Science.gov

Sample records for acid deposition control

  1. Ancillary effects of selected acid deposition control policies

    SciTech Connect

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  2. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  3. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  4. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  5. (Acidic deposition and the environment)

    SciTech Connect

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  6. (International conference on acidic deposition)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1990-10-05

    The traveler took the opportunity to participate in a mini-sabbatical at the Institute of Terrestrial Ecology (ITE) in Edinburgh, Scotland, as a part of planned travel to Glasgow, Scotland, to attend the International Conference on Acidic Precipitation. The purpose of the sabbatical was to provide quality time for study and interchange of ideas with scientists at ITE working on physiological effects of acidic deposition and to allocate significant time for writing and synthesizing of results of physiological studies from the National Forest Response Program's Spruce/Fir Research Cooperative. The study focused on the very significant cytological and physiological effects of calcium deficiency in trees, a response that appears to be amplified in spruce by acidic deposition.

  7. Acid deposition in east Asia

    SciTech Connect

    Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.

    1996-12-31

    A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long in winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.

  8. (Acidic deposition: Its nature and impacts)

    SciTech Connect

    Cook, R.B.; Turner, R.S. ); Ryan, P.F. )

    1990-10-18

    The travelers presented papers on various aspects of modeling performed as part of the US National Acidic Precipitation Assessment Program (NAPAP) at the Fourth International Conference on Acidic Deposition: Its Nature and Impacts. The meeting was sponsored by the Royal Society of Edinburgh and was attended by over 800 scientists, primarily from Europe and North America. The conference focused on nine aspects of the nature and impacts of atmospheric pollutants, including ozone: chemistry of atmospheric pollutants; processes controlling the deposition of pollutants; effects of pollutants on soils; physiology of plant responses to pollutants; effects of pollutants in agricultural and natural or seminatural ecosystems; atmospheric pollutants and forests; effects of pollutants on the chemistry of freshwater streams and lakes; effects of pollutants on freshwater plants and animals; and effects of pollutants, indoors and outdoors, on materials and buildings.

  9. Acid deposition in Asia: Emissions, deposition, and ecosystem effects

    NASA Astrophysics Data System (ADS)

    Duan, Lei; Yu, Qian; Zhang, Qiang; Wang, Zifa; Pan, Yuepeng; Larssen, Thorjørn; Tang, Jie; Mulder, Jan

    2016-12-01

    We review and synthesize the current state of knowledge regarding acid deposition and its environmental effects across Asia. The extent and magnitude of acid deposition in Asia became apparent only about one decade after this issue was well described in Europe and North America. In addition to the temperate zone, much of eastern and southern Asia is situated in the tropics and subtropics, climate zones hitherto little studied with respect to the effects of high loads of acid deposition. Surface waters across Asia are generally not sensitive to the effects of acid deposition, whereas soils in some regions are sensitive to acidification due to low mineral weathering. However, soil acidification was largely neutralized by such processes as base cation deposition, nitrate (NO3-) denitrification, and sulfate (SO42-) adsorption. Accompanying the decrease in S deposition in recent years, N deposition is of increasing concern in Asia. The acidifying effect of N deposition may be more important than S deposition in well drained tropical/subtropical soils due to high SO42- adsorption. The risk of regional soil acidification is a major threat in Eastern Asia, indicated by critical load exceedance in large areas.

  10. Emerging acid deposition research and monitoring issues

    SciTech Connect

    Birnbaum, R.

    1997-12-31

    The research baselines established for acid rain in the 1980s position scientists and policy makers to evaluate the environmental effectiveness of the acid rain control program and to test the variety of scientific hypotheses made regarding the chemical, transport and biological processes involved in acidic deposition. Several new research questions have evolved. How effective are the emissions reductions? What is the residual risk? How have ecological recovery rates been affected and what other environmental factors influence recovery? What are the critical requirements to measure ecological change including the extent and rate while also capturing the extent and severity of emerging ecological stressors (such as watershed nitrogen saturation)? These and other questions are currently being synthesized within and outside of EPA to develop a long-term strategy to provide guidance to emerging research and monitoring issues.

  11. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  12. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

  13. Effect of dietary fish oil on fatty acid deposition and expression of cholesterol homeostasis controlling genes in the liver and plasma lipid profile: comparison of two animal models.

    PubMed

    Komprda, T; Rozíková, V; Zamazalová, N; Škultéty, O; Vícenová, M; Trčková, M; Faldyna, M

    2016-10-16

    The objective of the present study was to compare hepatic fatty acid deposition, plasma lipid level and expression of cholesterol homeostasis controlling genes in the liver of rats (Wistar Albino; n = 32) and pigs (Large White × Landrace; n = 32) randomly assigned into two groups of 16 animals each and fed 10 weeks the diet with either 2.5% of fish oil (F; source of eicosapentaenoic and docosahexaenoic acid, EPA+DHA) or 2.5% of palm oil (P; high content of saturated fatty acids; control). F-rats deposited in the liver three times less EPA, but 1.3 times more DHA than F-pigs (p < 0.05). Dietary fish oil relative to palm oil increased PPARα and SREBP-2 gene expression much strongly (p < 0.01) in the pig liver in comparison with the rat liver, but expression of Insig-1 and Hmgcr genes in the liver of the F-pigs relative to the expression of these genes in the liver of the P-pigs was substantially lower (p < 0.01 and p < 0.05 respectively) as compared to rats. When plasma lipid concentration in the F-animals was expressed as a ratio of the plasma concentration in the P-counterparts, dietary fish oil decreased HDL cholesterol less (p < 0.01), but LDL cholesterol and triacylglycerols more (p < 0.05 and p < 0.001 respectively) in rats than in pigs: more favourable effect of fish oil on rat plasma lipids in comparison with pigs can therefore be concluded. Concentration of total cholesterol and both its fractions in the rat plasma was negatively correlated (p < 0.01) with hepatic DHA, but also with unsaturated myristic and palmitic acid respectively. It has been concluded that regarding the similarity of the plasma lipid levels to humans, porcine model can be considered superior; however, using this model, dietary fish oil at the tested amount (2.5%) was not able to improve plasma lipid markers in comparison with saturated palm oil.

  14. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  15. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  16. Controlled gene-eluting metal stent fabricated by bio-inspired surface modification with hyaluronic acid and deposition of DNA/PEI polyplexes.

    PubMed

    Kim, Taek Gyoung; Lee, Yuhan; Park, Tae Gwan

    2010-01-15

    A metal stent that could elute plasmid DNA (pDNA) in a controlled manner for substrate-mediated gene transfection was fabricated by first coating with hyaluronic acid (HA) and subsequent deposition of pDNA. To create robust HA coating layer on stainless steel (SS316L) surface, HA was derivatized with dopamine which is a well-known adsorptive molecule involving mussel adhesion process. The HA-coated surface was verified by various analytical techniques and proved to be very hydrophilic and stable, also showing superior biocompatibility in terms of suppressed plasma protein adsorption. For surface loading of pDNA, cationic pDNA/polyethylenimine (PEI) polyplexes were prepared and ionically adsorbed onto the HA-coated SS316L surface. The adsorbed surface exhibited evenly distributed nano-granular topography while the polyplexes maintained the nano-particular morphology. The pDNA was released out in a controlled manner for a period of 10 days with maintaining structural integrity. The dual coated substrate with HA and pDNA/PEI polyplexes exhibited greatly enhanced gene transfection efficiency, when compared to both bare substrate adsorbed with the polyplexes and PEI/pDNA polyelectrolyte multilayers. Dually functionalized stent with HA and pDNA exhibited effective biocompatibility and gene transfection.

  17. Digital electrospray for controlled deposition.

    PubMed

    Deng, Weiwei; Waits, C Mike; Gomez, Alessandro

    2010-03-01

    Many novel functional structures are now fabricated by controlled deposition as a maskless, bottom-up fabrication technique. These applications require rapid and precise deposition of minute amounts of solutions/suspensions or their ultimate particle products in predefined patterns. The electrospray is a promising alternative to the commonly used inkjet printing because it can easily handle highly viscous liquid, avoid high shear rates, and has low risk of clogging. We demonstrate a proof-of-concept digital electrospray. This system consists of a 61-nozzle array microfabricated in silicon and a 61-element digital extractor fabricated using flexible polyimide substrates. "Digital" refers to the state of each electrospray source that can be tuned either on or off independently and responsively. We showed a resolution of 675 mum and a response frequency up to 100 Hz. With similar design and industry standard fabrication procedures, it is feasible to scale up the system to O(1000) sources with spatial resolution better than 250 mum and a O(kHz) response frequency. The latter is controlled by the viscous damping time.

  18. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  19. Acidic Depositions: Effects on Wildlife and Habitats

    USGS Publications Warehouse

    1993-01-01

    The phenomenon of 'acid rain' is not new; it was recognized in the mid-1800s in industrialized Europe. In the 1960s a synthesis of information about acidification began in Europe, along with predictions of ecological effects. In the U.S. studies of acidification began in the 1920s. By the late 1970s research efforts in the U.S. and Canada were better coordinated and in 1980 a 10-year research program was undertaken through the National Acid Precipitation Assessment Plan (NAPAP) to determine the causes and consequences of acidic depositions. Much of the bedrock in the northeastern U.S. and Canada contains total alkalinity of 20 kg/ha/yr of wet sulphate depositions and are vulnerable to acidifying processes. Acidic depositions contribute directly to acidifying processes of soil and soil water. Soils must have sufficient acid-neutralizing capacity or acidity of soil will increase. Natural soil-forming processes that lead to acidification can be accelerated by acidic depositions. Long-term effects of acidification are predicted, which will reduce soil productivity mainly through reduced availability of nutrients and mobilization of toxic metals. Severe effects may lead to major alteration of soil chemistry, soil biota, and even loss of vegetation. Several species of earthworms and several other taxa of soil-inhabiting invertebrates, which are important food of many vertebrate wildlife species, are affected by low pH in soil. Loss of canopy in declining sugar maples results in loss of insects fed on by certain neotropical migrant bird species. No definitive studies categorically link atmospheric acidic depositions with direct or indirect effects on wild mammals. Researchers have concentrated on vegetative and aquatic effects. Circumstantial evidence suggests that effects are probable for certain species of aquatic-dependent mammals (water shrew, mink, and otter) and that these species are at risk from the loss of foods or contamination of these foods by metals

  20. Acid deposition research in the private sector

    SciTech Connect

    Kinsman, J.D.; Wisniewski, J.; Nelson, J.

    1984-02-01

    Acid deposition research funded by the private sector since 1980 is reviewed. Types of studies (e.g., atmospheric processes, emissions and monitoring, environmental effects) supported by the private sector during this period are overviewed. The specific industries/organizations (e.g., electric utility industry, environmental interest groups) funding reserach during 1980-1982 are discussed, with relation to the number of studies supported and funds (by year) provided by each. Finally, 13 research projects supported by the private sector and initiated by December 1983, each at greater than $1 million, are described.

  1. Fuel compositions containing deposit control additives

    SciTech Connect

    Lilburn, J.E.

    1980-11-18

    Fuel compositions are provided which contain a deposit control additive. The deposit control additive is produced by reacting a hydrocarbylpoly(oxyalkylene) alcohol with excess phosgene and an excess amount of certain polyamines. The product comprises hydrocarbylpoly(oxyalkylene) ureylene carbamates.

  2. Impediments to recovery from acid deposition

    NASA Astrophysics Data System (ADS)

    Watmough, Shaun A.; Eimers, Catherine; Baker, Scott

    2016-12-01

    In response to large reductions in sulphur (S) emissions over the past 30 years, sulphate (SO42-) concentrations in precipitation at Plastic Lake in south-central Ontario, Canada, have declined by more than 70%. More recent decreases in NOx emissions have similarly led to a reduction in nitrate deposition (NO3-) and consequently the pH of bulk precipitation has increased by approximately 0.8 pH units since 1980. Despite the large decrease in acidic deposition, chemical recovery of the streams, as measured by an increase in pH and decrease in aluminum (Al), has been much less than expected, primarily due to losses of base cations from the shallow, base-poor soils. While nitrogen (N) is almost totally retained within the terrestrial catchment, S export continues to exceed inputs measured in bulk deposition and during the early part of the record approximately 70% of the anions in streams were buffered by calcium (Ca2+) and magnesium (Mg2+) compared with only 60% in 2011/12. In the wetland-draining stream (PC1), peak depressions in stream pH and peaks in SO42- and Al concentration in the fall are significantly positively correlated with annual drought days defined as the number of days when stream flow ceases. Even though reductions in SO2 and NOx emissions in Canada have resulted in large improvements in precipitation chemistry, the combined influence of soil acidification and climate-mediated biogeochemical processes occurring in wetlands cause acidification-related issues to persist. Forecasting the longer-term response of soils and surface waters in light of these observations is required to fully assess the need for further emission reductions.

  3. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  4. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  5. Wet acid deposition in Chinese natural and agricultural ecosystems: Evidence from national-scale monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Xu, Li; Zhu, Zhilin; Yu, Guirui

    2016-09-01

    Acid deposition in precipitation has received widespread attention. However, it is necessary to monitor the acid deposition in Chinese agricultural and natural ecosystems because data derived from traditional urban/suburban observations might overestimate it to some extent. In this study, we continuously measured the acid deposition through precipitation (pH, sulfate (SO42-), and nitrate (NO3-)) in 43 field stations from 2009 to 2014 to explore the spatial patterns and the main influencing factors of acid deposition in Chinese agricultural and natural ecosystems. The results showed that the average precipitation pH at the 43 stations varied between 4.10 and 8.25 (average: 6.2) with nearly 20% of the observation sites being subjected to acid precipitation (pH < 5.6). The average deposition of SO42- and NO3- was 115.99 and 32.93 kg ha-1 yr-1, respectively. An apparent regional difference of acid deposition in Chinese agricultural and natural ecosystems was observed, which was most serious in south and central China and less serious in northwest China, Inner Mongolia, and Qinghai-Tibet. The level of economic development and amount of precipitation could explain most of the spatial variations of pH, SO42-, and NO3- depositions. It is anticipated that acid deposition might increase further, although the current level of acid deposition in these Chinese agricultural and natural ecosystems was found to be less serious than projected from urban/suburban data. The control of energy consumption should be strengthened in future to prevent an increase of acid deposition in China.

  6. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  7. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  8. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  9. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  10. Deposit control in ground water remediation equipment

    SciTech Connect

    Horn, B.; Soeder, K.

    1995-12-31

    Remedial actions at all types of hazardous waste sites require the implementation of various water treatment technologies. Though the many groundwater treatment technologies are constantly developing, some age-old problems associated with handling any water remains. These operating problems include deposition of naturally occurring inorganic solutes such as iron, manganese, calcium and fouling by indigenous micro-organisms. Fouling of air stripping towers is a common example of this phenomenon. Virtually all groundwater treatment systems experience some degree of operating impediment from this cause. Some systems may take years for deposits to become problems, but many systems become inoperable within weeks or months. Recently released studies by the American Petroleum Institute show that deposit control is the most common operation problem causing remediation system failure. Such failures result in greatly increased operation & maintenance costs and non compliance with regulatory mandates.

  11. Acid deposition and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1986-04-01

    In August, 1983 members of the Research Staff of Ford Motor Company carried out a field experiment at two rural sites in southwestern Pennsylvania involving various aspects of the acid deposition phenomenon. This presentation focuses on the wet (rain) deposition during the experiment, as well as the relative importance of wet and dry deposition processes for nitrate and sulfate at the sites. Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO/sub 3/ and SO/sub 2/ to surrogate surfaces (2), and the role of elemental carbon in light absorption and of light absorption in degradation of visibility (3).

  12. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  13. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  14. Controlling asphaltene deposition in oil wells

    SciTech Connect

    Thomas, D.C.; Becker, H.L.; Del Real Soria, R.A.

    1995-05-01

    The deposition of asphaltenes in oil producing formations and production systems has caused problems for years. Selection of chemical control agents in the past has been limited to bulk dissolution studies on samples retrieved from production systems. Until recently, the accepted way to treat these problems has been through the use of xylene, toluene or other aromatic solvents. This method requires the use of large amounts of these solvents, as well as a high frequency of treatment. This paper describes the results of field testing and application of asphaltene control chemicals, and the use of laboratory tests to select asphaltene deposition removal and prevention chemicals. Preliminary dispersant and solvency tests are conducted by an asphaltene dispersant test in hexane. Chemical which provide promising results in dissolving and dispersing asphaltenes in the non-solvent medium of hexane are selected as candidates for field application, or for additional testing in a core flow deposition removal test. The core flow test apparatus provides a method to introduce asphaltene fouling into a core and study its removal by the use of chemical magnets. Using core samples and asphaltenes from the reproduction resource under consideration allows the selection of the best removal chemical.

  15. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    PubMed

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression.

  16. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  17. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  18. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites.

  19. MOUNTAIN ACID DEPOSITION PROGRAM (MADPRO): CLOUD DEPOSITION TO THE APPALACHIAN MOUNTAINS, 1994 THROUGH 1999

    EPA Science Inventory

    The mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the requirements of the Clean Air Act Amendments (CAAA). The two ma...

  20. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  1. Simulated seasonal variations in wet acid depositions over East Asia.

    PubMed

    Ge, Cui; Zhang, Meigen; Zhu, Lingyun; Han, Xiao; Wang, Jun

    2011-11-01

    The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental

  2. Conjugated linoleic acid alters growth performance, tissue lipid deposition, and fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli).

    PubMed

    Dong, Gui-Fang; Liu, Wen-Zuo; Wu, Lin-Zhou; Yu, Deng-Hang; Huang, Feng; Li, Peng-Cheng; Yang, Yan-Ou

    2015-02-01

    Fatty liver syndrome is a prevalent problem of farmed fish. Conjugated linoleic acid (CLA) has received increased attention recently as a fat-reducing fatty acid to control fat deposition in mammals. Therefore, the aim of the present study was to determine whether dietary CLA can reduce tissue lipid content of darkbarbel catfish (Pelteobagrus vachelli) and whether decreased lipid content is partially due to alterations in lipid metabolism enzyme activities and fatty acid profiles. A 76-day feeding trial was conducted to investigate the effect of dietary CLA on the growth, tissue lipid deposition, and fatty acid composition of darkbarbel catfish. Five diets containing 0 % (control), 0.5 % (CLA0.5), 1 % (CLA1), 2 % (CLA2), and 3 % (CLA3) CLA levels were evaluated. Results showed that fish fed with 2-3 % CLA diets showed a significantly lower specific growth rate and feed conversion efficiency than those fed with the control diet. Dietary CLA decreased the lipid contents in the liver and intraperitoneal fat with the CLA levels from 1 to 3 %. Fish fed with 2-3 % CLA diets showed significantly higher lipoprotein lipase and hepatic triacylglycerol lipase activities in liver than those of fish fed with the control, and fish fed with 1-3 % CLA diets had significantly higher pancreatic triacylglycerol lipase activities in liver than those of fish fed with the control. Dietary CLA was incorporated into liver, intraperitoneal fat, and muscle lipids, with higher percentages observed in liver compared with other tissues. Liver CLA deposition was at the expense of monounsaturated fatty acids (MUFA). In contrast, CLA deposition appeared to be primarily at the expense of MUFA and n-3 polyunsaturated fatty acids (PUFA) in the intraperitoneal fat, whereas in muscle it was at the expense of n-3 PUFA. Our results suggested that CLA at a 1 % dose can reduce liver lipid content without eliciting any negative effect on growth rate in darkbarbel catfish. This lipid-lowering effect could

  3. ACIDIC DEPOSITION IN THE NORTHEASTERN U.S.: SOURCES AND INPUTS, ECOSYSTEM EFFECTS, AND MANAGEMENT STRATEGIES

    EPA Science Inventory

    Acidic deposition results from the emissions of air pollutants. Effects of acidic deposition in the northeastern US include the acidification of soil and water, causing stresses to terrestrial and aquatic biota.

  4. Fat deposition, fatty acid composition and meat quality: A review.

    PubMed

    Wood, J D; Enser, M; Fisher, A V; Nute, G R; Sheard, P R; Richardson, R I; Hughes, S I; Whittington, F M

    2008-04-01

    This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time

  5. Electrophoretic deposition of polyacrylic acid and composite films containing nanotubes and oxide particles.

    PubMed

    Wang, Y; Deen, I; Zhitomirsky, I

    2011-10-15

    Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.

  6. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  7. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  8. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  9. Distribution and effects of acidic deposition on wildlife and ecosystems

    USGS Publications Warehouse

    Stromborg, K.L.; Longcore, J.R.; Kaemar, Peter; Legath, J.

    1987-01-01

    Acidic deposition occurs over most of the United States and the deposition patterns and theoretical vulnerabilities of aquatic ecosystems to chemical changes can be delineated, but few data exist on concomitant biological effects. Hypothetical direct effects are limited primarily to toxicity of various heavy metals mobilized at reduced pH. Results of studies in Scandinavia suggest that aluminum interferes with avian reproduction near acidified lakes. Some amphibian populations located on acid-vulnerable substrates may be adversely affected by reduced pH in the vernal pools used for egg laying and larval growth. Indirect effects on populations are difficult to detect because few historical data exist for wildlife populations and trophic relationships in vulnerable areas. Current research in the U.S.A. focuses on measuring habitat characteristics, food availability, and avian use of vulnerable wetland habitats. Results of Scandinavian studies suggest that some species of waterfowl may prefer acidified, I fish-free habitats because invertebrates essential for meeting nutritional requirements are more easily obtained in the absence of competition from fish. However, avian species dependent on fish would be absent from these habitats. Alteration of either the vegetative structure or primary productivity of wetlands might indirectly affect avian populations by causing decreased invertebrate productivity and consequent food limitations for birds.

  10. Ground-water control of evaporite deposition

    USGS Publications Warehouse

    Wood, W.W.; Sanford, W.E.

    1990-01-01

    The ratio of ground-water outflow to inflow (flux ratio) in hydrologically open basins is as important in determining the mineralogy and thicknesses of evaporite deposits as the solute composition of the inflow water. Attainment of steady state flux ratios permits large thicknesses of two or three minerals to form rather than thin veneers of many minerals. -from Authors

  11. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  12. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  13. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  14. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  15. Effects of acid deposition on calcium nutrition and health of Southern Appalachian spruce fir forests

    SciTech Connect

    McLaughlin, S.B.; Wullschleger, S.; Stone, A.; Wimmer, R.; Joslin, J.D.

    1995-02-01

    The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an important component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.

  16. Porous polymers by controlling phase separation during vapor deposition polymerization.

    PubMed

    Tao, Ran; Anthamatten, Mitchell

    2013-11-01

    A template-free method is described to fabricate continuous-phase, porous polymer films by simultaneous phase separation during vapor deposition polymerization. The technique involves concurrent polymerization, crosslinking, and phase separation of condensed species and reaction products. Deposited films form open-cell, macroporous structures consisting of crosslinked and glassy poly(glycidyl methacrylate). By limiting phase separation during vapor phase deposition, spatially dependent morphologies, such as layered morphologies, can be grown. Results show that combining vapor deposition polymerization with phase separation establishes morphological control, which may be applied to applications including cellular scaffolds, thin cushions and vibration dampers, and membranes for separations.

  17. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  18. Acidic deposition--ecological effects on surface waters

    SciTech Connect

    Harter, P.

    1989-01-01

    The acidification of soft water aquatic ecosystems, with consequent damage to the flora and fauna, is considered in this report. The evidence that environmental effects are ocurring is examined to see if a trend of increasing acidification can be related to changes in atmospheric deposition of sulphates and nitrates. Possible causes of change are considered, to clarify the contributions of variations in human activities and natural factors. It is concluded that acidic deposition, originating partly from emissions of sulphur and nitrogen compounds arising from man-made sources including combustion of fossil fuels, is causing acidification of surface waters in some areas of Europe and North America. There is proof that acidification of surface waters (to less than pH 6) is deleterious to many of the organisms whose habitat it forms. Acidified surface waters in some of the impacted areas are showing signs of recovery, where emissions of sulphur and nitrogen compounds from human activities are decreasing. There is some evidence that reversibility of acidification has started to occur, in some instances, about a decade after emissions were reduced. 219 refs., 13 figs., 9 tabs.

  19. Do the paleolimnological reconstructions reflect the influence of acid deposition?

    SciTech Connect

    Smirnov, D.Y.

    1996-12-31

    The using possibility of paleolimnological analyses was considered with the documentation aim of acid-forming substances distant transfer on territory of Northern Fennoscandia. The Holocene and ancient interglacial lakes pH-and alkalinity trends, reconstructed by means of bottom sediments diatomic analyses, were studied. It has been made evident that the tendency to sharp changes of these data is revealed on final stages of interglacial periods. At that time the high amplitude of climatic changes with low periodicity is resulting in catastrophic changes of landscapes in the frames of water-catchments bodies. During the last millennium the climatic situation in the Northern Fennoscandia was changing repeatedly (Medieval Warm Epoch, Little Ice Age, the rise in temperature in 20-40`s of XXth century). In the Little Ice Age (XVI-XIX centuries) the decrease of average annual temperature and intensification of winds velocity have caused a rapid retreat of latitudinal and high-altitude forest boundaries, accompanied by sharp reconstruction of tundra-,forest-tundra-and northern taiga landscapes. These processes have accelerated due to the enforcement of economic activity which caused the destruction of vegetation cover (salt-working, and ship-building since the XIXth century, pasture of reindeer herds since the end of XIXth century). Acidifying of ground and surface waters in the current century could be caused by the increased entry of organic acids, as a result of plant residues decomposition. The decomposition process was activated in the end of XIXth - beginning of XXth century in connection with the rise of temperature and increase of precipitation. Thus, the trends in pH and alkalinity changes in this region can not be used as indicators of acid-forming substances atmospheric deposition increase.

  20. Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    NASA Astrophysics Data System (ADS)

    Battler, Melissa M.; Osinski, Gordon R.; Lim, Darlene S. S.; Davila, Alfonso F.; Michel, Frederick A.; Craig, Michael A.; Izawa, Matthew R. M.; Leoni, Lisa; Slater, Gregory F.; Fairén, Alberto G.; Preston, Louisa J.; Banerjee, Neil R.

    2013-06-01

    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ˜100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m × 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite

  1. Electrokinetic control of bacterial deposition and transport.

    PubMed

    Qin, Jinyi; Sun, Xiaohui; Liu, Yang; Berthold, Tom; Harms, Hauke; Wick, Lukas Y

    2015-05-05

    Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices.

  2. Plasma deposition of organic thin films: Control of film chemistry

    SciTech Connect

    Ratner, B.D.

    1993-12-31

    Plasma deposition of thin, polymeric films represent a versatile surface modification technology. Although these thin films are exploited for many applications, complaints heard about plasma deposited films are that their structures are uncharacterizable, that organic functionality is lost in their production and that reproducibility is difficult. Recently, new methods for film production, reactor control and surface characterization have led to well characterized plasma deposited thin polymeric films (PDTPF) with defined structure and organic functionality. Such PDTPF often closely resemble conventionally prepared homopolymers. Methods that can be used to control the chemistry of PDTPF are the minimization of the plasma power, pulsing the RF field to reduce the {open_quotes}plasma on{close_quotes} time, use of a Faraday cage to reduce electron bombardment, positioning the sample downfield from the glow zone, the use of monomers containing polymerizable double bonds and the use of a cold substrate to condense vapor simultaneously with plasma deposition.

  3. Vapor-deposited water and nitric acid ices

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun; Keyser, Leon F.

    Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance

  4. Identification of research relating to the critical loads concept and its potential application to the regulation of acidic deposition

    SciTech Connect

    Bhatti, N.

    1993-12-01

    The overwhelming majority of strategies currently implemented to regulate acidic deposition have focused on source-based or emission-control techniques. In the past few years, however, the fact that such source-based. strategies may not be sufficient to prevent adverse ecological effects and may therefore need to be supplemented with other control options, such as receptor-based strategies, has become apparent. Partly in response to this insufficiency of regulatory controls, the US Congress has required the National Acid Precipitation Assessment Program to determine (1) what deposition levels are needed to prevent such ecological damage, (2) whether such safe deposition levels (i.e., critical loads) can realistically be identified, and (3) what the costs and benefits of attaining such deposition levels are. This report reviews and culls the existing research on these alternative control strategies, emphasizing the critical loads concept, to determine the advantages and limitations and the cost-benefit relationships associated with receptor-based control options. The results of this study indicate that in spite of the significant limitations associated with the critical loads concept, this strategy dominates all discussions of non-source-based control options and offers considerable advantages, including cost-effectiveness, over the more traditional source-based control methods. Summaries of 10 of the most relevant studies dealing with alternative control strategies and the costs and benefits associated with them are also presented in this report.

  5. Effect of lipoxygenase oxidation on surface deposition of unsaturated fatty acids.

    PubMed

    Tayeb, Ali H; Hubbe, Martin Allen; Zhang, Yanxia; Rojas, Orlando J

    2017-04-14

    We studied the interactions of lipid molecules (linoleic acid, glycerol trilinoleate and a complex mixture of wood extractives) with hydrophilic and hydrophobic surfaces (cellulose nanofibrils, CNF, and polyethylene terephthalate, PET, respectively). The effect of lipoxygenase treatment to minimize the affinity of the lipids with the given surface was considered. Application of an electroacoustic sensing technique (QCM) allowed the monitoring of the kinetics of oxidation as well as dynamics of lipid deposition on CNF and PET. The effect of the lipoxygenase enzymes (LOX) was elucidated with regards to their ability to reduce the formation of soiling lipid layers. The results pointed to the fact that the rate of colloidal oxidation depended on the type of lipid substrate. The pre-treatment of the lipids with LOX reduced substantially their affinity to the surfaces, especially PET. Surface plasmon resonance (SPR) sensograms confirmed the effect of oxidation in decreasing the extent of deposition on the hydrophilic CNF. QCM energy dissipation analyses revealed the possible presence of a loosely adsorbed lipid layer on the PET surface. The morphology of the deposits accumulated on the solids was determined by atomic force microscopy and indicated important changes upon lipid treatment with LOX. The results highlighted the benefit of enzyme as a bio-based treatment to reduce hydrophobic interactions, thus providing a viable solution to the control of lipid deposition from aqueous media.

  6. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  7. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  8. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  9. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.

    PubMed

    Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-01-01

    Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail.

  10. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  11. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  12. Electrochemically Controlled Atom by Atom Deposition of Gold to Polyaniline

    SciTech Connect

    Jonke, Alex P.; Josowicz, Mira A.; Janata, Jiri; Engelhard, Mark H.

    2010-08-17

    Plyaniline (PANI) has been shown to be an effective matrix for hosting metal nanoclusters. In the case of gold, the tetrachloroaurate anion (AuCl₄) has a high affinity for the imine sites of polyaniline. Upon contract with PANI, AuCl₄ is spontaneously reduced to metallic gold, but the size of the formed Au clusters can not be precisely controlled. Herein, we report on electrochemical method of controlled deposition of one atom by one atom of gold per one imine site of PANI. By controlling the potential, we keep PANI in an oxidized state while exposing it to a solution of AuCl₄ to form a PANI*AuCl₄ complex. The AuCl₄ is reduced to atomic gold by sweeping the potential negative. That frees up the imine sites of PANI again and makes them accessible for the next Au deposition cycle. The repeated deposition of Au atoms follows a cyclic pathway. The amount of gold deposited using this method is consistent for each repeated cycle.

  13. The emerging role of NO{sub x} in acid deposition

    SciTech Connect

    Price, D.A.; Birnbaum, R.E.

    1997-12-31

    The oxides of nitrogen (NO{sub x}) have long been recognized as a principal precursor to acid deposition. Until recently, however, scientific knowledge about the nature and extent of NO{sub x}`s contribution to acidity in the atmosphere and to acid deposition damages on earth has been nascent; the National Acid Precipitation Assessment Program (NAPAP) and related research during the 1980s focused primarily on the linkage between sulfur dioxide (SO{sub 2}) emissions with acid deposition. This paper summarizes an integrative assessment on the science of NO{sub x} and acid deposition and the multiple environmental benefits associated with decreases in NO{sub x} emissions from coal-fired power plants. The Acid Rain Program performed this staff assessment to support the Phase II Acid Rain NO{sub x} Emission Reduction Rule, proposed on January 19, 1996 (61 FR 1442), and the Office of Air and Radiation (OAR) Integrated NO{sub x} Strategy. Model projections from EPA`s Acid Deposition Standard Feasibility Study (October 1995) provided the initial indication of the important role of NO{sub x} in the future chronic acidification of certain sensitive watershed ecosystems. Corroborative findings from the Bear Brook Watershed Manipulation Experiment and other recent field studies are discussed. This paper also presents an overview discussion of the current state-of-knowledge with respect to NO{sub x}`s role in the acidification of forests, soils, and vegetation as well as acidic-related damage to materials and structures. Basic terms and processes such as {open_quotes}atmospheric nitrogen deposition,{close_quotes} {open_quotes}nitrogen saturation,{close_quotes} {open_quotes}chronic vs. episodic acidification,{close_quotes} and {open_quotes}direct vs. soil-mediated acidification effects{close_quotes} are defined in context so as to facilitate understanding of the emerging role of NO{sub x} in acid deposition.

  14. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    PubMed

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation.

  15. More on Effects Controlling Carboxylic Acidity.

    ERIC Educational Resources Information Center

    Schwartz, Lowell M.

    1981-01-01

    Gas phase acidity data shown are offered to writers of elementary organic chemistry texts for replacement of the aqueous phase data that are universally used. Relative acidities in the gas phase are controlled virtually exclusively by enthalpic factors. Structural-energetic explanations of acidic trends can therefore be used. (SK)

  16. Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Bitz, C. M.; Steig, E. J.; Holmes, C. D.; Yang, X.; Sciare, J.

    2011-12-01

    Methanesulfonic acid (MSA) has previously been measured in ice cores in Antarctica as a proxy for sea ice extent and Southern Hemisphere circulation. In a series of chemical transport model (GEOS-Chem) sensitivity experiments, we identify mechanisms that control the MSA concentrations recorded in ice cores. Sea ice is linked to MSA via dimethylsulfide (DMS), which is produced biologically in the surface ocean and known to be particularly concentrated in the sea ice zone. Given existing ocean surface DMS concentration data sets, the model does not demonstrate a strong relationship between sea ice and MSA deposition in Antarctica. The variability of DMS emissions associated with sea ice extent is small (11-30%) due to the small interannual variability of sea ice extent. Wind plays a role in the variability in DMS emissions, but its contribution relative to that of sea ice is strongly dependent on the assumed DMS concentrations in the sea ice zone. Atmospheric sulfur emitted as DMS from the sea ice undergoes net transport northward. Our model runs suggest that DMS emissions from the sea ice zone may account for 26-62% of MSA deposition at the Antarctic coast and 36-95% in inland Antarctica. Though our results are sensitive to model assumptions, it is clear that an improved understanding of both DMS concentrations and emissions from the sea ice zone are required to better assess the impact of sea ice variability on MSA deposition to Antarctica.

  17. Student Knowledge of Scientific and Natural Resource Concepts Concerning Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    1989-01-01

    Assessed is the level of scientific and natural resource knowledge possessed by fourth-, eighth- and eleventh-grade students. Misconceptions are noted. Discussed are implications for teaching about acidic deposition. (CW)

  18. Acidic Deposition along the Appalachian Trail Corridor and its Effects on Acid-Sensitive Terrestrial and Aquatic Resources

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Sullivan, T. J.; Burns, D. A.; Bailey, S. W.; Cosby, B. J., Jr.; Dovciak, M.; Ewing, H. A.; McDonnell, T. C.; Riemann, R.; Quant, J.; Rice, K. C.; Siemion, J.; Weathers, K. C.

    2015-12-01

    The Appalachian National Scenic Trail (AT) spans 3,500 km from Georgia to Maine. Over its length, the trail passes through a corridor with wide variations in climate, bedrock type, soils, and stream water quality. These factors create a diverse range of ecosystems. The health of these ecosystems is a cause for concern because the AT passes through the heavily populated eastern U.S. with its many sources of sulfur (S) and nitrogen (N) emissions that produce acidic deposition. To address concerns about the health of the AT, a study was designed to evaluate the condition and sensitivity of the AT corridor with respect to acidic deposition. Collections of stream water (265 sites), soil (60 sites), tree cores (15 sites) and atmospheric deposition samples (4 sites) were made along with understory and overstory vegetation measurements (30 sites) over the full trail length within a 40 km-wide corridor. Existing data on atmospheric deposition, geology, vegetation, stream chemistry, and soil chemistry were also used in the analysis. Mean acid-neutralizing capacity (ANC) was lowest in the streams in the North section, intermediate in the Central section and highest the South section, despite the South having the highest acid rain levels. At least 40% of the study streams exhibited pH and/or Ali measurements that indicated potential harm to biota. Approximately 70% of the soil sites had values of base saturation under 20%, the threshold below which acidic deposition can mobilize inorganic aluminum (Ali), the form harmful to terrestrial and aquatic life. Compositional similarity of understory and canopy species was positively correlated with acidic deposition, suggesting that during past decades, species poorly adapted to acidic deposition were replaced with tolerant species. Target loads modeling indicated that exceedance of sulfur target loads to achieve stream ANC = 50 μeq/L by the year 2100occurred throughout the trail corridor.

  19. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  20. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe.

    PubMed

    Stevens, Carly J; Duprè, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J G; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J Owen; Vandvik, Vigdis; Aarrestad, Per Arild; Muller, Serge; Dise, Nancy B

    2011-10-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha(-1) yr(-1)) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.

  1. Deposit control additives and fuel compositions containing the same

    SciTech Connect

    Abramo, G.P.; Avery, N.L.; Trewella, J.C.

    1992-02-18

    This patent describes a fuel composition comprising a major amount of a fuel and an additive which imparts intake valve deposit inhibiting properties to the fuel. It comprises a polyisobutenyl succinimide which is the reaction product of a polyisobutenyl succinic anhydride and a polyalkylene polyamine; a polymer of isobutylene; an ester which is an adipate, phthalate, isophthalate, terephthalate and trimellitate of iso-octanol, iso-nonanol, iso-decanol, or iso-tridecanol or mixture thereof, polyol ester of neopentyl glycol, pentaerythritol or trimethylol-propane with corresponding monocarboxylic acid, oligomer and polymer ester of dicarboxylic acid, polyol and monoalcohol; and a polyether which is a polymer or copolymer of ethylene oxide, propylene oxide, butylene oxide, pentene oxide, hexene oxide, octene oxide, decene oxide or isomer thereof.

  2. Efficient Fractionation and Analysis of Fatty Acids and their Salts in Fat, Oil and Grease (FOG) Deposits.

    PubMed

    Benecke, Herman P; Allen, Sara K; Garbark, Daniel B

    2017-02-01

    A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.

  3. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  4. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  5. Controls on gold deposits in Hoggar, Tuareg Shield (Southern Algeria)

    NASA Astrophysics Data System (ADS)

    Aissa, Djamal-Eddine; Marignac, Christian

    2017-03-01

    The Hoggar shield belongs to the 3000 km-long Pan-African Trans-Saharan belt that was formed in the Neoproterozoic, between 750 and 500 Ma by continental collision between the converging West African craton, Congo craton and Saharan Metacraton. More than 600 gold occurrences have been identified by ORGM, which are confined along North-South Pan-African megashear zones stretching some hundreds of kilometres long. Until now, no global classification and mineral paragenesis characterisation have been proposed for the Hoggar's gold mineralization. In this paper, we briefly review the main gold mineralization, in order to classify them and to highlight their characteristics and controls. According to field work, spectral, microscopic and microthermometric studies, these mineralization can be globally classified asorogenic type shear zone, which can subdivided into three main sub-types according to the degree of their relationships with the major Pan-African shear zones: (i) Ultramylonite-mylonite hosted including Tirek and Amesmessa, world class deposits; (ii) Granite hosted, including Tekouyat occurrence (iii) Volcano-sediment hosted including Tiririne and In Abbegui deposits. All the deposits are coeval and were formed at the end of the post-collisional stage (530-520 Ma). InHoggar, gold mineralization depend on a double control, first order giant sub-meridian shear zone control and the gold districts disposed in N40°-50°E corridors that may be interpreted as extensional. Indeed, the Hoggar gold province appears to have been controlled at all scales by the late transtensive reactivation of the Pan-African mega-shear zones, and by the correlative heat flux associated with the linear lithospheric delamination processes accompanying this reactivation; which are also responsible for the very lateHoggar magmatic events. At Amesmessa, gold deposition was promoted by the mixing of metamorphic fluids issued from the In Ouzzal Archean-Proterozoic basement with magmatic

  6. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  7. Amino Acid Auxotrophy as Immunological Control Nodes

    PubMed Central

    Murray, Peter J.

    2016-01-01

    Summary Cells of the immune system are auxotrophs for most amino acids, including non-essential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that deplete the amino acid, or create regulatory molecules such as nitric oxide or kynurenines. Strategies to harness amino acid auxotrophy to block cancerous lymphocyte growth have been attempted for decades, with limited success. How immune cells integrate information about external essential amino acids supplies and transfer signals to growth and activation pathways remains unclear, but has potential for pathway discovery. Emerging insights may lead to strategies to both degrade amino acids and to block the immunoregulatory pathways controlled by amino acids. PMID:26784254

  8. MICS-Asia II: Model inter-comparison and evaluation of acid deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zifa; Xie, Fuying; Sakurai, T.; Ueda, H.; Han, Zhiwei; Carmichael, G. R.; Streets, D.; Engardt, M.; Holloway, T.; Hayami, H.; Kajino, M.; Thongboonchoo, N.; Bennet, C.; Park, S. U.; Fung, C.; Chang, A.; Sartelet, K.; Amann, M.

    This paper focuses on the comparison of chemical deposition of eight regional chemical models used in Model Inter-Comparison Study for Asia (MICS-Asia) II. Monthly-mean depositions of chemical species simulated by these models, including dry deposition of SO 2, HNO 3, NH 3, sulfate, nitrate and ammonium and wet deposition of SO 42-, NO 3- and NH 4+, have been provided for four periods (March, July, December 2001 and March 2002) in this work. Observations at 37 sites of the Acid Deposition Monitoring Network in East Asia (EANET) are compared with SO 42-, NO 3- and NH 4+ wet deposition model results. Significant correlations appeared between the observation and computed ensemble mean of participant models. Also, differences among modeled sulfur and nitrogen dry depositions have been studied at the EANET sites. Based on the analysis of acid deposition for various species from different models, total depositions of sulfur (SO 2 and sulfate) and nitrogen (nitrate and ammonium) have been evaluated as the ensemble mean of the eight models. In general, all models capture the observed spatial distribution of sulfur and nitrogen deposition, although the absolute values may differ from measurements. High deposition often occurs in eastern China, Japan, the Republic of Korea, Thailand, Vietnam, Philippines and other parts of Southeast Asia. The magnitude of model bias is quite large for many of the models. In examining the reasons for model-measurement disagreement, we find that differences in chemical processes, deposition parameterization, and modeled precipitation are the main reasons for large model disparities.

  9. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  10. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  11. A modified approach for estimating the aquatic critical load of acid deposition in northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Whitfield, Colin J.; Mowat, Aidan C.; Scott, Kenneth A.; Watmough, Shaun A.

    2016-12-01

    Acid-sensitive ecosystems are found in northern Saskatchewan, which lies downwind of major sulphur (S) and nitrogen (N) emissions sources associated with the oil sands extraction industry. In order to protect these ecosystems against acidification, tolerance to acid deposition must be quantified. The suitability of the central empirical relationship used in the Steady-State Water Chemistry (SSWC) model to predict historical sulphate (SO4) concentrations was investigated, and an alternate approach for determining aquatic critical loads of acidity (CL(A)) was employed for the study lakes (n = 260). Critical loads of acidity were often low, with median values of 12-16 mmolc m-2 yr-1, with the lower value reflecting a region-specific limit for acid-neutralizing capacity identified in this study. Uncertain levels of atmospheric deposition in the region, however, are problematic for characterizing acidification risk. Accurate S and chloride (Cl) deposition are needed to identify catchment sources (and sinks) of these elements in the new approach for CL(A) calculation. Likewise, accurate depiction of atmospheric deposition levels can prove useful for evaluation of lake runoff estimates on which estimates of CL(A) are contingent. While CL(A) are low and exceedance may occur according to projected increases in S deposition in the near-term, S retention appears to be an important feature in many catchments and risk of acidification may be overstated should long-term S retention be occurring in peatlands.

  12. Economic valuation of acid deposition induced changes in the productivity of commercial forests

    SciTech Connect

    Callaway, J.M. Jr.

    1984-02-01

    Several recent studies have reported localized decreases in the growth of several commercially important forest species in the northeast United States. These observed reductions in basal area growth may be related to increases in acid deposition and other man-made pollutants over the last two or three decades. If this is the case, then increases in region-wide levels of acid deposition may have effects on the biomass content and age-species composition of the regional timber inventory. These physical changes can influence regional stumpage prices and harvest levels through changes in the marginal cost of harvesting timber as a product and through changes in the opportunity cost of holding timber as an asset. Resultant changes in the profits earned by timber owners and the buyers of stumpage can be used to attach monetary value to the effects of acid deposition on the timber resource base. The objective of this study is to develop a capability to value acid deposition-induced changes in the productivity of commercial timberland in the northeast United States. Simulations will be conducted to determine the effects of acid deposition-induced changes in species growth rates on the profits earned by timber owners and buyers in relevant stumpage markets. The sensitivity of these results to different rates of return to private owners, alternative management practices, and to the levels of exogenous variables which influence the demand for stumpage will be assessed. 8 references.

  13. Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS)

    PubMed Central

    Polywka, Andreas; Stegers, Luca; Krauledat, Oliver; Riedl, Thomas; Jakob, Timo; Görrn, Patrick

    2016-01-01

    Stretchable large area electronics conform to arbitrarily-shaped 3D surfaces and enables comfortable contact to the human skin and other biological tissue. There are approaches allowing for large area thin films to be stretched by tens of percent without cracking. The approach presented here does not prevent cracking, rather it aims to precisely control the crack positions and their orientation. For this purpose, the polydimethylsiloxane (PDMS) is hardened by exposure to ultraviolet radiation (172 nm) through an exposure mask. Only well-defined patterns are kept untreated. With these soft islands cracks at the hardened surface can be controlled in terms of starting position, direction and end position. This approach is first investigated at the hardened PDMS surface itself. It is then applied to conductive silver films deposited from the liquid phase. It is found that statistical (uncontrolled) cracking of the silver films can be avoided at strain below 35%. This enables metal interconnects to be integrated into stretchable networks. The combination of controlled cracks with wrinkling enables interconnects that are stretchable in arbitrary and changing directions. The deposition and patterning does not involve vacuum processing, photolithography, or solvents.

  14. Amino acid geochemistry of fossil bones from the Rancho La Brea asphalt deposit, California

    USGS Publications Warehouse

    McMenamin, M.A.S.; Blunt, D.J.; Kvenvolden, K.A.; Miller, S.E.; Marcus, L.F.; Pardi, R.R.

    1982-01-01

    Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 ?? 10-6yr-1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 ?? 10-6yr-1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits. ?? 1982.

  15. Growth of and mineral deposition in young rats fed saturated and unsaturated fatty acids

    SciTech Connect

    Magee, A.; D'Souza, D. John Hopkins Univ., Baltimore, MD )

    1991-03-15

    Male weanling rats were used in 4 week experiments to study effects of saturated and unsaturated fatty acids on growth and mineral deposition in several organs (bone, kidneys, liver, spleen, testes). Minerals evaluated were calcium, copper, iron, magnesium, manganese, phosphorus, and zinc, and levels of these minerals in tests diets were appropriate for growing rats. Two levels of dietary fat were used, and fatty acids included in the study were butyric/capronic, palmitic/stearic, oleic, and linoleic/linolenic acids. Decreased weight gains were observed in rats fed saturated fatty acids or 10% fat, while increases in weight gains were associated with increases in polyunsaturated/saturated (P/S) ratios. Copper, iron, or zinc levels tended to be higher in organs of rats fed saturated fatty acids. P/S ratios had no effect on copper or zinc deposition, but decreases in liver iron and increases in spleen iron were observed in rats fed the higher P/S ratios. Manganese levels were generally unaffected by fatty acid types, fat level, or P/S ratio, although liver manganese levels were higher in rats fed unsaturated fatty acids. Dietary fatty acids, fat level, or P/S ratios had no apparent effects on calcium, magnesium, phosphorus, or zinc deposition in femurs and tibias of rats.

  16. Control of reservoir porosity and permeability by original depositional fabric

    SciTech Connect

    Ruppel, S.C.

    1988-01-01

    The Emma San Andres field exhibits many of the classic signs of a depleted reservoir including declining annual production rates and high water cuts. By the end of 1986, oil production from the Emma reservoir, more than 19 million bbl, totaled nearly 100% of the estimated ultimate recovery. Recent studies, however, indicate that as much as 25 million bbl of recoverable mobile oil still remain in the reservoir. These studies also indicate that the observed poor recovery efficiency (32%, typical for San Andres/Grayburg reservoirs) is due to reservoir heterogeneity caused primarily by variations in original depositional fabric. Two distinct porosity intervals are recognized in the Emma reservoir. The lower interval is composed of fusulinid packstone/wackestone that contains moldic and intercrystalline porosity and low (average 2 md) permeabilities. These deposits are continuous and relatively uniform throughout the area; net pay in this zone is controlled primarily by the field structure, a low-relief northwest-trending anticline. Comparison of production data with faces mapping suggests that most oil production has been controlled by the distribution of skeletal grainstone and not by structure. Effective exploitation of this remaining mobile oil must include selective completion and injection programs based on variations in the distribution of skeletal grainstone. The absence of significant production from local grainstone thicks, for example, points to inefficient drainage in several parts of the field.

  17. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  18. Dry acid deposition on leaves of Ligustrum and a new surrogate leaf

    SciTech Connect

    Ondo, J.L.; John, W.; Wall, S.M.

    1984-01-01

    The dry deposition of acidic particles and gases on plants depends on micrometeorology in the canopy and on the surface structure of the leaves. The authors chose two methods to collect and analyze this deposition: washing sulfate and nitrate deposits from the leaves of two species of Ligustrum, an ornamental shrub, and using a surrogate leaf which would absorb acidic gases through pores into a reservoir. The plants are kept in 5-gallon pots in order to be transportable. The leaves are washed, then exposed for a given length of time. Then the leaves are harvested and extracted in distilled water. This extract is analyzed by ion chromatography for sulfate and nitrate. The surrogate leaf is constructed with a nuclepore filter membrane simulating the stomatal openings of a leaf. There is a moist filter in the interior leading to a reservoir. Sulfur dioxide and other acidic gases diffuse through the nuclepore pores and are absorbed in the moist filter. After exposure the exterior surfaces are washed to extract any dry particulate, and the interior filter is analyzed for dissolved acidic gases. The ''leaf'' is small enough to be placed in the canopy in field studies. This surrogate leaf has also been used as a passive monitor in indoor air pollution studies. The surrogate leaves and the ligustrum have been exposed side by side at sites in Berkeley and in the Los Angeles air basin. A comparison has been made between the deposition on natural leaves and the deposition on the artificial leaves.

  19. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  20. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  1. Acid deposition and vehicle emissions: European environmental pressures on Britain

    SciTech Connect

    Brackley, P.

    1987-01-01

    This study, from the Joint Energy Programme and the Policy Studies Institute, examines the increasing political pressure being placed on Britain by members of the European community to take major steps toward improved environmental protection. Taking acid rain and vehicle emissions as typical examples of the conflict, the author examines Sweden, West Germany and France, as well as Britain, and unravels the criticisms, the arguments and the various approaches being taken to deal with environmental concerns. His conclusions point to widespread conflicts between differing national priorities and indicate that Britain may not be the only 'black sheep' in this continuing debate.

  2. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions...

  3. Kinetic and dynamic control for magmatic sulfide deposit formation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2013-12-01

    Magmatic sulfide deposits form by the saturation and separation of sulfide liquid from silicate liquid due to immiscibility. As a silicate melt cools and fractionates under reducing conditions, S concentration increases and S solubility decreases. Hence, at some point, S may become supersaturated, and sulfide melt droplets would nucleate and grow. The droplets would sink through silicate melt due to higher density of the sulfide melt, and accumulate at the bottom of the magma body, possibly with other crystallizing and settling dense minerals such as olivine and chromite. The sulfide layer, if preserved, constitutes the sulfide deposits. Hence, the critical condition for magmatic sulfide deposit formation is for the droplets to settle enough distance to and accumulate at the bottom of a magma body. Otherwise, sulfide droplets would be dispersed in the rock and would not form ores. Because the settling velocity is related to the size of the droplets, the growth kinetics and settling dynamics therefore control the formation of such deposits. In this report, a parametric study of sulfide droplet growth and settling as a magma body cools is carried out using our convective growth and settling models. Single stage exponential cooling with a given time scale is adopted. Because no reliable nucleation theory is available, nucleation is roughly treated by assuming one single nucleation event leading to N critical nuclei once the degree of supersaturation reaches x (both N and x are parameters to be varied). Crystal fractionation that can alter melt composition and viscosity is ignored. Growth starts from the critical nucleus radius. Sulfide droplets are assumed to behave as rigid spheres similar to bubbles. A settling distance of 1 km is assigned as the critical condition for the formation of a sulfide ore deposit. The final result is expressed as the initial S concentration necessary for settling this distance. If cooling time scale is 1000 yr, N = 10000 per cubic meter

  4. Use deposit control additives to lower auto/engine hydrocarbon and CO emissions, even with increased combustion chamber deposits

    SciTech Connect

    Zahalka, T.L.; Kulinowski, A.M.; Malfer, D.J.

    1996-01-01

    Mandated reductions in allowable emissions from spark-ignited engines have presented considerable challenges to the automotive industry. The achievement of lower emissions without a loss in vehicular performance has resulted in complicated electronic engine control strategies. As engine management systems have become more complex, the effect of deposits has become an issue with the operation of modern engines. The oil industry, in providing fuel to the ever-growing vehicle fleet, has become a partner in the emissions reduction effort. Through joint work, such as the Auto/Oil Research Program, it has been demonstrated that changes to the physical properties of the fuel can contribute to lower overall vehicle emissions. While certain fuel parameters can be adjusted to minimize emissions, the demand for gasoline in North America (and a growing demand globally) limits the refiners ability to control the deposit-forming tendencies of a fuel without an external aid. The gap between a modern engine`s appetite for clean fuel, and the refiners` ability to provide enough of this fuel has resulted in the application of gasoline detergents to minimize deposit formation. During the past several decades, gasoline detergents have evolved to control induction system deposits that a affected vehicle performance and emissions. The earliest problem involved icing and deposit formation in automotive carburetors. Deposits interfered with fuel induction, causing poor driveability, and an increased in emissions and fuel consumption. Simple low molecular weight amine detergents were effective in controlling deposits in the throttling areas of the carburetor.

  5. Projection of response of trees and forests to acidic deposition and associated pollutants

    SciTech Connect

    Kiester, A.R.; Ford, E.D.; Avery, A.; Gay, C.; Droessler, T.

    1990-09-01

    In 1986 the National Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern and trends of forest condition and physiological studies of seedlings, saplings, and branches of mature trees. The goals of the modeling effort were to simulate the dynamics of the processes by which acidic deposition and ozone affect tree physiological processes and therefore lead to changes in growth. Results from models of the physiological function of leaves, branches, roots, xylem, and canopies are presented here. These models illustrate three aspects of the dynamics of these processes. First, growth and the effects of pollutants are stochastic processes; that is, they vary randomly over time. The models help to account for the large amount of variability seen in normal field conditions. Second, some physiological processes can compensate for the effects of acidic deposition or ozone. Third, pollutants may have more than one effect on tree growth, and these effects may be synergistic. The potential nonlinearities and the variabilities demonstrated by these models lead to the conclusions that forest health effects may be developing that are not yet apparent; and for regulation of acidic deposition and associated pollutants to have a detectable effect, regulatory changes will probably have to be of substantial magnitude.

  6. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  7. 40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Port and throttle body fuel injector deposit control test data will also be considered to be adequate... for demonstration of carburetor deposit control, in addition to the fuel injector test procedure... Fuel Injector (PFI) Deposits in Vehicle Engines”, March 1, 1991, Section 2257, Title 13,...

  8. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  9. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  10. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  11. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  12. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  13. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  14. Preparation of waxes and humic acids from brown coal from the Sergeevskoe deposit

    SciTech Connect

    L.P. Noskova; A.V. Rokhin; A.P. Sorokin

    2007-06-15

    The comparative extraction of coal with organic solvents was performed. Humic acids were separated from solid residues. The yields, particle-size distributions, and chemical compositions of the resulting products were analyzed. It was demonstrated that brown-coal wax and humic fertilizers can potentially be obtained using coal from the Sergeevskoe deposit.

  15. Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?

    PubMed Central

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-01-01

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449

  16. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  17. Technological options for acid rain control

    SciTech Connect

    Princiotta, F.T.; Sedman, C.B.

    1993-01-01

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. One key consideration is the effect of fuel switching or control technology upon the existing dust collector, with additional air toxics legislation looming ahead. A number of likely SO2 and NOx retrofit technologies and estimated costs are presented, along with results of retrofit case studies. New hybrid particulate controls are also being developed to meet future requirements.

  18. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  19. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Crowley, J. K.; Marion, G. M.; Kargel, J. S.; Michalski, J. L.; Thomson, B. J.; de Souza Filho, C. R.; Bridges, N. T.; Brown, A. J.

    2009-10-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation. Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines.

  20. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy B.; Howell, Graham; Jenkins, Meaghan E.

    2008-09-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO42- deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO42- consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO42- at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO42- may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO42- limitation had been lifted by the simulated acid rain S deposition.

  1. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs

    PubMed Central

    Zhang, Shunhua; Shen, Linyuan; Xia, Yudong; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhu, Li

    2016-01-01

    Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF’s low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition. PMID:27721392

  2. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  3. SPECTRAL REFLECTANCE METHOD TO MEASURE ACID DEPOSITION EFFECTS ON BUILDING STONE.

    USGS Publications Warehouse

    Kingston, Marguerite J.; Ager, Cathy M.

    1985-01-01

    As part of the National Acid Precipitation Assessment Program (NAPAP), the U. S. Geological Survey is cooperating with other agencies to test the effects of acid deposition on building stone. A 10-year test-site study has been organized for the purpose of correlating possible stone deterioration with environmental factors. In Summer 1984, slabs of building stone, 3 by 2 by 2 inches, were exposed to the atmosphere at four test sites where the pH of precipitation and other meteorological variables are continuously monitored. This paper examines the development of one experimental technique used in this study - the application of diffuse spectral reflectance methods for laboratory and in situ measurement of those properties of stone which may be affected by acid deposition.

  4. Microbial Controls on Hot Spring Travertine Depositional Fabrics

    NASA Astrophysics Data System (ADS)

    Dwyer, S. E.; Fouke, B. W.; Miller, P. A.; Kandianis, M. T.

    2008-12-01

    In order to accurately identify and interpret the fossilization of bacteria in the geological record, a study of the three-dimensional crystalline architecture of CaCO3 (travertine) was completed at Mammoth Hot Springs (MHS) in Yellowstone National Park. We have identified the Apron and Channel Facies (71-65o C) as a site of active travertine precipitation that is fundamentally controlled by microbial activity. Structural and gross morphological analyses of these aragonite (CaCO3) travertine deposits have been completed in the context of rapid precipitation (< 5 mm/day) in unidirectional advection-dominated turbulent sheet flow. Significant changes in travertine depositional fabric were observed along the 1 to 3 m-long and 1 to 2 cm-deep primary flow path of the Apron and Channel Facies. The high-temperature (71 - 69o C) upstream portion of the Apron Channel Facies, which lies a few meters downstream from the vent source, is composed of filamentous microbial strands. Using our 16S rRNA gene sequence clone libraries from the Apron and Channel Facies, filamentous Aquificales pBB bacteria have been identified as the dominant microbes composing the filamentous strands, of which are separated by thin sheets of extra-cellular polysaccharide substances (EPS) a distance of 1 to 3mm. The EPS exhibits distinctive elliptical to circular voids that may result from water turbulence, gas escape, or other mechanisms. The EPS also acts as a binding agent for the filaments and stabilizes them into patterns that parallel the direction of spring water flow. The extent of aragonite needle precipitation on the exterior of intertwining microbial filaments increases from the downstream end of each filament upwards toward the vent source. Based on these attributes, we have termed this the fettuccini travertine fabric. Travertine deposited in the low-temperature (68 - 65o C) downstream portion of the Apron Channel Facies exhibits a capellini-like morphology arranged in a uniform tightly

  5. Residual stress control by ion beam assisted deposition

    SciTech Connect

    Was, G.S.; Jones, J.W.; Parfitt, L.; Kalnas, C.E.; Goldiner, M.

    1996-12-31

    The origin of residual stresses were studied in both crystalline metallic films and amorphous oxide films made by ion beam assisted deposition (IBAD). Monolithic films of Al{sub 2}O{sub 3} were deposited during bombardment by Ne, Ar or Kr over a narrow range of energies, E, and a wide range of ion-to-atom arrival rate ratios, R and were characterized in terms of composition, thickness, density, crystallinity, microstructure and residual stress. The stress was a strong function of ion beam parameters and gas content and compares to the behavior of other amorphous compounds such as MoSi{sub x} and WSi{sub 2.2}. With increasing normalized energy (eV/atom), residual stress in crystalline metallic films (Mo, W) increases in the tensile direction before reversing and becoming compressive at high normalized energy. The origin of the stress is most likely due to densification or interstitial generation. Residual stress in amorphous films (Al{sub 2}O{sub 3}, MoSi{sub x} and WSi{sub 2.2}) is initially tensile and monotonically decreases into the compressive region with increasing normalized energy. The amorphous films also incorporate substantially more gas than crystalline films and in the case of Al{sub 2}O{sub 3} are characterized by a high density of voids. Stress due to gas pressure in existing voids explains neither the functional dependence on gas content nor the magnitude of the observed stress. A more likely explanation for the behavior of stress is gas incorporation into the matrix, where the amount of incorporated gas is controlled by trapping.

  6. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice

    PubMed Central

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component—presenilin 1 (PS1)—in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression. PMID:27618097

  7. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice.

    PubMed

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-09-09

    Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.

  8. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    SciTech Connect

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-06-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development.

  9. Correlation analysis of tree growth, climate, and acid deposition in the Lake States. Forest Service research paper

    SciTech Connect

    Holdaway, M.R.

    1990-01-01

    The report describes research designed to detect subtle regional tree growth trends related to sulfate (SO{sub 4}) deposition in the Lake States. Correlation methods were used to analyze climatic and SO{sub 4} deposition. Effects of SO{sub 4} deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the strongest correlation to both climate and acid deposition.

  10. Chemical composition of acid deposition and its seasonal variation in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Wu, D.Y.; Chen, K.S.

    1997-12-31

    This study investigated the acidification of wet and dry depositions collected in Kaohsiung metropolitan area during the period of January to May in 1996. An acid deposition sampling network including six sampling stations was originally established for this particular study. Both wet and dry depositions were sampled by an automatic rainwater sampler at each station. Major cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup 2{minus}}) of acid deposition were determined at Air Pollution Laboratory in the Institute of Environmental Engineering at National Sun Yat-Sen University except that the pH value and conductivity of samples were measured in situ. During the period of investigation, the pH value of rainwater ranged from 3.45 to 7.36 with a mode of 4.4--4.8. The volume-weighted average pH value was 4.65. The probability of acid rain during investigation period was approximately 77.3%. The probability of acid rain in rainy season was much higher than that in dry season. A lower probability in dry season was mainly attributed to the fact that alkaline particles suspended in the atmosphere to be washed by rainwater droplets. Results from correlation analysis indicated that major chemical species (r > 0.85) in rainwater droplets were NaCl, NH{sub 4}NO{sub 3}, Na{sub 2}NO{sub 3}, and NaCl{sub 2}. Furthermore, the deposition of hydrogen ion in wet process was much higher than that in dry process.

  11. Iron-control additives improve acidizing

    SciTech Connect

    Walker, M.; Dill, W. ); Besler, M. )

    1989-07-24

    Iron sulfide and sulfur precipitation in sour wells can be controlled with iron-sequestering agents and sulfide modifiers. Oil production has been routinely increased in sour wells where precipitation of iron sulfide and elemental sulfur has been brought under control. Production increases have been especially noteworthy on wells that had a history of rapid production decline after acid stimulation. Twenty-fold production increases have been recorded. Key to the production increase has been to increase permeability with: Iron chelating agents that control precipitation of iron sulfide. A sulfide modifier that reduces precipitation of solids in the presence of excessive amounts of hydrogen sulfide and prevents precipitation of elemental sulfur.

  12. Control of crystallite size in diamond film chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Moran, Mark B.; Johnson, Linda F.; Klemm, Karl A.

    1992-12-01

    In depositing an adhering, continuous, polycrystalline diamond film of optical or semiconductor quality on a substrate, as by forming on the substrate a layer of a refractory nitride interlayer and depositing diamond on the interlayer without mechanical treatment or seeding of the substrate or the interlayer, the substrate is heated in a vacuum chamber containing a microwave activated mixture of hydrogen and a gas including carbon, and the size of deposited diamond crystallites and their rate of deposition selectively varied by a bias voltage applied to the substrate.

  13. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  14. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate.

    PubMed

    Carmichael, Gregory R; Streets, David G; Calori, Giuseppe; Amann, Markus; Jacobson, Mark Z; Hansen, James; Ueda, Hiromasa

    2002-11-15

    In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.

  15. Acid deposition sensitivity map of the Southern Appalachian Assessment area; Virginia, North Carolina, South Carolina, Tennessee, Georgia, and Alabama

    USGS Publications Warehouse

    Pepper, John D.; Grosz, Andrew E.; Kress, Thomas H.; Collins, Thomas K.; Kappesser, Gary B.; Huber, Cindy M.; Webb, James R.

    1995-01-01

    Project Summary: The following digital product represents the Acid Deposition Sensitivity of the Southern Appalachian Assessment Area. Areas having various susceptibilities to acid deposition from air pollution are designated on a three tier ranking in the region of the Southern Appalachian Assessment (SAA). The assessment is being conducted by Federal agencies that are members of the Southern Appalachian Man and Biosphere (SAMAB) Cooperative. Sensitivities to acid deposition, ranked high, medium, and low are assigned on the basis of bedrock compositions and their associated soils, and their capacities to neutralize acid precipitation.

  16. Magnetically controlled deposition of metals using gas plasma. Final report

    SciTech Connect

    1998-04-02

    This is the first phase of a project that has the objective to develop a method of spraying materials on a substrate in a controlled manner to eliminate the waste and hazardous material generation inherent in present plating processes. The project is considering plasma spraying of metal on a substrate using magneto-hydrodynamics to control the plasma/metal stream. The process being developed is considering the use of commercially available plasma torches to generate the plasma/metal stream. The plasma stream is collimated, and directed using magnetic forces to the extent required for precise control of the deposition material. The project will be completed in phases. Phase one of the project, the subject of this grant, is the development of an analytical model that can be used to determine the feasibility of the process and to design a laboratory scale demonstration unit. The contracted time is complete, and the research is still continuing. This report provides the results obtained to date. As the model and calculations are completed those results will also be provided. This report contains the results of the computer code that have been completed to date. Results from a ASMEE Benchmark problem, flow over a backward step with heat transfer, Couette flow with magnetic forces, free jet flow are presented along with several other check calculations that are representative of the cases that were calculated in the course of the development process. The final cases that define a velocity field in the exit of a plasma spray torch with and without a magnetic field are in process. A separate program (SPRAY) has been developed that can track the plating material to the substrate and describe the distribution of the material on the substrate. When the jet calculations are complete SPRAY will be used to compare the distribution of material on the substrate with and without the effect of the magnetic focus.

  17. Control of acid mine drainage using surfactants

    SciTech Connect

    Not Available

    1983-02-01

    This news sheet describes US Bureau of Mines work on the reduction or prevention of acid mine drainage from coal refuse piles and surface mines by inhibiting the growth of Thiobacillus ferrooxidans. It has been found that the direct application of a dilute surfactant or detergent solution to coal refuse piles or overburden can be an effective preventive measure or can reduce water treatment costs by controlling acid drainage at its source. Of the anionic surfactants tested to date, sodium lauryl sulphate appears to be the most effective. Alpha olefin sulphonate and alkyl benzene sulphonate are acceptable alternatives. The results of field trials are presented.

  18. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers

    PubMed Central

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming

    2016-01-01

    Nicotinic acid (NA) acting as the precursor of NAD+/NADH and NADP+/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  19. A Study of Effects of Acid Deposition on Pine Forest Ecosystem in Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, F.; Lv, Z.; Song, W.; Yang, S.

    2013-12-01

    We used a long-term soil acidification model (LTSAM) and a terrestrial biogeochemical model (CENTURY) coupled to simulate the effects of acid deposition on pine forest ecosystem in southwestern China, based on indoor experiment results of aluminum toxicity to individual plant growth. The results of indoor aluminum experiments show that high aluminum concentration may restrict the plant growth and the acidic condition may aggravate it. The behavior of restriction of plant growth includes decreases of pine seedling biomass, root elongation and the sorption of soil cations (e.g. Ca2+, Mg2+, Na+ and K+). The model simulation results about soil chemistry show that, as acid deposition increases more, the pH value decreases faster, the soil aluminum ion concentration increase more rapidly, and the nutrition ions in soil solution decrease more quickly. The increased acid deposition also has negative impacts on the forest ecosystem according to the biogeochemical model simulation, for example, decreases of vegetation biomass, net primary productivity (NPP) and net CO2 uptake. Furthermore, the decrease of plant biomass will result in the decrease of the soil organic carbon content for the limited decomposition material supply.

  20. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  1. Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI

    PubMed Central

    Li, Shilei; Zhang, Yangyang; Liu, Jian’an; Han, Juanjuan; Guan, Ming; Yang, Hui; Lin, Yu; Xiong, Shaoxiang; Zhao, Zhenwen

    2016-01-01

    MALDI MSI has been recently applied as an innovative tool for detection of molecular distribution within a specific tissue. MALDI MSI requires deposition of an organic compound, known as matrix, on the tissue of interest to assist analyte desorption and ionization, in which the matrix crystal homogeneity and size greatly influence the imaging reproducibility and spatial resolution in MALDI MSI. In this work, a homemade electrospray deposition device was developed for deposition of matrix in MALDI MSI. The device could be used to achieve 1 μm homogeneous matrix crystals in MALDI MSI analysis. Moreover, it was found, for the first time, that the electrospray deposition device could be used to precisely control the matrix crystal size, and the imaging spatial resolution was increased greatly as the matrix crystals size becoming smaller. In addition, the easily-built electrospray deposition device was durable for acid, base or organic solvent, and even could be used for deposition of nanoparticles matrix, which made it unparalleled for MALDI MSI analysis. The feasibility of the electrospray deposition device was investigated by combination with MALDI FTICR MSI to analyze the distributions of lipids in mouse brain and liver cancer tissue section. PMID:27885266

  2. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  3. Depositional controls, distribution, and effectiveness of world's petroleum source rocks

    SciTech Connect

    Klemme, H.D.; Ulmishek, G.F.

    1989-03-01

    Six stratigraphic intervals representing one-third of Phanerozoic time contain source rocks that have provided more than 90% of the world's discovered oil and gas reserves (in barrels of oil equivalent). The six intervals include (1) Silurian (generated 9% of the world's reserves); (2) Upper Devonian-Tournaisian (8% of reserves); (3) Pennsylvanian-Lower Permian (8% of reserves); (4) Upper Jurassic (25% of reserves); (5) middle Cretaceous (29% of reserves); and (6) Oligocene-Miocene (12.5% of reserves). This uneven distribution of source rocks in time has no immediately obvious cyclicity, nor are the intervals exactly repeatable in the commonality of factors that controlled the formation of source rocks. In this study, source rocks of the six intervals have been mapped worldwide together with oil and gas reserves generated by these rocks. Analysis of the maps shows that the main factors affecting deposition of these source rocks and their spatial distribution and effectiveness in generating hydrocarbon reserves are geologic age, global and regional tectonics, paleogeography, climate, and biologic evolution. The effect of each of the factors on geologic setting and quality of source rocks has been analyzed. Compilation of data on maturation time for these source rocks demonstrated that the majority of discovered oil and gas is very young, more than 80% of the world's oil and gas reserves have been generated since Aptian time, and nearly half of the world's hydrocarbons have been generated and trapped since the Oligocene.

  4. Control of MR to RR Transition by Pulsed Energy Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Adelgren, Russell; Elliott, Gregory; Knight, Doyle

    2003-11-01

    This paper presents a study of the effect of a single laser energy pulse on the transition from a Mach Reflection (MR) to a Regular Reflection (RR) in the Dual Solution Domain (DSD). The freestream Mach number is 3.45 and two oblique shock waves are formed by two symmetric 22 degree wedges. These conditions correspond to a point midway within the DSD. A steady MR was first obtained experimentally and numerically, then a single laser pulse was deposited above the horizontal center plane. For the steady MR, the simulation showed the variation of Mach stem height along the span due to side effects. The predicted spanwise averaged Mach stem height was 1.96 mm within 2 percent of the experimental value of 2 mm. The experiment showed that the Mach stem height decreased to 30 percent of its original height due to the interaction with the laser spot and then returned to its original height by 300 microsec. That the Mach stem returned to its original height was most likely due to freestream turbulence in the wind tunnel. The numerical simulation successfully predicted the reverse transition from a stable MR to a stable RR and the stable RR persisted across the span. This study showed the capability of a laser energy pulse to control the reverse transition of MR -> RR within the Dual Solution Domain.

  5. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    SciTech Connect

    Not Available

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  6. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    Instrumental records and monitoring of high elevation lakes began in most areas of the western US in the early 1980s. Much effort has been devoted to detecting changes in these aquatic ecosystems resulting from increased atmospheric deposition of acids and nutrients. However, there is growing evidence that thresholds for atmospheric pollutants were crossed much earlier in the 20th Century and that some of the subsequent hydrochemical and ecological changes observed in these lakes may be the result of recovery from earlier atmospheric forcing. We examine responses of high elevation lakes to atmospheric deposition on annual to century timescales using data from a 29-year study of Emerald Lake (Sequoia National Park) and paleolimnological analyses of other high elevation lakes incorporating diatom species analyses and geochemical proxies for fossil-fuel burning. At Emerald Lake, we have observed multiple transitions between nitrogen and phosphorus limitation of phytoplankton, the earliest of which occurred in the beginning of the 1980s and may be the result of reduction in N deposition due to the Clean Air Act. Critical loads analyses incorporating diatom species in lake sediments suggest that thresholds for N deposition were crossed in the period of 1950-1980 in the Rocky Mountains and likely much earlier, 1900-1920, in the Sierra Nevada. Diatom species composition is strongly controlled by acid neutralizing capacity (ANC) in the Sierra Nevada and we have observed a pronounced decline and recovery of ANC over the period of 1920-1980 in some Sierra Nevada lakes that coincides with the abundance of spheroidal carbonaceous particles (i.e., a diagnostic tracer of fossil fuel combustion) preserved in lake sediments; these patterns appear to be driven by increased emissions of oxidized N and S in the mid-20th Century and reductions in acid precursor levels caused by the Clean Air Act in the 1970s. Thus, when interpreting observational records from western high elevation

  7. Valuation of damages to recreational trout fishing in the Upper Northeast due to acidic deposition

    SciTech Connect

    Englin, J.E.; Cameron, T.A.; Mendelsohn, R.E.; Parsons, G.A.; Shankle, S.A.

    1991-04-01

    This report documents methods used to estimate economic models of changes in recreational fishing due to the acidic deposition. The analysis was conducted by Pacific Northwest Laboratory (PNL) and its subcontractors for the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE) in support of the National Acidic Precipitation Assessment Program (NAPAP). The primary data needed to estimate these models were collected in the 1989 Aquatic Based Recreation Survey (ABRS), which was jointly funded by the DOE and the EPA's Office of Policy Planning and Evaluation. 11 refs., 5 figs., 15 tabs.

  8. Modeling the contribution of soil fauna to litter decomposition influenced by acidic deposition

    SciTech Connect

    Cai, B.; Loucks, O.L; Kuperman, R. Argonne National Lab., IL )

    1993-06-01

    The effect of acidic deposition on soil pH and therefore on soil invertebrates and litter decomposition is being investigated in oak-hickory forests across a three-state, midwest, pollution gradient. The role of soil invertebrates has been assessed previously through the use of feeding, assimilation and respiratory rates. These energetic parameters depend strongly on the form of the allometric equations which have been improved here by incorporating uncertainties in body and population size. Results show that changes in reproduction and turnover dynamics of soil invertebrates (particularly of earthworms) due to acid-induced changes in soil pH explains observed patterns in litter depth.

  9. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  10. Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

    PubMed Central

    Altintoprak, Klara; Seidenstücker, Axel; Welle, Alexander; Eiben, Sabine; Atanasova, Petia; Stitz, Nina; Plettl, Alfred; Bill, Joachim; Gliemann, Hartmut; Jeske, Holger; Rothenstein, Dirk; Geiger, Fania

    2015-01-01

    Summary The coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures. Nanotubular tobacco mosaic virus (TMV) templates have proved particularly suitable towards this goal: Their multivalent protein coating can be modified by high-surface-density conjugation of peptides, inducing and governing silica deposition from precursor solutions in vitro. In this study, TMV has been equipped with mineralization-directing peptides designed to yield silica coatings in a reliable and predictable manner via precipitation from tetraethoxysilane (TEOS) precursors. Three peptide groups were compared regarding their influence on silica polymerization: (i) two peptide variants with alternating basic and acidic residues, i.e. lysine–aspartic acid (KD)x motifs expected to act as charge-relay systems promoting TEOS hydrolysis and silica polymerization; (ii) a tetrahistidine-exposing polypeptide (CA4H4) known to induce silicification due to the positive charge of its clustered imidazole side chains; and (iii) two peptides with high ZnO binding affinity. Differential effects on the mineralization of the TMV surface were demonstrated, where a (KD)x charge-relay peptide (designed in this study) led to the most reproducible and selective silica deposition. A homogenous coating of the biotemplate and tight control of shell thickness were achieved. PMID:26199844

  11. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China.

    PubMed

    Tao, Yu; Dan, Dai; Chengda, He; Qiujin, Xu; Fengchang, Wu

    2016-11-01

    Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0-10 cm) and deeper sediments (>10 cm). The interstitial water Ca(2+) and Mg(2+), ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid

  12. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    PubMed

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  13. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  14. Watershed surveys to support an assessment of the regional effects of acidic deposition on surface water chemistry

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; Church, Robbins; Lammers, Duane; Liegel, Leon; Johnson, Mark; Coffey, Deborah; Holdren, Richard; Stevens, Donald; Turner, Robert; Blume, Louis

    1989-01-01

    Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future

  15. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  16. Climatic evolution and control on carbonate deposition in northeast Australia

    NASA Astrophysics Data System (ADS)

    Feary, David A.; Davies, Peter J.; Pigram, Christopher J.; Symonds, Philip A.

    1991-03-01

    The characteristics of carbonate facies deposited along continental margins are directly controlled by seawater temperature. The oxygen isotopic composition of foraminifera tests reflect seawater temperature, and accordingly isotopic and age data may be combined to derive a paleotemperature record. Paleotemperature data may be used both to account for the known distribution of carbonate facies, and also to predict facies characteristics in poorly known areas. Oxygen isotope data from Deep Sea Drilling Project holes throughout the southwest Pacific have been used to compile a paleotemperature curve for offshore northeast Australia. The accuracy of paleotemperature estimates used in this compilation is dependent on the precise estimation of global ice volumes; on the estimation of surface water isotopic ratios from near-surface planktonic foraminifera; on the accuracy of biological disequilibrium isotopic fractionation constants for benthonic foraminifera; and on the identification of recrystallization, encrustation, and selective dissolution of samples. Decreasing temperatures during much of the early Cenozoic portion of the northeast Australia paleotemperature curve reflect the global high-latitude cooling trend which persisted throughout the Tertiary following the earliest Eocence temperature maximum. Warning during the middle Oligocene to Recent part of the curve reflects northeast Australia's transition from a mid-latitude situation in a world with little climatic zonation, to a low latitude situation in a world with pronounced latitudinal temperature gradients. The carbonate buildups of northeast Australia directly reflect this climatic variation. Restricted warm temperate or subtropical buildups developed during the Eocene; carbonate buildups did not develop at all during the cool Oligocene; and subtropical buildups suceeded by tropical coral reefs first developed during the latest Oligocene or Early Miocene in the northernmost part of area, and later

  17. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  18. Long-term impact of acid resin waste deposits on soil quality of forest areas I. Contaminants and abiotic properties.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    Acid resins are residues characterised by elevated concentrations of hydrocarbons and trace elements, which were produced by mineral oil industries in Central Europe during the first half of the last century. Due to the lack of environmental legislation at that time, these wastes were dumped into excavated ponds in public areas without further protection. In this work, the long-term effects of such resin deposits on soil quality of two forest areas (Bayern, Germany) were assessed. We evaluated the distribution and accumulation of contaminants in the surroundings of the deposits, where the waste was disposed of about 60 years ago. General soil chemical properties such as pH, C, N and P content were also investigated. Chemical analysis of resin waste from the deposits revealed large amounts of potential contaminants such as hydrocarbons (93 g kg(-1)), As (63 mg kg(-1)), Cd (24 mg kg(-1)), Cu (1835 mg kg(-1)), Pb (8100 mg kg(-1)) and Zn (873 mg kg(-1)). Due to the location of the deposits on a hillside and the lack of adequate isolation, contaminants have been released downhill despite the solid nature of the waste. Five zones were investigated in each site: the deposit, three affected zones along the plume of contamination and a control zone. In affected zones, contaminants were 2 to 350 times higher than background levels depending on the site. In many cases, contaminants exceeded the German environmental guidelines for the soil-groundwater path and action levels based on extractable concentrations. Resin contamination yielded larger total C/total N ratios in affected zones, but no clear effect was observed on absolute C, N and P concentrations. In general, no major acidification effect was reported in affected zones.

  19. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  20. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  1. Long-term response of surface water acid neutralizing capacity in a central Appalachian (USA) river basin to declining acid deposition

    NASA Astrophysics Data System (ADS)

    Kline, Kathleen M.; Eshleman, Keith N.; Garlitz, James E.; U'Ren, Sarah H.

    2016-12-01

    Long-term changes in acid-base chemistry resulting from declining regional acid deposition were examined using data from repeating synoptic surveys conducted within the 275 km2 Upper Savage River Watershed (USRW) in western Maryland (USA); a randomly-selected set of 40 stream reaches was sampled 36 times between 1999 and 2014 to: (1) repeatedly characterize the acid-base status of the entire river basin; (2) determine whether an extensive network of streams of varying order has shown signs of recovery in acid neutralizing capacity (ANC); and (3) understand the key factors controlling the rate of ANC recovery across the river network. Several non-parametric analyses of trends (i.e., Mann Kendall Trend: MKT tests; and Regional Kendall Trend: RKT) in streamwater acid-base chemistry suggest that USRW has significantly responded to declining acid deposition during the study period; the two most robust, statistically significant trends were decreasing surface water SO42- (∼1.5 μeq L-1 yr-1) and NO3- (∼1 μeq L-1 yr-1) concentrations-consistent with observed downward trends in regional wet S and N deposition. Basin-wide decreasing trends in K+, Mg2+, and Ca2+ were also observed, while Na+ concentrations increased. Significant ANC recovery was observed in 10-20% of USRW stream reaches (depending on the p level used), but the magnitude of the trend relative to natural variability was apparently insufficient to allow detection of a basin-wide ANC trend using the RKT test. Watershed factors, such as forest disturbances and increased application of road deicing salts, appeared to contribute to substantial variability in concentrations of NO3- and Na+ in streams across the basin, but these factors did not affect our overall interpretation of the results as a systematic recovery of USRW from regional acidification. Methodologically, RKT appears to be a robust method for identifying basin-wide trends using synoptic data, but MKT results for individual systems should be

  2. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  3. Using Australian Acidic Playa Lakes as Analogs for Phyllosilicate and Sulfate Depositional Environments on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Michalski, J.; Kargel, J.; Hook, S.; Marion, G.; Crowley, J.; Bridges, N.; Brown, A.; Ribeiro da Luz, B.; de Souza Filho, C. R.; Thomson, B.

    2008-12-01

    Recent work on the origin of martian sulfates and their relationship to phyllosilicate deposits suggest that these deposits formed in different eras of Mars' history, under distinct environmental conditions. In southwestern Meridiani Planum phyllosilicates exist in close proximity to sulfate deposits. One possible explanation for this relationship is that it is an unconformable stratigraphic sequence, representing a significant change in aqueous geochemical conditions over time. Specifically, it may be interpreted to record a change in environment from neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to the Hesperian. On Earth, two different geochemical systems need not be evoked to explain such chemical variation. Acidic playa lakes in Western Australia have large pH differences separated by only a few tens of meters and demonstrate how highly variable chemistries can coexist over short distances in natural environments. Playa lakes on Earth tend to be dominated by lateral flow of water and salts leading to lateral chemical variation. Heterogeneity of playa mineralogy in Australia is due to the varied source rocks of brines and the mixing of dilute oxidizing brines and freshwater with the saturated evaporitic brines. This is evidenced by the ferricretes in the near-shore environment and more soluble phases in basin interiors. Playa lakes on Mars would be much larger than their terrestrial counterparts, leading to the prevalence of large-scale surface and crustal advection of water and salt rather than short-distance lateral flow, except at lake boundaries. Little or no influx of freshwater would preclude the formation of playa rim (e.g., crater rim) ferricretes and silcretes. Instead, we expect to see mainly vertical facies changes, and any diachronous lateral facies changes are expected to occur on very large spatial scales. Comparison of high spatial resolution, hyperspectral airborne data for Australian playa

  4. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  5. Shape control of gold nanoparticles by silver underpotential deposition.

    PubMed

    Personick, Michelle L; Langille, Mark R; Zhang, Jian; Mirkin, Chad A

    2011-08-10

    Four different gold nanostructures: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes, have been synthesized using a seed-mediated growth method by strategically varying the Ag(+) concentration in the reaction solution. Using X-ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy, we provide quantitative evidence that Ag underpotential deposition is responsible for stabilizing the various surface facets that enclose the above nanoparticles. Increasing concentrations of Ag(+) in the growth solution stabilize more open surface facets, and experimental values for Ag coverage on the surface of the particles fit well with a calculated monolayer coverage of Ag, as expected via underpotential deposition.

  6. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  7. Height control of laser metal-wire deposition based on iterative learning control and 3D scanning

    NASA Astrophysics Data System (ADS)

    Heralić, Almir; Christiansson, Anna-Karin; Lennartson, Bengt

    2012-09-01

    Laser Metal-wire Deposition is an additive manufacturing technique for solid freeform fabrication of fully dense metal structures. The technique is based on robotized laser welding and wire filler material, and the structures are built up layer by layer. The deposition process is, however, sensitive to disturbances and thus requires continuous monitoring and adjustments. In this work a 3D scanning system is developed and integrated with the robot control system for automatic in-process control of the deposition. The goal is to ensure stable deposition, by means of choosing a correct offset of the robot in the vertical direction, and obtaining a flat surface, for each deposited layer. The deviations in the layer height are compensated by controlling the wire feed rate on next deposition layer, based on the 3D scanned data, by means of iterative learning control. The system is tested through deposition of bosses, which is expected to be a typical application for this technique in the manufacture of jet engine components. The results show that iterative learning control including 3D scanning is a suitable method for automatic deposition of such structures. This paper presents the equipment, the control strategy and demonstrates the proposed approach with practical experiments.

  8. Declining Acidic Deposition Begins Reversal of Forest-Soil Acidification in the Northeastern U.S. and Eastern Canada.

    PubMed

    Lawrence, Gregory B; Hazlett, Paul W; Fernandez, Ivan J; Ouimet, Rock; Bailey, Scott W; Shortle, Walter C; Smith, Kevin T; Antidormi, Michael R

    2015-11-17

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  9. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    USGS Publications Warehouse

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  10. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  11. Tectonic control of Eocene arkosic sediment deposition, Oregon and Washington

    SciTech Connect

    Armentrout, J.M.; Ulrich, A.R.

    1983-03-01

    Chronostratigraphic and geographic studies of Eocene arkosic sandstones suggest deposition during a volcanically quiet interval resulting from the westward jump of the Farallon-Kula plate subduction zone in Oregon and Washington. The Eocene arkosic sandstones were deposited as part of a broad fluvial plain-coastal plain-shelf margin basin complex extending throughout Oregon and Washington between uplands of Mesozoic rocks. Feldspathic-quartzose sediments were transported from the east by river systems draining granitic terrains perhaps as far away as the Idaho Batholith. Chronostratigraphic correlations suggest that the arkosic sandstones were deposited along the margins of the depositional system during the early Eocene, prograded westward during the middle Eocene, and then regressed during the latest Eocene and Oligocene simultaneously with the influx of abundant pyroclastic debris. During the early Eocene, a northwest-southeast seamount chain was extruded on the Farallon and Kula plates west of an eastward-dipping subduction zone. Subduction of the oceanic plates moved the seamount chain obliquely toward the subduction zone. In middle Eocene time-49 to 40 m.y.b.p-the seamount chain reached the subduction zone creating instability in the subduction system and resulting in the westward jump of the underthrust boundary between the Farallon-Kula and North American plates. Coincident with and continuing after the subduction zone jump and seamount accretion, eastwardly derived arkosic sediments prograded across Oregon and Washington spilling into the new fore-arc basin and enveloping the seamounts.

  12. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites.

    PubMed

    Cooper, D M

    2005-09-01

    Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.

  13. Gravimetric measurements with use of a cantilever for controlling of electrochemical deposition processes

    NASA Astrophysics Data System (ADS)

    Prokaryn, Piotr; Janus, Pawel; Zajac, Jerzy; Sierakowski, Andrzej; Domanski, Krzysztof; Grabiec, Piotr

    2016-11-01

    In this paper we describe the method for monitoring the progress of electrochemical deposition process. The procedure allows to control the deposition of metals as well as conductive polymers on metallic seed layer. The method is particularly useful to very thin layers (1-10 nm) of deposited medium which mechanical or optical methods are troublesome for. In this method deposit is grown on the target and on the test silicon micro-cantilever with a metal pad. Galvanic deposition on the cantilever causes the change of its mass and consequently the change of its resonance frequency. Changes of the frequency is measured with laser vibro-meter then the layer thicknesses can be estimated basing on the cantilever calibration curve. Applying this method for controlling of gold deposition on platinum seed layer, for improving the properties of the biochemical sensors, is described in this paper.

  14. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-05

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  15. Sensitivity of stream basins in Shenandoah National Park to acid deposition

    USGS Publications Warehouse

    Lynch, D.D.; Dise, N.B.

    1985-01-01

    Six synoptic surveys of 56 streams that drain the Shenandoah National Park, Virginia, were conducted in cooperation with the University of Virginia to evaluate sensitivity of dilute headwater streams to acid deposition and to determine the degree of acidification of drainage basins. Flow-weighted alkalinity concentration of most streams is below 200 microequivalents per liter, which is considered the threshold of sensitivity. Streams draining resistant siliceous bedrocks have an extreme sensitivity (alkalinity below 20 microequivalents/L); those draining granite and granodiorite have a high degree of sensitivity (20 to 100 microequivalents/L); and streams draining metamorphosed volcanics have moderate to marginal sensitivity (100 to 200 microequivalents/L). A comparison of current stream water chemistry to that predicted by a model based on carbonic acid weathering reactions suggests that all basins in the Park shows signs of acidification by atmospheric deposition. Acidification is defined as a neutralization of stream water alkalinity and/or an increase in the base cation weathering rate. Acidification averages 50 microequivalents/L, which is fairly evenly distributed in the Park. However, the effects of acidification are most strongly felt in extremely sensitive basins, such as those underlain by the Antietam Formation, which have stream water pH values averaging 4.99 and a mineral acidity of 7 microequivalents/L. (USGS)

  16. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  17. Tissue deposition and residue depletion in rainbow trout following continuous voluntary feeding with various levels of melamine or a blend of melamine and cyanuric acid.

    PubMed

    Liu, Haiyan; Xue, Min; Wang, Jia; Qiu, Jing; Wu, Xiufeng; Zheng, Yinhua; Li, Junguo; Qin, Yuchang

    2014-11-01

    This study determined the deposition and depletion in rainbow trout after continuous administration of melamine (MEL) alone or a blend of MEL and cyanuric acid (CYA). The plasma, muscles, kidneys, liver and gills were sampled at 0, 3, 7, 13, 21, 28 and 42d. After the final sampling at 42d, fish from the MEL0.05, MEL20 and MCA groups were fed the control diet (MEL0) for the depletion test. Co-administration with cyanuric acid accelerated the deposition time to the Css for melamine; during the withdrawal phrase, the melamine and CYA concentrations in the tissues decreased exponentially. Compared to the t(½) for single oral administration, the t(½) for melamine and cyanuric acid after 42d continuous feeding was prolonged. The presence of trace CYA in the plasma and kidneys of trout was detected in the MEL20 group, indicating that MEL can convert into CYA in rainbow trout.

  18. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  19. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain.

  20. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects

    SciTech Connect

    Brezonik, P.L.; Hendry, C.D. Jr.; Edgerton, E.S.; Schulze, R.L.; Crisman, T.L.

    1983-06-01

    A monitoring network of 21 bulk and 4 wet/dry collectors located throughout Florida measured spatial and temporal trends during a one-year period from May 1978 to April 1979. The project summary notes that statewide deposition rates of nitrogen and phosphorus were below the loading rates associated with eutrophication, although nutrient concentrations were higher during the summer. Overall, pH appears to have relatively small effects (in the range 4.7-6.8) on community structure in soft-water Florida lakes. More dramatic effects could occur under more acidic conditions in the future. 4 references, 5 figures, 1 table.

  1. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  2. Assessing biogeographic patterns in the changes in soil invertebrate biodiversity due to acidic deposition

    SciTech Connect

    Sugg, P.M.; Kuperman, R.G.; Loucks, O.L. |

    1995-09-01

    We are studying the response of soil faunal communities to a gradient in acidic deposition across midwestern hardwood forests. We have documented a pattern of population decrease and species loss for soil invertebrates along the acidification gradient. We now ask the following question: When confronted with apparent diversity changes along a region-wide pollution gradient, how can one assess the possibility of natural biogeographic gradients accounting for the pattern? As a first approximation, we use published range maps from taxonomic monographs to determine the percent of the regional fauna with ranges encompassing each site. For staphylinid beetles, range data show no sign of a biogeographic gradient. Yet for soil staphylinids, a large decrease is seen in alpha diversity (as species richness) from low to high acid dose sites (from 20 species to 8). Staphylinid species turnover is greatest in the transition from low to intermediate dose sites.

  3. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  4. Field comparison of methods for the measurement of gaseous and particulate contributors to acidic dry deposition

    SciTech Connect

    Sickles, J.E.; Hodson, L.L.; McClenny, W.A.; Paur, R.J.; Ellestad, T.G.

    1990-01-01

    A field study was conducted to compare methods for sampling and analysis of atmospheric constituents that are important contributors to acidic dry deposition. Three multicomponent samplers were used: the Canadian filter pack (FP), the annular denuder system (ADS), and the transition flow reactor (TFR). A tunable diode laser absorption spectrometer (TDLAS) provided continuous reference measurements of NO2 and HNO3. Nitrogen dioxide was also monitored with continuous luminol-based chemiluminescence monitors and with passive sampling devices (PSDs). The study was designed to provide a database for statistical comparison of the various methods with emphasis on the multicomponent samplers under consideration for use in a national dry deposition network. The study was conducted at the EPA dry deposition station in Research Triangle Park, NC between 29 September and 12 October, 1986. Daily averaging and/or sampling times were employed for the 13-day study; weekly samples were also collected, but results from these samples are not compared in the paper. Different measurements of ambient concentrations of the following constituents are compared: total particulate and gaseous NO3(-), HNO3, NO2, total particulate NH4(-), NH3, total particulate SO4(-), and SO2.

  5. Alternative control techniques document: Nitric and adipic acid manufacturing plants

    SciTech Connect

    Lazzo, D.W.

    1991-12-01

    The Alternative Control Techniques document describes available control techniques for reducing NOx emission levels from nitric and adipic acid manufacturing plants. The document contains information on the formation of NOx and uncontrolled NOx emissions from nitric and adipic acid plants. The following NOx control techniques for nitric acid plants are discussed: extended absorption, nonselective catalytic reduction (NSCR), and selective catalytic reduction (SCR). The following NOx control techniques for adipic acid plants are discussed: extended absorption and thermal reduction. For each control technique, achievable controlled NOx emission levels, capital and annual costs, cost effectiveness, and environmental and energy impacts are presented.

  6. Frequency control of photonic crystal membrane resonators by monolayer deposition

    NASA Astrophysics Data System (ADS)

    Strauf, S.; Rakher, M. T.; Carmeli, I.; Hennessy, K.; Meier, C.; Badolato, A.; DeDood, M. J. A.; Petroff, P. M.; Hu, E. L.; Gwinn, E. G.; Bouwmeester, D.

    2006-01-01

    We study the response of GaAs photonic crystal membrane resonators to thin-film deposition. Slow spectral shifts of the cavity mode of several nanometers are observed at low temperatures, caused by cryo-gettering of background molecules. Heating the membrane resets the drift and shielding will prevent drift altogether. In order to explore the drift as a tool to detect surface layers, or to intentionally shift the cavity resonance frequency, we studied the effect of self-assembled monolayers of polypeptide molecules attached to the membranes. The 2-nm-thick monolayers lead to a discrete step in the resonance frequency and partially passivate the surface.

  7. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  8. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  9. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Zhang, Yi; Wang, Zhangwei; Mulder, Jan

    2011-09-01

    Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.

  10. Scalable control program for multiprecursor flow-type atomic layer deposition system

    SciTech Connect

    Selvaraj, Sathees Kannan; Takoudis, Christos G.

    2015-01-01

    The authors report the development and implementation of a scalable control program to control flow type atomic layer deposition (ALD) reactor with multiple precursor delivery lines. The program logic is written and tested in LABVIEW environment to control ALD reactor with four precursor delivery lines to deposit up to four layers of different materials in cyclic manner. The programming logic is conceived such that to facilitate scale up for depositing more layers with multiple precursors and scale down for using single layer with any one precursor in the ALD reactor. The program takes precursor and oxidizer exposure and purging times as input and controls the sequential opening and closing of the valves to facilitate the complex ALD process in cyclic manner. The program could be used to deposit materials from any single line or in tandem with other lines in any combination and in any sequence.

  11. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  12. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  13. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    NASA Astrophysics Data System (ADS)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  14. Control of TTIP Solution for Atmospheric Pressure Plasma Jet and Deposition of TiO2 Micro-particles

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masahiro; Parajulee, Shankar; Ikezawa, Shunjiro

    TiO2 deposition-methods are versatile and are expected to be more simple and easy, however, in recent years the industrial photocatalytic products have been developed enormously. In this work, photocatalytic TiO2 micro-particles are deposited using the atmospheric pressure plasma jet device. Here, deposition-method is carried out in two steps, at first, the hydrolysis reaction time has been able to control which will resolve the TTIP coagulating trouble during the transportation, by acidifying the solution with AA (Acetic acid) and DEA (Diethanolamine). An experiment was performed to measure the hydrolysis reaction time of TTIP (Titanium tetraisopropoxide) solution by He-Ne laser. Secondly, the deposition of TiO2 micro-particles was carried out using the atmospheric pressure plasma jet with the controlled TTIP solution in reaction time. Based on SEM and water contact angle measurement, it is found that the smaller the mixing ratios of TTIP and DEA the smaller the TiO2 particle size. Also, the smaller the TiO2 particles the smaller the contact angle under the UV irradiation which suffices the photocatalytic behavior.

  15. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  16. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters.

    PubMed

    Milazzo, Rachela G; Mio, Antonio M; D'Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  17. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    PubMed Central

    Mio, Antonio M; D’Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices. PMID:28243555

  18. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets

    PubMed Central

    2013-01-01

    Background Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. Results The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and β-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. Conclusions Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and

  19. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    SciTech Connect

    Kuperman, R.G.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  20. Controls on subglacial patterns and depositional environments in western Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2009-12-01

    In western Ireland, Late Devensian ice flow dynamics and resultant patterns of landforms and sediments reflect the interplay between internal (glaciological) forcing and external forcing by rapid climate changes centred on the adjacent Atlantic Ocean. This interplay can be best demonstrated where ice from climatically-sensitive mountain source regions flowed into surrounding lowlands, such as the Connemara region of west County Galway, western Ireland. Here, a semi-independent ice cap was present over the Twelve Bens mountains, and interacted with ice from the much larger regional ice sheet from central Ireland. Landform and sediment patterns in the flat lowland region (c. 100 km2 below 30 m asl) to the south of the Twelve Bens reflect elements of this ice interaction. In detail, landform and sediment distributions here are highly complex with marked spatial differences in patterns of sediment availability. Across much of the region, sculpted bedrock forms (whaleback and bedrock drumlin ridges, roches mountonnées, striae) reflect subglacial abrasion across the underlying igneous and metamorphic bedrock that forms a relatively flat and lake-dominated landscape. Glacigenic sediments are found only at or around ice-retreat margins, and within isolated bedrock valleys. Here, diamicton drumlins are relatively uncommon but yet must represent depositional conditions that are not reflected elsewhere in this ice sheet sector where subglacial sediments are generally absent. This paper explores the interrelationship between local and regional ice flows through their impact on spatial patterns of glacial landforms and sediments. The paper presents field data on the characteristics of bedrock forms (erosional) and diamicton drumlins (depositional). Subglacial sediments are described from drumlin outcrops at key sites around Connemara, which helps in the understanding of the evolution of the subglacial environment in response to ice interactions from different source regions.

  1. Acid rain control: the costs of compliance

    SciTech Connect

    Gilleland, D.S.; Swisher, J.H.

    1985-01-01

    This document is the proceedings from a conference sponsored by the Illinois Energy Resources Commission and the Coal Extraction and Utilization Research Center, Southern Illinois University at Carbondale and held in Carbondale on March 18, 1984. Topics addressed include: the sources and impacts of acid rain, the problems inherent in modeling the impacts of acid rain legislation, the effects of acid rain legislation on the socio-economic sector, compliance costs, and the impact of acid rain legislation on related industries (railroads).

  2. Cutaneous mucinosis in shar-pei dogs is due to hyaluronic acid deposition and is associated with high levels of hyaluronic acid in serum.

    PubMed

    Zanna, G; Fondevila, D; Bardagí, M; Docampo, M J; Bassols, A; Ferrer, L

    2008-10-01

    Cutaneous mucinosis affects primarily shar-pei dogs. Hyaluronic acid (HA) is considered to be the main component of mucin and CD44 is the major cell surface receptor of HA, necessary for its uptake and catabolism. The aims of this study were to identify the composition of the mucin in cutaneous mucinosis of shar-pei dogs, investigate the correlation between the deposition of HA and the expression of CD44, and determine whether shar-pei dogs with cutaneous mucinosis presented with elevated levels of serum HA. In skin biopsies, the mucinous material was stained intensely with Alcian blue and bound strongly by the hyaluronan-binding protein. No correlation was found between the degree of HA deposition in the dermis and the expression of CD44 in the skin of shar-pei dogs affected or unaffected by cutaneous mucinosis. A clear positive correlation was found between the existence of clinical mucinosis and the serum HA concentration. In control dogs, serum HA ranged from 155.53 to 301.62 microg L(-1) in shar-pei dogs; without mucinosis it ranged from 106.72 to 1251.76 microg L(-1) and in shar-pei dogs with severe mucinosis it ranged between 843.51 to 2330.03 microg L(-1). Altogether, the results reported here suggest that mucinosis of shar-pei dogs is probably the consequence of a genetic defect in the metabolism of HA.

  3. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  4. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    PubMed

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA

  5. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  6. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use.

  7. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  8. Trends in visibility, PM{sub 2.5}, and deposition expected from the Acid Rain Provisions of the 1990 Clean Air Act Amendments

    SciTech Connect

    Shannon, J.D.; Hanson, D.A.

    1997-08-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (CAAA) are designed to reduce the deposition of SO{sub 2} and sulfate and, to a lesser extent, the deposition of NO{sub x} and nitrate through reduction of SO{sub 2} and NO{sub x} emissions. However, other important benefits are anticipated from the emission control strategies, including improvement of regional visibility and reductions in concentrations of fine particles (PM2.5). In this study, the authors coupled utility emissions forecasts with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and the Visibility Assessment Scoping Model (VASM) to calculate and compare the relative improvements by 2010 in visual impairment, PM2.5 concentrations, and sulfate wet deposition at selected sites in the eastern United States.

  9. Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification?

    PubMed

    Damgaard, Christian; Strandberg, Morten; Kristiansen, Søren Munch; Nielsen, Knud Erik; Bak, Jesper L

    2014-01-01

    Erica tetralix is the key species on NW European wet heathlands, where it is often found to be the dominating plant species. Consequently, it is of considerable concern that the species has decreased significantly in cover from 28% to 18% over a six-year period. In order to understand the underlying causes, a structural equation modeling (SEM) approach was applied on ecological data from 1130 wet heathland plots. Both atmospheric N deposition and soil acidification were included in the SEM. The most important causal effect revealed by the SEM was a significant negative effect of N deposition on the cover of E. tetralix, whereas soil acidity tended to have a negative effect of relatively less importance. There was no significant effect of N deposition on soil pH, which indicates that there are no major indirect effects of N deposition on the cover of E. tetralix mediated by soil acidification.

  10. Controllable nitrogen doping in as deposited TiO{sub 2} film and its effect on post deposition annealing

    SciTech Connect

    Deng, Shaoren; Devloo-Casier, Kilian; Devulder, Wouter; Dendooven, Jolien; Deduytsche, Davy; Detavernier, Christophe; Lenaerts, Silvia; Martens, Johan A.; Van den Berghe, Sven

    2014-01-15

    In order to narrow the band gap of TiO{sub 2}, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO{sub 2} and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO{sub 2} and PEALD TiN, the as synthesized TiO{sub x}N{sub y} films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO{sub 2} films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO{sub 2} along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.

  11. Acidification and recovery of a Spodosol BS horizon from acidic deposition

    SciTech Connect

    Dahlgren, R.A.; McAvoy, D.C.; Driscoll, C.T.

    1990-01-01

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. A mechanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40, 100, or 160 micromol/L SO4(2-). Following 44 d of leaching, all treatments were decreased to the 40 micromol/L SO4(2-) level to examine recovery from acidification. Acidic additions were initially neutralized by release of basic cations and sulfate adsorption. Following attainment of steady state conditions for basic cations and SO4(2-) with respect to the soil adsorption complex, Al dissolution was the primary neutralization mechanism. Aqueous Al activities appeared to be regulated by equilibrium with an Al(OH)3 mineral phase. Following decreases in acid loadings, recovery was rapid resulting in retention of basic cations, reversible release of SO4(2-) and a marked reduction in the concentrations of soluble Al.

  12. Mineralogical transformations controlling acid mine drainage chemistry

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Gassman, Paul L.; Arey, Bruce W.; Burgos, William D.

    2009-05-30

    The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GB sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.

  13. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  14. Comparison of acidic deposition to semi-natural ecosystems in Denmark—Coastal heath, inland heath and oak wood

    NASA Astrophysics Data System (ADS)

    Hansen, Birgitte; Nielsen, Knud Erik

    Acidic deposition to coastal heath, inland heath and oak wood in Denmark was determined from analysis of bulk precipitation and throughfall measurements for up to 3 yrs. The analysis aimed to determine the total annual sulphur and nitrogen deposition to the three different ecosystems. Total nitrogen deposition is especially difficult to assess due to uptake of nitrogen by the canopy, and difficulties in determining the dry deposition of each nitrogen species. An NH x-uptake estimation model is presented which assumes co-deposition of NH x+H + and SO x+NO y and exchange of NH x+H + for the leached Mg 2+, Ca 2+ and K + in the canopy. This approach makes it possible to estimate the dry deposition of reduced nitrogen (NH x). Dry deposited oxidized nitrogen (NO y) still remains unquantified with the throughfall method, and therefore this term is estimated from a generalized micro-meteorological model. Total annual nitrogen deposition was 29.0 kg ha -1 yr -1 for the oak wood, 18.3 kg ha -1 yr -1 for the inland heathland and 13.5 kg ha -1 yr -1 for the coastal heathland. The total annual acidic deposition (the sum of H +, SO x, NO y and NH x) was 3202 mol c ha -1 for the oak wood, 2228 mol c ha -1 for the inland heathland, and 2060 mol c ha -1 for the coastal heathland. However, this acid load has different effects on the ecosystems depending on the actual bio-geochemical reactions. The potential maximum acidification estimated for the oak wood (5512 mol c ha -1 yr -1) was almost twice as high as for the inland heathland (3815 mol c H + ha -1 yr -1) and for the coastal heathland (3383 mol cH + ha -1 yr -1).

  15. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    SciTech Connect

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  16. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    NASA Astrophysics Data System (ADS)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  17. Post-depositional migration and preservation of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, M.; Marchal, O.; Guo, W.; Das, S. B.; Evans, M. J.

    2015-12-01

    Methanesulfonic acid (MSA; CH3SO3-) in ice cores is a unique, high-resolution proxy of regional sea ice behavior, marine primary productivity, and synoptic climatology. Significant uncertainties remain, however, in both our understanding of the production and transfer of MSA to the ice sheet, as well as its preservation over time, compromising the paleoclimatological utility of the proxy. Here we apply a numerical modeling approach to quantitatively investigate the post-depositional processes affecting MSA migration and preservation within the firn and ice column, building on recent observational and theoretical studies. Our model allows us to evaluate the timing and magnitude of the vertical movement of MSA in response to varying influences, including the competing effects of 1) concentration gradients of sea-salts typically deposited asynchronously to MSA, 2) snow accumulation and densification rates, and 3) in situ temperature gradients. We first test the model against a recently collected ice core from a high accumulation site in coastal West Antarctica, where monthly-resolved MSA records show an abrupt shift from a summer-to-winter maximum in MSA at ~23m depth (ρ ≈ 650 kg/m3), near the firn-ice transition. We find our model to be a robust predictor of the observed migrational features in this record, capturing both (i) the abrupt shift in summer-to-winter maximal concentrations of MSA (steady state ≈ 3.2 yrs), and (ii) the depression of the seasonal amplitude at depth. Further, our modeling results suggest post-depositional effects can lead to substantial interannual alteration of the MSA signal, contrary to previous assumptions that MSA migration is confined within annual layers at high accumulation sites. Using a broad range of polar MSA records and their associated, site-specific environmental conditions, we will evaluate the fidelity of subannual to interannual variability of MSA records and systematically determine the factors conducive to its

  18. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  19. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    USGS Publications Warehouse

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  20. Economic assessment of acid deposition and ozone damage on the San Joaquin Valley agriculture. Final report

    SciTech Connect

    Howitt, R.

    1993-02-01

    The California Agricultural Resources Model (CARM) was used to estimate the economic impact of acidic deposition and ozone on crops in the San Joaquin Valley. Data on ozone exposure-crop response and agricultural markets are used in the CARM to estimate the potential economic benefits of an improvement in air quality. The study focused on the economic impact of two ozone reduction scenarios in agricultural regions of California. The CARM projected that if growing season concentrations of ozone were reduced to 0.04 ppm, annual benefits to consumers (higher availability and lower prices) and producers (higher production and lower production costs) would be approximately $489 million. In comparison, the benefit projected if statewide levels of ozone were uniformly reduced to 0.025 ppm was approximately $1.5 billion. Although the 0.025 ppm scenario is unlikely, the economic benefits were estimated to be correspondingly large.

  1. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  2. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Zhifeng; Chen, Xindu; Zeng, Jun; Liang, Feng; Wu, Peixuan; Wang, Han

    2017-03-01

    For large area micro/nano pattern printing, multi-nozzle electrohydrodynamic (EHD) printing setup is an efficient method to boost productivity in near-field electrospinning (NFES) process. And controlling EHD multi-jet accurate deposition under the interaction of nozzles and other parameters are crucial concerns during the process. The influence and sensitivity of various parameters such as the needle length, needle spacing, electrode-to-collector distance, voltage etc. on the direct-write patterning performance was investigated by orthogonal experiments with dual-nozzle NFES setup, and then the deposition distance estimated based on a novel model was compared with measurement results and proven. More controllable deposition distance and much denser of aligned naofiber can be achieved by rotating the dual-nozzle setup. This study can be greatly contributed to estimate the deposition distance and helpful to guide the multi-nozzle NFES process to accurate direct-write pattern in manufacturing process in future.

  3. SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES

    SciTech Connect

    Dr. Peter Ariessohn

    2003-04-15

    Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype

  4. Controls on overbank deposition in the Upper Mississippi River

    NASA Astrophysics Data System (ADS)

    Benedetti, Michael M.

    2003-12-01

    Floodplains contain valuable stratigraphic records of past floods, but these records do not always represent flood magnitudes in a straightforward manner. The depositional record generally reflects the magnitude, frequency, and duration of floods, but is also subject to storm-scale hysteresis effects, flood sequencing effects, and decade-scale trends in sediment load. Many of these effects are evident in the recent stratigraphic record of overbank floods along the Upper Mississippi River (UMR), where the floodplain has been aggrading for several thousand years. On low-lying floodplain surfaces in Iowa and Wisconsin, 137Cs profiles suggest average vertical accretion rates of about 10 mm/year since 1954. These rates are slightly less than rates that prevailed earlier in the 20th Century, when agricultural land disturbance was at a maximum, but they are still an order of magnitude greater than long-term average rates for the Holocene. As a result of soil conservation practices, accretion rates have decreased in recent decades despite an increase in the frequency of large floods. The stratigraphic record of the Upper Mississippi River floodplain is dominated by spring snowmelt events, because they are twice as frequent as rainfall floods, last almost twice as long, and are sometimes associated with very high sediment concentrations. The availability of sediment during floods is also influenced by a strong hysteresis effect. Peak sediment concentrations generally precede the peak discharges by 1-4 weeks, and concentrations are usually low (<50 mg/l) during the peak stages of most floods. The lag between peak concentration and peak discharge is especially large during spring floods, when much of the runoff is contributed by snowmelt in the far northern reaches of the valley. The great flood of 1993 on the Mississippi River focused attention on the geomorphic effectiveness and stratigraphic signature of large floods. At McGregor, where the peak discharge had a recurrence

  5. MAPLE deposited polymeric blends coatings for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2012-07-01

    We report on the use of Matrix Assisted Pulsed Laser Evaporation (MAPLE) for producing coatings of polymer blends for controlled drug delivery. The coatings consisting of blends of polyethylene glycol: poly(lactide-co-glycolide) (PEG: PLGA blends) are compared with those consisting of individual polymers (PEG, PLGA) in terms of chemical composition, morphology, hydrophilicity and optical constants. The release kinetics of an anti-inflammatory drug (indomethacin) through the polymeric coatings is monitored and possible mechanisms of the drug release are discussed. Furthermore, the compatibility of the polymeric coatings with blood constituents is investigated. Finally, the perspectives for employing MAPLE for producing coatings of polymer blends to be used in implants that deliver drugs in a controlled manner, along with the routes to be followed for elucidating the mechanism of drug release, are revealed.

  6. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  7. Issues in model validation: assessing the performance of a regional-scale acid deposition model using measured and modelled data

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Whyatt, J. D.; Nicholson, J. P. G.; Derwent, R. G.; Heywood, E.

    The development and validation of a new version of the Hull Acid Rain Model (HARM12.1) is described in the context of changes in emissions and deposition estimates supplied by the Centre for Ecology and Hydrology (CEH) Edinburgh based on the available measurement networks. Major changes to the model include greater vertical resolution, the adoption of new background concentrations and ecosystem-specific deposition velocities. HARM output for 1998-2000 is compared with data from the rural SO 2, NO 2 and NH 3 networks and results from the nitric acid and aerosol network. The ability to reproduce deposition estimates based on measurements is key to a regional-scale model like HARM. Changes in these estimates between 1995-97 and 1998-2000 are discussed. Comparing HARM modelled deposition and the CEH data indicates that the new version of the model performs better in this respect than its predecessor (HARM11.5). The trend in deposition over the time period does not seem to reflect the marked reduction in emissions. The possible reasons for this are explored with particular emphasis on changes in precipitation. 1995-97 was unusually dry, while 1998-2000 was wet. Changes in rainfall concentration and unmodified deposition are presented for comparison with HARM and CEH estimates. It is clear that the impact of precipitation variability on modelled acid deposition requires further investigation. Finally, we compare HARM12.1 and HARM 11.5 deposition in 2010 following emissions reductions to meet the terms of the National Emissions Ceilings Directive.

  8. Acid deposition in the Athabasca Oil Sands Region: a policy perspective.

    PubMed

    Whitfield, Colin J; Watmough, Shaun A

    2015-12-01

    Industrial emissions of sulphur (S) and nitrogen (N) to the atmosphere associated with the oil sands industry in north-eastern Alberta are of interest as they represent the largest localized source in Canada (with potential for future growth) and the region features acid-sensitive upland terrain. Existing emission management policy for the Regional Municipality of Wood Buffalo, where the industry is located, is based on a time-to-effect approach that relies on dynamic model simulations of temporal changes in chemistry and features highly protective chemical criteria. In practice, the policy is difficult to implement and it is unlikely that a scientifically defensible estimate of acidification risk can be put forward due to the limitations primarily associated with issues of scale, chemical endpoint designation (selection of chemical limit for ecosystem protection from acidification) and data availability. A more implementable approach would use a steady-state critical load (CL) assessment approach to identify at-risk areas. The CL assessment would consider areas of elevated acid deposition associated with oil sands emissions rather than targeted political jurisdictions. Dynamic models should only be (strategically) used where acidification risk is identified via CL analysis, in order to characterize the potential for acidification-induced changes that can be detrimental to sensitive biota within the lifespan of the industry.

  9. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  10. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  11. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  12. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  13. Formose reaction controlled by boronic acid compounds

    PubMed Central

    Imai, Toru; Michitaka, Tomohiro

    2016-01-01

    Formose reactions were carried out in the presence of low molecular weight and macromolecular boronic acid compounds, i.e., sodium phenylboronate (SPB) and a copolymer of sodium 4-vinylphenylboronate with sodium 4-styrenesulfonate (pVPB/NaSS), respectively. The boronic acid compounds provided different selectivities; sugars of a small carbon number were formed favorably in the presence of SPB, whereas sugar alcohols of a larger carbon number were formed preferably in the presence of pVPB/NaSS. PMID:28144337

  14. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  15. Controlled deposition of NIST-traceable nanoparticles as additional size standards for photomask applications

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Pui, David Y. H.; Qi, Chaolong; Yook, Se-Jin; Fissan, Heinz; Ultanir, Erdem; Liang, Ted

    2008-03-01

    Particle standard is important and widely used for calibration of inspection tools and process characterization and benchmarking. We have developed a method for generating and classifying monodisperse particles of different materials with a high degree of control. The airborne particles are first generated by an electrospray. Then a tandem Differential Mobility Analyzer (TDMA) system is used to obtain monodisperse particles with NIST-traceable sizes. We have also developed a clean and well-controlled method to deposit airborne particles on mask blanks or wafers. This method utilizes electrostatic approach to deposit particles evenly in a desired spot. Both the number of particles and the spot size are well controlled. We have used our system to deposit PSL, silica and gold particles ranging from 30 nm to 125 nm on 193nm and EUV mask blanks. We report the experimental results of using these particles as calibration standards and discuss the dependency of sensitivity on the types of particles and substrate surfaces.

  16. Phase control of iridium and iridium oxide thin films in atomic layer deposition

    SciTech Connect

    Kim, Sung-Wook; Kwon, Se-Hun; Kwak, Dong-Kee; Kang, Sang-Won

    2008-01-15

    The atomic layer deposition of iridium (Ir) and iridium oxide (IrO{sub 2}) films was investigated using an alternating supply of (ethylcyclopentadienyl)(1,5-cyclooctadiene) iridium and oxygen gas at temperatures between 230 and 290 deg. C. The phase transition between Ir and IrO{sub 2} occurred at the critical oxygen partial pressure during the oxygen injection pulse. The oxygen partial pressure was controlled by the O{sub 2}/(Ar+O{sub 2}) ratio or deposition pressures. The resistivity of the deposited Ir and IrO{sub 2} films was about 9 and 120 {mu}{omega} cm, respectively. In addition, the critical oxygen partial pressure for the phase transition between Ir and IrO{sub 2} was increased with increasing the deposition temperature. Thus, the phase of the deposited film, either Ir or IrO{sub 2}, was controlled by the oxygen partial pressure and the deposition temperature. However, the formation of a thin Ir layer was detected between the IrO{sub 2} and SiO{sub 2} substrate. To remove this interfacial layer, the oxygen partial pressure is increased to a severe condition. And the impurity contents were below the detection limit of Auger electron spectroscopy in both Ir and IrO{sub 2} films.

  17. Depositional, diagenetic, and tectonic controls on Frontier Formation reservoir characteristics: Moxa Arch, southwestern Wyoming

    SciTech Connect

    Horne, J.C.

    1995-12-31

    The Frontier Formation of the Moxa Arch in Southwestern Wyoming provides an excellent example of the interplay among sedimentation, diagenesis, and tectonics on reservoir quality and performance. During the Cretaceous, thrust uplift and crustal loading occurred in the Sevier Orogenic Belt to the west of the foreland basin. The thrust sheets provided ample sediment to the Moxa Arch area during Frontier time. These sediments accumulated in wave-dominated deltaic, strandplain, coastalplain, and incised valley-fill depositional environments. The tectonic activity in the Sevier Orogenic Belt caused recurrent differential movement of orthogonally-shaped basement blocks along the Moxa Arch. These Movements created fractured lineaments at block boundaries. In addition, the recurrent movements of basement blocks influenced paleostructuring, diagenetic fluid migration paths, and sediment dispersal patterns of the Frontier. The depositional facies of Frontier sediments control the primary porosity and permeability trends of Frontier reservoirs along the Moxa Arch. Post depositional fractures caused by recurrent differential movements along zones of weakness at basement block boundaries secondarily enhance permeability and performance characteristics of Frontier reservoirs. Both the depositional facies and post-depositional fracturing of the Frontier influence the diagenetic trends affecting secondary porosity and permeability characteristics of Frontier reservoirs along the Moxa Arch. It is this complicated interplay of depositional, tectonic, and diagenetic influences that control the characteristics of Frontier reservoirs along the Moxa Arch.

  18. Controlled modification of nanoporous gold: Chemical vapor deposition of TiO2 in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Ragazzon, D.; Walle, L. E.; Farstad, M. H.; Wichmann, A.; Bäumer, M.; Borg, A.; Sandell, A.

    2013-10-01

    TiO2 has been deposited in the first 400 nm of a nanoporous gold (NPG) structure using metal organic chemical vapor deposition with titanium-tetraisopropoxide as single source precursor in ultra high vacuum. The NPG has been pretreated by ozone to clean and stabilize the structure for deposition. The deposited oxide stabilizes the porous structure, otherwise prone to coarsening at elevated temperatures, up to 300 °C. The study combines the controlled sample preparation with a functional test of the prepared catalyst under real conditions in a continuous gas flow reactor. The catalytic activity of the loaded NPG at 60 °C for CO oxidation is found to be superior to unloaded as-prepared NPG.

  19. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning

    NASA Astrophysics Data System (ADS)

    Basu, Nandita; Cross, Graham L. W.

    2015-12-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries.

  20. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (beta-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.

  1. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  2. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios.

  3. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    PubMed Central

    Schneider, Andreas M; Eiden, Stefanie

    2015-01-01

    Summary In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  4. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  5. Tectonic controls on deposition and preservation of Pennsylvanian Tensleep Formation, Bighorn basin, Wyoming

    SciTech Connect

    Kelly Anne, O.; Horne, J.C.; Wheeler, D.M.; Musgrave, C.E.

    1986-08-01

    During deposition of the Tensleep Formation, a shallow, semirestricted portion of a major seaway that occupied the geosynclinal area to the west extended into the area of the present-day Bighorn basin. Limiting the transgression of this sea was the Beartooth high on the north and the Bighorn high on the east and southeast. On the western side of the area, a southerly extension of the Yellowstone high restricted circulation. The lower Tensleep Formation (Desmoinesian), characterized by extensive marine influence, was deposited as coastal sand dunes and interdunes over subaerially exposed structural highs. These deposits grade basinward into shoreface sandstones, which in turn grade into sandstones and carbonates of the shelf environment. During deposition of upper Tensleep strata (Missourian through Virgilian), marine waters were less widespread. The Greybull arch, a northeast-trending feature in the northern part of the area, was uplifted, dividing the shallow sea into two parts. The upper Tensleep Formation was deposited as a terrestrial sand sea over the Bighorn high. Coastal dunes and interdunes were deposited seaward of the sand seas and over the Beartooth high, the Greybull arch, and the southerly extension of the Yellowstone high. These deposits grade basinward into clastic shoreface deposits. Following Tensleep deposition, the region underwent southward tilting, which caused exposure and erosion of the Tensleep Formation. The resulting unconformity surface was deeply incised by a dendritic drainage system that controlled the thickness of the formation. The Greybull arch and the Bighorn high acted as significant drainage divides, over which very little of the formation was preserved.

  6. Hydrological controls of in situ preservation of waterlogged archaeological deposits

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; West, L. Jared; Howard, Andy J.; Maxfield, Eleanor; Panter, Ian; Oxley, John

    2006-09-01

    Environmental change caused by urban development, land drainage, agriculture or climate change may result in accelerated decay of in situ archaeological remains. This paper reviews research into impacts of environmental change on hydrological processes of relevance to preservation of archaeological remains in situ. It compares work at rural sites with more complex urban environments. The research demonstrates that both the quantity and quality of data on preservation status, and hydrological and chemical parameters collected during routine archaeological surveys need to be improved. The work also demonstrates the necessity for any archaeological site to be placed within its topographic and geological context. In order to understand preservation potential fully, it is necessary to move away from studying the archaeological site as an isolated unit, since factors some distance away from the site of interest can be important for determining preservation. The paper reviews what is known about the hydrological factors of importance to archaeological preservation and recommends research that needs to be conducted so that archaeological risk can be more adequately predicted and mitigated. Any activity that changes either source pathways or the dominant water input may have an impact not just because of changes to the water balance or the water table, but because of changes to water chemistry. Therefore, efforts to manage threatened waterlogged environments must consider the chemical nature of the water input into the system. Clearer methods of assessing the degree to which buried archaeological sites can withstand changing hydrological conditions are needed, in addition to research which helps us understand what triggers decay and what controls thresholds of response for different sediments and types of artefact.

  7. Modeling methanesulfonic acid (MSA) deposition on Antarctica to understand the MSA-sea ice link

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Steig, E. J.; Bitz, C. M.

    2010-12-01

    Sea ice plays a large role in global energy balance and climate. Much research has focused on methanesulfonic acid (MSA) as measured in Antarctic ice cores as a proxy for sea ice extent, but observations suggest that even the sign of the relationship between sea ice and MSA varies by region. The proxy is predicated on assumptions that dimethyl sulfide (DMS) emitted from the sea ice zone, for which MSA is an oxidation product, varies sufficiently from the open ocean across the ice edge to imprint a signal in MSA deposition, though just how DMS emissions in sea ice differ from open water DMS emissions has yet to be fully understood. Expansive winter sea ice cover followed by a sharp reduction in summer may stimulate biological productivity and hence DMS emissions; Diatoms within sea ice may release DMS at high enough rates to equal or exceed emissions from open water; and the sea-to-air gas flux parameterization may be fundamentally different in the stratified waters of melting sea ice. We have modified surface DMS concentrations in sea ice in a series of global chemical transport model (GEOS-Chem) simulations driven by reanalysis meteorological data, in an effort to mimic different plausible scenarios of DMS emissions from within sea ice. We show that variability in MSA deposition on Antarctica is primarily driven by wind speeds that govern the DMS fluxes from the ocean, as determined by the sea-to-air gas flux parameterization; Interannual variability in ice extent insufficiently modulates DMS emissions above this wind-driven variability. We also show that one-third to two-thirds of MSA deposition on Antarctica originates from north of the sea ice zone (i.e., North of 60 S), though the fraction is strongly dependent on the assumed seasonal concentrations of DMS within the sea ice zone. Given the limitations of the model processes and scenarios, we also demonstrate where a MSA signal associated with sea ice might be found on Antarctica.

  8. Variation of Atmospheric Deposition of Acid Species and Yellow Sand Particles From 1987 to 1999 Through Modeling Studies and Observations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Uno, I.; Zhang, M.; Akimoto, H.

    2002-05-01

    Acid deposition is of serious environmental concern in East Asia. Wet and dry deposition monitoring datasets have been collected for long enough to understand the deposition distribution and its variation in time and space in this region Field observations indicate that acid precipitation often occurs in the southern part of China, even though emissions of the precursors are stronger in the north, where such high levels of strong acids in precipitation have not been widely. The acidity of rainwater is heavily influenced and modified by natural soil dust from desert and semi-arid areas. This soil aerosol, or _gKOSA", is lifted from Asian deserts and the Loess plateau, and then carried by the prevailing wind over East Asia. A comprehensive Air Quality Prediction Modeling System (AQPMS) is used to perform year-long, quantitative simulation of rainwater pH in East Asia for 1987 and 1999, respectively with emissions of Akimoto et al.(1987) and Street et al.(2000), to discuss the variation of deposition of acid species and yellow sand particles due to the emission change in the past dozen years. Monitoring data at 17 sites of EANET (the Acid Deposition Monitoring Network in East Asia) in addition to the field observation data of SEPA(State Environmental Protection Agency) of China are used to evaluate the model, and a reasonable agreement is obtained. Emission in Sichuan province has decreased and emission in central China including Hubei province and Hunan province has increased. Model simulation shows the change of emission pattern caused the serious acid-rain-hit area moving southeastward as observed. In the west part of Sichuan province, the pH value increased, this is partly due to the success of countermeasures against acid rain in China since 1996, which reduce the emission in Sichuan area much more than expected. The variations of annual distribution of rain pH, sulfate, nitrite and yellow sand particles deposition are also discussed in detail, so do the

  9. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  10. Geology-based method of assessing sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1991-01-01

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    PubMed Central

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-01-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it’s deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide. PMID:26883576

  13. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.

    PubMed

    Chen, Qiang; Li, Wei; Goudouri, Ourania-Menti; Ding, Yaping; Cabanas-Polo, Sandra; Boccaccini, Aldo R

    2015-06-01

    Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules.

  14. Tectonic control of Cretaceous gravity deposits and submarine Valleys in the subalpine basin, French western Alps

    SciTech Connect

    Philippe, J.; Beaudoin, B.; Fries, G.; Parize, O.

    1988-08-01

    The Late Jurassic-Early Cretaceous series of the French subalpine basin is characterized by alternating limestones and marls with numerous, thick gravity-flow deposits (carbonate debris flows and slumps, siliciclastic grain flows, turbidites). These gravity deposits originate from platforms and slopes and come through the basin via several parallel canyons and submarine valleys. Some carbonate (Berriasian) and siliciclastic (Aptian) deep-sea fans are built at the canyon mouth during intense activity of the canyons and reworking of the sediments. The tectonic control of the gravity deposits is demonstrated by the position and filling of the submarine valleys all along the Cretaceous. The submarine valleys correspond systematically to the lower part of extensional tilted blocks; the gravity deposits come along the main syn-sedimentary normal faults delimiting these tilted blocks. The gravity deposits go from one tilted block to another through some synsedimentary passes which are induced by slight folding, perhaps related to an early diapirism at some nodes of extensional faults. The canyon-like valleys are due to very strong erosion when a submarine valley cuts of the higher part of a tilted block. The gravity deposits are stacked atop each other and progressively fill the valleys. Thus the cutting and filling of the submarine valleys and canyons on occasions during the Early Cretaceous are explained by a permanent synsedimentary activity. These Jurassic and Cretaceous extensional structures are later reactivated by inversion during Tertiary compressional movements.

  15. STM-Controlled Capillary Based Non-Contact Fluid Deposition Nanolithography

    NASA Astrophysics Data System (ADS)

    Lutfurakhmanov, Artur; Sailer, Rob; Schulz, Doug; Akhatov, Iskander

    2007-11-01

    A new method of fluid deposition based on scanning tunneling microscopy (STM) is presented. STM-Controlled Capillary Based Non-Contact Fluid Deposition Nanolithography consists of a Au-coated glass nanocapillary tip integrated into a commercial STM scanner platform where the tip serves the dual purpose of imaging and deposition. The small diameter hollow fiber (O.D. less than 500 nm) coupled with a conducting coating allows sub-angstrom-level z-resolution imaging using standard STM methodology. For fluid deposition, the tip is first located within 10 nm of the substrate before the nanocapillary is pressurized with a fluid (P = 50-500 KPa) leading to the formation of a small meniscus that then interacts with the underlying surface to give small spot of fluid deposition. Initial results show the ability to form features less than 500 nm in diameter using alpha-terpineol as the model fluid and highly-oriented pyrolytic graphite as the substrate. In addition to non-contact deposition, this technology also allows non-contact imaging using the constant height STM mode thereby eliminating the difficulties associated with finding nanometer-sized features.

  16. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  17. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  18. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  19. Morphological control of copper phthalocyanine films by protonation-electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Qian, Lingfeng; Xue, Minzhao; Sheng, Qiaorong; Zhang, Qing; Liu, Yangang

    2011-01-01

    Films composed of various nanostructured copper phthalocyanine are controllably prepared by the method of protonation-electrophoretic deposition. The ultralong nanowires of copper phthalocyanine are grown at the deposition temperature of 70 °C. And the results of films UV-vis absorption spectra and X-ray diffraction indicate that copper phthalocyanine possesses the transformation tendency from α-phase to thermostable β-phase under the higher deposition temperature. The formation process of the ultralong nanowires illustrates that the nanowires grow in longitudinal orientation much faster than in lateral direction. And the time dependence of the films morphology, from another point of view, proves that copper phthalocyanine is dissolved in the precursor solutions, and the formation of the nanostructured copper phthalocyanine contains the process of crystal growth, which is different from the traditional electrophoretic deposition. So the films morphology is flexible to be controlled by varying the deposition conditions. These diverse nanostructured films have potential applications in the electrochemical and optoelectrical equipments.

  20. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  1. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  2. Control of stability and structure of nucleic acids using cosolutes.

    PubMed

    Tateishi-Karimta, Hisae; Sugimoto, Naoki

    2014-05-15

    The stabilities, structures, and functions of nucleic acids are responsive to surrounding conditions. Living cells contain biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, that occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. We have proven that conditions that mimic features of this intra-cellular environment alter the physical properties affect the stability, structure, and function of nucleic acids. The ability to control structure of nucleic acids by mimicking intra-cellular conditions will be useful in nanotechnology applications of nucleic acids. This paper describes methods that can be used to analyze quantitatively the intra-cellular environment effects caused by cosolutes on nucleic acid structures and to regulate properties of nucleic acids using cosolutes.

  3. Integration of in situ RHEED with magnetron sputter deposition for atomic layer controlled growth

    NASA Astrophysics Data System (ADS)

    Podkaminer, Jacob P.

    Epitaxial thin films continue to be one of the most promising topics within electronic materials research. Sputter deposition is one process by which these films can be formed and is a widely used growth technique for a large range of technologically important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages associated with sputter deposition, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the strong permanent magnets in magnetron sputter sources and their effect on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer by layer control during sputter deposition by in situ RHEED. A novel growth chamber that can seamlessly change between pulsed laser deposition and sputtering with RHEED for the growth of complex heterostructures has been designed and implemented. Epitaxial thin films of LaAlO3, La1-xSrxMnO3, and SrRuO3 have all been deposited by sputtering and shown to exhibit clear and extended RHEED oscillations. To solve the magnet issue, a finite element model has been

  4. Acid fog Deposition of Crusts on Basaltic Tephra Deposits in the Sand Wash Region of Kilauea Volcano: A Possible Mechanism for Siliceous-Sulfatic Crusts on Mars

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Zierenberg, R.; Marks, N.; Bishop, J. L.

    2004-12-01

    Although the presence of sulfate minerals in martian outcrops may imply the prior existence of standing bodies of surface water, in terrestrial volcanic settings, sulfatic alteration may also occur above the water table within the vadose zone. On the summit of Kilauea volcano, sulfur dioxide, which is continuously emitted from Halemaumau crater and rapidly sequestered into sulfuric acid-rich aerosol entrained in the prevailing trade winds, is subsequently precipitated as acid-fog immediately downwind from the caldera in the Kau Desert. The characteristic pH of surface tephra deposits is < 4.0 in Sand Wash, a region of continuous, acidic aerosol fall-out immediately SW of the caldera. The upper portion of the Keanakakoi Ash tephra in Sand Wash, deposited in the late 18th century, has a ubiquitous, 0.1-0.2 mm-thick coating of amorphous silica. Conversely, vertical walls of unconsolidated tephra, exposed within small, dry gullies eroded into the ca. 3-4 m-thick Keanakakoi section at Sand Wash, are coated with ca. 0.5-1.0 mm-thick, mixed amorphous silica and jarosite-bearing crusts. Since these crusts are denuded from their outcrops during ephemeral, but probably annual flooding events in Sand Wash, we believe that they must accumulate rapidly. These crusts are apparently formed via an evaporative mechanism whereby acidic pore fluids, circulating in the upper few m's within the highly porous tephra, are wicked towards the walls of the gullies. Geochemical modeling of the crust-forming process implies that the sulfate formation via evaporation occurs subsequent to minimal interaction of acidic pore fluids with the basaltic tephra. This also suggests that the cycle from acid-fog fall-out to precipitation of the siliceous-sulfatic crusts must occur quite rapidly. Production of siliceous-sulfatic crusts via acid-fog alteration may also be occurring on Mars. The occurrence of evaporitic sulfate and silica at Sand Wash in Kilauea may serve as an example of how the jarosite

  5. Scythe (pelargonic acid) weed control in squash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season-long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, and y...

  6. Preliminary study of the acid deposition in the Tijuana Area (Mexico)

    SciTech Connect

    Bravo, H.; Sosa, R.; Torres, R. )

    1988-01-01

    Transboundary air pollution is of widespread international concern. Tijuana, Mexico, and San Diego, California, form one of the fastest growing border communities in the world. Projections place the current population of three million residents at nearly five million by the year 2000. Although the two cities are divided by an international border they share a common air base. Tijuana and southern portions of San Diego County are particularly affected by the exchange of air flow through the Tijuana River Canyon. The development of an air pollution acid rain monitoring and sampling program across the border, particularly in Tijuana is imperative because of a planned new Tijuana industrial city, large numbers of existing industries without adequate emission controls, and thousands of vehicles generated pollutants on both sides of the border. The first steps toward an acid rain study along the mexican border began in 1985, with a project between the National Council of Science and Technology - (CONACYT) and the Center of the Atmospheric Sciences of the University of Mexico (CCA, UNAM). The goal of this project is to obtain acid rain data from five sites along the border. One of these sites is Tijuana, B.C., Mexico. The data obtained are reported in the paper.

  7. (Growth and physiology of red spruce in relationship to acidic deposition in the Great Smoky Mountains National Park, USA)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1989-10-25

    The traveler attended the first day and a half of the International Conference on Forest Decline Research at Friedrichschafen, Federal Republic of Germany, where he presented a poster, Growth and Physiology of Red Spruce in Relationship to Acidic Deposition in the Great Smoky Mountains National Park, USA,'' by S.B. McLaughlin, C.P. Andersen, N.T. Edwards, P.J. Hanson, M.J. Tjoelker, and W.K. Roy. This stopover was a preface to the principal trip to Russia as part of a joint US-USSR Environmental Protection Agreement designed to increase exchange between scientists involved in pollution-related research. The traveler was a guest of Dr. Sergei Semenov of the USSR State Committee for Hydrometeorology and Control of Natural Environment, USSR Academy of Sciences. With a colleague, Dr. Al Heagle of the Agricultural Research Service of the US Department of Agriculture (USDA), he visited four Soviet research installations, and a Biosphere Reserve field research site while traveling from Pushchino, 100 km south of Moscow, to Moscow, and on to Leningrad over a ten-day period.

  8. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  9. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    PubMed

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  10. Control of Thin Liquid Film Morphology During Solvent-Assisted Film Deposition

    SciTech Connect

    Evmenenko, G.; Stripe, B; Dutta, P

    2010-01-01

    Liquid films of different silicate esters were deposited from volatile solvents on hydroxylated and hydrogen-passivated silicon surfaces. We show that adsorption of silicate ester molecules and the resulting structural morphology of the liquid films not only are determined by attractive van der Waals forces with contributions from electrostatic interactions between the silicone ester moieties and oxide surface sites but also can be tuned by modifying the substrate surface or by changing the liquid-solvent interactions. Our results also show the importance of the conformational properties of liquid molecules and their rearrangements at the liquid/solid interface for controlled solvent-assisted film deposition.

  11. Acrylamide/acrylic acid copolymers for cement fluid loss control

    SciTech Connect

    McKenzie, L.F.; McElfresh, P.M.

    1982-01-01

    Acrylamide/acrylic acid copolymers are considered as effective fluid loss control additives in a wide range of oil well cements. Unlike HEC based fluid loss aditives, these copolymers can be used with calcium chloride accelerator without significantly influencing fluid loss control. Another advantage of the copolymers is that the amount of fluid loss for a given concentration of polymer remains relatively constant over a wide range of temperatures. The use of acrylamide/acrylic acid copolymers has generally been restricted to wells below 60 degree C BHCT. Above that temperature chemical changes in the copolymer often lead to retardation of the cement. This paper presents data related to the use of acrylamide/acrylic acid copolymers as fluid loss control agents in oil well cementing. A comparison of these polymers with HEC based fluid loss control additives is made. In addition, data related to the cause of acrylamide/acrylic acid copolymer retarding effects is presented. 4 refs.

  12. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  13. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    USGS Publications Warehouse

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia

  14. Morphology and property control of platinum submonolayers deposited via surface-limited redox replacement reaction

    NASA Astrophysics Data System (ADS)

    Gokcen, Dincer

    Low-dimensional growth of noble metals via the surface-limited redox replacement reaction (SLRR) has been extensively used for the preparation of highly active catalyst materials, functional surfaces, and growth of ultrathin epitaxial films. Despite the fact that the concept behind this deposition method has the potential for use in a wide range of applications, the governing thermodynamics and kinetic processes controlling the morphology and catalytic properties of the deposited noble metal layers still need to be elaborated. In the first part of this research, the work exploring the stoichiometry of Pt deposition via SLRR of the underpotentially deposited (UPD) Cu monolayer on Au(111) is studied. The experimental results indicate that the Pt submonolayers have two-dimensional morphology and a linear dependence of their coverage on the amount (coverage) of the replaced Cu UPD monolayers. The electrochemical and scanning tunneling microscopy (STM) analyses also stress the role of the anions in determining the stoichiometry of the metal deposition reaction via SLRR of the UPD monolayers. The second part of this dissertation focuses on the effect of the deposition flux on kinetics of nucleation density, coverage, and morphology of the Pt submonolayers. The experimental results show that the SLRR kinetics is dependent on experimental conditions. The full analytical model describing the redox reaction kinetics and Pt nucleation density as a function of replaced UPD monolayer coverage is presented and discussed against experimental data. Moreover, this study also introduces a new technique for continuous Pt submonolayer deposition via redox replacement of underpotentially deposited bi-metallic (Pb/Cu) bi-layers. As a part of this research, the nano-organization and morphology control of Pt monolayers are achieved via SLRR guided by supramolecular templates. Several organic molecules were employed as supramolecular moieties on Cu(UPD)/Au(111) and Au(111) surfaces. Owing

  15. Phenological controls on inter-annual variability in ozone dry deposition velocity

    NASA Astrophysics Data System (ADS)

    Clifton, Olivia; Fiore, Arlene; Munger, J. William; Shevliakova, Elena; Horowitz, Larry; Malyshev, Sergey; Griffin, Kevin

    2016-04-01

    Our understanding of ozone removal by northern mid-latitude temperate deciduous forests is largely based on short-term observational studies, and thus year-to-year variations of this sink have received little attention. The specific pathways for ozone dry deposition include stomatal uptake and other non-stomatal processes that are poorly understood. Given the importance of ozone dry deposition to model accurately the tropospheric ozone budget and regional air quality, an improved mechanistic understanding of this ozone sink is needed. We investigate here the physical and biological controls on inter-annual variations in seasonal and diurnal cycles of ozone dry deposition velocity using nine years of hourly observations of eddy covariance ozone flux and concentration measurements at Harvard Forest, a northern mid-latitude temperate deciduous forest. We also use coincident eddy covariance water vapor flux and sensible heat flux and other micrometeorological measurements to infer stomatal conductance in order to separate the impacts of stomatal versus non-stomatal pathways on ozone deposition. There is a difference of approximately a factor of two between minimum and maximum monthly daytime mean ozone dry deposition velocities at Harvard Forest. The highest summertime mean ozone dry deposition velocities occur during 1998 and 1999 (0.72 cm/s), and similar seasonal and diurnal cycles occur in both years. The similar dry deposition velocities during these two years, however, may reflect compensation between different processes as mean daytime summertime stomatal conductance during 1998 is roughly 1.5 times higher than for 1999, suggesting large year-to-year variations in non-stomatal as well as stomatal uptake of ozone. We partition the onset and decline of the growing season each year into different periods using spring and fall phenology observations at Harvard Forest. Combining the dry deposition velocities across years during each phenological period, we find that

  16. Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    SciTech Connect

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan

    2015-07-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO{sub 3} thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO{sub 3} stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10{sup −2} mbars and 10{sup −1} mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.

  17. Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Drukteinis, Saulius E.

    Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were

  18. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    SciTech Connect

    Podestà, Alessandro E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo E-mail: pmilani@mi.infn.it

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  19. Simple evaporation controller for thin-film deposition from a resistively heated boat

    NASA Technical Reports Server (NTRS)

    Scofield, John H.; Bajuk, Lou; Mohler, William

    1990-01-01

    A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.

  20. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  1. Vertical Continuity and Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Hu, Hanqiong; Woo, Youngwoo; Feng, Xunda; Osuji, Chinedum; Osuji Lab Team

    2015-03-01

    We report the fabrication of vertically aligned cylindrical block copolymer (BCP) domains using continuous electrospray deposition (ESD) onto bare wafer surfaces. The out-of-plane orientation of hexagonally packed styrene cylinders was achieved in a ``fast-wet'' deposition regime where rapid evaporation of solvent in droplets of polymer solution drove the vertical alignment of SBS domains. The deposition conditions were optimized such that thermally activated crosslinking of the polybutadiene matrix provided kinetic control of the morphology, locking in the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the non-treated substrate. Physically continuous and vertically oriented domains is achieved over several microns of film thickness. We describe the effects of flow rate, collection distance and substrate temperature on thin film morphology and demonstrate selective etching capabilities. The ability of ESD to fabricate well-ordered and aligned BCP films on non-treated substrates, the low utilization of material relative to spin-coating and the continuous nature of the deposition may open up new opportunities for BCP thin films. We are exploring ESD as a new platform for sequential deposition of BCPs with different functionalities.

  2. Characterization and properties of controlled nucleation thermochemical deposited (CNTD) silicon carbide

    NASA Technical Reports Server (NTRS)

    Dutta, S.; Rice, R. W.; Graham, H. C.; Mendiratta, M. C.

    1978-01-01

    The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200,000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably below those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress.

  3. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  4. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation.

    PubMed

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  5. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation

    PubMed Central

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  6. Technologies for the control of fat and lean deposition in livestock.

    PubMed

    Sillence, M N

    2004-05-01

    by the poor level of control over gene expression, and faces an uphill battle over consumer acceptance. There are several alternatives to HGPs and transgenics, that are more likely to gain world-wide acceptance. Genetic selection can be enhanced by using markers for polymorphic genes that control fat and lean, such as thyroglobulin, or the callipyge gene. Feed additives of natural origin, such as betaine, chromium and conjugated linoleic acid, can improve the fat:lean ratio under specific circumstances. Additionally, 'production vaccines' have been developed, which alter the neuro-endocrine system by causing an auto-immune response. Thus, antibodies have been used to neutralise growth-limiting factors, prolong the half-life of anabolic hormones, or activate hormone receptors directly. Unfortunately, none of these technologies is sufficiently well advanced yet to rival the use of exogenous HGPs in terms of efficacy and reliability. Therefore, further research is needed to find ways to control fat and lean deposition with due consideration of industry needs, animal welfare and consumer requirements.

  7. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE PAGES

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...

    2016-08-13

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  8. The Influence of Iodide Adsorption on Copper Underpotential Deposition on Polycrystalline Palladium Electrodes in Mildly Acidic Solutions.

    PubMed

    Zinola; Castro Luna AM

    1999-01-15

    The effects of I- adsorption on the electrodeposition (under and overpotential deposition) of Cu on polycrystalline Pd electrodes were studied in dilute perchloric acid solutions at 18 degreesC. It had been found that Cu underpotential deposition on polycrystalline Pd exhibits different potentiodynamic features, which are characteristic of defined crystallographic planes of Pd. However, these features varied when the voltammograms were performed in the presence of strongly adsorbable anions, such as I-. In spite of having found a partial inhibition of the Cu voltammetric features in the presence of I-, we calculated integer numbers in the electron transfer to Cu2+ and I- ions. The change in the values of Cu massive deposition potential due to the presence of I- was caused by the appearence of a new electrode, that is, the Cu/CuI/I- interface. Copyright 1999 Academic Press.

  9. Secondary acidification: Changes in gas-aerosol partitioning of semivolatile nitric acid and enhancement of its deposition due to increased emission and concentration of SOx

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ueda, Hiromasa; Nakayama, Shinji

    2008-02-01

    Secondary acidification, or the indirect enhancement of semivolatile air pollutant deposition associated with increased SO42- concentrations, is shown to occur in general air pollution using data collected from six stations of the Acid Deposition Monitoring Network in East Asia (EANET) in Japan. This effect was first detected as a result of volcanic SO2 plumes in our previous studies. Results indicate that as SO42- concentration increases, gas-aerosol partitioning of nitric acid shifts to the gas phase, increasing the HNO3 gas concentration. Since the dry and wet deposition rates of HNO3 gas are very high, deposition can be enhanced even when the emission of NOx remains unchanged. In western Japan, the indirect effect for wet deposition is most apparent from spring to autumn, when the Asian continental outflow carries sulfate-rich contaminated air masses. However, it is not pronounced in air masses containing abundant sea-salt particles and related cation components in aerosols. In areas such as forests or farmlands with low surface resistance, dry deposition of nitric acid is more pronounced than wet deposition as the dry deposition velocity of HNO3 gas is high. Increased dry deposition of t-NO3 due to the indirect effect and consequent vegetation damage is thus of considerable concern in such regions. The deposition of other semivolatile components, such as hydrochloric acid and ammonia, can be altered and can also induce secondary acidification.

  10. Acetic acid and weed control in onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control is a major challenge in conventional and organic production systems, especially for organically produced sweet onion (Allium cepa L.). Although corn gluten meal shows great promise as an organic preemergent herbicide for onions, research has shown the need for supplemental, postemergen...

  11. Stress assessment and spectral characterization of suspected acid deposition damage in red spruce (Picea Rubens) from Vermont

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.

    1985-01-01

    The effects of acid deposition on Picea rubens are studied. The Picea rubens located at Camels Hump Mt., Mt. Ascutney, and Ripton, VT were analyzed using stress level evaluations, in situ spectral data, pressure bomb analysis, and aircraft sensors. Spruce stress per circular plot and percent spruce mortality are calculated. The relation between stress levels and elevation and exposure and weather patterns is examined. It is observed that variations in the reflectance curves of the foliage and branches are related to cellular health, the type of cellular arrangement, and the degree of leaf tissue hydration; the leaf and twig specimens from high stress sites are more reflective in the red portion of the visible and less reflective in the NIR portion of the spectrum. The pressure bomb data reveal that the xylem water tension is higher in specimens from high stress sites. It is noted that remote sensing permits discrimination and mapping of suspected acid deposition damage.

  12. An Investigation of the Solid-State Condensation Polymerization Reaction in Vapor-Deposited Poly(amic acid)

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Letts, Stephan A.; Day, Katherine; Cook, Robert C.; Gies, Anthony P.; Nonidez, William K.

    2004-03-01

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FTIR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of films prepared at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments suggest that poly(amic acid) oligomers form upon vapor-deposition and have a number-average molecular weights of about 1500 Daltons. Between 100-130 °C these chains undergo additional condensation reactions to form slightly higher molecular weight oligomers. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  13. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  14. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    PubMed Central

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit

    2014-01-01

    Summary Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281

  15. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    PubMed

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  16. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  17. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A.; Hogle, Richard E.

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  18. Characterization of a controlled electroless deposition of copper thin film on germanium and silicon surfaces

    NASA Astrophysics Data System (ADS)

    Scudiero, Louis; Fasasi, Ayuba; Griffiths, Peter R.

    2011-02-01

    Nanofilms of copper were deposited on silicon and, for the first time, on polycrystalline germanium substrates by electroless deposition. Germanium or silicon disks were immersed in a 10 mM copper sulfate solution containing dilute hydrofluoric acid at room temperature. This simple one-step deposition does not require the use of laborious operations or expensive equipment, that the reaction medium be degassed, or that the film be annealed. The copper film grows in a few minutes, producing a film on both Ge and Si that covers a very large area of the substrate in contrast to other metals such as Au, Ag, Pt and Pd for which deposition on Ge and Si produces islands or dendrites. Atomic force microscopy, X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) were used to characterize the microstructure and confirmed the formation of elemental copper nanofilms. The AFM micrographs reveal a Stranski-Krastanov type of film growth (layers + islands) that varies with the length of time the Ge or Si substrate is immersed in the CuSO4 solution. Thicker films were observed on the Ge than on the Si substrate resulting in larger particles and rougher surface than on Si. XPS analysis shows that the elemental copper is deposited on both Ge and Si substrates and that the films oxidize over a period of weeks with air exposure at room temperature. Finally, PXRD data reveal two preferential orientations (1 1 1) and (2 0 0) for the copper crystallites grown on both Ge and Si. The same intensity of the (1 1 1)-texture was measured on both Ge and Si substrate which is an important result because it has been shown that the (1 1 1) texture reduces stress-induced voiding and increases resistance to electromigration in metal interconnects.

  19. Different responses of two Mosla species to potassium limitation in relation to acid rain deposition.

    PubMed

    Wang, Meng; Gu, Bao-jing; Ge, Ying; Liu, Zhen; Jiang, De-an; Chang, Scott X; Chang, Jie

    2009-08-01

    The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (P(n)), soluble protein content, and superoxide dismutase (SOD) activity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on P(n), soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.

  20. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  1. Effect of trans fatty acid intake on abdominal and liver fat deposition and blood lipids: a randomized trial in overweight postmenopausal women

    PubMed Central

    Bendsen, N T; Chabanova, E; Thomsen, H S; Larsen, T M; Newman, J W; Stender, S; Dyerberg, J; Haugaard, S B; Astrup, A

    2011-01-01

    Background: Intake of industrially produced trans fatty acids (TFAs) is, according to observational studies, associated with an increased risk of cardiovascular disease, but the causal mechanisms have not been fully elucidated. Besides inducing dyslipidemia, TFA intake is suspected to promote abdominal and liver fat deposition. Objective: We examined the effect of a high intake of TFA as part of an isocaloric diet on whole-body, abdominal and hepatic fat deposition, and blood lipids in postmenopausal women. Methods: In a 16-week double-blind parallel intervention study, 52 healthy overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil providing 15.7 g day−1 of TFA or a control oil with mainly oleic and palmitic acid. Before and after the intervention, body composition was assessed by dual-energy X-ray absorptiometry, abdominal fat by magnetic resonance (MR) imaging, and liver fat by 1H MR spectroscopy. Results: Compared with the control fat, TFA intake decreased plasma high-density lipoprotein (HDL)-cholesterol by 10%, increased low-density lipoprotein (LDL)-cholesterol by 18% and resulted in an increased LDL/HDL-cholesterol ratio (baseline adjusted mean (95% CI) difference between diet groups 0.41 (0.22; 0.60); P<0.001). TFA tended to increase the body fat (0.46 (−0.20; 1.17) kg; P=0.16) and waist circumference (1.1 (−0.1; 2.4) cm; P=0.08) more than the control fat, whereas neither abdominal nor liver fat deposition was affected by TFA. Conclusion: The adverse effect of dietary TFA on cardiovascular disease risk involves induction of dyslipidemia, and perhaps body fat, whereas weight gain-independent accumulation of ectopic fat could not be identified as a contributory factor during short-term intake. PMID:23154296

  2. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration.

    PubMed

    Limpens, J; Berendse, F

    2003-05-01

    We tested the relationship between Sphagnum growth and the amount of nitrogen stored in free amino acids in a fertilisation experiment with intact peat monoliths in an open greenhouse in The Netherlands. Three nitrogen deposition scenarios were used: no nitrogen deposition, field conditions and a doubling of the latter, corresponding to 0, 40 and 80 kg N ha(-1 )year(-1). Growth of Sphagnum as expressed by height increment was reduced in the 80 kg N treatment, but showed no correlation with the total nitrogen tissue concentration or with the concentration of individual or pooled free amino acids. The amount of nitrogen stored in free amino acids increased concomitantly with deposition, although it lagged more and more behind the total nitrogen concentration, the latter pointing to the accumulation of unmeasured nitrogen compounds. Asparagine clearly acted as the major storage compound for nitrogen in Sphagnum stem tissue, whereas arginine fulfilled this function to a lesser extent in the capitulum. It appears that nitrogen-induced growth inhibition of Sphagnum is related to acclimation rather than to certain threshold concentrations of amino nitrogen or total nitrogen. We propose that when Sphagnum is exposed to a step increase of nitrogen, its nitrogen metabolism does not adapt fast enough to keep up with the enhanced uptake rate. This imbalance between nitrogen uptake and assimilation may lead to an accumulation of toxic NH(4)(+ )in the cell and a subsequent reduction in growth.

  3. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-03

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.

  4. Controls of crystallinity and surface roughness of Cu film in partially ionized beam deposition

    SciTech Connect

    Koh, S.K.; Kim, K.H.; Choi, W.K.; Jang, H.G.; Yoon, Y.S.; Han, S.; Jung, H.J.

    1996-12-31

    Changes of crystallinity and surface roughness are discussed in terms of the average energy per deposited atom in the partially ionized beam (PIB) deposition. The average energy per deposited atom can be controlled by adjusting the ionization potential, Vi and acceleration potential Va. The ion beam consists of a Cu ion beam and residual gas ion beam and residual gases as well as Cu particles that were ionized and accelerated to provide the film with energy required for film-growth. The relative contribution of residual gas ions and Cu ions to total average energy per deposited atom was varied with the ionization potential. At fixed ionization potentials of Vi = 400 V and Vi = 450 V, the average energy per deposited atom was varied in the range of 0 to 120 eV with acceleration potential Va, of 0 to 4 kV. The relative intensity ratio, I(111)/I(200), of the Cu films increased from 6 to 37 and the root mean square (R{sub ms}) surface roughness decreased with an increase in acceleration potential at Vi = 400 V. The relative intensity ratio, I(111)/I(200), of Cu films increased up to Va = 2 kV at Vi = 2 kV, above which a decrease occurred, and the surface roughness of Cu films increased as a function of acceleration potential. The degree of preferred orientation was closely related with the average energy per deposited atom. The change of R{sub ms} roughness might be affected by ion flux, particle energy and preferred orientation.

  5. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    SciTech Connect

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, R. Shane; MacFarlan, Paul J.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. We demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.

  6. Controlled Assembly of Hybrid Bulk-Heterojunction Solar Cells bySequential Deposition

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Alivisatos, A. Paul

    2006-08-13

    This work presents a technique to create ordered and easily characterized hybrid nanocrystal-polymer composites by sequential deposition of tetrapod-shaped cadmium telluride (CdTe) nanocrystals and poly(3-hexlythiophene). With controlled fabrication and composite morphology, these devices offer several advantages over traditional codeposited hybrid cells, and provide a model system for detailed investigation into the operation of bulk-heterojunction cells.

  7. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    NASA Astrophysics Data System (ADS)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  8. Patterns of wet deposition of acidic matter in Maryland: January-June 1984. Final report

    SciTech Connect

    Maxwell, C.; Bartoshesky, J.; Pfeffer, N.; Campbell, S.

    1987-03-03

    A data base containing precipitation-chemistry data collected by multiple monitoring programs in and around Maryland for the January through June 1984 time period was compiled. Isopleth maps were constructed showing the spatial variation in the precipitation concentrations and depositions of hydrogen ion, sulfate, nitrate, ammonium, calcium, sodium, chloride, potassium, and magnesium. For each parameter, the concentration pattern was very similar to its deposition pattern. The patterns suggest the occurrence of a ridge of high sulfate, nitrate, and hydrogen ion concentrations and depositions extending from south-central Pennsylvania, south into Maryland along the western shore of the Chesapeake Bay.

  9. Aerosol deposition in the human lung following administration from a microprocessor controlled pressurised metered dose inhaler.

    PubMed Central

    Farr, S. J.; Rowe, A. M.; Rubsamen, R.; Taylor, G.

    1995-01-01

    BACKGROUND--Gamma scintigraphy was employed to assess the deposition of aerosols emitted from a pressurised metered dose inhaler (MDI) contained in a microprocessor controlled device (SmartMist), a system which analyses an inspiratory flow profile and automatically actuates the MDI when predefined conditions of flow rate and cumulative inspired volume coincide. METHODS--Micronised salbutamol particles contained in a commercial MDI (Ventolin) were labelled with 99m-technetium using a method validated by the determination of (1) aerosol size characteristics of the drug and radiotracer following actuation into an eight stage cascade impactor and (2) shot potencies of these non-volatile components as a function of actuation number. Using nine healthy volunteers in a randomised factorial interaction design the effect of inspiratory flow rate (slow, 30 l/min; medium, 90 l/min; fast, 270 l/min) combined with cumulative inspired volume (early, 300 ml; late, 3000 ml) was determined on total and regional aerosol lung deposition using the technique of gamma scintigraphy. RESULTS--The SmartMist firing at the medium/early setting (medium flow and early in the cumulative inspired volume) resulted in the highest lung deposition at 18.6 (1.42)%. The slow/early setting gave the second highest deposition at 14.1 (2.06)% with the fast/late setting resulting in the lowest (7.6 (1.15)%). Peripheral lung deposition obtained for the medium/early (9.1 (0.9)%) and slow/early (7.5 (1.06)%) settings were equivalent but higher than those obtained with the other treatments. This reflected the lower total lung deposition at these other settings as no difference in regional deposition, expressed as a volume corrected central zone:peripheral zone ratio, was apparent for all modes of inhalation studied. CONCLUSIONS--The SmartMist device allowed reproducible actuation of an MDI at a preprogrammed point during inspiration. The extent of aerosol deposition in the lung is affected by a change in

  10. Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies.

    PubMed

    Shimoni, Y; Galili, G

    1996-08-02

    Following synthesis, wheat gliadin storage proteins are deposited into protein bodies inside the endomembrane system in a way that enables not only their efficient accumulation and dehydration during seed maturation, but also their rapid rehydration and degradation during germination. In the present report, we studied the mechanism of gliadin deposition and whether it was controlled by the conformation of these proteins. Although gliadins are generally known to be insoluble in aqueous solutions, sucrose gradient analysis showed that a considerable amount of these proteins appeared as relatively soluble monomers in developing grains. In vitro reduction of the intramolecular disulfide bonds that are present in natural monomeric gliadins caused their precipitation into insoluble aggregates. In addition, pulse-chase experiments in the absence or presence of reducing agents showed that formation of intramolecular disulfide bonds also played a major role in folding and deposition of the gliadins in vivo. Our results imply that following sequestration into the endoplasmic reticulum, the gliadins fold into relatively soluble monomers, which are incompetent for rapid aggregation and gradually assemble into protein bodies. This pattern of deposition apparently depends on the conformation of the gliadins, which is stabilized by intramolecular disulfide bonds formed between the conserved cysteines. The contribution of this study to the understanding of the evolution and function of gliadins is discussed.

  11. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    PubMed

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed.

  12. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  13. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    Rainfall samples were collected over a period of 3 years and 8 months in subtropical East Asia. They are categorized into different rainfall types and analyzed to assess the ionic composition and its effect on the acidity of wet deposition in southern Taiwan. Only 4% of samples had a pH of <5.0, indicating that the study area is not impacted significantly by acid rain. The volume-weighted mean (VWM) pH by rainfall type was Spring Rain 5.74, Typhoon Rain 5.56, Summer Rain 5.46, Typhoon Outer Circulation (TOC) Rain 5.45, Plum Rain 5.32 and Autumn-Winter Rain 5.29. Dilution effects were important to the equivalent ionic concentration of different rainfall types. HCO 3-, SO 42- and Cl - were detected as major anions whereas NH 4+, Na + and Ca 2+ were major cations. CO 2-derived HCO 3- was the major ionic species in all but Typhoon Rain and Spring Rain, in which the major species were Na + and Cl - and Ca 2+, respectively. Excluding HCO 3-, the major species were NH 4+, Na + and Ca 2+ in Plum Rain, the secondary photochemical products SO 42-, NO 3- and NH 4+ in TOC Rain and Summer Rain, and Na + and Ca 2+ in Autumn-Winter Rain. Calculation of arithmetic means showed that dicarboxylic acids contributed between 0.25% and 0.53% of the total ionic concentration and of these, oxalic acid contributed the least (81.3% of the dicarboxylic acid) to TOC Rain and the most (96.1% of the dicarboxylic acid) to Spring Rain, suggestive of long-range transport in the latter. Differences in wet deposition composition were shown to be a result of differences in local emissions and long-range transport (hence of prevailing wind direction) during the period of rainfall and of the frequency and volume of rain that typifies each rainfall type. Principal component analysis (PCA) further revealed that traffic-related and industrial organic and inorganic pollutants, their secondary photochemical products, sea salts, and dust are important contributors to wet deposition. Moreover, the ratio of

  14. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  15. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  16. Fabrication and morphology control of BaWO{sub 4} thin films by microwave assisted chemical bath deposition

    SciTech Connect

    Wang Rui; Liu Chen; Zeng Jia; Li KunWei; Wang Hao

    2009-04-15

    Highly crystallized barium tungstate (BaWO{sub 4}) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO{sub 4} films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies. - Graphical abstract: Highly crystallized BaWO{sub 4} thin films with controllable morphologies have been synthesized via mild microwave assisted chemical bath deposition. The oriented aggregation mechanism has been proposed as the possible formation mechanism of specific films.

  17. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  18. Quantification of hydrochloric acid and particulate deposition resulting from space shuttle launches at John F. Kennedy space center, Florida, USA

    NASA Astrophysics Data System (ADS)

    Dreschel, Thomas W.; Hall, Carlton R.

    1990-07-01

    Observations of damage to vegetation, acute reductions in surface water pH, and kills of small fish prompted the Biomedical Operations and Research Office at the John F. Kennedy Space Center to initiate intensive environmental evaluations of possible acute and long-term chronic impacts that may be produced by repeated launches of the space shuttle. An important step in this evaluation was the identification of deposition patterns and the quantification of ecosystem loading rates of exhaust constituents from the solid rocket motors (SRMs) in the area of the launch pad. These constituents are primarily aluminum oxide (Al2O3) and hydrochloric acid (HCl). During three launches of the space transportation system (STS-11, 13, and 14) up to 100 bulk deposition collectors, 83 mm in diameter containing 100 ml of deionized water, were deployed in a grid pattern covering 12.6 ha north of launch pad 39-A. Estimates of HCl and particulate deposition levels were made based on laboratory measurements of items entrained in the collectors. Captured particulates consisted of a variety of items including Al2O3, sand grains, sea shell fragments, paint chips, and other debris ablated from the launch pad surface by the initial thrust of the SRMs. Estimated ranges of HCl and particulate deposition in the study area were 0-127 g/m2 and 0-246 g/m2, respectively. Deposition patterns were highly influenced by wind speed and direction. These measurements indicate that, under certain meteorological conditions, up to 7.1 × 103 kg of particulates and 3.4 × 103 kg of HCl can be deposited to the near-field environment beyond the launch pad perimeter fence.

  19. Validation of acid washes as critical control points in hazard analysis and critical control point systems.

    PubMed

    Dormedy, E S; Brashears, M M; Cutter, C N; Burson, D E

    2000-12-01

    A 2% lactic acid wash used in a large meat-processing facility was validated as an effective critical control point (CCP) in a hazard analysis and critical control point (HACCP) plan. We examined the microbial profiles of beef carcasses before the acid wash, beef carcasses immediately after the acid wash, beef carcasses 24 h after the acid wash, beef subprimal cuts from the acid-washed carcasses, and on ground beef made from acid-washed carcasses. Total mesophilic, psychrotrophic, coliforms, generic Escherichia coli, lactic acid bacteria, pseudomonads, and acid-tolerant microorganisms were enumerated on all samples. The presence of Salmonella spp. was also determined. Acid washing significantly reduced all counts except for pseudomonads that were present at very low numbers before acid washing. All other counts continued to stay significantly lower (P < 0.05) than those on pre-acid-washed carcasses throughout all processing steps. Total bacteria, coliforms, and generic E. coli enumerated on ground beef samples were more than 1 log cycle lower than those reported in the U.S. Department of Agriculture Baseline data. This study suggests that acid washes may be effective CCPs in HACCP plans and can significantly reduce the total number of microorganisms present on the carcass and during further processing.

  20. The regional costs and benefits of acid rain control

    SciTech Connect

    Berkman, M.P.

    1991-01-01

    Congress recently enacted acid rain control legislation as part of the 1990 Clean Air Act Amendments following a decade-long debate among disparate regional interests. Although Congress succeeded in drafting a law acceptable to all regions, the regional costs and benefits of the legislation remain uncertain. The research presented here attempts to estimate the regional costs and benefits and the economic impacts of acid rain controls. These estimates are made using a modeling system composed of econometric, linear programming and input-output models. The econometric and linear programming components describe markets for electricity and coal. The outputs of these components including capital investment, electricity demand, and coal production are taken as exogenous inputs by a multiregional input-output model. The input-output model produces estimates of changes in final demand, gross output, and employment. The utility linear programming model also predicts sulfur dioxide emissions (an acid-rain precursor). According to model simulations, the costs of acid rain control exceed the benefits for many regions including several regions customarily thought to be the major beneficiaries of acid rain control such as New England.

  1. Dietary CLA combined with palm oil or ovine fat differentially influences fatty acid deposition in tissues of obese Zucker rats.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alves, Susana P; Alfaia, Cristina M; Castro, Matilde F; Bessa, Rui J B; Prates, José A M

    2012-01-01

    The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13-38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60-80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation.

  2. National Acid Precipitation Assessment Program: Acidic deposition: An inventory of non-Federal research, monitoring, and assessment information

    SciTech Connect

    Herrick, C.N.

    1990-01-01

    The Acid Precipitation Act of 1990 (Title VII of the Energy Security Act of 1980, P.L. 96-294) established the Interagency Task Force on Acid Precipitation to develop and implement the National Acid Precipitation Assessment Program (NAPAP). The information included in the document was provided to NAPAP's Task Group Leaders and State-of-Science and State-of-Technology authors in July 1989. The early release was intended to assure that the authors would be aware of the information at an early phase in the assessment production process.

  3. Acid deposition coverage in five North American newspapers, 1979-1982

    SciTech Connect

    Kauffeld, J.A.; Fortner, R.W.

    1987-01-01

    Daily newspapers in some areas receiving acid rain, in some areas reported to be producing acid rain, and in some areas apparently ''neutral'' in the issue were content analyzed for their coverage of acid rain between 1979 and 1982. Of the five papers, the greatest amount of coverage was in the Cleveland Plain Dealer and the Toronto Globe and Mail. Coverage of acid rain effects was greatest in the Washington Post, as was the number of items suggesting remedies for the problem. Articles from papers in areas receiving acid rain contained more indications of urgency than those from areas blamed for the problem.

  4. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M.; Sturchio, N.; Lotfy, Z.; Mahmood, A.M.; El Alfy, Z.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  5. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely

  6. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  7. Metallogeny, structural, lithological and time controls of ore deposition in anoxic environments

    NASA Astrophysics Data System (ADS)

    Kříbek, B.

    1991-04-01

    Accumulation of metals in anoxic environments occurs by sorption and precipitation from seawater, fossil brines or hydrothermal solutions. Metals can be remobilized during subsequent metamorphic and magmatic processes and form ore deposits. This type of mineralization is governed chiefly by the type of tectonic setting of the anoxic environment. Carbonaceous sediments of passive margins contain only subeconomic concentrations of uranium, vanadium and molybdenum. Cubearing black shales and the submarine-exhalative type of mineralization are confined to the environments of continental rifts and aulacogens or to back-arc basins of active margins. Metamorphogenic deposits are mainly connected with collision margins but they may also occur in other types of tectonic environments. The formation of Cu-bearing black shales was controlled by period of low sea-level during the break-up of supercontinents in the Earth's evolution. Increased contents of uranium and vanadium accumulated in black shales in periods of sealevel highstands. Lithological control is apparent in deposits of Cu-bearing and uraniferous black shales. On the contrary, the occurrence of polymetallic mineralization does not depend on the lithological maturity of carbonaceous sediments.

  8. Controlled growth of SnO(2) hierarchical nanostructures by a multistep thermal vapor deposition process.

    PubMed

    Sun, Shuhui; Meng, Guowen; Zhang, Gaixia; Masse, Jean-Philippe; Zhang, Lide

    2007-01-01

    Branched and sub-branched SnO(2) hierarchical architectures in which numerous aligned nanowires grew on the surface of nanobelt substrates have been obtained by a multistep thermal vapor deposition route. Branch size and morphology can be controlled by adjusting the temperature and duration of growth. The same approach was used to grow branched ZnO-SnO(2) heterojunction nanostructures. In addition, the third level of SnO(2) nanostructures was obtained by repeating the vapor deposition growth process. This technique provides a general, facile, and convenient approach for preparing even more complex nanoarchitectures, and should open up new opportunities for both fundamental research and applications, such as nanobelt-based three-dimensional nanodevices.

  9. Depth and surface roughness control on laser micromachined polyimide for direct-write deposition

    NASA Astrophysics Data System (ADS)

    Pratap, Bhanu; Arnold, Craig B.; Pique, Alberto

    2003-01-01

    We are examining surface characteristics of ultraviolet pulsed-laser micromachined structures in polymide as a function of the incident laser energy and the distance between subsequent laser spots in order to prepare surfaces for laser direct-write deposition of metals. Variations in the spot-to-spot translation distance provide an alternative means of average depth and roughness control when compared to fluence changes and focal distance variations. We find that the average depth is proportional to the inverse of the translation distance, while the root mean square surface roughness reaches a minimum when the translation distance is approximately equal to the full width half maximum of a single ablation mark on the surface. Conductive silver metal lines are deposited on the surface machined features demonstrating the ability to produce conductors with good adhesion over stepped structures on polyimide.

  10. Structural control of oil and gas deposits in southwest Gissar and Tadzhik depression

    SciTech Connect

    Chitalin, A.F.; Irinarkhova, N.V.; Stor, M.A. )

    1993-09-01

    Computer analysis of the space image (scale 1:1,000,000) has been done for the Surkhandar'ya part of the Tadzhik depression and southwest Gissar region using a program of automatic apportionment and statistical analysis of lineaments. The lineaments correspond to faults in the Paleozoic basement of the depression and to faults and joint systems in the overlying deformed Mesozoic-Cenozoic cover. Oil and gas deposits occur both in the crests of folds in the cover and in subthrust structures which occur at the intersection of different trends of lineaments. The deposits are localized in the zones of intersecting trends. We suggest that the migration of hydrocarbons from basement rocks toward the anticlinal culminations was controlled by the fault zones and joint systems. The most prospective areas are the zones of west-northwest and northwest extension which trend at right angles to the fold axes.

  11. Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control.

    PubMed

    Serna, Martha I; Yoo, Seong H; Moreno, Salvador; Xi, Yang; Oviedo, Juan Pablo; Choi, Hyunjoo; Alshareef, Husam N; Kim, Moon J; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A

    2016-06-28

    A scalable and catalyst-free method to deposit stoichiometric molybdenum disulfide (MoS2) films over large areas is reported, with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation, including single-crystal (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2) substrates. The films are deposited using carefully designed MoS2 targets fabricated with excess sulfur and variable MoS2 and sulfur particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 10(4) Ω cm(-1), were achieved. The MoS2 stoichiometry was confirmed by high-resolution Rutherford backscattering spectrometry. With the method reported here, in situ graded MoS2 films ranging from ∼1 to 10 monolayers can be deposited.

  12. Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice.

    PubMed

    Gouk, Shiou-Wah; Cheng, Sit-Foon; Ong, Augustine Soon-Hock; Chuah, Cheng-Hock

    2014-04-14

    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  13. 31 CFR 535.566 - Unblocking of foreign currency deposits held by U.S.-owned or controlled foreign firms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Unblocking of foreign currency... Licensing Policy § 535.566 Unblocking of foreign currency deposits held by U.S.-owned or controlled foreign... of blocked dollar deposits into foreign currencies are not authorized....

  14. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  15. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  16. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  17. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  18. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  19. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  20. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weber, M. J.; Verheijen, M. A.; Bol, A. A.; Kessels, W. M. M.

    2015-03-01

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  1. Review of the ophthalmic manifestations of gout and uric acid crystal deposition.

    PubMed

    Ao, Jack; Goldblatt, Fiona; Casson, Robert J

    2017-01-01

    Gout is a clinical disorder that is characterized by the deposition of monosodium urate crystals (MSU) in joints and tendons, usually in the presence of prolonged hyperuricaemia. Following an asymptomatic phase of hyperuricaemia, gout usually presents as acute monoarthritis followed by periods of remission and exacerbation. Conjunctival hyperaemia and subconjunctival haemorrhage exacerbated by purine intake are two of the more common manifestations that may go unrecognized. Other ocular and adnexal structures can be affected by urate crystal deposition and associated inflammation, with potentially vision-threatening consequences; however, ocular manifestations of gout are rare and may have been over-reported in the older literature, but our understanding of the clinic-pathological features of ocular urate deposits remains limited.

  2. First year sugar maple (Acer saccharum, Marsh. ) seedling nutrition, vesicular-arbuscular mycorrhizal colonization, physiology, and growth along an acidic deposition gradient in Michigan

    SciTech Connect

    McLaughlin, J.W.

    1992-01-01

    A field study was conducted to evaluate the use of foliar amino acid and root reducing sugar accumulations to separate acidic deposition from natural (i.e., soil phosphorus, mycorrhizae, and temperature) ecosystem stressors on first-year sugar maple seedling growth in three Michigan forests. Seedling growth was greatest at the sites exposed to highest levels of acidic deposition. However, sites receiving greatest acidic deposition rates also had high available soil phosphorus contents. No significant differences occurred, suggesting increased nitrogen loadings were not reflected in seedling tissue nitrogen. Seedling root or foliar calcium, magnesium, or potassium also were not significantly different, suggesting those elements were not growth limiting. Significant differences, however, occurred for seedling arginine and glutamine concentrations in foliage and reducing sugar concentrations in roots and were negatively correlated with seedling tissue phosphorus concentrations, suggesting phosphorus was limiting seedling growth at the low acidic deposition site. Vesicular-arbuscular mycorrhizal colonization of seedling roots was greater at the low acidic deposition site and positively correlated with seedling amino acid and reducing sugar accumulation but negatively correlated with sucrose concentrations in seedling roots, indicating that the fungal partner may have stimulated sucrose degradation to reducing sugars. Both air and soil temperatures were positively correlated with total sugar and sucrose concentrations in seedling roots. High levels of arginine, glutamine, and reducing sugars were negatively correlated with seedling growth indicating that seedlings at the low acidic deposition site were more stressed than seedlings at the sites receiving higher levels of pollutant loads. The results suggest differences in foliar arginine and glutamine and root reducing sugars in the forests in this study are likely due to natural rather than acidic deposition stress.

  3. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado

    USGS Publications Warehouse

    Rattray, G.; Sievering, H.

    2001-01-01

    Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70ngNm-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200ngNm-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20ngNm-3. Large deposition velocities (>2cms-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols. Copyright (C) 2001 Elsevier Science B.V.Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200 ng N m-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to

  4. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach

    PubMed Central

    Huang, Julie Y.; Goers Sweeney, Emily; Guillemin, Karen

    2017-01-01

    Helicobacter pylori’s ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria’s response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD’s colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium. PMID:28103315

  5. Trajectory analysis of acid deposition data from the new jersey pine barrens

    NASA Astrophysics Data System (ADS)

    Budd, William W.

    This research provides an example of the application of a simple method for evaluating regional interrelationships using air parcel trajectory analysis. An assessment of trajectories associated with storms affecting McDonald's Branch watershed (39°50'N, 74°30'W) is presented. A simple classification system is used to examine regional contributions of acid precursors. The results of the work suggest that major regional sources of acid precursor emissions dominated precipitation acidity for the Pine Barrens region from 1978 to 1981. An incremental approach to acid precipitation policy is suggested.

  6. Controlling fungus on channel catfish eggs with peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in the use of peracetic acid (PAA) to treat pathogens in aquaculture. It is a relatively new compound and is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish Ictalurus punctatus egg...

  7. Caged molecular beacons: controlling nucleic acid hybridization with light.

    PubMed

    Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong

    2011-05-28

    We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs.

  8. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  9. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf

    NASA Astrophysics Data System (ADS)

    Kazil, J.; McKeen, S.; Kim, S.-W.; Ahmadov, R.; Grell, G. A.; Talukdar, R. K.; Ravishankara, A. R.

    2014-12-01

    Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (≥100μgL-1), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89μgL-1, with peak values of 7.8μgL-1, for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations.

  10. Control of carbon content in amorphous GeTe films deposited by plasma enhanced chemical vapor deposition (PE-MOCVD) for phase-change random access memory applications

    NASA Astrophysics Data System (ADS)

    Aoukar, M.; Szkutnik, P. D.; Jourde, D.; Pelissier, B.; Michallon, P.; Noé, P.; Vallée, C.

    2015-07-01

    Amorphous and smooth GeTe thin films are deposited on 200 mm silicon substrates by plasma enhanced—metal organic chemical vapor deposition (PE-MOCVD) using the commercial organometallic precursors TDMAGe and DIPTe as Ge and Te precursors, respectively. X-ray photoelectron spectroscopy (XPS) measurements show a stoichiometric composition of the deposited GeTe films but with high carbon contamination. Using information collected by Optical Emission Spectroscopy (OES) and XPS, the origin of carbon contamination is determined and the dissociation mechanisms of Ge and Te precursors in H2 + Ar plasma are proposed. As a result, carbon level is properly controlled by varying operating parameters such as plasma radio frequency power, pressure and H2 rate. Finally, GeTe films with carbon level as low as 5 at. % are obtained.

  11. The Goldfield mining district, Nevada: an acid sulfate bonanza gold deposit

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2000-01-01

    This paper provides an introduction to the geology, ore deposits, and fluid geochemistry of the Goldfield mining district, Esmerelda and Nye Counties, Nevada. Also included is a brief interpretation of mineral maps of the western half of the district which were recently produced from remotely sensed imagery acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) systems operated by NASA JPL.

  12. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H₂S and SO₂.

    PubMed

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-11-10

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF₆, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H₂S and SO₂, two decomposed products of SF₆ under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H₂S and SO₂ when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H₂S and SO₂ in gas-insulated switchgears at room temperature.

  13. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2

    PubMed Central

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-01-01

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature. PMID:27834895

  14. Toward Dynamic Control over Ordered Nanoparticle Monolayer Fabrication by Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Dickerson, James; Gonzalo-Juan, Isabel; Krejci, Alex

    2013-03-01

    A primary challenges to the implementation of nanoparticles into device applications is the rapid production of densely packed, ordered films of these materials. The ordered arrangement of the nanomaterials is required for applications that rely on the collective interactions of the constituents or on the high density of the materials for information storage or surface protection. Rapid fabrication is a manufacturing demand to reduce operation costs and to streamline production. We have achieved a substantial milestone toward the mass production of macroscopic monolayers and thin films of colloidal nanocrystals on various substrates, including conducting metals and doped-semiconducting substrates. Our approach combines the advantages of liquid-phase, colloidal suspension approaches with the superior deposition rate, size scalability, and cost effective features of electrophoretic deposition (EPD) to achieve monolayer-by-monolayer deposition control over nanocrystal films with various degrees of internal order. Such work has the potential for the fabrication of industrial scale quantities and surface areas of these colloidal solids. Our recent research activities have demonstrated film formation with titanium dioxide nanoparticles and core/shell iron oxide nanoparticles. This research was partially supported by the United States Office of Naval Research, Award N000140910523, and the National Science Foundation (NSF), Awards DMR- 0757380 and CAREER DMR-1054161.

  15. Stable Drop Formation and Deposition Control in Ink Jet Printing of Polyvinylidene Fluoride Solution

    NASA Astrophysics Data System (ADS)

    Thorne, Nathaniel; Yang, Xin; Sun, Ying; Complex Fluids and Multiphase Transport Lab-Drexel University Team

    2013-11-01

    Using inkjet printing as an additive fabrication method is an enabling technology for low-cost, high-throughput production of flexible electronics and photonics. Polymeric materials, such as Polyvinylidene fluoride (PVDF), are widely used as dielectric materials for microelectronics, batteries, among others. However, due to its large molecular weight and incompatibility with moisture in air, the stable drop formation of PVDF solution is quite challenging. In this study, we examine the effects of solute concentration, nozzle back pressure, ejection waveform, and ambient moisture on the formation of PVDF droplets. The deposition dynamics of inkjet-printed PVDF solutions are then examined as a function of the solvent concentration. Bi-solvents of different surface tensions and vapor pressures are used to induce Marangoni flows in order to suppress the coffee-ring effect. The deposition of a single droplet and the interactions between multiple drops are examined for a better control of the deposition uniformity. Printing of lines and patterns with reduced instability is also discussed.

  16. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  17. Microstructural control over soluble pentacene deposited by capillary pen printing for organic electronics.

    PubMed

    Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung

    2013-08-28

    Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.

  18. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging.

    PubMed

    Wang, Dan; Li, Yan-Ying; Luo, Jian-Hua; Li, Yue-Hua

    2014-01-01

    This study aimed to investigate age-related iron deposition changes in healthy subjects and Alzheimer disease patients using susceptibility weighted imaging. The study recruited 182 people, including 143 healthy volunteers and 39 Alzheimer disease patients. All underwent conventional magnetic resonance imaging and susceptibility weighted imaging sequences. The groups were divided according to age. Phase images were used to investigate iron deposition in the bilateral head of the caudate nucleus, globus pallidus and putamen, and the angle radian value was calculated. We hypothesized that age-related iron deposition changes may be different between Alzheimer disease patients and controls of the same age, and that susceptibility weighted imaging would be a more sensitive method of iron deposition quantification. The results revealed that iron deposition in the globus pallidus increased with age, up to 40 years. In the head of the caudate nucleus, iron deposition peaked at 60 years. There was a general increasing trend with age in the putamen, up to 50-70 years old. There was significant difference between the control and Alzheimer disease groups in the bilateral globus pallidus in both the 60-70 and 70-80 year old group comparisons. In conclusion, iron deposition increased with age in the globus pallidus, the head of the caudate nucleus and putamen, reaching a plateau at different ages. Furthermore, comparisons between the control and Alzheimer disease group revealed that iron deposition changes were more easily detected in the globus pallidus.

  19. Contributions of acid deposition and natural processes to cation leaching from forest soils: a review

    SciTech Connect

    Johnson, D.W.; Van Miegroet, H.; Cole, D.W.; Richter, D.D.

    1983-01-01

    Methods of quantifying the roles of atmospheric acid inputs and internal acid generation by carbonic, organic, and nitric acids are illustrated by reviewing data sets from several intensively studied sites in North America. Some of the sites (tropical, Costa Rica (La Selva); temperate deciduous, Tennessee (Walker Branch); and temperate coniferous, Washington (Thompson)) received acid precipitation whereas others (northern, southeast Alaska (Petersburg); and subalpine, Washington Cascades (Findley Lake)) did not. Natural leaching by carbonic acid dominated soil leaching in the tropical and temperate coniferous sites, nitric acid (caused by nitrification) dominated leaching in an N-fixing temperate deciduous site (red alder in Washington), and organic acids dominated surface soil leaching in the subalpine site and contributed to leaching of surface soils in several other sites. Only at the temperate deciduous sites in eastern Tennessee did atmospheric acid input play a major role in soil leaching. In no case, however, are the annual net losses of cations regarded as alarming as compared to soil exchangeable cation capital.

  20. Uric acid deposits and estivation in the invasive apple-snail, Pomacea canaliculata.

    PubMed

    Giraud-Billoud, Maximiliano; Abud, María A; Cueto, Juan A; Vega, Israel A; Castro-Vazquez, Alfredo

    2011-04-01

    The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.

  1. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-01

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Srn+1TinO3n+1 Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  2. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition.

    PubMed

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  3. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  4. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  5. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  6. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  7. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulatormore » transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  8. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    SciTech Connect

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  9. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    PubMed Central

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications. PMID:26813143

  10. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  11. Control of crystalline volume and nano crystal grain size in nanocrystalline silicon thin film deposited by PECVD

    NASA Astrophysics Data System (ADS)

    Bui, Thanh Tung; Chien Dang, Mau

    2014-11-01

    Application of the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique was studied to fabricate amorphous and nanocrystalline silicon (a-Si and nc-Si) thin films for photovoltaic devices at substrate temperature of 200 °C. Amorphous-crystalline transition of silicon thin films in working conditions of PECVD system was shown as a function of deposition parameters, i.e., dilution ratio of silane (SiH4) in hydrogen, total gas pressure during deposition and RF excitation power density. The crystalline volume as well as grain size of nanocrystalline silicon films could be successfully controlled by tuning those deposition parameters. Micro Raman scattering spectroscopy and spectroscopic ellipsometry (SE) methods were used to characterize the structure and crystallization of the deposited silicon thin films. We could make nc-Si thin films with various crystalline volumes. Nc-Si grain size was also controlled and was in the range of 3-5 nm.

  12. Deposition of colloidal gold nanoparticles by fully pulsed-voltage-controlled electrohydrodynamic atomisation

    NASA Astrophysics Data System (ADS)

    Wang, K.; Stark, J. P. W.

    2010-03-01

    Pulsed electrohydrodynamic atomisation (EHDA) of aqueous 10 nm gold colloid in a full voltage-controlled form was investigated. By using 4 µm and 20 μm nozzles, electrified fluid jet was emitted and Au nanoparticles in the jet were deposited onto a silicon substrate. Scanning electron microscopy (SEM) revealed that different morphology of the artifact was formed by using different voltages pulses. Particularly, island-liked artifact down to 10 μm can be produced regularly in the case of cone-jet mode by low voltage pulse. Our results demonstrate pulsed EHDA is a promising approach in creating micro-patterns of colloid-based nanomaterials.

  13. Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization

    SciTech Connect

    Ghosal, S; Baumann, T F; King, J S; Kucheyev, S; Wang, Y; Worsley, M A; Biener, J; Bent, S F; Hamza, A V

    2009-03-09

    This report demonstrates a chemical functionalization method for controlling atomic layer deposition (ALD) of TiO{sub 2} in low-density nanoporous materials. Functionalization of silica aerogel with trimethylsilane is shown to strongly suppress TiO{sub 2} growth via ALD. Subsequent modification of the functionalization through selective removal of the hydrocarbon groups reactivates the aerogel towards TiO{sub 2} deposition. These results demonstrate the potential use of ALD as a selective tool for creating novel nanoporous materials. Nanoporous materials present significant technological advantage for a wide range of applications, including catalysis, energy storage and conversion, nanoelectronics to name just a few (1-4). Hence, there is considerable interest in developing synthetic pathways for the fabrication of nanoporous materials with tailored properties. Aerogels (AGs) are unique low-density, open-cell porous materials consisting of submicrometer pores and ligaments that can be used as a robust material platform for designing novel nanoporous materials. In recent years, a synthetic approach based on ALD on AG templates has emerged as a promising method for the directed growth of nanoporous materials (5-11, 18). This approach has been used successfully to prepare millimeter-sized high aspect ratio aerogels coated uniformly with zinc oxide (ZnO), tungsten (W) and alumina (Al{sub 2}O{sub 3}) (10, 11). The ALD process utilizes two sequential, self-limiting surface reactions resulting in a layer-by-layer growth mode. The self limiting nature of the surface reactions makes ALD a particularly suitable technique for uniform deposition onto high aspect ratio porous substrates. Additionally, chemical specificity of the surface reactions in ALD enables one to control the deposition process through selective functionalization of the substrate surface. In fact the functionalization of planar substrates such as silicon wafers with organosilane groups (R{sub n}SiX{sub 4-n

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  15. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  17. Seizure control by decanoic acid through direct AMPA receptor inhibition

    PubMed Central

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A.; Hardege, Jörg D.; Chen, Philip E.

    2016-01-01

    See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  18. Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant.

    PubMed

    Zhou, Yang; Ding, Chunyue; Qian, Xueren; An, Xianhui

    2015-01-22

    Polyaniline (PANI)-deposited electrically conductive and flame retardant paper composite was prepared using phytic acid (PA) as dopant or co-dopant. PA as doping acid greatly improved the flame retardancy of PANI-deposited paper composite whilst the conductivity was lower compared with using 5-sulfosalicylic acid (SSA) as doping acid. Lower temperature was favorable to obtain PANI-deposited paper composite with both higher conductivity and better flame retardancy. Conductivity of PANI-deposited paper composite increased with increase of doping acid concentration and the suitable PA concentration range was 0.15-0.3 mol/L depending on the requirement of conductivity and flame retardancy. The PANI-deposited paper composite was characterized by SEM, TGA and XPS. The outstanding flame retardancy of PA-doped paper composite was caused by the synergetic effect of PANI coating and H3PO4. Both higher flame retardancy and higher conductivity of PANI-deposited paper composite were obtained by co-doping of SSA with PA.

  19. Control of immune response by amino acid metabolism.

    PubMed

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  20. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets.

    PubMed

    Lin, Zhijian; Zhang, Bing; Liu, Xiaoqing; Jin, Rui; Zhu, Wenjing

    2014-11-01

    Inulin, a group of dietary fibers, is reported to improve the metabolic disorders. In the present study, we investigated the effects of chicory inulin on serum metabolites of uric acid (UA), lipids, glucose, and abdominal fat deposition in quail model induced by a purine-rich diet. In this study, 60 male French quails were randomly allocated to five groups: CON (control group), MOD (model group), BEN (benzbromarone-treated group), CHI-H (high-dosage chicory inulin-treated group), and CHI-L (low-dosage chicory inulin-treated group). The serum UA level was significantly increased in the model group from days 7 to 28, as well as triglyceride (TG) and free fatty acid (FFA) increased later in the experimental period. The abdominal fat ratio was increased on day 28. Benzbromarone can decrease UA levels on days 14 and 28. The high and low dosage of chicory inulin also decreased serum UA levels on days 7, 14, and 28. The abdominal fat ratio, activity, and protein of acetyl-CoA carboxylase (ACC) were decreased in chicory inulin-treated groups. The activities of xanthine oxidase (XOD) and fatty acid synthase (FAS) were increased in the model group and decreased in the benzbromarone and chicory inulin groups. This study evaluated a quail model of induced hyperuricemia with other metabolic disorders caused by a high-purine diet. The results indicated that a purine-rich diet might contribute to the development of hyperuricemia, hypertriglyceridemia, and abdominal obesity. Chicory inulin decreased serum UA, TG, and abdominal fat deposition in a quail model of hyperuricemia by altering the ACC protein expression and FAS and XOD activities.

  1. Feedback control of the lower hybrid power deposition profile on Tore Supra

    NASA Astrophysics Data System (ADS)

    Barana, O.; Mazon, D.; Laborde, L.; Turco, F.

    2007-07-01

    The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.

  2. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition

    PubMed Central

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-01-01

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO2 concentration, and SO4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes. PMID:28393872

  3. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the

  4. Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery

    PubMed Central

    Yuan, Hong; Bao, Xin; Du, Yong-Zhong; You, Jian; Hu, Fu-Qiang

    2012-01-01

    Purpose: Both polymer micelles and mesoporous silica nanoparticles have been widely researched as vectors for small molecular insoluble drugs. To combine the advantages of copolymers and silica, studies on the preparation of copolymer-silica composites and cellular evaluation were carried out. Methods: First, a stearic acid-g-chitosan (CS-SA) copolymer was synthesized through a coupling reaction, and then silicone oxide (SiO2)-deposited doxorubicin (DOX)-loaded stearic acid-g-chitosan (CS-SA/SiO2/DOX) nanoparticles were prepared through the sol-gel reaction. Physical and chemical properties such as particle size, zeta potential, and morphologies were examined, and small-angle X-ray scattering (SAXS) analysis was employed to identify the mesoporous structures of the generated nanoparticles. Cellular uptake and cytotoxicity studies were also conducted. Results: CS-SA/SiO2/DOX nanoparticles with different amounts of SiO2 deposited were obtained, and SAXS studies showed that mesoporous structures existed in the CS-SA/SiO2/DOX nanoparticles. The mesoporous size of middle-ratio and high-ratio deposited CS-SA/SiO2/DOX nanoparticles were 4–5 nm and 8–10 nm, respectively. Based on transmission electron microscopy images of CS-SA/SiO2/DOX nanoparticles, dark rings around the nanoparticles could be observed in contrast with CS-SA/DOX micelles. Furthermore, CS-SA/SiO2/DOX nanoparticles exhibited faster release behavior in vitro than CS-SA/DOX micelles; cellular uptake research in A549 indicated that the CS-SA/SiO2/DOX nanoparticles were taken up by A549 cells more rapidly, and that CS-SA/SiO2/DOX nanoparticles entered the cell more easily when the amount of SiO2 was higher. IC50 values of CS-SA/DOX micelles, CS-SA/SiO2/DOX-4, CS-SA/SiO2/DOX-8, and CS-SA/SiO2/DOX-16 nanoparticles against A549 cells measured using the MTT assay were 1.69, 0.93, 0.32, and 0.12 μg/mL, respectively. Conclusion: SiO2-deposited stearic acid-g-chitosan organic–inorganic composites show promise

  5. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  6. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  7. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  8. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules.

    PubMed

    Vecchione, Raffaele; Iaccarino, Giulia; Bianchini, Paolo; Marotta, Roberto; D'autilia, Francesca; Quagliariello, Vincenzo; Diaspro, Alberto; Netti, Paolo A

    2016-06-01

    Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields.

  9. Multifaceted and route-controlled "click" reactions based on vapor-deposited coatings.

    PubMed

    Sun, Ting-Pi; Tai, Ching-Heng; Wu, Jyun-Ting; Wu, Chih-Yu; Liang, Wei-Chieh; Chen, Hsien-Yeh

    2016-02-01

    "Click" reactions provide precise and reliable chemical transformations for the preparation of functional architectures for biomaterials and biointerfaces. The emergence of a multiple-click reaction strategy has paved the way for a multifunctional microenvironment with orthogonality and precise multitasking that mimics nature. We demonstrate a multifaceted and route-controlled click interface using vapor-deposited functionalized poly-para-xylylenes. Distinctly clickable moieties of ethynyl and maleimide were introduced into poly-para-xylylenes in one step via a chemical vapor deposition (CVD) copolymerization process. The advanced interface coating allows for a double-click route with concurrent copper(i)-catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) and the thiol-maleimide click reaction. Additionally, double-click reactions can also be performed in a cascade manner by controlling the initiation route to enable the CuAAC and/or thiol-yne reaction using a mono-functional alkyne-functionalized poly-para-xylylene. The use of multifaceted coatings to create straightforward and orthogonal interface properties with respect to protein adsorption and cell attachment is demonstrated and characterized.

  10. Computational design of nucleic acid feedback control circuits.

    PubMed

    Yordanov, Boyan; Kim, Jongmin; Petersen, Rasmus L; Shudy, Angelina; Kulkarni, Vishwesh V; Phillips, Andrew

    2014-08-15

    The design of synthetic circuits for controlling molecular-scale processes is an important goal of synthetic biology, with potential applications in future in vitro and in vivo biotechnology. In this paper, we present a computational approach for designing feedback control circuits constructed from nucleic acids. Our approach relies on an existing methodology for expressing signal processing and control circuits as biomolecular reactions. We first extend the methodology so that circuits can be expressed using just two classes of reactions: catalysis and annihilation. We then propose implementations of these reactions in three distinct classes of nucleic acid circuits, which rely on DNA strand displacement, DNA enzyme and RNA enzyme mechanisms, respectively. We use these implementations to design a Proportional Integral controller, capable of regulating the output of a system according to a given reference signal, and discuss the trade-offs between the different approaches. As a proof of principle, we implement our methodology as an extension to a DNA strand displacement software tool, thus allowing a broad range of nucleic acid circuits to be designed and analyzed within a common modeling framework.

  11. Precise control of interface anisotropy during deposition of Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.; Slater, T. J. A.; Haigh, S. J.; Rowan-Robinson, R. M.; Atkinson, D.

    2014-11-28

    We demonstrate the control of perpendicular magnetic anisotropy (PMA) in multilayer films without modification of either the microstructure or saturation magnetization by tuning the Ar{sup +} ion energy using remote plasma sputtering. We show that for [Co/Pd]{sub 8} multilayer films, increasing the Ar{sup +} ion energy results in a strong decrease in PMA through an increase in interfacial roughness determined by X-ray reflectivity measurements. X-ray diffraction and transmission electron microscope image data show that the microstructure is independent of Ar{sup +} energy. This opens a different approach to the in-situ deposition of graded exchange springs and for control of the polarizing layer in hybrid spin transfer torque devices.

  12. Controllable Synthesis of Graphene by Plasma‐Enhanced Chemical Vapor Deposition and Its Related Applications

    PubMed Central

    Li, Menglin; Liu, Donghua; Song, Xuefen; Wei, Dapeng; Wee, Andrew Thye Shen

    2016-01-01

    Graphene and its derivatives hold a great promise for widespread applications such as field‐effect transistors, photovoltaic devices, supercapacitors, and sensors due to excellent properties as well as its atomically thin, transparent, and flexible structure. In order to realize the practical applications, graphene needs to be synthesized in a low‐cost, scalable, and controllable manner. Plasma‐enhanced chemical vapor deposition (PECVD) is a low‐temperature, controllable, and catalyst‐free synthesis method suitable for graphene growth and has recently received more attentions. This review summarizes recent advances in the PECVD growth of graphene on different substrates, discusses the growth mechanism and its related applications. Furthermore, the challenges and future development in this field are also discussed. PMID:27980983

  13. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  14. A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition.

    PubMed

    Fu, Qifeng; Li, Xiuju; Zhang, Qihui; Yang, Fengqing; Wei, Weili; Xia, Zhining

    2015-10-16

    Electroosmotic flow (EOF), which reveals the charge property of capillary inner surface, has an important impact on the separation performance and reproducibility of capillary electrophoresis (CE). In this study, a novel, facile and versatile method to achieve diverse and controllable EOF in CE was reported based on the co-deposition of mussel-inspired polydopamine (PDA) and branched polyethyleneimine (PEI) on the capillary inner surface as the hybrid functional coating. After these PDA/PEI co-deposited columns were reinforced by the post-incubation of FeCl3, various magnitude and direction of EOF in CE could be easily achieved by varying a number of preparation parameters, including the mass ratio of DA/PEI and the molecular weight of PEI (including PEI-600, PEI-1800, PEI-10000 and PEI-70000). The separation effectiveness and stability of the hybrid coated columns were verified by the analysis of aromatic acids and aniline derivatives. The results showed that the controllable and diverse EOF was important in enhancing the separation performance of the analytes. The baseline separation of all the five aromatic acids can be achieved in 7 min with high separation efficiency by using the PDA/PEI-600 co-deposited column with the mass ratio of 6:1. On the other hand, with the PDA/PEI-70000 co-deposited column with the mass ratio of 6:1, the aniline compounds were easily baseline separated within 10 min. By contrast, using the bare and PDA coated columns, the migration of the aromatic acids was very slow and the baseline separation of the aniline compounds cannot be obtained. Moreover, the co-deposited columns showed long lifetime and good stability. The relative standard deviations for intra-day, inter-day and capillary-to-capillary repeatability of the PDA/PEI-600 co-deposited column with the mass ratio of 6:1, which was reinforced by the post-incubation of FeCl3, were all lower than 5%.

  15. Dry deposition of acidic air pollutants to tree leaves, determined by a modified leaf-washing technique

    NASA Astrophysics Data System (ADS)

    Watanabe, Mirai; Takamatsu, Takejiro; Koshikawa, Masami K.; Yamamura, Shigeki; Inubushi, Kazuyuki

    Dry deposition fluxes ( FL) of NO 3- and SO 42- to leaf surfaces were measured for Japanese red pine ( Pinus densiflora), Japanese cedar ( Cryptomeria japonica), Japanese cypress ( Chamaecyparis obtusa), and Japanese white oak ( Quercus myrsinaefolia), together with atmospheric concentrations ( CL) of NO x (NO + NO 2), T-NO 3 (gaseous HNO 3 + particulate NO 3-) and SO x (gaseous SO 2 + particulate SO 42-) around the leaves in a suburban area of Japan, using a modified leaf-washing technique. FL of NO 3- and SO 42- decreased as follows: pine >> cedar > cypress ≥ oak and pine >> cedar > oak ≥ cypress, respectively. FL of NO 3- for all tree species fluctuated synchronously with CL of T-NO 3. FL of SO 42- fluctuated with CL of SO x, but the dominant pollutant deposited (SO 2 or SO 42-) appeared to differ for different tree species. Dry deposition conductance ( KL) of T-NO 3 and SO x was derived as an FL/ CL ratio. Seasonal variations of KL likely reflect the gas/particle ratios of T-NO 3 and SO x, which were affected by meteorological conditions such as temperature. Dry deposition velocities ( Vd) of T-NO 3 and SO x were obtained as the mathematical product of annual mean KL and the total leaf surface areas in the forests. The comparison of Vd among tree species indicated that the loads of acidic air pollutants were higher to coniferous forests than broad-leaved forest because of the higher KL and/or larger leaf surface areas.

  16. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Yang, Xuezhi; Wang, Qi; Qu, Xiaolei; Jiang, Wei

    2017-02-12

    Natural organic matter influences the carbon nanotube transport in aqueous environments. The role of bound humic acid (HA) on carbon nanotubes and unbound HA in bulk solution in the aggregation and deposition of carboxylated multi-walled carbon nanotubes (C-MWNTs) was examined in NaCl and CaCl2 electrolyte solution. Time-resolved dynamic light scattering and quartz crystal microbalance with dissipation monitoring were employed to investigate the C-MWNT aggregation and deposition kinetics, respectively. The critical coagulation concentration (CCC) of C-MWNTs is 30mM in NaCl and 3mM in CaCl2. The bound HA results in CCCs of 32mM in NaCl and 2.9mM in CaCl2. However, the existing unbound HA causes much slower aggregation in both NaCl and CaCl2 electrolytes and results in CCCs of 86mM in NaCl and 5.8mM in CaCl2. The HA adsorption experiment confirms the additional adsorption of unbound HA in the presence of cations, which can increase the steric effect between C-MWNTs. The more negative charge of C-MWNTs in the presence of unbound HA also stabilizes the suspension. In contrast, the bound HA on C-MWNTs has a more remarkable effect on the deposition rate on the SiO2 surface than the unbound HA. Bound HA changes the C-MWNT surface functional groups, leading to differences in the interaction between C-MWNTs and the SiO2 surface. Hence, the C-MWNTs dispersed by their covalently bonded oxygen-containing groups on the carbon framework and dispersed by the bound HA show nearly the same aggregation rates but quite different deposition rates. The additional unbound HA adsorption does not change the surface functional groups or the changing trend of the CNT deposition rate. Distinguishing the role of bound and unbound HA in the aggregation and deposition of carbon nanomaterials is important to predict their transport in various natural waters.

  17. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  18. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective

    PubMed Central

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  19. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  20. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  1. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  2. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. Alternate deposition of oriented calcite and amino acid layer on calcite substrates.

    PubMed

    Qiao, Li; Feng, Qingling; Li, Zhuo; Lu, Shanshan

    2008-10-30

    Material synthesis inspired by novel nacre architecture and mechanism is popular and has attracted more and more attention. In this paper, iso-oriented calcite tablets/layers and amino acid layers were formed alternately on calcite wafers. It is interesting that the neonatal calcite tablets/layers have the same crystal orientation with their inorganic substrates through amino acid layers. It is quite possible that the amino acid layers in this study could transfer crystal orientation from formed inorganic layers to neighboring neonatal layers due to their fixed and appropriate structures, which may imply the process of nacre formation, and the role of aligned organic matrix sheets in nacre. Moreover, it could provide a new way to produce oriented calcite tablets/layers.

  4. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    PubMed

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses.

  5. Potential controls of alluvial bench deposition and erosion in southern Piedmont streams, Alabama (USA)

    NASA Astrophysics Data System (ADS)

    Haney, Nicholas R.; Davis, Lisa

    2015-07-01

    Benches are bank-attached channel deposits occurring at an elevation between the channel bed and top of banks. Their occurrence in a variety of geologic and hydrologic settings has led to confusion about the mechanisms driving their formation, which in turn contributes to difficulty identifying the active floodplain, bankfull stage, and the determination of environmental flows in some rivers. Hydrodynamic modeling software (River 2D), in combination with sediment particle size analysis and total station topographic surveys, was used to simulate flow conditions needed to erode and deposit the D84, D50, and D15 particle sizes of concave and lateral benches in two rivers (Talladega and Hillabee creeks) in Alabama. Results suggest that bench erosion requires flows at least 150% larger than benchfull stage at the Talladega site, while the Hillabee site experienced erosion at all discharges meeting and exceeding benchfull flow stage, likely owing to its overall smaller sediment particle sizes. At both sites, the presence of vegetation increased the bench area subjected to deposition but, somewhat counterintuitively, also helped influence the location of erosion by limiting flow vectors. In contrast with previous research findings, the occurrence of reverse flow was neither sustained nor widespread at either site. These findings provide new insight into alluvial benches, suggest that the study benches are relatively stable features under the prevailing hydrologic regime, and that in some temperate climate settings, such as the southern Piedmont, localized hydraulic controls on bench formation can be superseded in importance by hydrologic flow regime, even in the case of concave benches and where flow regulation is not a factor.

  6. Simulation of Stream Water Alkalinity Under Scenarios of Changing Acidic Deposition and Changing Climate.

    NASA Astrophysics Data System (ADS)

    Welsch, D. L.; Cosby, B.; Hornberger, G. M.

    2003-12-01

    Models of soil and stream water and catchment acidification have typically been applied without consideration of climate change. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter. We simulate this increase by applying a coupled series of models which simulate soil temperature, soil tension, catchment hydrology, soil air CO2 concentrations, and soil and stream water chemistry to predict daily stream water alkalinity values for a small catchment in the Blue Ridge of Virginia for 60 years into the future given stochastically generated daily climate values. This is done for four different scenarios of climate change and atmospheric deposition change. We find that stream water alkalinity continues to decline for all scenarios except when climate is gradually warming and becoming more moist, indicating the influence of increasing soil air CO2 concentrations on stream water chemistry. In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity change resulting from climate change. This has strong implications given the extent that models such as MAGIC are used to establish policy and legislation concerning deposition and emissions.

  7. ELECTROCHEMICALLY DEPOSITED POLYMER-COATED GOLD ELECTRODES SELECTIVE FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Electropolymerized membranes on gold electrodes doped with 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared from a solution containing resorcinol, o-phenylenediamine and 2,4-D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interact...

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  9. A strategy for controlling deposition of struvite in municipal wastewater treatment plants.

    PubMed

    Wu, Qingzhong; Bishop, Paul L; Keener, Tim C

    2005-01-01

    This paper presents strategies to reduce the risk of struvite deposition by controlling its location of formation. Two technical routes were investigated: (1) to fix the phosphate into the dewatered sludge cake, and (2) to remove phosphate from centrate or filtrate. Chemicals used include magnesium hydroxide [Mg(OH)2], both of reagent grade and reclaimed from a flue gas desulfurization system, magnesium chloride (MgCl2), calcium hydroxide [Ca(OH)2], ferric chloride (FeCl3) and aluminum sulfate [Al2(SO4)3]. Research results indicate that (1) for anaerobically well-digested sludge, Mg(OH)2 is effective in fixing phosphate into sludge cake and improving sludge dewaterability, and (2) adding Mg(OH)2 into a reactor, located between the sludge dewatering facilities and the centrate or filtrate discharge line, and using air for mixing and carbon dioxide stripping, proves feasible in reducing struvite deposition in centrate or filtrate discharge lines and can generate a potentially valuable plant fertilizer--struvite.

  10. Depositional environments and regional sedimentological control of Caseyville Formation, southern Illinois basin

    SciTech Connect

    Nelson, W.J.; Pius Weibel, C. )

    1989-08-01

    During the Morrowan Epoch (earliest Pennsylvanian), the Eastern Interior basins of the US were characterized by a fluviatile system draining generally southwestward from central Pennsylvanian to the Arkoma basin of northern Arkansas. In the southern Illinois basin, the system deposited the Casevylle Formation, consisting of two prominent cliff-forming quartzose sandstones with common quartz gravel, separated and succeeded by finer-grained, clastic intervals. Outcrop mapping in southernmost Illinois indicates that these cliff formers, the Battery Rock and Pounds Sandstone members, are laterally widespread and generally continuous, but variable in thickness. The underlying Wayside Sandstone Member, the intervening Drury Shale Member, and strata immediately succeeding the Caseyville consist of variable sequences of shales, siltstones, thin-bedded sandstones, and local ledge-forming sandstones. Rare lenticular coals are scattered through the Caseyville. The authors interpret the sandstone members to be dominantly of fluviatile-deltaic origin and the intervening, finger-grained intervals to be of deltaic and, at least in part, marginal-marine origin. Marine strata within the Drury Shale Member and the strata immediately overlying the Caseyville Formation contain scattered body fossils and trace fossils suggesting marine deposition. The Wayside/Battery Rock and Drury/Pounds cycles are tentatively correlated with similar cycles in the Appalachian and Arkoma basins. This correlation suggests regional sedimentological control.

  11. Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces

    SciTech Connect

    Lü, B.; Münger, E. P.; Sarakinos, K.

    2015-04-07

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.

  12. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  13. Free amino acid concentrations and nitrogen isotope signatures in Pinus massoniana (Lamb.) needles of different ages for indicating atmospheric nitrogen deposition.

    PubMed

    Xu, Yu; Xiao, Huayun

    2017-02-01

    Free amino acid concentrations and nitrogen (N) isotopic composition in new current-year (new), mature current-year (middle-aged) and previous-year (old) Masson pine (Pinus massoniana Lamb.) needles were determined to indicate atmospheric N deposition in Guiyang (SW China). In different areas, free amino acids (especially arginine) concentrations in new and middle-aged needles were higher than in old needles, and the variation of free amino acids (especially arginine) concentrations in new and middle-aged needles was also greater than in old needles. This indicate that free amino acids in new and middle-aged needles may be more sensitive to N deposition compared to old needles. Moreover, concentrations of total free amino acids, arginine, histidine, γ-aminobutyric acid and alanine in middle-aged needles exhibited a strong relationship with N deposition (P < 0.05). Needle δ(15)N values showed a strong gradient from central Guiyang to the rural area, with more positive δ(15)N (especially in old needles) in the city center (0-5 km) and more negative δ(15)N (especially in old needles) in rural area (30-35 km). These suggest that N deposition in the urban center may be dominated by (15)N-enriched NOx-N from traffic exhausts, while it is dominated by isotopically light atmospheric NHx-N from agriculture in rural area. Soil δ(15)N decreased slightly with distance from the city center, and the difference in δ(15)N values between the soil and needles (especially for old needles) increased significantly with the distance gradient, indicating that atmospheric N deposition may be an important N source for needles. This study provides novel evidence that free amino acids in needles and age-dependent needle δ(15)N values are useful indicators of atmospheric N deposition.

  14. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.

    PubMed

    Härtling, T; Alaverdyan, Y; Hille, A; Wenzel, M T; Käll, M; Eng, L M

    2008-08-04

    We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

  15. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer-Weber to Frank-van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  16. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  17. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines.

    PubMed

    Ibáñez-Escriche, N; Magallón, E; Gonzalez, E; Tejeda, J F; Noguera, J L

    2016-01-01

    The aim of this study was to estimate the genetic and environmental parameters and crossbreeding effects on fatty acid and fat traits in the Iberian pig. Our final goal is to explore target selection traits and define crossbreeding strategies. The phenotypes were obtained under intensive management from 470 animals in a diallelic experiment involving Retinto, Torbiscal, and Entrepelado lines. The data set was composed of backfat thickness at the fourth rib (BFT), intramuscular fat (IMF) in the longissimus thoracis (LT), and the fatty acid profile for IMF and subcutaneous fat (SCF) traits. Data were analyzed through a Bayesian bivariate animal model by using a reparameterization of Dickerson's model. The results obtained showed an important genetic determinism for all traits analyzed with heritability ranging from 0.09 to 0.67. The common environment litter effect also had an important effect on IMF (0.34) and its fatty acid composition (0.06-0.53) at slaughter. The additive genetic correlation between BFT and IMF (additive genetic correlation [] = 0.31) suggested that it would be possible to improve lean growth independent of the IMF with an appropriate selection index. Furthermore, the high additive genetic correlation ( = 0.68) found between MUFA tissues would seem to indicate that either the LT or SCF could be used as the reference tissue for MUFA selection. The relevance of the crossbreeding parameters varied according to the traits analyzed. Backfat thickness at the fourth rib and the fatty acid profile of the IMF showed relevant differences between crosses, mostly due to line additive genetic effects associated with the Retinto line. On the contrary, those for IMF crosses were probably mainly attributable to heterosis effects. Particularly, heterosis effects were relevant for the Retinto and Entrepelado crosses (approximately 16% of the trait), which could be valuable for a crossbreeding system involving these lines.

  18. Thick Co-Deposits and Dust in Controlled Fusion Devices with Carbon Walls: Fuel Inventory and Growth Rate of Co-Deposited Layers

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Philipps, V.; Tanabe, T.; Wienhold, P.; Freisinger, M.; Linke, J.; von Seggern, J.; Wessel, E.

    Recent results regarding the formation of co-deposits, fuel accumulation and overall material transport at the TEXTOR tokamak are described. Two categories of brittle flaking co-deposits were identified: (i) smooth stratified layers of a thickness of up to 50 mm and a fuel content of up to 16 at.% , (ii) granular and columnar structures reaching 1 mm in thickness and con-taining around 0.5 at.% of fuel species. They were formed on the blades of the toroidal belt pump limiter (˜15000 s of plasma operation) and on the neutral-iser plates of this limiter (˜90000 s), respectively. A comparison is made to the fuel inventory measured in other controlled fusion devices with carbon walls.

  19. Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Guerra-Nuñez, Carlos; Zhang, Yucheng; Li, Meng; Chawla, Vipin; Erni, Rolf; Michler, Johann; Park, Hyung Gyu; Utke, Ivo

    2015-06-01

    Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by ``Temperature-step'' Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work.Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the

  20. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  1. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    PubMed

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo.

  2. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    SciTech Connect

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulation in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.

  3. Substrate temperature control for the formation of metal nanohelices by glancing angle deposition

    SciTech Connect

    Sumigawa, Takashi Sakurai, Atsushi; Iwata, Kazuya; Chen, Shaoguang; Kitamura, Takayuki; Tanie, Hisashi

    2015-11-15

    The targets of this study are to develop a device to precisely control the temperature during glancing angle deposition, to make films consisting of low melting temperature metal nanoelements with a controlled shape (helix), and to explore the substrate temperature for controlling the nanoshapes. A vacuum evaporation system capable of both cooling a substrate and measurement of its temperature was used to form thin films consisting of arrays of Cu and Al nanohelices on silicon substrates by maintaining the substrate temperature at T{sub s}/T{sub m} < 0.22 (T{sub s} is the substrate temperature and T{sub m} is the melting temperature of target material). The critical T{sub s}/T{sub m} to produce Cu and Al nanohelices corresponds to the transitional homologous temperature between zones I and II in the structure zone model for the solid film, where surface diffusion becomes dominant. X-ray diffraction analysis indicated that the Cu and Al nanohelix thin films were composed of coarse oriented grains with diameters of several tens of nanometers.

  4. Control of aragonite deposition in colonial corals by intra-skeletal macromolecules.

    PubMed

    Falini, Giuseppe; Reggi, Michela; Fermani, Simona; Sparla, Francesca; Goffredo, Stefano; Dubinsky, Zvy; Levi, Oren; Dauphin, Yannicke; Cuif, Jean-Pierre

    2013-08-01

    Scleractinian coral skeletons are composed mainly of aragonite in which a small percentage of organic matrix (OM) molecules is entrapped. It is well known that in corals the mineral deposition occurs in a biological confined nucleation site, but it is still unclear to what extent the calcification is controlled by OM molecules. Hence, the shape, size and organization of skeletal crystals from the fiber level through the colony architecture, were also attributed to factors as diverse as nucleation site mineral supersaturation and environmental factors in the habitat. In this work the OMs were extracted from the skeleton of three colonial corals, Acropora digitifera, Lophelia pertusa and Montipora caliculata. A. digitifera has a higher calcification rate than the other two species. OM molecules were characterized and their CaCO3 mineralization activity was evaluated by experiments of overgrowth on coral skeletons and of precipitation from solutions containing OM soluble and insoluble fractions and magnesium ions. The precipitates were characterized by spectroscopic and microscopic techniques. The results showed that the OM molecules of the three coral share similar features, but differ from those associated with mollusk shells. However, A. digitifera OM shows peculiarities from those from L. pertusa and M. caliculata. The CaCO3 overgrowth and precipitation experiments confirm the singularity of A. digitifera OM molecules as mineralizers. Moreover, their comparison indicates that only specific molecules are involved in the polymorphism control and suggests that when the whole extracted materials are used the OM's main effect is on the control of particles' shape and morphology.

  5. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.

    PubMed

    Ma, Teng; Ren, Wencai; Zhang, Xiuyun; Liu, Zhibo; Gao, Yang; Yin, Li-Chang; Ma, Xiu-Liang; Ding, Feng; Cheng, Hui-Ming

    2013-12-17

    The controlled growth of large-area, high-quality, single-crystal graphene is highly desired for applications in electronics and optoelectronics; however, the production of this material remains challenging because the atomistic mechanism that governs graphene growth is not well understood. The edges of graphene, which are the sites at which carbon accumulates in the two-dimensional honeycomb lattice, influence many properties, including the electronic properties and chemical reactivity of graphene, and they are expected to significantly influence its growth. We demonstrate the growth of single-crystal graphene domains with controlled edges that range from zigzag to armchair orientations via growth-etching-regrowth in a chemical vapor deposition process. We have observed that both the growth and the etching rates of a single-crystal graphene domain increase linearly with the slanted angle of its edges from 0° to ∼19° and that the rates for an armchair edge are faster than those for a zigzag edge. Such edge-structure-dependent growth/etching kinetics of graphene can be well explained at the atomic level based on the concentrations of the kinks on various edges and allow the evolution and control of the edge and morphology in single-crystal graphene following the classical kinetic Wulff construction theory. Using these findings, we propose several strategies for the fabrication of wafer-sized, high-quality, single-crystal graphene.

  6. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  7. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    USGS Publications Warehouse

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Growth and reproductive ecology of the eastern brook trout, Salvelinus fontinalis, in streams of differing vulnerability to acidic atmospheric deposition

    SciTech Connect

    Light, R.W.

    1983-01-01

    Three naturally infertile streams of differing vulnerability to acidic atmospheric deposition were studied to determine the status of their brook trout, Salvelinus fontinalis, populations and associated benthic communities. Of the three streams, Upper Three Runs was judged to be the least fertile, followed by Little Fishing Creek, with Roaring Run being the most fertile. The median weighted pH of acidic deposition impacting the watersheds was 3.8 for Upper Three Runs and 4.0 for Little Fishing Creek and Roaring Run. Brook trout from Roaring Run grew at a similar rate to those from Little Fishing Creek, with trout from Upper Three Runs showing the slowest growth. Roaring Run brook trout also had the highest relative condition of the three streams. Brook trout from Roaring Run and Little Fishing Creek generally matured one year later (age group II) than those from Upper Three Runs. Early maturity may be selected for in Upper Three Runs due to small annual increases in fecundity in higher age groups. Although the data were limited, there was a trend for brook trout from Upper Three Runs to produce fewer and larger ova. Roaring Run had higher volumes of benthos during fall and summer, and higher numbers during fall. Roaring Run and Little Fishing Creek had more, larger crayfish present, which added significantly to the volume of benthos in these streams. Qualitatively, Upper Three Runs had more shredders and fewer scrapers on a volume basis than the other two streams. On a per fish basis, the drift available to the fish in Roaring Run was always highest in volume, and highest in number during fall and spring. The brook trout from Roaring Run therefore had an advantage over those in the other two streams, by having a higher drift available per fish.

  9. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  10. Comparing Adrenaline with Tranexamic Acid to Control Acute Endobronchial Bleeding: A Randomized Controlled Trial

    PubMed Central

    Fekri, Mitra Samareh; Hashemi-Bajgani, Seyed Mehdy; Shafahi, Ahmad; Zarshenas, Rozita

    2017-01-01

    Background: Hemoptysis occurs due to either pulmonary diseases or bronchoscopy interventions. The aim of the present study was to compare the efficacy of the endobronchial instillation of adrenaline with that of tranexamic acid. Methods: Fifty patients were randomly selected as 2 double-blinded sample groups (n=25). In these patients, bleeding could not be controlled with cold saline lavage during bronchoscopy and they, therefore, required prescription of another medicine. Adrenaline (1 mg) in one group and tranexamic acid (500 mg) in the other group were diluted in 20 mL of normal saline and instilled through the bronchoscope. This technique was repeated 3 times at 90-second intervals, if necessary. In the case of persistent bleeding, 90 seconds after the last dose, a second medicine was given for bleeding control. Observation of clot through the bronchoscope meant that the bleeding had stopped. The efficacy of tranexamic acid and adrenaline was evaluated and then compared using the Mann–Whitney test. Results: The time of bleeding control had no significant difference between tranexamic acid and adrenaline (P=0.908). Another analysis was done to evaluate bleeding control with a second medicine; the results showed that 1 (4%) patient in the tranexamic acid and 8 (32%) in the adrenaline group needed the second medicine and there was no significant difference between the 2 groups (P=0.609). Conclusion: Our results suggested that tranexamic acid by endobronchial instillation was as efficient as adrenaline in controlling hemoptysis and required less frequent use of a second medicine. Trial Registration Number: IRCT2014120220188 PMID:28360438

  11. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas

    2016-07-01

    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were

  12. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  13. Longitudinal evaluation of hepatic lipid deposition and composition in ob/ob and ob/+ control mice.

    PubMed

    Ye, Qiong; Danzer, Carsten Friedrich; Fuchs, Alexander; Vats, Divya; Wolfrum, Christian; Rudin, Markus

    2013-09-01

    Obesity is associated with insulin resistance (IR) and hepatosteatosis. Understanding the link between IR and hepatosteatosis could be relevant to chronic clinical outcomes. The objective of this study was to quantitatively assess lipid deposition (fractional lipid mass, fLM) and composition (fraction of polyunsaturated lipids, fPUL and mean chain length, MCL) in livers of ob/ob mice, a genetic model of obesity and mild diabetes, and ob/+ heterozygous control animals in a noninvasive manner using (1) H-MRS at 9.4T. For accurate quantification, intensity values were corrected for differences in T2 values while T1 effects were considered minimal due to the long TR values used. Values of fLM, fPUL and MCL were derived from T2 -corrected signal intensities of lipids and water resonance. Hepatic lipid signals were compared with fasted plasma insulin, glucose and lipid levels. Statistically significant correlations between fPUL and fasting plasma insulin/glucose levels were found in adolescent ob/ob mice. A similar correlation was found between fLM and fasting plasma insulin levels; however, the correlation between fLM and fasting plasma glucose levels was less obvious in adolescent ob/ob mice. These correlations were lost in adult ob/ob mice. The study showed that in adolescent ob/ob mice, there was an obvious link between lipid deposition/composition in the liver and plasma insulin/glucose levels. This correlation was lost in adult animals, probably due to the limited lipid storage capacity of the liver.

  14. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs: preparation and catalytic properties.

    PubMed

    Qiu, Jieshan; Zhang, Hongzhe; Liang, Changhai; Li, Jiawei; Zhao, Zongbin

    2006-03-01

    Carbon nanofiber-supported Co nanocomposites were prepared by means of a modified ethylene glycol (EG) process, in which the Co salts are reduced in EG and are subsequently deposited onto carbon nanofibers (CNFs). It has been found that the deposition of cobalt colloids onto CNFs can be tailored by simply adjusting the pH of the EG and by heating the mixture of CNFs and colloidal solution at 100 degrees C for some time. The pH value (<7) and the temperature (at least 100 degrees C) for heating the mixture of CNFs and colloidal solution are found to be the key factors for depositing Co particles onto CNFs. The obtained Co/CNFs have a high and homogeneous dispersion of spherical Co metal particles with a narrow size distribution of 10-15 nm with a peak around 13.5 nm; this result is consistent, to a certain degree, with the value of 12.8 nm obtained from the XRD study. The different states of the stabilizer including carboxylates (pH>7) and carboxylic acids (pH<7) as well as the decomposition of carboxylic acids during heat treatment were monitored by using FTIR and UV-visible spectroscopy. On the basis of experimental results, the mechanism of depositing cobalt colloids onto CNFs is also addressed. The as-synthesized Co/CNF catalysts show excellent activity and regioselectivity for the 1-octene hydroformylation.

  15. Stability of kaolin sand from the Vyšný Petrovec deposit (south Slovakia) in an acid environment

    NASA Astrophysics Data System (ADS)

    Martin, Pentrák; Jana, Madejová; Slávka, Andrejkovičová; Peter, Uhlík; Peter, Komadel

    2012-12-01

    Comprehensive characterization of kaolin sand from the Vyšný Petrovec (VP) deposit in Slovakia by a variety of experimental methods was performed. The quantitative XRD analysis (RockJock software) revealed that the acid-untreated sample contained mainly kaolinite (~60 wt. %), a considerable amount of dioctahedral micas (~32 wt. %) and quartz (~ 7 wt. %). The Hinckley index (HI) and Aparicio-Galán-Ferrel index (AGFI) calculated from the 02l and 11l reflections showed medium-defect kaolinite to be present in the VP kaolin. The influence of the mineral composition of VP kaolin on its stability in 6 mol · dm-3 HCl at 95 °C was investigated. The solid reaction products were examined by chemical analysis; XRD and infrared spectroscopy in both middle (MIR) and near (NIR) regions. Considerably higher dissolution rate of Fe compared to Al indicated that Fe was bounded in a readily soluble phase rather than in kaolinite. While the MIR spectra confirmed the gradual release of the central atoms from the clay minerals layers and creation of amorphous silica upon acid treatment, the NIR spectra revealed the formation of Si-OH groups in the solid reaction product. Relatively high dissolution rate of VP kaolin resulted from the presence of small-grains of mediumdefect kaolinite and clay admixtures in VP kaolin sand.

  16. Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed: implications for dry deposition of atmospheric nitrogen.

    PubMed

    Tarnay, L; Gertler, A W; Blank, R R; Taylor, G E

    2001-01-01

    Over the past 50 years, Lake Tahoe, an alpine lake located in the Sierra Nevada mountains on the border between California and Nevada, has seen a decline in water clarity. With significant urbanization within its borders and major urban areas 130 km upwind of the prevailing synoptic airflow, it is believed the Lake Tahoe Basin is receiving substantial nitrogen (N) input via atmospheric deposition during summer and fall. We present preliminary inferential flux estimates to both lake surface and forest canopy based on empirical measurements of ambient nitric acid (HNO3), ammonia (NH3), and ammonium nitrate (NH4NO3) concentrations, in an effort to identify the major contributors to and ranges of atmospheric dry N deposition to the Lake Tahoe Basin. Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha-1 for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha-1 year-1. These preliminary results suggest that dry deposition of HNO3 is the major source of atmospheric N deposition for the Lake Tahoe Basin, and that overall N deposition is similar in magnitude to deposition reported for sites exposed to moderate N pollution in the southern California mountains.

  17. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Wang, Zhenqi; Yu, Shui; Ngia, Ngong Roger

    2016-08-01

    The Miocene deepwater gravity-flow sedimentary system in Block A of the southwestern part of the Lower Congo Basin was identified and interpreted using high-resolution 3-D seismic, drilling and logging data to reveal development characteristics and main controlling factors. Five types of deepwater gravity-flow sedimentary units have been identified in the Miocene section of Block A, including mass transport, deepwater channel, levee, abandoned channel and sedimentary lobe deposits. Each type of sedimentary unit has distinct external features, internal structures and lateral characteristics in seismic profiles. Mass transport deposits (MTDs) in particular correspond to chaotic low-amplitude reflections in contact with mutants on both sides. The cross section of deepwater channel deposits in the seismic profile is in U- or V-shape. The channel deposits change in ascending order from low-amplitude, poor-continuity, chaotic filling reflections at the bottom, to high-amplitude, moderate to poor continuity, chaotic or sub-parallel reflections in the middle section and to moderate-weak amplitude, good continuity, parallel or sub-parallel reflections in the upper section. The sedimentary lobes are laterally lobate, which corresponds to high-amplitude, good-continuity, moundy reflection signatures in the seismic profile. Due to sediment flux, faults, and inherited terrain, few mass transport deposits occur in the northeastern part of the study area. The front of MTDs is mainly composed of channel-levee complex deposits, while abandoned-channel and lobe-deposits are usually developed in high-curvature channel sections and the channel terminals, respectively. The distribution of deepwater channel, levee, abandoned channel and sedimentary lobe deposits is predominantly controlled by relative sea level fluctuations and to a lesser extent by tectonism and inherited terrain.

  18. Magnetically controlled deposition of metals using gas plasma. Quarterly progress report, October--December 1996

    SciTech Connect

    1997-03-01

    Thin layers of secondary material are plated on substrates either by plating or spraying processes. Plating operations produce large amounts of hazardous liquid waste. Spraying, while one of the less waste intensive methods, produces {open_quotes}over spray{close_quotes} which is waste that is a result of uncontrolled nature of the spray stream. In many cases the over spray produces a hazardous waste. Spray coating is a mature process with many uses. Material can be deposited utilizing spraying technology in three basic ways: {open_quotes}Flame spraying{close_quotes}, direct spraying of molten metals and/or plasma spraying. This project is directed at controlling the plasma spraying process and thereby minimizing the waste generated in that process. The proposed process will utilize a standard plasma spray gunsmith the addition of magnetic fields to focus and control the plasma. In order to keep development cost at a minimum, the project was organized in phases. The first and current phase involves developing an analytical model that will prove the concept and be used to design a prototype. Analyzing the process and using the analysis has the potential to generate significant hardware cost savings.

  19. Magnetically controlled deposition of metals using gas plasma. Quarterly progress report, January 1997--March 1997

    SciTech Connect

    1997-05-01

    Thin layers of secondary material are plated on substrates either by plating or spraying processes. Plating operations produce large amounts of hazardous liquid waste. Spraying, while one of the less waste intensive methods, produces {open_quotes}over spray,{close_quotes} or waste that is a result of uncontrolled nature of the spray stream. In many cases the over spray may produce a hazardous waste, requiring special processing. Spray coating is a mature process with many uses. Material can be deposited utilizing spraying technology in three basic ways: {open_quotes}Flame spraying{close_quotes}, direct spraying of molten metals and/or plasma spraying. This project is directed at controlling the plasma spraying process and thereby minimizing the waste generated in that process. The proposed process will utilize a standard plasma spray gun with the addition of magnetic fields to focus and control the plasma. In order to keep development cost at a minimum, the project was organized in phases. The first and current phase involves developing an analytical model that will prove the concept and be used to design a prototype. Analyzing the process and using the analysis has the potential to generate significant hardware cost savings.

  20. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties

    SciTech Connect

    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C.

    2007-08-01

    We investigate and compare complementary approaches to SiNW production in terms of yield, morphology control, and electrical properties. Vapor-phase techniques are considered, including chemical vapor deposition (with or without the assistance of a plasma) and thermal evaporation. We report Au-catalyzed nucleation of SiNWs at temperatures as low as 300 deg. C using SiH{sub 4} as precursor. We get yields up to several milligrams by metal-free condensation of SiO powders. For all processes, we control the final nanostructure morphology. We then report concentrated and stable dispersions of SiNWs in solvents compatible with semiconducting organic polymers. Finally, we investigate the electrical response of intrinsic SiNWs grown by different methods. All our SiNWs exhibit p-type behavior and comparable performance, though in some cases ambipolar devices are observed. Thus, processing and morphology, rather than the growth technique, are key to achieve optimal samples for applications.

  1. Phase control of Mn-based spinel films via pulsed laser deposition

    SciTech Connect

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; Bedzyk, Michael J.; Fenter, Paul

    2016-07-06

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn2O4 and fully charged cathode Mn2O4. The tetragonal MgMn2O4 (MMO) phase is obtained on MgAl2O4 substrates, while the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn2O4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn2O4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.

  2. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties

    NASA Astrophysics Data System (ADS)

    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C.

    2007-08-01

    We investigate and compare complementary approaches to SiNW production in terms of yield, morphology control, and electrical properties. Vapor-phase techniques are considered, including chemical vapor deposition (with or without the assistance of a plasma) and thermal evaporation. We report Au-catalyzed nucleation of SiNWs at temperatures as low as 300°C using SiH4 as precursor. We get yields up to several milligrams by metal-free condensation of SiO powders. For all processes, we control the final nanostructure morphology. We then report concentrated and stable dispersions of SiNWs in solvents compatible with semiconducting organic polymers. Finally, we investigate the electrical response of intrinsic SiNWs grown by different methods. All our SiNWs exhibit p-type behavior and comparable performance, though in some cases ambipolar devices are observed. Thus, processing and morphology, rather than the growth technique, are key to achieve optimal samples for applications.

  3. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE PAGES

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...

    2016-07-06

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn2O4 and fully charged cathode Mn2O4. The tetragonal MgMn2O4 (MMO) phase is obtained on MgAl2O4 substrates, while the cubic MMO phase is obtained on MgOmore » substrates. Similarly, growth of the empty Mn2O4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn2O4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  4. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  5. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  6. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  7. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  8. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  9. Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth

    NASA Astrophysics Data System (ADS)

    Podkaminer, J. P.; Patzner, J. J.; Davidson, B. A.; Eom, C. B.

    2016-08-01

    Sputter deposition is a widely used growth technique for a large range of important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the effect of the strong permanent magnets in magnetron sputter sources on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer-by-layer control during sputter deposition by in situ RHEED.

  10. Tracking the Effects of Acidic Deposition in Medium-Scale Forested Watersheds of the Eastern US

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.; Shanley, J. B.; Huntington, T. G.

    2001-05-01

    The US Geological Survey Hydrologic Benchmark Network (HBN) was established in the mid-1960's for continuously monitoring flow and seasonally monitoring water quality in medium-scale naturally-vegetated watersheds (100-500 km2) throughout the United States. Unlike small watershed research sites, the HBN sites are large enough to contain well-developed riparian zones, and as such are more representative of a natural reference landscape for assessing the relative effects of air pollution, development and agriculture on water quality in the US. During the past three years more frequent water quality monitoring (biweekly and during stormflows) has been established at 5 of these stations in the eastern United States. The stations are located in eastern Tennessee (Little River, 275 km2), western North Carolina (Cataloochee Creek, 127km2), north-central Pennsylvania (Young Woman's Creek, 120 km2), southeastern New York (Neversink River, 168 km2), and north- western Maine (Wild River, 180 km2), and thus lie along southeastern and northeastern gradients of decreasing sulfate deposition from west to east across the region. Concentrations of nitrate and sulfate in streamwater decrease in the Northeastern sites from the southwestern-most watershed to the northeastern-most watershed. Sulfate concentrations have decreased at the Little River, Neversink River and the Wild River during the period of record, but sulfate concentrations in Young Woman's Creek and Cataloochee Creek show no trend. No trend in sulfate concentrations is evident in any of the three Northeastern streams since 1995, when the last significant reduction in emissions was enacted. Sulfate concentrations in Little River have continued to fall since 1995. No trends are observed in ANC in any of the streams, but calcium concentrations in streamwater have decreased in Little River, Neversink River, and Wild River since the 60's. Calcium concentrations in streamwater decrease from a range of 80-120 umole per liter

  11. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  12. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.

    PubMed

    Millett, J; Foot, G W; Svensson, B M

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant-prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific.

  13. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine

    USGS Publications Warehouse

    Johnson, K.B.; Haines, T.A.; Kahl, J.S.; Norton, S.A.; Amirbahman, A.; Sheehan, K.D.

    2007-01-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 ??g/m2/year in Cadillac Brook watershed and 10.2 ??g/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 ??g/m2/year in Cadillac Brook watershed and 0.10 ??g/m2/year in Hadlock Brook watershed. ?? Springer Science + Business Media B.V. 2006.

  14. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Jung, Seong Jun; Jang, Sung Kyu; Lee, Joohyun; Jeon, Insu; Suh, Hwansoo; Kim, Yong Ho; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae

    2015-06-01

    We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for engineering the band structures of large-area graphene for electronic device applications.We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for

  15. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection.

    PubMed

    Grillo, Fabio; Van Bui, Hao; Moulijn, Jacob A; Kreutzer, Michiel T; van Ommen, J Ruud

    2017-03-02

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment.

  16. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection

    PubMed Central

    2017-01-01

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779

  17. Studying and controlling order within nanoparticle monolayers fabricated through electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Krejci, Alexander J.

    Just as ensembles of ordered atoms (a crystal) exhibit collective properties which give rise to phenomena that do not exist for a single atom, the same is true of NP ensembles; ordered arrays of NPs (supercrystals) exhibit properties that are not observed in individual NPs. These collective properties open the door for even more applications for nanomaterials. A few examples that demonstrate this fact will be discussed. In the first example, photoluminescent (PL) optical properties of three CdSe NP systems were studied: one ordered array of NPs, one unordered array, and one system of isolated NPs. In these three systems, the ordered array showed a significantly sharper PL peak compared to the unordered array and the individual NPs. In a second example, the electrical properties for three systems of Ag NPs were studied: one hexagonally packed 2D array of Ag NPs, one cubically packed 2D array, and one individual NP. I-V curves of each system were measured and produced dramatically different behaviors simply due to the change in arrangement of NPs. In a final example, arrays of Ag NPs were created and then sintered. By sintering ordered arrays, it was possible to create large monocrystals of silver; monocrystals could not be created using unordered arrays. These are just three examples that elucidate the control over a wide range of properties that can be achieved by tuning the order within NP ensembles. Given the potential of films composed of ordered NP arrays, many researchers have been investigating how to create and control such arrays using a variety of techniques. For example, ligand-mediated assembly is being studied using a variety of ligands. DNA ligands, in particular, offer a powerful way to control NP assemblies. Evaporative self-assembly has been used to create large supercrystals of one, two, and even more types/sizes of NPs. Assisted assembly incorporating electric and/or magnetic fields has shown promise in creating ordered NP arrays. Spin-casting and

  18. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    PubMed

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available.

  19. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    single crystals are selectively nucleated on patterned templates of carbon nanotube (CNT) bundles. Several organic semiconductor materials are successfully patterned, including p-type pentacene, tetracene, sexiphenylene, and sexithiophene, as well as n-type tetracyanoquinodimethane. This study suggests that the selective growth of crystals onto patterned carbon nanotubes is most likely due to the coarse topography of the CNT bundles. Moreover, I observe that the crystals nucleate from CNT bundles and grow onto CNT bundles in a conformal fashion. The crystal growth can be directly applied onto transistor source-drain electrodes and arrays of organic single-crystal field effect transistors are demonstrated. To investigate the impact of CNTs on device performance, CNT bundles are incorporated into thin-film FETs and a mobility enhancement of organic semiconductors is observed. In the third approach, organic single crystals with well controlled sizes and shapes are successfully grown using patterned Au films as templates. It is observed that sexithiophene crystals nucleate from the edge or the top surface of Au films and then grow two dimensionally on SiO2 surface. The sizes and shapes of sexithiophene crystals are precisely determined by that of the Au patterns. After removing Au templates, large arrays of sexithiophene crystals with controlled sizes and various shapes such as stripes, squares, hexagons, etc. are achieved. Top-contact FETs made of sexithiophene ribbons are demonstrated. Besides organic single crystals, Au templates can also act as templates to pattern vapor- and solution-deposited organic semiconductor thin films. Patterned organic thin-film FETs exhibit superior performance compared to unpatterned devices. Finally, oriented growth of organic semiconductor single crystals on templates with various features is studied. On substrates with aligned features, such as friction-transferred poly(tetrafluoroethylene) thin films, organic semiconductor thin films

  20. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial. Addendum

    DTIC Science & Technology

    2011-07-01

    acids ( PUFA ), particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate...Cancer; Lipid Metabolism; Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...controls, Menendez et al demonstrated that addition of omega -3 fatty acids (-3 FA), docosahexanoic acid (DHA), alpha- linolenic acid

  1. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province.

    PubMed

    Sullivan, Timothy J; Cosby, Bernard J; Jackson, William A

    2011-11-01

    An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource condition at a particular point in time is generally called a target load (TL). The CL or TL for protection of aquatic biota is generally based on maintaining surface water acid neutralizing capacity (ANC) at an acceptable level. This study included calibration and application of the watershed model MAGIC (Model of Acidification of Groundwater in Catchments) to estimate the target sulfur (S) deposition load for the protection of aquatic resources at several future points in time in 66 generally acid-sensitive watersheds in the southern Blue Ridge province of North Carolina and two adjoining states. Potential future change in nitrogen leaching is not considered. Estimated TLs for S deposition ranged from zero (ecological objective not attainable by the specified point in time) to values many times greater than current S deposition depending on the selected site, ANC endpoint, and evaluation year. For some sites, one or more of the selected target ANC critical levels (0, 20, 50, 100μeq/L) could not be achieved by the year 2100 even if S deposition was reduced to zero and maintained at that level throughout the simulation. Many of these highly sensitive streams were simulated by the model to have had preindustrial ANC below some of these target values. For other sites, the watershed soils contained sufficiently large buffering capacity that even very high sustained levels of atmospheric S deposition would not reduce stream ANC below common damage thresholds.

  2. 25 CFR 543.14 - What are the minimum internal control standards for patron deposit accounts and cashless systems?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... patron deposit accounts and cashless systems? 543.14 Section 543.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING...) The patron must appear at the gaming operation in person, at a designated area of accountability,...

  3. 25 CFR 543.14 - What are the minimum internal control standards for patron deposit accounts and cashless systems?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... patron deposit accounts and cashless systems? 543.14 Section 543.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING...) The patron must appear at the gaming operation in person, at a designated area of accountability,...

  4. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  5. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.

    PubMed

    Lee, Woomin; Kihm, Kenneth David; Kim, Hong Goo; Shin, Seungha; Lee, Changhyuk; Park, Jae Sung; Cheon, Sosan; Kwon, Oh Myoung; Lim, Gyumin; Lee, Woorim

    2017-03-06

    Manipulation of the chemical vapor deposition graphene synthesis conditions, such as operating P, T, heating/cooling time intervals, and precursor gas concentration ratios (CH4/H2), allowed for synthesis of polycrystalline single-layered graphene with controlled grain sizes. The graphene samples were then suspended on 8 μm diameter patterned holes on a silicon-nitride (Si3N4) substrate, and the in-plane thermal conductivities k(T) for 320 K < T < 510 K were measured to be 2660-1230, 1890-1020, and 680-340 W/m·K for average grain sizes of 4.1, 2.2, and 0.5 μm, respectively, using an opto-thermal Raman technique. Fitting of these data by a simple linear chain model of polycrystalline thermal transport determined k = 5500-1980 W/m·K for single-crystal graphene for the same temperature range above; thus, significant reduction of k was achieved when the grain size was decreased from infinite down to 0.5 μm. Furthermore, detailed elaborations were performed to assess the measurement reliability of k by addressing the hole-edge boundary condition, and the air-convection/radiation losses from the graphene surface.

  6. Controlled growth of high-quality graphene using hot-filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Selvakumar, N.; Vadivel, B.; Rao, D. V. Sridhara; Krupanidhi, S. B.; Barshilia, Harish C.

    2016-11-01

    High-quality graphene was grown on polycrystalline copper (Cu) foils (1 cm × 1 cm) using hot-filament chemical vapor deposition method. The role of process parameters such as gas flow rates (methane and hydrogen), growth temperatures (filament and substrate) and durations on the growth of graphene was studied. The process parameters were also optimized to grow monolayer, bilayer and multilayer graphene in a controlled manner, and a growth mechanism was deduced from the experimental results. The presence of graphene on Cu foils was confirmed using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. FESEM micrographs clearly showed that the graphene starts nucleating as hexagonal islands and later evolves as dendritic lobe-shaped islands with an increase in supersaturation. The TEM images substantiate the growth of monolayer, bilayer and multilayer graphene. The I 2D/ I G ratio = 2 confirmed the presence of the monolayer graphene and the absence of `D' peak in the Raman spectrum indicated the high purity of graphene grown on Cu foils. These results also show that the polycrystalline copper foil morphology has negligible effect on the growth of monolayer graphene.

  7. Depositional controls on tidally influenced fluvial successions, Neslen Formation, Utah, USA

    NASA Astrophysics Data System (ADS)

    Shiers, M. N.; Mountney, N. P.; Hodgson, D. M.; Cobain, S. L.

    2014-08-01

    The stratigraphic architecture of marginal marine successions records the interplay of autogenic a