system (SAS) for 463 Adirondack headwater lakes. Attributes include watershed morphology, physiography, bedrock, soils, land cover, wetlands, disturbances (e.g., cabins, fire, and logging), beaver activity, precipitation, and atmospheric deposition. Over 600 variables are available for each watershed. These data can be combined with water chemistry data and fish community status for regional-scale examinations of watershed attributes that may account for variability and change in water chemistry and fish populations in the Adirondacks. This report describes the design of the AWDB, documents sources and history of the data; defines the format of the AWDB contents; and characterizes the data using summary statistics, frequency bar charts, and other graphics. In addition, it provides information necessary for researchers using the data base on their own computer systems. 37 refs., 42 figs., 4 tabs.

  17. Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces

    SciTech Connect

    Lü, B.; Münger, E. P.; Sarakinos, K.

    2015-04-07

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.

  18. Pelargonic acid weed control: Concentrations, adjuvants, and application timing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pelargonic acid is a fatty acid naturally occurring in many plants, animals, and foods. Pelargonic acid has potential as a broad-spectrum post-emergence or burn-down herbicide for organic crop production. Field research was conducted in southeast Oklahoma (Lane, OK, Atoka County) to determine the ...

  19. Isochemical control over structural state and mechanical properties in Pd-based metallic glass by sputter deposition at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Magagnosc, Daniel J.; Feng, Gang; Yu, Le; Cheng, Xuemei; Gianola, Daniel S.

    2016-08-01

    Sputter deposition, while varying the substrate temperature, is employed to isochemically control the structural state and concomitant mechanical response in a Pd-based metallic glass at the time of glass formation. Increasing the deposition temperature from 333 K to 461 K results in a 33.5% increase in hardness to 9.69 GPa for amorphous films. Further increasing the temperature leads to a decrease in hardness, indicating low and high temperature deposition regimes where increased surface mobility allows access to a more relaxed and more rejuvenated structure, respectively. Through this mechanism we access the range of achievable structural states, from ultrastable to highly liquid-like glasses.

  20. 25 CFR 543.14 - What are the minimum internal control standards for patron deposit accounts and cashless systems?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for patron deposit accounts and cashless systems? 543.14 Section 543.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.14 What are the minimum internal...