Science.gov

Sample records for acid deposition damage

  1. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  2. Valuation of damages to recreational trout fishing in the Upper Northeast due to acidic deposition

    SciTech Connect

    Englin, J.E.; Cameron, T.A.; Mendelsohn, R.E.; Parsons, G.A.; Shankle, S.A.

    1991-04-01

    This report documents methods used to estimate economic models of changes in recreational fishing due to the acidic deposition. The analysis was conducted by Pacific Northwest Laboratory (PNL) and its subcontractors for the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE) in support of the National Acidic Precipitation Assessment Program (NAPAP). The primary data needed to estimate these models were collected in the 1989 Aquatic Based Recreation Survey (ABRS), which was jointly funded by the DOE and the EPA's Office of Policy Planning and Evaluation. 11 refs., 5 figs., 15 tabs.

  3. Stress assessment and spectral characterization of suspected acid deposition damage in red spruce (Picea Rubens) from Vermont

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.

    1985-01-01

    The effects of acid deposition on Picea rubens are studied. The Picea rubens located at Camels Hump Mt., Mt. Ascutney, and Ripton, VT were analyzed using stress level evaluations, in situ spectral data, pressure bomb analysis, and aircraft sensors. Spruce stress per circular plot and percent spruce mortality are calculated. The relation between stress levels and elevation and exposure and weather patterns is examined. It is observed that variations in the reflectance curves of the foliage and branches are related to cellular health, the type of cellular arrangement, and the degree of leaf tissue hydration; the leaf and twig specimens from high stress sites are more reflective in the red portion of the visible and less reflective in the NIR portion of the spectrum. The pressure bomb data reveal that the xylem water tension is higher in specimens from high stress sites. It is noted that remote sensing permits discrimination and mapping of suspected acid deposition damage.

  4. Economic assessment of acid deposition and ozone damage on the San Joaquin Valley agriculture. Final report

    SciTech Connect

    Howitt, R.

    1993-02-01

    The California Agricultural Resources Model (CARM) was used to estimate the economic impact of acidic deposition and ozone on crops in the San Joaquin Valley. Data on ozone exposure-crop response and agricultural markets are used in the CARM to estimate the potential economic benefits of an improvement in air quality. The study focused on the economic impact of two ozone reduction scenarios in agricultural regions of California. The CARM projected that if growing season concentrations of ozone were reduced to 0.04 ppm, annual benefits to consumers (higher availability and lower prices) and producers (higher production and lower production costs) would be approximately $489 million. In comparison, the benefit projected if statewide levels of ozone were uniformly reduced to 0.025 ppm was approximately $1.5 billion. Although the 0.025 ppm scenario is unlikely, the economic benefits were estimated to be correspondingly large.

  5. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  6. (Acidic deposition and the environment)

    SciTech Connect

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  7. (International conference on acidic deposition)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1990-10-05

    The traveler took the opportunity to participate in a mini-sabbatical at the Institute of Terrestrial Ecology (ITE) in Edinburgh, Scotland, as a part of planned travel to Glasgow, Scotland, to attend the International Conference on Acidic Precipitation. The purpose of the sabbatical was to provide quality time for study and interchange of ideas with scientists at ITE working on physiological effects of acidic deposition and to allocate significant time for writing and synthesizing of results of physiological studies from the National Forest Response Program's Spruce/Fir Research Cooperative. The study focused on the very significant cytological and physiological effects of calcium deficiency in trees, a response that appears to be amplified in spruce by acidic deposition.

  8. Acid deposition in east Asia

    SciTech Connect

    Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.

    1996-12-31

    A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long in winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.

  9. Acid deposition in Asia: Emissions, deposition, and ecosystem effects

    NASA Astrophysics Data System (ADS)

    Duan, Lei; Yu, Qian; Zhang, Qiang; Wang, Zifa; Pan, Yuepeng; Larssen, Thorjørn; Tang, Jie; Mulder, Jan

    2016-12-01

    We review and synthesize the current state of knowledge regarding acid deposition and its environmental effects across Asia. The extent and magnitude of acid deposition in Asia became apparent only about one decade after this issue was well described in Europe and North America. In addition to the temperate zone, much of eastern and southern Asia is situated in the tropics and subtropics, climate zones hitherto little studied with respect to the effects of high loads of acid deposition. Surface waters across Asia are generally not sensitive to the effects of acid deposition, whereas soils in some regions are sensitive to acidification due to low mineral weathering. However, soil acidification was largely neutralized by such processes as base cation deposition, nitrate (NO3-) denitrification, and sulfate (SO42-) adsorption. Accompanying the decrease in S deposition in recent years, N deposition is of increasing concern in Asia. The acidifying effect of N deposition may be more important than S deposition in well drained tropical/subtropical soils due to high SO42- adsorption. The risk of regional soil acidification is a major threat in Eastern Asia, indicated by critical load exceedance in large areas.

  10. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  11. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  12. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  13. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  14. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  15. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    PubMed Central

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-01-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors. PMID:26311131

  16. Damage evaluation in graphene underlying atomic layer deposition dielectrics.

    PubMed

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A

    2015-08-27

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  17. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    NASA Astrophysics Data System (ADS)

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-08-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  18. (Acidic deposition: Its nature and impacts)

    SciTech Connect

    Cook, R.B.; Turner, R.S. ); Ryan, P.F. )

    1990-10-18

    The travelers presented papers on various aspects of modeling performed as part of the US National Acidic Precipitation Assessment Program (NAPAP) at the Fourth International Conference on Acidic Deposition: Its Nature and Impacts. The meeting was sponsored by the Royal Society of Edinburgh and was attended by over 800 scientists, primarily from Europe and North America. The conference focused on nine aspects of the nature and impacts of atmospheric pollutants, including ozone: chemistry of atmospheric pollutants; processes controlling the deposition of pollutants; effects of pollutants on soils; physiology of plant responses to pollutants; effects of pollutants in agricultural and natural or seminatural ecosystems; atmospheric pollutants and forests; effects of pollutants on the chemistry of freshwater streams and lakes; effects of pollutants on freshwater plants and animals; and effects of pollutants, indoors and outdoors, on materials and buildings.

  19. Acidic Depositions: Effects on Wildlife and Habitats

    USGS Publications Warehouse

    1993-01-01

    The phenomenon of 'acid rain' is not new; it was recognized in the mid-1800s in industrialized Europe. In the 1960s a synthesis of information about acidification began in Europe, along with predictions of ecological effects. In the U.S. studies of acidification began in the 1920s. By the late 1970s research efforts in the U.S. and Canada were better coordinated and in 1980 a 10-year research program was undertaken through the National Acid Precipitation Assessment Plan (NAPAP) to determine the causes and consequences of acidic depositions. Much of the bedrock in the northeastern U.S. and Canada contains total alkalinity of 20 kg/ha/yr of wet sulphate depositions and are vulnerable to acidifying processes. Acidic depositions contribute directly to acidifying processes of soil and soil water. Soils must have sufficient acid-neutralizing capacity or acidity of soil will increase. Natural soil-forming processes that lead to acidification can be accelerated by acidic depositions. Long-term effects of acidification are predicted, which will reduce soil productivity mainly through reduced availability of nutrients and mobilization of toxic metals. Severe effects may lead to major alteration of soil chemistry, soil biota, and even loss of vegetation. Several species of earthworms and several other taxa of soil-inhabiting invertebrates, which are important food of many vertebrate wildlife species, are affected by low pH in soil. Loss of canopy in declining sugar maples results in loss of insects fed on by certain neotropical migrant bird species. No definitive studies categorically link atmospheric acidic depositions with direct or indirect effects on wild mammals. Researchers have concentrated on vegetative and aquatic effects. Circumstantial evidence suggests that effects are probable for certain species of aquatic-dependent mammals (water shrew, mink, and otter) and that these species are at risk from the loss of foods or contamination of these foods by metals

  20. Emerging acid deposition research and monitoring issues

    SciTech Connect

    Birnbaum, R.

    1997-12-31

    The research baselines established for acid rain in the 1980s position scientists and policy makers to evaluate the environmental effectiveness of the acid rain control program and to test the variety of scientific hypotheses made regarding the chemical, transport and biological processes involved in acidic deposition. Several new research questions have evolved. How effective are the emissions reductions? What is the residual risk? How have ecological recovery rates been affected and what other environmental factors influence recovery? What are the critical requirements to measure ecological change including the extent and rate while also capturing the extent and severity of emerging ecological stressors (such as watershed nitrogen saturation)? These and other questions are currently being synthesized within and outside of EPA to develop a long-term strategy to provide guidance to emerging research and monitoring issues.

  1. Acid deposition research in the private sector

    SciTech Connect

    Kinsman, J.D.; Wisniewski, J.; Nelson, J.

    1984-02-01

    Acid deposition research funded by the private sector since 1980 is reviewed. Types of studies (e.g., atmospheric processes, emissions and monitoring, environmental effects) supported by the private sector during this period are overviewed. The specific industries/organizations (e.g., electric utility industry, environmental interest groups) funding reserach during 1980-1982 are discussed, with relation to the number of studies supported and funds (by year) provided by each. Finally, 13 research projects supported by the private sector and initiated by December 1983, each at greater than $1 million, are described.

  2. Ancillary effects of selected acid deposition control policies

    SciTech Connect

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  3. The emerging role of NO{sub x} in acid deposition

    SciTech Connect

    Price, D.A.; Birnbaum, R.E.

    1997-12-31

    The oxides of nitrogen (NO{sub x}) have long been recognized as a principal precursor to acid deposition. Until recently, however, scientific knowledge about the nature and extent of NO{sub x}`s contribution to acidity in the atmosphere and to acid deposition damages on earth has been nascent; the National Acid Precipitation Assessment Program (NAPAP) and related research during the 1980s focused primarily on the linkage between sulfur dioxide (SO{sub 2}) emissions with acid deposition. This paper summarizes an integrative assessment on the science of NO{sub x} and acid deposition and the multiple environmental benefits associated with decreases in NO{sub x} emissions from coal-fired power plants. The Acid Rain Program performed this staff assessment to support the Phase II Acid Rain NO{sub x} Emission Reduction Rule, proposed on January 19, 1996 (61 FR 1442), and the Office of Air and Radiation (OAR) Integrated NO{sub x} Strategy. Model projections from EPA`s Acid Deposition Standard Feasibility Study (October 1995) provided the initial indication of the important role of NO{sub x} in the future chronic acidification of certain sensitive watershed ecosystems. Corroborative findings from the Bear Brook Watershed Manipulation Experiment and other recent field studies are discussed. This paper also presents an overview discussion of the current state-of-knowledge with respect to NO{sub x}`s role in the acidification of forests, soils, and vegetation as well as acidic-related damage to materials and structures. Basic terms and processes such as {open_quotes}atmospheric nitrogen deposition,{close_quotes} {open_quotes}nitrogen saturation,{close_quotes} {open_quotes}chronic vs. episodic acidification,{close_quotes} and {open_quotes}direct vs. soil-mediated acidification effects{close_quotes} are defined in context so as to facilitate understanding of the emerging role of NO{sub x} in acid deposition.

  4. Impediments to recovery from acid deposition

    NASA Astrophysics Data System (ADS)

    Watmough, Shaun A.; Eimers, Catherine; Baker, Scott

    2016-12-01

    In response to large reductions in sulphur (S) emissions over the past 30 years, sulphate (SO42-) concentrations in precipitation at Plastic Lake in south-central Ontario, Canada, have declined by more than 70%. More recent decreases in NOx emissions have similarly led to a reduction in nitrate deposition (NO3-) and consequently the pH of bulk precipitation has increased by approximately 0.8 pH units since 1980. Despite the large decrease in acidic deposition, chemical recovery of the streams, as measured by an increase in pH and decrease in aluminum (Al), has been much less than expected, primarily due to losses of base cations from the shallow, base-poor soils. While nitrogen (N) is almost totally retained within the terrestrial catchment, S export continues to exceed inputs measured in bulk deposition and during the early part of the record approximately 70% of the anions in streams were buffered by calcium (Ca2+) and magnesium (Mg2+) compared with only 60% in 2011/12. In the wetland-draining stream (PC1), peak depressions in stream pH and peaks in SO42- and Al concentration in the fall are significantly positively correlated with annual drought days defined as the number of days when stream flow ceases. Even though reductions in SO2 and NOx emissions in Canada have resulted in large improvements in precipitation chemistry, the combined influence of soil acidification and climate-mediated biogeochemical processes occurring in wetlands cause acidification-related issues to persist. Forecasting the longer-term response of soils and surface waters in light of these observations is required to fully assess the need for further emission reductions.

  5. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  6. Acid rain damage to carbonate stone: a quantitative assessment based on the aqueous geochemistry of rainfall runoff from stone

    USGS Publications Warehouse

    Reddy, M.M.

    1988-01-01

    An onsite experimental procedure was used to identify and quantify acid rain damage to carbonate stone, based on the change in rain runoff chemical composition. Onsite data obtained during the summer and fall of 1984 at three locations in the northeastern United States indicate that carbonate stone surface recession is related to acid deposition. -from Author

  7. Acidic deposition--ecological effects on surface waters

    SciTech Connect

    Harter, P.

    1989-01-01

    The acidification of soft water aquatic ecosystems, with consequent damage to the flora and fauna, is considered in this report. The evidence that environmental effects are ocurring is examined to see if a trend of increasing acidification can be related to changes in atmospheric deposition of sulphates and nitrates. Possible causes of change are considered, to clarify the contributions of variations in human activities and natural factors. It is concluded that acidic deposition, originating partly from emissions of sulphur and nitrogen compounds arising from man-made sources including combustion of fossil fuels, is causing acidification of surface waters in some areas of Europe and North America. There is proof that acidification of surface waters (to less than pH 6) is deleterious to many of the organisms whose habitat it forms. Acidified surface waters in some of the impacted areas are showing signs of recovery, where emissions of sulphur and nitrogen compounds from human activities are decreasing. There is some evidence that reversibility of acidification has started to occur, in some instances, about a decade after emissions were reduced. 219 refs., 13 figs., 9 tabs.

  8. [Recovery of Staphylococcus aureus after acid damage].

    PubMed

    Assis, E M; de Carvalho, E P; Asquieri, E R; da Silva, F V; Robbs, P G

    1995-01-01

    The growth behavior of S. aureus in fresh cheese (Minas and Mozzarella) during their shelf life was studied in this research. The possibility of injury to this microorganism caused by increasing acidity was also investigated. Raw milk was inoculated with S. aureus FRIA-100 with approximately 10(6) cells/ml and cheese production was carried out according to normal procedures. They were stored at 7 degrees C during 40 days for Minas cheese and during 60 days for Mozzarella cheese. At 2 to 3 days intervals the following analyses were performed: acidity, pH, S. aureus count on Baird-Parker agar by traditional methods and by the method recommended by the American Public Health Association, to count repair of injured cells. We were certain of the presence of injured S. aureus when acidity was in the range of 0.7 to 0.8% expressed as lactic acid and when the count was 1.3 log higher.

  9. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  10. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  11. Acid deposition and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1986-04-01

    In August, 1983 members of the Research Staff of Ford Motor Company carried out a field experiment at two rural sites in southwestern Pennsylvania involving various aspects of the acid deposition phenomenon. This presentation focuses on the wet (rain) deposition during the experiment, as well as the relative importance of wet and dry deposition processes for nitrate and sulfate at the sites. Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO/sub 3/ and SO/sub 2/ to surrogate surfaces (2), and the role of elemental carbon in light absorption and of light absorption in degradation of visibility (3).

  12. A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition

    SciTech Connect

    Leontaritis, K.J.; Amaefule, J.O.; Charles, R.E. )

    1994-08-01

    Asphaltene plugging is a known cause of near-wellbore formation damage. Deposited asphaltenes can reduce effective hydrocarbon mobility by (1) blocking the pore throats; (2) adsorbing onto the rock, thereby altering the formation wettability from water-wet to oil-wet; and (3) increasing hydrocarbon viscosity by nucleating water-in-oil emulsions. Asphaltene flocculation and deposition can be avoided in some, but not all, cases. Some formation damage resulting from asphaltene plugging is permanent and hence must be prevented rather than treated. Prevention of asphaltene-induced formation damage should be started in the early stages of drilling and well completion, once the oil is known to be asphaltenic. This paper presents a systematic approach to successful diagnosis, prevention, and mitigation of asphaltene problems during recovery of asphaltenic oils. A mechanism of asphaltene flocculation and deposition is proposed and analyzed, and the previously defined concept of asphaltene deposition envelope is further refined. Diagnostic technology is presented that can test the compatibility of drilling and completion fluids with any asphaltenic oil. Important issues that need to be considered in the design of treatments for asphaltene removal are discussed. Finally, the paper presents a methodology for restoring unfavorable wettability changes caused by asphaltene deposition.

  13. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  14. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  15. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  16. Characterization of 1064nm laser-induced damage on antireflection coatings grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Wei, Yaowei; Chen, Songlin; Luo, Jin; Ma, Ping

    2011-12-01

    Damage tests were carried out to measure the laser resistance of Al2O3/TiO2 and Al2O3/HfO2 antireflection coatings at 1064nm grown by atomic layer deposition (ALD). The S-on-1 and R-on-1 damage results are given. It's interesting to find that ALD coatings damage performance seems closed to those grown by conventional e-beam evaporation process. For Al2O3/TiO2 coatings, the grown temperature will impact the damage resistance of thin films. Crystallization of TiO2 layer at higher temperature could play an importance role as absorption defects that reduced the LIDT of coatings. In addition, it is found that using inorganic compound instead of organic compound as precursors for ALD process can effective prevent residual carbon in films and will increase the LIDT of coatings.

  17. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites.

  18. MOUNTAIN ACID DEPOSITION PROGRAM (MADPRO): CLOUD DEPOSITION TO THE APPALACHIAN MOUNTAINS, 1994 THROUGH 1999

    EPA Science Inventory

    The mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the requirements of the Clean Air Act Amendments (CAAA). The two ma...

  19. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed

    2004-01-01

    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  20. Urinary Excretion of Liver Type Fatty Acid Binding Protein Accurately Reflects the Degree of Tubulointerstitial Damage

    PubMed Central

    Yokoyama, Takeshi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hoshino, Seiko; Yasuda, Takashi; Kimura, Kenjiro

    2009-01-01

    To investigate the relationship between liver-type fatty acid-binding protein (L-FABP), a biomarker of chronic kidney disease, in the kidney and the degree of tubulointerstitial damage, folic acid (FA)-induced nephropathy was studied in a mouse model system. As renal L-FABP is not expressed in wild-type mice, human L-FABP (hL-FABP) transgenic mice were used in this study. hL-FABP is expressed in the renal proximal tubules of the transgenic mice that were injected intraperitoneally with FA in NaHCO3 (the FA group) or only NaHCO3 (the control group) and oral saline solution daily during the experimental period. The FA group developed severe tubulointerstitial damage with the infiltration of macrophages and the deposition of type I collagen on days 3 and 7 and recovered to the control level on day 14. The gene and protein expression levels of hL-FABP in the kidney were significantly enhanced on days 3 and 7. Urinary hL-FABP in the FA group was elevated on days 3 and 7 and decreased to the control level on day 14. The protein expression levels of hL-FABP in both the kidney and urine significantly correlated with the degree of tubulointerstitial damage, the infiltration of macrophages, and the deposition of type I collagen. In conclusion, renal expression and urinary excretion of hL-FABP significantly reflected the severity of tubulointerstitial damage in FA-induced nephropathy. PMID:19435794

  1. Simulated seasonal variations in wet acid depositions over East Asia.

    PubMed

    Ge, Cui; Zhang, Meigen; Zhu, Lingyun; Han, Xiao; Wang, Jun

    2011-11-01

    The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental

  2. ACIDIC DEPOSITION IN THE NORTHEASTERN U.S.: SOURCES AND INPUTS, ECOSYSTEM EFFECTS, AND MANAGEMENT STRATEGIES

    EPA Science Inventory

    Acidic deposition results from the emissions of air pollutants. Effects of acidic deposition in the northeastern US include the acidification of soil and water, causing stresses to terrestrial and aquatic biota.

  3. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  4. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    PubMed

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  5. Fat deposition, fatty acid composition and meat quality: A review.

    PubMed

    Wood, J D; Enser, M; Fisher, A V; Nute, G R; Sheard, P R; Richardson, R I; Hughes, S I; Whittington, F M

    2008-04-01

    This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time

  6. Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics

    NASA Astrophysics Data System (ADS)

    Hervy, Adrien; Gallais, Laurent; Chériaux, Gilles; Mouricaud, Daniel

    2017-01-01

    In order to transport multi-petawatt (PW) femtosecond laser beams with large spectral bandwidth, specific mirrors have to be designed and manufactured. We report on an experimental study of the laser-damage resistance and other optical properties of coating materials deposited in a 1-m class coating chamber. The study is conducted on single-layer coatings deposited by electron beam evaporation at 500 fs. Based on the experience of large optics for nanosecond applications, hafnia and silica are particularly investigated. However, in the case of sub-15 fs, the spectral specifications for PW beam transport mirrors cannot be reached by classical high laser-resistant quarter-wave SiO2/HfO2 stacks. Therefore, we investigate the laser resistance of different dielectrics of interest deposited with electron-beam processes: Al2O3, Y2O3, Sc2O3, HfO2, Ta2O5, TiO2. The influence of multiple pulse irradiations and environmental conditions, such as vacuum and temperature, is studied. With the investigation of multilayer stacks, we also show that there is no difference in behavior when a film is studied as a single layer or embedded in a stack. Based on these results, we were able to optimize high reflective (>99.5%), broadband (300 nm) and high laser-induced damage threshold (2.5 J/cm2) mirrors for PW applications.

  7. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  8. Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease.

    PubMed

    Bosch, Marta; Fajardo, Alba; Alcalá-Vida, Rafael; Fernández-Vidal, Andrea; Tebar, Francesc; Enrich, Carlos; Cardellach, Francesc; Pérez-Navarro, Esther; Pol, Albert

    2016-03-01

    Niemann-Pick C disease is a neurovisceral disorder caused by mutations in the NPC gene that result in systemic accumulation of intracellular cholesterol. Although neurodegeneration defines the disease's severity, in most patients it is preceded by hepatic complications such as cholestatic jaundice or hepatomegaly. To analyze the contribution of the hepatic disease in Niemann-Pick C disease progression and to evaluate the degree of primary and secondary hepatic damage, we generated a transgenic mouse with liver-selective expression of NPC1 from embryonic stages. Hepatic NPC1 re-expression did not ameliorate the onset and progression of neurodegeneration of the NPC1-null animal. However, the mice showed reduced hepatomegalia and dramatic, although not complete, reduction of hepatic cholesterol and serum bile salts, bilirubin, and transaminase levels. Therefore, hepatic primary and secondary cholesterol deposition and damage occur simultaneously during Niemann-Pick C disease progression.

  9. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  10. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  11. Impact of Propionic Acid on Liver Damage in Rats

    PubMed Central

    Al- Daihan, Sooad; Shafi Bhat, Ramesa

    2015-01-01

    Propionic acid (PA) is a short chain fatty acid, a common food preservative and metabolic end product of enteric bacteria in the gut. The present study was undertaken to investigate the effect of PA on liver injury in male rats. Male western albino rats were divided into two groups. The first group served as normal control, the second was treated with PA. The activities of serum hepatospecific markers such as aspartate transaminase, alanine transaminase, and alkaline phosphatase were estimated. Antioxidant status in liver tissues was estimated by determining the level of lipid peroxidation and activities of enzymatic and non-enzymatic antioxidants. Sodium and potassium levels were also measured in liver tissue. PA treatment caused significant changes in all hepatospecific markers. Biochemical analysis of liver homogenates from PA-treated rats showed an increase in oxidative stress markers like lipid peroxidation and lactate dehydrogenase, coupled with a decrease in glutathione, vitamin C and glutathione S- transferase. However, PA exposure caused no change in sodium and potassium levels in liver tissue. Our study demonstrated that PA persuade hepatic damage in rats. PMID:26629488

  12. Distribution and effects of acidic deposition on wildlife and ecosystems

    USGS Publications Warehouse

    Stromborg, K.L.; Longcore, J.R.; Kaemar, Peter; Legath, J.

    1987-01-01

    Acidic deposition occurs over most of the United States and the deposition patterns and theoretical vulnerabilities of aquatic ecosystems to chemical changes can be delineated, but few data exist on concomitant biological effects. Hypothetical direct effects are limited primarily to toxicity of various heavy metals mobilized at reduced pH. Results of studies in Scandinavia suggest that aluminum interferes with avian reproduction near acidified lakes. Some amphibian populations located on acid-vulnerable substrates may be adversely affected by reduced pH in the vernal pools used for egg laying and larval growth. Indirect effects on populations are difficult to detect because few historical data exist for wildlife populations and trophic relationships in vulnerable areas. Current research in the U.S.A. focuses on measuring habitat characteristics, food availability, and avian use of vulnerable wetland habitats. Results of Scandinavian studies suggest that some species of waterfowl may prefer acidified, I fish-free habitats because invertebrates essential for meeting nutritional requirements are more easily obtained in the absence of competition from fish. However, avian species dependent on fish would be absent from these habitats. Alteration of either the vegetative structure or primary productivity of wetlands might indirectly affect avian populations by causing decreased invertebrate productivity and consequent food limitations for birds.

  13. Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wei, Yaowei; Liu, Hao; Sheng, Ouyang; Liu, Zhichao; Chen, Songlin; Yang, Liming

    2011-08-01

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO2/Al2O3 films at 110° C and 280° C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100mm Φ samples, and the transmission is more than 99.8% at 1064nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO2/Al2O3 films, the LIDTs were 6.73±0.47J/cm2 and 6.5±0.46J/cm2 at 110° C on fused silica and BK7 substrates, respectively. The LIDTs at 110° C are notably better than 280° C.

  14. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    SciTech Connect

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-05-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

  15. Secondary acidification: Changes in gas-aerosol partitioning of semivolatile nitric acid and enhancement of its deposition due to increased emission and concentration of SOx

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ueda, Hiromasa; Nakayama, Shinji

    2008-02-01

    Secondary acidification, or the indirect enhancement of semivolatile air pollutant deposition associated with increased SO42- concentrations, is shown to occur in general air pollution using data collected from six stations of the Acid Deposition Monitoring Network in East Asia (EANET) in Japan. This effect was first detected as a result of volcanic SO2 plumes in our previous studies. Results indicate that as SO42- concentration increases, gas-aerosol partitioning of nitric acid shifts to the gas phase, increasing the HNO3 gas concentration. Since the dry and wet deposition rates of HNO3 gas are very high, deposition can be enhanced even when the emission of NOx remains unchanged. In western Japan, the indirect effect for wet deposition is most apparent from spring to autumn, when the Asian continental outflow carries sulfate-rich contaminated air masses. However, it is not pronounced in air masses containing abundant sea-salt particles and related cation components in aerosols. In areas such as forests or farmlands with low surface resistance, dry deposition of nitric acid is more pronounced than wet deposition as the dry deposition velocity of HNO3 gas is high. Increased dry deposition of t-NO3 due to the indirect effect and consequent vegetation damage is thus of considerable concern in such regions. The deposition of other semivolatile components, such as hydrochloric acid and ammonia, can be altered and can also induce secondary acidification.

  16. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  17. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  18. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  19. Do the paleolimnological reconstructions reflect the influence of acid deposition?

    SciTech Connect

    Smirnov, D.Y.

    1996-12-31

    The using possibility of paleolimnological analyses was considered with the documentation aim of acid-forming substances distant transfer on territory of Northern Fennoscandia. The Holocene and ancient interglacial lakes pH-and alkalinity trends, reconstructed by means of bottom sediments diatomic analyses, were studied. It has been made evident that the tendency to sharp changes of these data is revealed on final stages of interglacial periods. At that time the high amplitude of climatic changes with low periodicity is resulting in catastrophic changes of landscapes in the frames of water-catchments bodies. During the last millennium the climatic situation in the Northern Fennoscandia was changing repeatedly (Medieval Warm Epoch, Little Ice Age, the rise in temperature in 20-40`s of XXth century). In the Little Ice Age (XVI-XIX centuries) the decrease of average annual temperature and intensification of winds velocity have caused a rapid retreat of latitudinal and high-altitude forest boundaries, accompanied by sharp reconstruction of tundra-,forest-tundra-and northern taiga landscapes. These processes have accelerated due to the enforcement of economic activity which caused the destruction of vegetation cover (salt-working, and ship-building since the XIXth century, pasture of reindeer herds since the end of XIXth century). Acidifying of ground and surface waters in the current century could be caused by the increased entry of organic acids, as a result of plant residues decomposition. The decomposition process was activated in the end of XIXth - beginning of XXth century in connection with the rise of temperature and increase of precipitation. Thus, the trends in pH and alkalinity changes in this region can not be used as indicators of acid-forming substances atmospheric deposition increase.

  20. Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    NASA Astrophysics Data System (ADS)

    Battler, Melissa M.; Osinski, Gordon R.; Lim, Darlene S. S.; Davila, Alfonso F.; Michel, Frederick A.; Craig, Michael A.; Izawa, Matthew R. M.; Leoni, Lisa; Slater, Gregory F.; Fairén, Alberto G.; Preston, Louisa J.; Banerjee, Neil R.

    2013-06-01

    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ˜100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m × 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite

  1. Plasma damage-free deposition of Al cathode on organic light-emitting devices by using mirror shape target sputtering

    SciTech Connect

    Kim, Han-Ki; Kim, D.-G.; Lee, K.-S.; Huh, M.-S.; Jeong, S.H.; Kim, K.I.; Kim, H.; Han, D.W.; Kwon, J.H.

    2004-11-08

    We report on the fabrication of plasma damage-free organic light-emitting devices (OLEDs) by using a mirror shape target sputtering (MSTS) technique. It is shown that OLEDs with Al cathode deposited by the MSTS show much lower leakage current (1x10{sup -5} mA/cm{sup 2}) at reverse bias of -6 V, compared to that (1x10{sup -1}-{approx}10{sup -2} mA/cm{sup 2} at -6 V) of OLEDs with Al cathodes grown by conventional dc magnetron sputtering. This indicates that there is no plasma damage, which is caused by the bombardment of energetic particles. This suggests that MSTS could be a useful plasma damage-free and low-temperature deposition technique for both top- and bottom-emitting OLEDs and flexible displays.

  2. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  3. Vapor-deposited water and nitric acid ices

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun; Keyser, Leon F.

    Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance

  4. Effect of various environmental parameters on the recovery of sublethally salt-damaged and acid-damaged Listeria monocytogenes.

    PubMed

    Gnanou Besse, N; Dubois Brissonnet, F; Lafarge, V; Leclerc, V

    2000-12-01

    The influence of supplementing the culture medium with magnesium sulphate, D-glucose, L-cysteine, catalase or lithium chloride, of incubation temperature and of oxygen availability on the recovery of salt- or acid-damaged Listeria monocytogenes, was studied on a solid repair medium according to a Hadamard matrix, with seven parameters varying between a high and a low level. The most important factors for repair of stressed Listeria were further studied with complete factorial design experiments. Results show that conditions promoting resuscitation of acid- or salt-injured cells are stress-specific, and differ in part from those described in the literature for heat-stressed Listeria.

  5. Wet acid deposition in Chinese natural and agricultural ecosystems: Evidence from national-scale monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Xu, Li; Zhu, Zhilin; Yu, Guirui

    2016-09-01

    Acid deposition in precipitation has received widespread attention. However, it is necessary to monitor the acid deposition in Chinese agricultural and natural ecosystems because data derived from traditional urban/suburban observations might overestimate it to some extent. In this study, we continuously measured the acid deposition through precipitation (pH, sulfate (SO42-), and nitrate (NO3-)) in 43 field stations from 2009 to 2014 to explore the spatial patterns and the main influencing factors of acid deposition in Chinese agricultural and natural ecosystems. The results showed that the average precipitation pH at the 43 stations varied between 4.10 and 8.25 (average: 6.2) with nearly 20% of the observation sites being subjected to acid precipitation (pH < 5.6). The average deposition of SO42- and NO3- was 115.99 and 32.93 kg ha-1 yr-1, respectively. An apparent regional difference of acid deposition in Chinese agricultural and natural ecosystems was observed, which was most serious in south and central China and less serious in northwest China, Inner Mongolia, and Qinghai-Tibet. The level of economic development and amount of precipitation could explain most of the spatial variations of pH, SO42-, and NO3- depositions. It is anticipated that acid deposition might increase further, although the current level of acid deposition in these Chinese agricultural and natural ecosystems was found to be less serious than projected from urban/suburban data. The control of energy consumption should be strengthened in future to prevent an increase of acid deposition in China.

  6. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  7. Modeling dose deposition and DNA damage due to low-energy β(-) emitters.

    PubMed

    Alloni, D; Cutaia, C; Mariotti, L; Friedland, W; Ottolenghi, A

    2014-09-01

    One of the main issues of low-energy internal emitters concerns the very short ranges of the beta particles, versus the dimensions of the biological targets. Depending on the chemical form, the radionuclide may be more concentrated either in the cytoplasm or in the nucleus of the target cell. Consequently, since in most cases conventional dosimetry neglects this issue it may overestimate or underestimate the dose to the nucleus and hence the biological effects. To assess the magnitude of these deviations and to provide a realistic evaluation of the localized energy deposition by low-energy internal emitters, the biophysical track-structure code PARTRAC was used to calculate nuclear doses, DNA damage yields and fragmentation patterns for different localizations of radionuclides in human interphase fibroblasts. The nuclides considered in the simulations were tritium and nickel-63, which emit electrons with average energies of 5.7 (range in water of 0.42 μm) and 17 keV (range of 5 μm), respectively, covering both very short and medium ranges of beta-decay products. The simulation results showed that the largest deviations from the conventional dosimetry occur for inhomogeneously distributed short-range emitters. For uniformly distributed radionuclides selectively in the cytoplasm but excluded from the cell nucleus, the dose in the nucleus is 15% of the average dose in the cell in the case of tritium but 64% for nickel-63. Also, the numbers of double-strand breaks (DSBs) and the distributions of DNA fragments depend on subcellular localization of the radionuclides. In the low- and medium-dose regions investigated here, DSB numbers are proportional to the nuclear dose, with about 50 DSB/Gy for both studied nuclides. In addition, DSB numbers on specific chromosomes depend on the radionuclide localization in the cell as well, with chromosomes located more peripherally in the cell nucleus being more damaged by short-ranged emitters in cytoplasm compared with chromosomes

  8. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  9. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2013-07-05

    Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb(3+)). Single-stranded oligonucleotides greatly enhance the Tb(3+) emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb(3+)/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb(3+), producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb(3+)/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb(3+)/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36±1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  10. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  11. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  12. Identification of research relating to the critical loads concept and its potential application to the regulation of acidic deposition

    SciTech Connect

    Bhatti, N.

    1993-12-01

    The overwhelming majority of strategies currently implemented to regulate acidic deposition have focused on source-based or emission-control techniques. In the past few years, however, the fact that such source-based. strategies may not be sufficient to prevent adverse ecological effects and may therefore need to be supplemented with other control options, such as receptor-based strategies, has become apparent. Partly in response to this insufficiency of regulatory controls, the US Congress has required the National Acid Precipitation Assessment Program to determine (1) what deposition levels are needed to prevent such ecological damage, (2) whether such safe deposition levels (i.e., critical loads) can realistically be identified, and (3) what the costs and benefits of attaining such deposition levels are. This report reviews and culls the existing research on these alternative control strategies, emphasizing the critical loads concept, to determine the advantages and limitations and the cost-benefit relationships associated with receptor-based control options. The results of this study indicate that in spite of the significant limitations associated with the critical loads concept, this strategy dominates all discussions of non-source-based control options and offers considerable advantages, including cost-effectiveness, over the more traditional source-based control methods. Summaries of 10 of the most relevant studies dealing with alternative control strategies and the costs and benefits associated with them are also presented in this report.

  13. Laser damage threshold studies on urea L-malic acid: A nonlinear optical crystal

    SciTech Connect

    Vanishri, S.; Bhat, H. L.; Deepthy, A.; Nampoori, V. P. N.; Matos Gomes, E. de; Belsley, M.

    2006-04-15

    A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64{+-}0.19 and 20.60{+-}0.36 GW cm{sup -2} at 1064 nm and 18.44{+-}0.31 and 7.52{+-}0.22 GW cm{sup -2} at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.

  14. Acid rain and weathering damage to carbonate building stone

    SciTech Connect

    Reddy, M.M.; Youngdahl, C.A.

    1987-07-01

    Marble and limestone specimens were exposed to atmospheric conditions at four eastern US sites. A number of methods were used for damage assessment; this paper describes the results of chemical and physical measurements of material loss. Good agreement was observed among the results obtained with different methods. A surface recession rate near 15 ..mu..m/y was observed for skyward surfaces of marble tested in NC, and comparable results were obtained at the other test sites. The response of the porous limestone was assessed with greater difficulty; a loss rate similar to that of marble was inferred. Initial correlations of material loss with environmental factors are briefly discussed.

  15. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  16. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  17. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province.

    PubMed

    Sullivan, Timothy J; Cosby, Bernard J; Jackson, William A

    2011-11-01

    An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource condition at a particular point in time is generally called a target load (TL). The CL or TL for protection of aquatic biota is generally based on maintaining surface water acid neutralizing capacity (ANC) at an acceptable level. This study included calibration and application of the watershed model MAGIC (Model of Acidification of Groundwater in Catchments) to estimate the target sulfur (S) deposition load for the protection of aquatic resources at several future points in time in 66 generally acid-sensitive watersheds in the southern Blue Ridge province of North Carolina and two adjoining states. Potential future change in nitrogen leaching is not considered. Estimated TLs for S deposition ranged from zero (ecological objective not attainable by the specified point in time) to values many times greater than current S deposition depending on the selected site, ANC endpoint, and evaluation year. For some sites, one or more of the selected target ANC critical levels (0, 20, 50, 100μeq/L) could not be achieved by the year 2100 even if S deposition was reduced to zero and maintained at that level throughout the simulation. Many of these highly sensitive streams were simulated by the model to have had preindustrial ANC below some of these target values. For other sites, the watershed soils contained sufficiently large buffering capacity that even very high sustained levels of atmospheric S deposition would not reduce stream ANC below common damage thresholds.

  18. Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1980-01-01

    Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis for these proteins increased linearly with the inducing UV dose. The degree of induction reached 100-fold, and the most abundant protein beta, amounted to approximately 2% of the total newly synthesized protein after irradiation. Damage caused by ionizing radiation or by treatment with mitomycin C also provoked the synthesis of the four proteins. The proportions between the individual proteins, however, varied strikingly with the damaging agent. In contrast to treatments which introduced damage in the cellular deoxyribonucleic acid, the mere arrest of deoxyribonucleic acid replication, caused by nalidixic acid or by starvation for thymine, failed to elicit the synthesis of either protein. Repair of deoxyribonucleic acid damage requires that a number of versatile and efficient processes by employed. It is proposed that the induced proteins participate in deoxyribonucleic acid repair in M. radiodurans. Mechanisms are discussed which would allow a differentiated cellular response to damages of sufficiently distinctive nature. Images PMID:7354007

  19. Student Knowledge of Scientific and Natural Resource Concepts Concerning Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    1989-01-01

    Assessed is the level of scientific and natural resource knowledge possessed by fourth-, eighth- and eleventh-grade students. Misconceptions are noted. Discussed are implications for teaching about acidic deposition. (CW)

  20. Acidic Deposition along the Appalachian Trail Corridor and its Effects on Acid-Sensitive Terrestrial and Aquatic Resources

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Sullivan, T. J.; Burns, D. A.; Bailey, S. W.; Cosby, B. J., Jr.; Dovciak, M.; Ewing, H. A.; McDonnell, T. C.; Riemann, R.; Quant, J.; Rice, K. C.; Siemion, J.; Weathers, K. C.

    2015-12-01

    The Appalachian National Scenic Trail (AT) spans 3,500 km from Georgia to Maine. Over its length, the trail passes through a corridor with wide variations in climate, bedrock type, soils, and stream water quality. These factors create a diverse range of ecosystems. The health of these ecosystems is a cause for concern because the AT passes through the heavily populated eastern U.S. with its many sources of sulfur (S) and nitrogen (N) emissions that produce acidic deposition. To address concerns about the health of the AT, a study was designed to evaluate the condition and sensitivity of the AT corridor with respect to acidic deposition. Collections of stream water (265 sites), soil (60 sites), tree cores (15 sites) and atmospheric deposition samples (4 sites) were made along with understory and overstory vegetation measurements (30 sites) over the full trail length within a 40 km-wide corridor. Existing data on atmospheric deposition, geology, vegetation, stream chemistry, and soil chemistry were also used in the analysis. Mean acid-neutralizing capacity (ANC) was lowest in the streams in the North section, intermediate in the Central section and highest the South section, despite the South having the highest acid rain levels. At least 40% of the study streams exhibited pH and/or Ali measurements that indicated potential harm to biota. Approximately 70% of the soil sites had values of base saturation under 20%, the threshold below which acidic deposition can mobilize inorganic aluminum (Ali), the form harmful to terrestrial and aquatic life. Compositional similarity of understory and canopy species was positively correlated with acidic deposition, suggesting that during past decades, species poorly adapted to acidic deposition were replaced with tolerant species. Target loads modeling indicated that exceedance of sulfur target loads to achieve stream ANC = 50 μeq/L by the year 2100occurred throughout the trail corridor.

  1. High-damage threshold antireflectors by physical-vapor-deposited amorphous fluoropolymer

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Spragge, Maura K.; Loomis, Gary E.; Thomas, Ian M.; Rainer, Frank; Ward, Richard L.; Kozlowski, Mark R.

    1994-07-01

    High laser-resistant anti-reflective coatings were made from an amorphous fluoropolymer (Teflon AF2400) material by physical vapor deposition. Single layers of Teflon AF2400 were thermally deposited in a vacuum chamber. The refractive index and adhesion of the coatings were determined as a function of deposition rate (2 to 20 angstroms/s), substrate temperature (20 to 200 degree(s)C), and glow-discharge bias potential (-1500 to 1500 V).

  2. Herbivore Damage and Prior Egg Deposition on Host Plants Influence the Oviposition of the Generalist Moth Trichoplusia ni (Lepidoptera: Noctuidae).

    PubMed

    Coapio, Guadalupe G; Cruz-López, Leopoldo; Guerenstein, Pablo; Malo, Edi A; Rojas, Julio C

    2016-09-02

    Female insects have the difficult task of locating host plants that maximize the survival and success of their offspring. In this study, the oviposition preferences of the cabbage looper moth, Trichoplusia ni (Hübner), for soybean plants, Glycine max (L.), under various treatments-undamaged, mechanically damaged, damaged by T. ni or Spodoptera frugiperda (Smith) larvae or by Bemisia tabaci (Gennadius) adults, egg-free plants, and plants previously oviposited by conspecific or heterospecific females (S. frugiperda)-were investigated using two-choice tests. Additionally, the volatile compounds emitted by the plants under the different treatments were identified by gas chromatography-mass spectrometry. Our results showed that females showed no preferences for undamaged or mechanically damaged plants. However, they oviposited more often on undamaged plants than on those previously damaged by T. ni, S. frugiperda, or B. tabaci. In contrast, females preferred to oviposit on plants previously oviposited by conspecific and heterospecific females than on egg-free plants. Plants damaged by conspecific or heterospecific larvae emitted methyl salicylate, indole, and octyl butyrate, compounds not released by undamaged or mechanically damaged plants. Whitefly damage induced the release of higher quantities of Z(3)-hexenyl acetate, (R)-(+)-limonene, and (E)-β-ocimene compared to plants damaged by larvae and suppressed the emission of linalool. Egg deposition by conspecific and heterospecific moths induced the emission of (R)-(+)-limonene, octyl butyrate, and geranyl acetone but suppressed the release of linalool. This study showed that a generalist moth species can discriminate between plants of different quality, and suggests that females use volatile compounds as cues during this process.

  3. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe.

    PubMed

    Stevens, Carly J; Duprè, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J G; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J Owen; Vandvik, Vigdis; Aarrestad, Per Arild; Muller, Serge; Dise, Nancy B

    2011-10-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha(-1) yr(-1)) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.

  4. Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage

    PubMed Central

    Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.

    2014-01-01

    Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888

  5. 25 CFR 169.14 - Deposit and disbursement of consideration and damages.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 169.14 Section 169.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... deposit previously made under § 169.4. In no case shall the amount deposited as consideration for the right-of-way over any parcel be less than the amount specified in the consent covering that parcel....

  6. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    PubMed

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression.

  7. Efficient Fractionation and Analysis of Fatty Acids and their Salts in Fat, Oil and Grease (FOG) Deposits.

    PubMed

    Benecke, Herman P; Allen, Sara K; Garbark, Daniel B

    2017-02-01

    A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.

  8. Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients.

    PubMed

    Reátegui-Sokolova, C; Ugarte-Gil, Manuel F; Gamboa-Cárdenas, Rocío V; Zevallos, Francisco; Cucho-Venegas, Jorge M; Alfaro-Lozano, José L; Medina, Mariela; Rodriguez-Bellido, Zoila; Pastor-Asurza, Cesar A; Alarcón, Graciela S; Perich-Campos, Risto A

    2017-04-01

    This study aims to determine whether uric acid levels contribute to new renal damage in systemic lupus erythematosus (SLE) patients. This prospective study was conducted in consecutive patients seen since 2012. Patients had a baseline visit and follow-up visits every 6 months. Patients with ≥2 visits were included; those with end-stage renal disease (regardless of dialysis or transplantation) were excluded. Renal damage was ascertained using the SLICC/ACR damage index (SDI). Univariable and multivariable Cox-regression models were performed to determine the risk of new renal damage. Uric acid was included as a continuous and dichotomous (per receiving operating characteristic curve) variable. Multivariable models were adjusted for age at diagnosis, disease duration, socioeconomic status, SLEDAI, SDI, serum creatinine, baseline use of prednisone, antimalarials, and immunosuppressive drugs. One hundred and eighty-six patients were evaluated; their mean (SD) age at diagnosis was 36.8 (13.7) years; nearly all patients were mestizo. Disease duration was 7.7 (6.8) years. Follow-up time was 2.3 (1.1) years. The SLEDAI was 5.2 (4.3) and the SDI 0.8 (1.1). Uric acid levels were 4.5 (1.3) mg/dl. During follow-up, 16 (8.6%) patients developed at least one new point in the renal domain of the SDI. In multivariable analyses, uric acid levels (continuous and dichotomous) at baseline predicted the development of new renal damage (HR 3.21 (1.39-7.42), p 0.006; HR 18.28 (2.80-119.48), p 0.002; respectively). Higher uric acid levels contribute to the development of new renal damage in SLE patients independent of other well-known risk factors for such occurrence.

  9. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  10. Quantification of hydrochloric acid and particulate deposition resulting from space shuttle launches at John F. Kennedy space center, Florida, USA

    NASA Astrophysics Data System (ADS)

    Dreschel, Thomas W.; Hall, Carlton R.

    1990-07-01

    Observations of damage to vegetation, acute reductions in surface water pH, and kills of small fish prompted the Biomedical Operations and Research Office at the John F. Kennedy Space Center to initiate intensive environmental evaluations of possible acute and long-term chronic impacts that may be produced by repeated launches of the space shuttle. An important step in this evaluation was the identification of deposition patterns and the quantification of ecosystem loading rates of exhaust constituents from the solid rocket motors (SRMs) in the area of the launch pad. These constituents are primarily aluminum oxide (Al2O3) and hydrochloric acid (HCl). During three launches of the space transportation system (STS-11, 13, and 14) up to 100 bulk deposition collectors, 83 mm in diameter containing 100 ml of deionized water, were deployed in a grid pattern covering 12.6 ha north of launch pad 39-A. Estimates of HCl and particulate deposition levels were made based on laboratory measurements of items entrained in the collectors. Captured particulates consisted of a variety of items including Al2O3, sand grains, sea shell fragments, paint chips, and other debris ablated from the launch pad surface by the initial thrust of the SRMs. Estimated ranges of HCl and particulate deposition in the study area were 0-127 g/m2 and 0-246 g/m2, respectively. Deposition patterns were highly influenced by wind speed and direction. These measurements indicate that, under certain meteorological conditions, up to 7.1 × 103 kg of particulates and 3.4 × 103 kg of HCl can be deposited to the near-field environment beyond the launch pad perimeter fence.

  11. MICS-Asia II: Model inter-comparison and evaluation of acid deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zifa; Xie, Fuying; Sakurai, T.; Ueda, H.; Han, Zhiwei; Carmichael, G. R.; Streets, D.; Engardt, M.; Holloway, T.; Hayami, H.; Kajino, M.; Thongboonchoo, N.; Bennet, C.; Park, S. U.; Fung, C.; Chang, A.; Sartelet, K.; Amann, M.

    This paper focuses on the comparison of chemical deposition of eight regional chemical models used in Model Inter-Comparison Study for Asia (MICS-Asia) II. Monthly-mean depositions of chemical species simulated by these models, including dry deposition of SO 2, HNO 3, NH 3, sulfate, nitrate and ammonium and wet deposition of SO 42-, NO 3- and NH 4+, have been provided for four periods (March, July, December 2001 and March 2002) in this work. Observations at 37 sites of the Acid Deposition Monitoring Network in East Asia (EANET) are compared with SO 42-, NO 3- and NH 4+ wet deposition model results. Significant correlations appeared between the observation and computed ensemble mean of participant models. Also, differences among modeled sulfur and nitrogen dry depositions have been studied at the EANET sites. Based on the analysis of acid deposition for various species from different models, total depositions of sulfur (SO 2 and sulfate) and nitrogen (nitrate and ammonium) have been evaluated as the ensemble mean of the eight models. In general, all models capture the observed spatial distribution of sulfur and nitrogen deposition, although the absolute values may differ from measurements. High deposition often occurs in eastern China, Japan, the Republic of Korea, Thailand, Vietnam, Philippines and other parts of Southeast Asia. The magnitude of model bias is quite large for many of the models. In examining the reasons for model-measurement disagreement, we find that differences in chemical processes, deposition parameterization, and modeled precipitation are the main reasons for large model disparities.

  12. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  13. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  14. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  15. Potential for acid precipitation damage to lakes of the Sierra Nevada, California

    SciTech Connect

    Harte, J.; Holdren, J.; Tonnesson, K.

    1983-04-01

    One of the areas of California potentially sensitive to acidic deposition is the Sierra Nevada, located along the eastern boundary. A report on sensitive areas in North America identifies the Sierra as a region characterized by poorly buffered soils and granite based lakes. The subalpine and alpine lakes in this region share many of the characteristics of lakes adversely affected by acid deposition in other parts of the US and the world. For this investigation selected subalpine lakes of the western slope of the Sierra were chosen for study, to establish baseline water quality which would allow for the identification of chemical and biological changes due to acidic deposition. It was then attempted to simulate the ecosystem stress of increased acidic deposition, particularly in the form of snowmelt, on these systems by performing microcosm experiments in the laboratory. These experiments were particularly concerned with recording changes in concentrations of micronutrients which might be leached from lake sediments with increasing acidification. This phenomenon is particularly important to study in the light of finds on the importance of aluminum leaching in the northeast which was led to toxic effects of biota in Adirondack lakes. 10 references, 3 figures, 1 table.

  16. A modified approach for estimating the aquatic critical load of acid deposition in northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Whitfield, Colin J.; Mowat, Aidan C.; Scott, Kenneth A.; Watmough, Shaun A.

    2016-12-01

    Acid-sensitive ecosystems are found in northern Saskatchewan, which lies downwind of major sulphur (S) and nitrogen (N) emissions sources associated with the oil sands extraction industry. In order to protect these ecosystems against acidification, tolerance to acid deposition must be quantified. The suitability of the central empirical relationship used in the Steady-State Water Chemistry (SSWC) model to predict historical sulphate (SO4) concentrations was investigated, and an alternate approach for determining aquatic critical loads of acidity (CL(A)) was employed for the study lakes (n = 260). Critical loads of acidity were often low, with median values of 12-16 mmolc m-2 yr-1, with the lower value reflecting a region-specific limit for acid-neutralizing capacity identified in this study. Uncertain levels of atmospheric deposition in the region, however, are problematic for characterizing acidification risk. Accurate S and chloride (Cl) deposition are needed to identify catchment sources (and sinks) of these elements in the new approach for CL(A) calculation. Likewise, accurate depiction of atmospheric deposition levels can prove useful for evaluation of lake runoff estimates on which estimates of CL(A) are contingent. While CL(A) are low and exceedance may occur according to projected increases in S deposition in the near-term, S retention appears to be an important feature in many catchments and risk of acidification may be overstated should long-term S retention be occurring in peatlands.

  17. Economic valuation of acid deposition induced changes in the productivity of commercial forests

    SciTech Connect

    Callaway, J.M. Jr.

    1984-02-01

    Several recent studies have reported localized decreases in the growth of several commercially important forest species in the northeast United States. These observed reductions in basal area growth may be related to increases in acid deposition and other man-made pollutants over the last two or three decades. If this is the case, then increases in region-wide levels of acid deposition may have effects on the biomass content and age-species composition of the regional timber inventory. These physical changes can influence regional stumpage prices and harvest levels through changes in the marginal cost of harvesting timber as a product and through changes in the opportunity cost of holding timber as an asset. Resultant changes in the profits earned by timber owners and the buyers of stumpage can be used to attach monetary value to the effects of acid deposition on the timber resource base. The objective of this study is to develop a capability to value acid deposition-induced changes in the productivity of commercial timberland in the northeast United States. Simulations will be conducted to determine the effects of acid deposition-induced changes in species growth rates on the profits earned by timber owners and buyers in relevant stumpage markets. The sensitivity of these results to different rates of return to private owners, alternative management practices, and to the levels of exogenous variables which influence the demand for stumpage will be assessed. 8 references.

  18. Efficacy of urine bile acid as a non-invasive indicator of liver damage in rats.

    PubMed

    Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mitsumoto, Atsushi

    2009-02-01

    Estimation of liver damage is important in the pathophysiological and toxicological study of liver disease. As a novel, non-invasive marker of liver damage, we studied the efficacy of urine bile acids (UBA) in a rat model of liver disease. Thioacetamide (TAA)-treated rats were used in this study. Single intraperitoneal administration of high-dose TAA induces severe damage to the liver, and thus is used as a model of acute hepatitis. Continuous administration of low-dose TAA yields mild damage to the liver, and induces cirrhosis and hepatic tumors. In this study, it was found that both acute and chronic administration of TAA was associated with a dose-dependent elevation of UBA. The elevation of UBA content correlated with the alteration of blood biochemical indicators, and UBA screening showed a remarkable ability to distinguish liver-damaged rats from healthy rats. In particular, UBA analysis was found to have high sensitivity, specificity, and positive predictive value for the screening of rats with abnormal serum alkaline phosphatase (ALP) activity due to chronic liver damage, which was confirmed to include cholestasis and subsequent cirrhosis by liver histological analysis. In conclusion, we demonstrated that measurement of UBA is a simple, non-invasive and effective method for the screening of cholestasis in TAA-treated rats. We suggest that UBA analysis may have potent applicability for monitoring the progress of liver damage in animal models of chronic liver disease, such as cirrhosis and hepatic encephalopathy.

  19. Ascorbic Acid Alleviates Pancreatic Damage Induced by Dibutyltin Dichloride (DBTC) in Rats

    PubMed Central

    Song, Yan-Hua; Fu, Yan-Biao; Qian, Ke-Da

    2007-01-01

    Purpose Because previous studies have reported depleted antioxidant capacity in patients with chronic pancreatitis (CP), prevention of free radical production has gained importance in antifibrotic treatment strategies for CP. The aim of this study was to investigate the effects of ascorbic acid on oxidative capacity and pancreatic damage in experimental CP. Materials and Methods CP was induced in male Sprague-Dawley rats by infusion of dibutyltin dichloride (DBTC) into the tail vein. Ascorbic acid was given intraperitoneally at a daily dose of 10 mg/kg body weight. The treatment groups were as follows: group 1, DBTC plus intraperitoneal physiologic saline; group 2, DBTC plus intraperitoneal ascorbic acid; group 3, solvent plus intraperitoneal physiologic saline; group 4, no operation plus intraperitoneal physiologic saline. Each group contained 15 animals. Treatment was started after CP was established. After 4 weeks of treatment, serum hyaluronic acid and laminin levels were determined by radioimmunoassay, pancreatic tissue oxidative stress was analyzed, and the degree of pancreatic damage was determined. Results Ascorbic acid treatment markedly increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) concentrations in pancreatic tissue (p < 0.01 for both). Significant serum hyaluronic acid and laminin reductions were observed in group 2 as compared with group 1 (p < 0.05). However, the serum hyaluronic acid and laminin levels remained elevated when compared with those of groups 3 and 4 (p < 0.05). Histopathologic scores were also lower in animals with CP that underwent ascorbic acid-treatment (p < 0.05). Conclusion Ascorbic acid treatment alleviated the degree of oxidative stress and pancreatic damage in rat CP. Antioxidant treatment might be considered a potential option to improve the pathologic process in CP. PMID:18159597

  20. Experimental protoporphyria: effect of bile acids on liver damage induced by griseofulvin.

    PubMed

    Martinez, María Del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria; Batlle, Alcira

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  1. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  2. Amino acid geochemistry of fossil bones from the Rancho La Brea asphalt deposit, California

    USGS Publications Warehouse

    McMenamin, M.A.S.; Blunt, D.J.; Kvenvolden, K.A.; Miller, S.E.; Marcus, L.F.; Pardi, R.R.

    1982-01-01

    Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 ?? 10-6yr-1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 ?? 10-6yr-1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits. ?? 1982.

  3. Growth of and mineral deposition in young rats fed saturated and unsaturated fatty acids

    SciTech Connect

    Magee, A.; D'Souza, D. John Hopkins Univ., Baltimore, MD )

    1991-03-15

    Male weanling rats were used in 4 week experiments to study effects of saturated and unsaturated fatty acids on growth and mineral deposition in several organs (bone, kidneys, liver, spleen, testes). Minerals evaluated were calcium, copper, iron, magnesium, manganese, phosphorus, and zinc, and levels of these minerals in tests diets were appropriate for growing rats. Two levels of dietary fat were used, and fatty acids included in the study were butyric/capronic, palmitic/stearic, oleic, and linoleic/linolenic acids. Decreased weight gains were observed in rats fed saturated fatty acids or 10% fat, while increases in weight gains were associated with increases in polyunsaturated/saturated (P/S) ratios. Copper, iron, or zinc levels tended to be higher in organs of rats fed saturated fatty acids. P/S ratios had no effect on copper or zinc deposition, but decreases in liver iron and increases in spleen iron were observed in rats fed the higher P/S ratios. Manganese levels were generally unaffected by fatty acid types, fat level, or P/S ratio, although liver manganese levels were higher in rats fed unsaturated fatty acids. Dietary fatty acids, fat level, or P/S ratios had no apparent effects on calcium, magnesium, phosphorus, or zinc deposition in femurs and tibias of rats.

  4. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    hafnia:alumina ratio remained somewhat vague. In a study of the nanosecond-scale laser-induced damage threshold (LIDT) of an ALD titania -alumina...nanolaminate relative to a polycrystalline titania film indicated that the smooth, amorophous nanolaminate had at least twice the LIDT of the titania

  5. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy.

    PubMed

    Melli, Giorgia; Taiana, Michela; Camozzi, Francesca; Triolo, Daniela; Podini, Paola; Quattrini, Angelo; Taroni, Franco; Lauria, Giuseppe

    2008-12-01

    The study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid. Our results demonstrate that both cisplatin and paclitaxel cause early mitochondrial impairment with loss of membrane potential and induction of autophagic vacuoles in neurons. Alpha-lipoic acid exerts neuroprotective effects against chemotherapy induced neurotoxicity in sensory neurons: it rescues the mitochondrial toxicity and induces the expression of frataxin, an essential mitochondrial protein with anti-oxidant and chaperone properties. In conclusion mitochondrial toxicity is an early common event both in paclitaxel and cisplatin induced neurotoxicity. Alpha-lipoic acid protects sensory neurons through its anti-oxidant and mitochondrial regulatory functions, possibly inducing the expression of frataxin. These findings suggest that alpha-lipoic acid might reduce the risk of developing peripheral nerve toxicity in patients undergoing chemotherapy and encourage further confirmatory clinical trials.

  6. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  7. A garlic derivative, ajoene, inhibits platelet deposition on severely damaged vessel wall in an in vivo porcine experimental model.

    PubMed

    Apitz-Castro, R; Badimon, J J; Badimon, L

    1994-08-01

    Ajoene, (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide, is a potent antiplatelet compound isolated from alcoholic extracts of garlic. In vitro, ajoene reversibly inhibits platelet aggregation as well as the release reaction induced by all known agonists. We used a well characterized perfusion chamber to study the in vivo effects of ajoene on platelet deposition onto a highly thrombogenic, severely damaged arterial wall, obtained by stripping off the intimal layer and exposing tunica media. Platelet-vessel wall interaction and the effect of ajoene was studied under flow conditions of high and low local shear rate that mimics laminar blood flow in small and medium size arteries (1690 sec-1 and 212 sec-1). Our results indicate that administration of ajoene to heparinized animals, significantly prevents thrombus formation at local low blood shear rate. Ajoene does not inhibit binding of vWF to GPIb, therefore, it does not affect platelet adhesion. In fact, although ajoene impairs fibrinogen and vWF (less efficient) binding to GPlIb/IIIa, it does not totally inhibits platelet deposition to the substrates at any of the shear rates used in this study. Our present results, under in vivo flow conditions and in the presence of physiological calcium levels, suggest that ajoene may be potentially useful for the acute prevention of thrombus formation induced by severe vascular damage, mainly in arterial sites with local low shear rates.

  8. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  9. A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments.

    PubMed

    Fermo, Paola; Turrion, Raquel Gonzalez; Rosa, Mario; Omegna, Alessandra

    2015-04-01

    The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon-TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.

  10. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  11. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  12. Dry acid deposition on leaves of Ligustrum and a new surrogate leaf

    SciTech Connect

    Ondo, J.L.; John, W.; Wall, S.M.

    1984-01-01

    The dry deposition of acidic particles and gases on plants depends on micrometeorology in the canopy and on the surface structure of the leaves. The authors chose two methods to collect and analyze this deposition: washing sulfate and nitrate deposits from the leaves of two species of Ligustrum, an ornamental shrub, and using a surrogate leaf which would absorb acidic gases through pores into a reservoir. The plants are kept in 5-gallon pots in order to be transportable. The leaves are washed, then exposed for a given length of time. Then the leaves are harvested and extracted in distilled water. This extract is analyzed by ion chromatography for sulfate and nitrate. The surrogate leaf is constructed with a nuclepore filter membrane simulating the stomatal openings of a leaf. There is a moist filter in the interior leading to a reservoir. Sulfur dioxide and other acidic gases diffuse through the nuclepore pores and are absorbed in the moist filter. After exposure the exterior surfaces are washed to extract any dry particulate, and the interior filter is analyzed for dissolved acidic gases. The ''leaf'' is small enough to be placed in the canopy in field studies. This surrogate leaf has also been used as a passive monitor in indoor air pollution studies. The surrogate leaves and the ligustrum have been exposed side by side at sites in Berkeley and in the Los Angeles air basin. A comparison has been made between the deposition on natural leaves and the deposition on the artificial leaves.

  13. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  14. Acid deposition and vehicle emissions: European environmental pressures on Britain

    SciTech Connect

    Brackley, P.

    1987-01-01

    This study, from the Joint Energy Programme and the Policy Studies Institute, examines the increasing political pressure being placed on Britain by members of the European community to take major steps toward improved environmental protection. Taking acid rain and vehicle emissions as typical examples of the conflict, the author examines Sweden, West Germany and France, as well as Britain, and unravels the criticisms, the arguments and the various approaches being taken to deal with environmental concerns. His conclusions point to widespread conflicts between differing national priorities and indicate that Britain may not be the only 'black sheep' in this continuing debate.

  15. Laser damage properties of TiO{sub 2}/Al{sub 2}O{sub 3} thin films grown by atomic layer deposition

    SciTech Connect

    Wei Yaowei; Liu Hao; Sheng Ouyang; Liu Zhichao; Chen Songlin; Yang Liming

    2011-08-20

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO{sub 2}/Al{sub 2}O{sub 3} films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm {Phi} samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO{sub 2}/Al{sub 2}O{sub 3} films, the LIDTs were 6.73{+-}0.47 J/cm{sup 2} and 6.5{+-}0.46 J/cm{sup 2} at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.

  16. Laser Induced Damage in the Eye: Study of Energy Deposition in the Retina.

    DTIC Science & Technology

    1976-06-01

    retinitis pigmentosa , pigment granules accumulate around the blood vessels and in the inner retinal layers (Yanoff & Fine, 1975), (Reese 1960). The pigment...Scanning Electron Microscopic Studies of Laser Lesions in the Rabbit Retina 45 6. The Study of the Vitreal- Retinal Junction 46 7. Detailed Studies of...eye is particularly susceptible to light- induced damage. Considerable research has gone into a study of retinal damaqe and its repair. However, the

  17. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    NASA Astrophysics Data System (ADS)

    Scapin, Martina; Peroni, Lorenzo; Dallocchio, Alessandro

    2011-07-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam: the energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA.

  18. Projection of response of trees and forests to acidic deposition and associated pollutants

    SciTech Connect

    Kiester, A.R.; Ford, E.D.; Avery, A.; Gay, C.; Droessler, T.

    1990-09-01

    In 1986 the National Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern and trends of forest condition and physiological studies of seedlings, saplings, and branches of mature trees. The goals of the modeling effort were to simulate the dynamics of the processes by which acidic deposition and ozone affect tree physiological processes and therefore lead to changes in growth. Results from models of the physiological function of leaves, branches, roots, xylem, and canopies are presented here. These models illustrate three aspects of the dynamics of these processes. First, growth and the effects of pollutants are stochastic processes; that is, they vary randomly over time. The models help to account for the large amount of variability seen in normal field conditions. Second, some physiological processes can compensate for the effects of acidic deposition or ozone. Third, pollutants may have more than one effect on tree growth, and these effects may be synergistic. The potential nonlinearities and the variabilities demonstrated by these models lead to the conclusions that forest health effects may be developing that are not yet apparent; and for regulation of acidic deposition and associated pollutants to have a detectable effect, regulatory changes will probably have to be of substantial magnitude.

  19. High damage threshold anti-reflectors by physical vapor deposited amorphous fluoropolymer

    SciTech Connect

    Chow, R.; Spragge, M.K.; Loomis, G.E.; Thomas, I.M.; Rainer, F.; Ward, R.L.; Kozlowski, M.R.

    1993-11-01

    High laser-resistant anti-reflective coatings were made from an amorphous fluoropolymer (Teflon AF2400) material by physical vapor deposition. Single layers of Teflon AF2400 were thermally deposited in a vacuum chamber. Refractive index and adhesion of the coatings were determined as a function of deposition rate (2 to 20 {Angstrom}/s), substrate temperature (20 to 200C), and glow-discharge bias potential ({minus}1500 to 1500 V). An anti-reflective coating of an amorphous fluoropolymer (Teflon AF2400) had a laser resistance of > 47 J/cm{sup 2} (1.06 {mu}m, 3-ns pulselength) and is transparent from 200 nm to 1600 nm. The majority of the coatings had a 1.30 refractive index, similar to that of the bulk material. Scanning electron microscopy and preliminary nuclear magnetic resonance observations indicated that morphological changes caused the variations in the refractive index rather than compositional changes. The coatings adhered to fused silica and silicon wafers under normal laboratory handling conditions. Scotch tape with 12.6 gr/mm tension was sufficient to pull off every coating from fused silica substrates.

  20. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells

    PubMed Central

    Wang, Jingshuai; Li, Jiyang; Liu, Jie; Xu, Mengjiao; Tong, Xiaowen; Wang, Jianjun

    2016-01-01

    Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases. PMID:27634104

  1. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  2. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy.

    PubMed

    Dong, Yan; Wang, Shengjun; Zhang, Tongxia; Zhao, Xiuhe; Liu, Xuewu; Cao, Lili; Chi, Zhaofu

    2013-10-16

    Oxidative stress is a mechanism of cell death induced by seizures. Antioxidant compounds have neuroprotective effects due to their ability to inhibit free radical production. Autophagy is a process in which cytoplasmic components such as organelles and proteins are delivered to the lysosomal compartment for degradation, and plays an essential role in the maintenance of cellular homeostasis. The activity of autophagy is enhanced during oxidative stress. The objectives of this work were first to study the inhibitory action of antioxidant ascorbic acid on behavioral changes and brain damage induced by high doses of pilocarpine, then to study the effect of ascorbic acid on oxidative stress (MDA and SOD were used to estimate oxidative stress) and activated autophagy (beclin 1 was used to estimate autophagy) induced by seizures, aiming to further clarify the mechanism of action of this antioxidant compound. In order to determinate neuroprotective effects, we studied the effects of ascorbic acid (500 mg/kg, i.p.) on the behavior and brain lesions observed after seizures induced by pilocarpine (340 mg/kg, i.p., P340 model) in rats. Ascorbic acid injections prior to pilocarpine suppressed behavioral seizure episodes by increasing the latency to the first myoclonic, clonic and tonic seizure and decreasing the percentage of incidence of clonic and tonic seizures as well as the mortality rate. These findings suggested that oxidative stress can be produced and autophagy is increased during brain damage induced by seizures. In the P340 model, ascorbic acid significantly decreased cerebral damage, reduced oxidative stress and inhibited autophagy by reducing de novo synthesis of beclin 1. Antioxidant compound can exert neuroprotective effects associated with inhibition of free radical production and autophagy. These results highlighted the promising therapeutic potential of ascorbic acid in treatment for seizures.

  3. Estrogens protect against hydrogen peroxide and arachidonic acid induced DNA damage.

    PubMed

    Tang, M; Subbiah, M T

    1996-01-19

    The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled OX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17 beta significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17 beta at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.

  4. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  5. Conjugated linoleic acid alters growth performance, tissue lipid deposition, and fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli).

    PubMed

    Dong, Gui-Fang; Liu, Wen-Zuo; Wu, Lin-Zhou; Yu, Deng-Hang; Huang, Feng; Li, Peng-Cheng; Yang, Yan-Ou

    2015-02-01

    Fatty liver syndrome is a prevalent problem of farmed fish. Conjugated linoleic acid (CLA) has received increased attention recently as a fat-reducing fatty acid to control fat deposition in mammals. Therefore, the aim of the present study was to determine whether dietary CLA can reduce tissue lipid content of darkbarbel catfish (Pelteobagrus vachelli) and whether decreased lipid content is partially due to alterations in lipid metabolism enzyme activities and fatty acid profiles. A 76-day feeding trial was conducted to investigate the effect of dietary CLA on the growth, tissue lipid deposition, and fatty acid composition of darkbarbel catfish. Five diets containing 0 % (control), 0.5 % (CLA0.5), 1 % (CLA1), 2 % (CLA2), and 3 % (CLA3) CLA levels were evaluated. Results showed that fish fed with 2-3 % CLA diets showed a significantly lower specific growth rate and feed conversion efficiency than those fed with the control diet. Dietary CLA decreased the lipid contents in the liver and intraperitoneal fat with the CLA levels from 1 to 3 %. Fish fed with 2-3 % CLA diets showed significantly higher lipoprotein lipase and hepatic triacylglycerol lipase activities in liver than those of fish fed with the control, and fish fed with 1-3 % CLA diets had significantly higher pancreatic triacylglycerol lipase activities in liver than those of fish fed with the control. Dietary CLA was incorporated into liver, intraperitoneal fat, and muscle lipids, with higher percentages observed in liver compared with other tissues. Liver CLA deposition was at the expense of monounsaturated fatty acids (MUFA). In contrast, CLA deposition appeared to be primarily at the expense of MUFA and n-3 polyunsaturated fatty acids (PUFA) in the intraperitoneal fat, whereas in muscle it was at the expense of n-3 PUFA. Our results suggested that CLA at a 1 % dose can reduce liver lipid content without eliciting any negative effect on growth rate in darkbarbel catfish. This lipid-lowering effect could

  6. Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages.

    PubMed

    Hwang, Won-Sang; Park, Seong-Hoon; Kim, Hyun-Seok; Kang, Hong-Jun; Kim, Min-Ju; Oh, Soo-Jin; Park, Jae-Bong; Kim, Jaebong; Kim, Sung Chan; Lee, Jae-Yong

    2007-01-01

    Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 microM) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-beta-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 microM of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

  7. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  8. Pyridoxamine Protects Proteins from Damage by Hypohalous Acids in Vitro and in Vivo

    PubMed Central

    Madu, Hartman; Avance, Josh; Chetyrkin, Sergei; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A.; Hudson, Billy; Voziyan, Paul

    2015-01-01

    Diabetes is characterized, in part, by activation of toxic oxidative and glycoxidative pathways that are triggered by persistent hyperglycemia and contribute to diabetic complications. Inhibition of these pathways may benefit diabetic patients by delaying the onset of complications. One of such inhibitors, pyridoxamine (PM), had shown promise in clinical trials. However, the mechanism of PM action in vivo is not well understood. We have previously reported that hypohalous acids can cause disruption of structure and function of renal collagen IV in experimental diabetes (Brown et al., Diabetes, 2015). In the present study, we demonstrate that PM can protect protein functionality from hypochlorous and hypobromous acid-derived damage via a rapid direct reaction with and detoxification of these hypohalous acids. We further demonstrate that PM treatment can ameliorate specific hypohalous acid-derived structural and functional damage to renal collagen IV network in diabetic animal model. These findings suggest a new mechanism of PM action in diabetes, namely sequestration of hypohalous acids, which may contribute to known therapeutic effects of PM in human diabetic nephropathy. PMID:26159508

  9. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  10. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  11. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  12. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  13. Preparation of waxes and humic acids from brown coal from the Sergeevskoe deposit

    SciTech Connect

    L.P. Noskova; A.V. Rokhin; A.P. Sorokin

    2007-06-15

    The comparative extraction of coal with organic solvents was performed. Humic acids were separated from solid residues. The yields, particle-size distributions, and chemical compositions of the resulting products were analyzed. It was demonstrated that brown-coal wax and humic fertilizers can potentially be obtained using coal from the Sergeevskoe deposit.

  14. Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?

    PubMed Central

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-01-01

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449

  15. Electrophoretic deposition of polyacrylic acid and composite films containing nanotubes and oxide particles.

    PubMed

    Wang, Y; Deen, I; Zhitomirsky, I

    2011-10-15

    Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.

  16. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  17. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Crowley, J. K.; Marion, G. M.; Kargel, J. S.; Michalski, J. L.; Thomson, B. J.; de Souza Filho, C. R.; Bridges, N. T.; Brown, A. J.

    2009-10-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation. Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines.

  18. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy B.; Howell, Graham; Jenkins, Meaghan E.

    2008-09-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO42- deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO42- consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO42- at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO42- may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO42- limitation had been lifted by the simulated acid rain S deposition.

  19. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs

    PubMed Central

    Zhang, Shunhua; Shen, Linyuan; Xia, Yudong; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhu, Li

    2016-01-01

    Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF’s low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition. PMID:27721392

  20. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  1. SPECTRAL REFLECTANCE METHOD TO MEASURE ACID DEPOSITION EFFECTS ON BUILDING STONE.

    USGS Publications Warehouse

    Kingston, Marguerite J.; Ager, Cathy M.

    1985-01-01

    As part of the National Acid Precipitation Assessment Program (NAPAP), the U. S. Geological Survey is cooperating with other agencies to test the effects of acid deposition on building stone. A 10-year test-site study has been organized for the purpose of correlating possible stone deterioration with environmental factors. In Summer 1984, slabs of building stone, 3 by 2 by 2 inches, were exposed to the atmosphere at four test sites where the pH of precipitation and other meteorological variables are continuously monitored. This paper examines the development of one experimental technique used in this study - the application of diffuse spectral reflectance methods for laboratory and in situ measurement of those properties of stone which may be affected by acid deposition.

  2. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus.

    PubMed

    Hwang, In Koo; Yoo, Ki-Yeon; Li, Hua; Park, Ok Kyu; Lee, Choong Hyun; Choi, Jung Hoon; Jeong, Young-Gil; Lee, Yun Lyul; Kim, Young-Myeong; Kwon, Young-Guen; Won, Moo-Ho

    2009-07-01

    Tryptophan-derived indole compounds have been widely investigated as antioxidants and as free-radical scavengers. Indole-3-propionic acid (IPA), one of these compounds, is a deamination product of tryptophan. In the present study, we used Mongolian gerbils to investigate IPA's neuroprotective effects against ischemic damage and its antioxidative effects in the hippocampal CA1 region (CA1) after 5 min of transient forebrain ischemia. The repeated oral administration of IPA (10 mg/kg) for 15 days before ischemic surgery protected neurons from ischemic damage. In this group, the percentage of cresyl violet-positive neurons in the CA1 was 56.8% compared with that in the sham group. In the vehicle-treated group, glial fibrillary acidic protein (GFAP)-, S-100-, and vimentin-immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)- and isolectin B4 (IB4)-immunoreactive microglia were activated 4 days after ischemia/reperfusion, whereas in the IPA-treated ischemic group, GFAP, S-100, Iba-1, and IB4, but not vimentin, immunoreactivity was distinctly lower than that in the vehicle-treated ischemic groups. The administration of IPA significantly decreased the level of 4-hydroxy-2-nonenal, a marker of lipid peroxidation, in ischemic hippocampal homogenates compared with that in the vehicle-treated ischemic groups at various times after ischemia/reperfusion. In addition, immunostaining for 8-hydroxy-2'-deoxyguanosine showed DNA damage in pyramidal neurons in the ischemic CA1 was significantly lower in the IPA-treated ischemic groups than in the vehicle-treated ischemic groups. These results suggest that IPA protects neurons from ischemia-induced neuronal damage by reducing DNA damage and lipid peroxidation.

  3. Effect of tannic acid, resveratrol and its derivatives, on oxidative damage and apoptosis in human neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Ignatowicz, Ewa; Krajka-Kuźniak, Violetta; Baer-Dubowska, Wanda

    2015-10-01

    In this study we compared the antioxidant and DNA protective activity of tannic acid and stilbene derivatives, resveratrol, 3,5,4(')-trimethoxystilbene (TMS) and pterostilbene in human neutrophils stimulated to oxidative burst by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in relation to apoptosis induction. All polyphenols within the concentration range 1-100 μM reduced the intracellular ROS and H2O2 production in the TPA-stimulated cells. Tannic acid was the most effective polyphenol in protection against DNA damage induced by TPA. In the resting neutrophils resveratrol and to lesser extent other polyphenols increased DNA damage and increased the level of p53. Pretreatment of the TPA-stimulated cells with tannic acid or stilbenes led to the induction of apoptosis. The most significant effect was observed as a result of treatment with TMS and resveratrol. These compounds appeared the most effective inducers of p53 in the TPA-challenged neutrophils, what may suggest that pro-apoptotic activity of these stilbenes might be related to p53 activation. Overall, the results of our present study demonstrate that tannic acid and stilbenes modulate the ROS production, ultimately leading to cell apoptosis in human neutrophils stimulated to oxidative burst. In resting neutrophils they exhibit pro-oxidant activity, which is accompanied by p53 induction.

  4. Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model.

    PubMed

    Hernández, Ileana; Domínguez-Pérez, Mayra; Bucio, Leticia; Souza, Verónica; Miranda, Roxana U; Clemens, Dahn L; Gomez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María Concepción

    2015-02-01

    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1 mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol.

  5. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products.

    PubMed

    Komaki, Yukako; Pals, Justin; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2009-11-01

    Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA > CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.

  6. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid

    PubMed Central

    Gautam, M. K.; Goel, Shalini; Ghatule, R. R.; Singh, A.; Joshi, V. K.; Goel, R. K.

    2013-01-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats. PMID:24403663

  7. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice

    PubMed Central

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component—presenilin 1 (PS1)—in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression. PMID:27618097

  8. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice.

    PubMed

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-09-09

    Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.

  9. Prevention of Ultraviolet (UV)-Induced Surface Damage and Cytotoxicity of Polyethersulfone Using Atomic Layer Deposition (ALD) Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Petrochenko, Peter E.; Scarel, Giovanna; Hyde, G. Kevin; Parsons, Gregory N.; Skoog, Shelby A.; Zhang, Qin; Goering, Peter L.; Narayan, Roger J.

    2013-04-01

    Nanostructured surfaces are finding use in several medical applications, including tissue scaffolds and wound dressings. These surfaces are frequently manufactured from biocompatible polymers that are susceptible to ultraviolet (UV) damage. Polyethersulfone (PES) is a biocompatible polymer that undergoes oxidation and degradation when exposed to ultraviolet (UV) light. A uniform TiO2 coating can protect PES during exposure to UV sources (e.g., germicidal lamps and sunlight). The goal of this study was to determine whether atomic layer deposition (ALD) can successfully be used to grow TiO2 onto PES, protect it from UV irradiation, and reduce macrophage in vitro cytotoxicity. TiO2 was ALD-coated onto PES at 21 nm thickness. Uncoated PES exposed to UV for 30 min visibly changed color, whereas TiO2-coated PES showed no color change, indicating limited degradation. Macrophages exposed to UV-treated PES for 48 h showed reduced cell viability (via MTT assay) to 18% of control. In contrast, the cell viability for UV-treated TiO2-coated PES was 90% of control. Non-UV treated PES showed no decrease in cell viability. The results indicate that ALD of TiO2 thin films is a useful technique to protect polymers from UV damage and to retain low cytotoxicity to macrophages and other types of cells that are involved in wound healing. TiO2- coated PES membranes also have potential use in direct methanol fuel cells and in wastewater treatment membranes.

  10. Enhanced dielectric deposition on single-layer MoS2 with low damage using remote N2 plasma treatment.

    PubMed

    Qian, Qingkai; Zhang, Zhaofu; Hua, Mengyuan; Tang, Gaofei; Lei, Jiacheng; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J

    2017-04-28

    Using remote N2 plasma treatment to promote dielectric deposition on the dangling-bond free MoS2 is explored for the first time. The N2 plasma induced damages are systematically studied by the defect-sensitive acoustic-phonon Raman of single-layer MoS2, with samples undergoing O2 plasma treatment as a comparison. O2 plasma treatment causes defects in MoS2 mainly by oxidizing MoS2 along the already defective sites (most likely the flake edges), which results in the layer oxidation of MoS2. In contrast, N2 plasma causes defects in MoS2 mainly by straining and mechanically distorting the MoS2 layers first. Owing to the relatively strong MoS2-substrate interaction and chemical inertness of MoS2 in N2 plasma, single-layer MoS2 shows great stability in N2 plasma and only stable point defects are introduced after long-duration N2 plasma exposure. Considering the enormous vulnerability of single-layer MoS2 in O2 plasma and the excellent stability of single-layer MoS2 in N2 plasma, the remote N2 plasma treatment shows great advantage as surface functionalization to promote dielectric deposition on single-layer MoS2.

  11. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  12. Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

    SciTech Connect

    Wnek, S.M.; Medeiros, M.K.; Eblin, K.E.; Gandolfi, A.J.

    2009-12-01

    Malignant transformation was demonstrated in UROtsa cells following 52-weeks of exposure to 50 nM monomethylarsonous acid (MMA{sup III}); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMA{sup III} [URO-MSC(+)] and after subsequent removal of MMA{sup III} [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMA{sup III}, URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12-weeks of exposure; in particular, a significant increase in DNA single-strand breaks at 12-weeks of exposure consistently elevated through 52 weeks. The persistence of DNA damage in URO-MSC cells was assessed after a 2-week removal of MMA{sup III}. URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single-strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36-weeks of MMA{sup III} exposure, suggesting the presence of MMA{sup III} is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMA{sup III} results in: the induction of DNA damage that remains elevated upon removal of MMA{sup III}; increased levels of ROS that play a role in MMA{sup III} induced-DNA damage; and decreased PARP activity in the presence of MMA{sup III}.

  13. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    SciTech Connect

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-06-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development.

  14. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  15. Correlation analysis of tree growth, climate, and acid deposition in the Lake States. Forest Service research paper

    SciTech Connect

    Holdaway, M.R.

    1990-01-01

    The report describes research designed to detect subtle regional tree growth trends related to sulfate (SO{sub 4}) deposition in the Lake States. Correlation methods were used to analyze climatic and SO{sub 4} deposition. Effects of SO{sub 4} deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the strongest correlation to both climate and acid deposition.

  16. Effects of acid deposition on calcium nutrition and health of Southern Appalachian spruce fir forests

    SciTech Connect

    McLaughlin, S.B.; Wullschleger, S.; Stone, A.; Wimmer, R.; Joslin, J.D.

    1995-02-01

    The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an important component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.

  17. Chemical composition of acid deposition and its seasonal variation in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Wu, D.Y.; Chen, K.S.

    1997-12-31

    This study investigated the acidification of wet and dry depositions collected in Kaohsiung metropolitan area during the period of January to May in 1996. An acid deposition sampling network including six sampling stations was originally established for this particular study. Both wet and dry depositions were sampled by an automatic rainwater sampler at each station. Major cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup 2{minus}}) of acid deposition were determined at Air Pollution Laboratory in the Institute of Environmental Engineering at National Sun Yat-Sen University except that the pH value and conductivity of samples were measured in situ. During the period of investigation, the pH value of rainwater ranged from 3.45 to 7.36 with a mode of 4.4--4.8. The volume-weighted average pH value was 4.65. The probability of acid rain during investigation period was approximately 77.3%. The probability of acid rain in rainy season was much higher than that in dry season. A lower probability in dry season was mainly attributed to the fact that alkaline particles suspended in the atmosphere to be washed by rainwater droplets. Results from correlation analysis indicated that major chemical species (r > 0.85) in rainwater droplets were NaCl, NH{sub 4}NO{sub 3}, Na{sub 2}NO{sub 3}, and NaCl{sub 2}. Furthermore, the deposition of hydrogen ion in wet process was much higher than that in dry process.

  18. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  19. Acid deposition sensitivity map of the Southern Appalachian Assessment area; Virginia, North Carolina, South Carolina, Tennessee, Georgia, and Alabama

    USGS Publications Warehouse

    Pepper, John D.; Grosz, Andrew E.; Kress, Thomas H.; Collins, Thomas K.; Kappesser, Gary B.; Huber, Cindy M.; Webb, James R.

    1995-01-01

    Project Summary: The following digital product represents the Acid Deposition Sensitivity of the Southern Appalachian Assessment Area. Areas having various susceptibilities to acid deposition from air pollution are designated on a three tier ranking in the region of the Southern Appalachian Assessment (SAA). The assessment is being conducted by Federal agencies that are members of the Southern Appalachian Man and Biosphere (SAMAB) Cooperative. Sensitivities to acid deposition, ranked high, medium, and low are assigned on the basis of bedrock compositions and their associated soils, and their capacities to neutralize acid precipitation.

  20. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays.

  1. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    PubMed

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  2. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  3. A Study of Effects of Acid Deposition on Pine Forest Ecosystem in Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, F.; Lv, Z.; Song, W.; Yang, S.

    2013-12-01

    We used a long-term soil acidification model (LTSAM) and a terrestrial biogeochemical model (CENTURY) coupled to simulate the effects of acid deposition on pine forest ecosystem in southwestern China, based on indoor experiment results of aluminum toxicity to individual plant growth. The results of indoor aluminum experiments show that high aluminum concentration may restrict the plant growth and the acidic condition may aggravate it. The behavior of restriction of plant growth includes decreases of pine seedling biomass, root elongation and the sorption of soil cations (e.g. Ca2+, Mg2+, Na+ and K+). The model simulation results about soil chemistry show that, as acid deposition increases more, the pH value decreases faster, the soil aluminum ion concentration increase more rapidly, and the nutrition ions in soil solution decrease more quickly. The increased acid deposition also has negative impacts on the forest ecosystem according to the biogeochemical model simulation, for example, decreases of vegetation biomass, net primary productivity (NPP) and net CO2 uptake. Furthermore, the decrease of plant biomass will result in the decrease of the soil organic carbon content for the limited decomposition material supply.

  4. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  5. Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage.

    PubMed

    Tulipan, N; Luo, S Q; Allen, G S; Whetsell, W O

    1988-12-01

    Grafts of neonatal striatal tissue were placed into the striata of adult rats. When challenged immediately with intrastriatal injections of either kainic or quinolinic acid, excitotoxic damage was prevented. Thirty days later these same graft recipients received another injection of excitotoxin. The intrastriatal grafts continued to mitigate toxin-induced damage. It is hypothesized that the grafted cells not only survive, but that they may continue to elaborate some substance or substances that prevent excitotoxin-induced injury for at least 30 days. Previous investigations indicated that grafts of neonatal striatal tissue can protect the recipient striatum from kainic acid toxicity. In the following study it is demonstrated that such grafts also protect the striatum from quinolinic acid, an endogenous excitotoxin which induces kainate-like neuronal degeneration and has been implicated in the pathogenesis of Huntington's disease. It is postulated that the salutary effect of striatal grafting may be sufficiently long lasting to mitigate a chronic toxic insult. Such grafting may therefore represent a therapy for Huntington's disease and other neurodegenerative disorders in which an endogenous or exogenous toxin has been implicated as the pathogenetic agent.

  6. Comparative study of the laser damage threshold and optical characteristics of Ta2O5-SiO2 multilayers deposited using various methods

    NASA Astrophysics Data System (ADS)

    Botha, Roelene; Schwyn Thöny, Silvia; Grössl, Martin; Mourad, Safer; Maissen, Clau; Venter, Jacobus I.; Südmeyer, Thomas; Hoffmann, Martin; Bulkin, Pavel V.; Linz-Dittrich, Sabine; Bischof, David; Michler, Markus; Rinner, Stefan J.; Ettemeyer, Andreas

    2015-11-01

    Manufacturing processes from the private and academic sectors were used to deposit anti-reflective and high-reflective coatings composed of Ta2O5 - SiO2 multilayers. Used deposition techniques included three Ion Assisted Deposition (IAD) systems and an Ion Beam Sputtering (IBS) system. Coatings were performed on fused silica (Corning 7980) substrates polished by two different suppliers. LIDT Measurements were performed using a Q-Switched Nd:YAG laser operating at 1064nm. The paper presents a comparison of the coatings in terms of laser damage threshold values, optical properties and surface quality.

  7. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    PubMed

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  8. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L.

    PubMed

    Najeeb, U; Xu, L; Ali, Shafaqat; Jilani, Ghulam; Gong, H J; Shen, W Q; Zhou, W J

    2009-10-30

    Chelate-assisted phytoextraction by high biomass producing plant species enhances the removal of heavy metals from polluted environments. In this regard, Juncus effusus a wetland plant has great potential. This study evaluated the effects of elevated levels of manganese (Mn) on the vegetative growth, Mn uptake and antioxidant enzymes in J. effusus. We also studied the role of citric acid and EDTA on improving metal accumulation, plant growth and Mn toxicity stress alleviation. Three-week-old plantlets of J. effusus were subjected to various treatments in the hydroponics as: Mn (50, 100 and 500 microM) alone, Mn (500 microM) + citric acid (5 mM), and Mn (500 microM) + EDTA (5 mM). After 2 weeks of treatment, higher Mn concentrations significantly reduced the plant biomass and height. Both citric acid and EDTA restored the plant height as it was reduced at the highest Mn level. Only the citric acid (but not EDTA) was able to recover the plant biomass weight, which was also obvious from the microscopic visualization of mesophyll cells. There was a concentration dependent increase in Mn uptake in J. effusus plants, and relatively more deposition in roots compared to aerial parts. Although both EDTA and citric acid caused significant increase in Mn accumulation; however, the Mn translocation was enhanced markedly by EDTA. Elevated levels of Mn augmented the oxidative stress, which was evident from changes in the activities of antioxidative enzymes in plant shoots. Raised levels of lipid peroxidation and variable changes in the activities of antioxidant enzymes were recorded under Mn stress. Electron microscopic images revealed several modifications in the plants at cellular and sub-cellular level due to the oxidative damage induced by Mn. Changes in cell shape and size, chloroplast swelling, increased number of plastoglobuli and disruption of thylakoid were noticed. However, these plants showed a high degree of tolerance against Mn toxicity stress, and it removed

  9. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    SciTech Connect

    Not Available

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  10. α-Linolenic Acid-Enriched Diet Prevents Myocardial Damage and Expands Longevity in Cardiomyopathic Hamsters

    PubMed Central

    Fiaccavento, Roberta; Carotenuto, Felicia; Minieri, Marilena; Masuelli, Laura; Vecchini, Alba; Bei, Roberto; Modesti, Andrea; Binaglia, Luciano; Fusco, Angelo; Bertoli, Aldo; Forte, Giancarlo; Carosella, Luciana; Di Nardo, Paolo

    2006-01-01

    Randomized clinical trials have demonstrated that the increased intake of ω-3 polyunsaturated fatty acids significantly reduces the risk of ischemic cardiovascular disease, but no investigations have been performed in hereditary cardiomyopathies with diffusely damaged myocardium. In the present study, δ-sarcoglycan-null cardiomyopathic hamsters were fed from weaning to death with an α-linolenic acid (ALA)-enriched versus standard diet. Results demonstrated a great accumulation of ALA and eicosapentaenoic acid and an increased eicosapentaenoic/arachidonic acid ratio in cardiomyopathic hamster hearts, correlating with the preservation of myocardial structure and function. In fact, ALA administration preserved plasmalemma and mitochondrial membrane integrity, thus maintaining proper cell/extracellular matrix contacts and signaling, as well as a normal gene expression profile (myosin heavy chain isoforms, atrial natriuretic peptide, transforming growth factor-β1) and a limited extension of fibrotic areas within ALA-fed cardiomyopathic hearts. Consequently, hemodynamic indexes were safeguarded, and more than 60% of ALA-fed animals were still alive (mean survival time, 293 ± 141.8 days) when all those fed with standard diet were deceased (mean survival time, 175.9 ± 56 days). Therefore, the clinically evident beneficial effects of ω-3 polyunsaturated fatty acids are mainly related to preservation of myocardium structure and function and the attenuation of myocardial fibrosis. PMID:17148657

  11. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing.

    PubMed

    Trabucchi, E; Pallotta, S; Morini, M; Corsi, F; Franceschini, R; Casiraghi, A; Pravettoni, A; Foschi, D; Minghetti, P

    2002-01-01

    Hyaluronic acid protects granulation tissue from oxygen free radical damage and stimulates wound healing, but its molecular weight prevents it from permeating the epidermal barrier A low molecular weight hyaluronic acid preparation is able to permeate the skin, but it is unknown whether or not it retains the scavenging effects of oxygen free radicals in granulation tissue. Our experiments were conducted in rats with excisional or incisional wounds. Wound contraction over 11 days and breaking strength on the fifth day were measured. Oxygen free radical production was induced by intraperitoneal administration of two different xenobiotics: phenazine methosulfate and zymosan. The wounds were treated topically with low molecular weight hyaluronic acid (0.2%) cream or placebo. In the incisional wound group, the effects of superoxide dismutase were also determined. Absolute controls received wounds and placebo but no xenobiotics. Wound healing was significantly slower in the xenobiotic group than in the control groups. These effects were strongly reduced by topical administration of low molecular weight hyaluronic acid (0.2%) cream and in incisional wounds by topically injected superoxide dismutase. Low molecular weight hyaluronic acid is effective as the native compound against oxygen free radicals. Its pharmacological effects through transdermal administration should be tested in appropriate models.

  12. Modeling the contribution of soil fauna to litter decomposition influenced by acidic deposition

    SciTech Connect

    Cai, B.; Loucks, O.L; Kuperman, R. Argonne National Lab., IL )

    1993-06-01

    The effect of acidic deposition on soil pH and therefore on soil invertebrates and litter decomposition is being investigated in oak-hickory forests across a three-state, midwest, pollution gradient. The role of soil invertebrates has been assessed previously through the use of feeding, assimilation and respiratory rates. These energetic parameters depend strongly on the form of the allometric equations which have been improved here by incorporating uncertainties in body and population size. Results show that changes in reproduction and turnover dynamics of soil invertebrates (particularly of earthworms) due to acid-induced changes in soil pH explains observed patterns in litter depth.

  13. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  14. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China.

    PubMed

    Tao, Yu; Dan, Dai; Chengda, He; Qiujin, Xu; Fengchang, Wu

    2016-11-01

    Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0-10 cm) and deeper sediments (>10 cm). The interstitial water Ca(2+) and Mg(2+), ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid

  15. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  16. [Damage to calcium ion-loaded mitochondria by fatty acids and the protective effect of carnitine].

    PubMed

    Dedukhova, V I; Mokhova, E N; Starkov, A A; Batelli, D; Belleĭ, M; Bobyleva, V A

    1993-04-01

    The effect of fatty acids and L-carnitine on Ca2+ retention in rat liver mitochondria have been studied. Ca(2+)-retention was estimated as a sum of consecutive Ca2+ additions which leaded to transient stimulation of respiration coupled with influx of Ca2+ L-carnitine increases the Ca(2+)-retention; such an effect requires ATP. The Ca(2+)-retention was increased in the presence of 50 microM ATP or ADP. In all cases carboxyatractylate prevented the increase in Ca(2+)-retention. Palmitate and FCCP added at concentrations producing similar stimulating effect on respiration inhibit Ca(2+)-retention to about the same degree. The effect of palmitate is strongly diminished by L-carnitine. Again, the L-carnitine effect requires ATP. The data obtained suggest that the protonophoric effect of fatty acid plays a crucial role in Ca(2+)-dependent damage of mitochondria.

  17. The effects of acidic deposition on streams in the Appalachian Mountain and Piedmont region of the mid-Atlantic United States

    SciTech Connect

    Herlihy, A.T.; Kaufman, P.R. ); Church, M.R.; Wigington, P.J. Jr. ); Webb, J.R. ); Sale, M.J. )

    1993-08-01

    Streams in the Appalachian Mountain area of the mid-Atlantic receive some of the largest acidic deposition loadings of any region of the US. A synthesis of the survey data from the mid-Appalachians yields a consistent picture of the acid base status of streams. Acidic streams, and streams with very low acid neutralizing capacity (ANC), are almost all located in small (<20 km[sup 2]), upland, forested catchments in areas of base-poor bedrock. In the subpopulation in the mid-Appalachian area, data from various local surveys show that 6-27% of the streams are acidic, and about 25-50% have ANC less than 50 [mu]eq L[sup [minus]1]. After excluding streams with acid mine drainage, National Stream Survey estimates for the whole region show that there are 2330 km of acidic streams and 7500 km of streams with ANC less than 50 [mu]eq L[sup [minus]1]. Many of the streams with base flow ANC less than 50 [mu]eq L[sup [minus]1] become acidic during storm or snowmelt episodes. Sulfate from atmospheric deposition is the dominant source of strong acid anions in acid mid-Appalachian streams. Their low pH (median, 4.9) and high levels of inorganic monomeric aluminum (median, 129 [mu]g L[sup [minus]1]) leached through soils by acidic deposition are causing damage to aquatic biota. Quantification of the extent of biological effects, however, is not possible with available data. Localized studies have shown that stream water ANC is closely related to bedrock mineralogy. Attempts to quantify this relationship across the mid-Appalachians, however, were frustrated by the lack of adequate scale geologic mapping throughout the region. Sulfate mass balance analyses indicate that soils and surface waters of the region have not yet realized the full effects of elevated sulfur deposition due to watershed sulfate retention. Sulfur retention is likely to decrease in the future, resulting in further losses of stream ANC. 70 refs., 5 figs., 4 tabs.

  18. Glucuronic acid γ-lactone: an organic nonlinear optical crystal with high laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Bhat, Handady L.; Elizabeth, Suja

    2017-01-01

    Laser applications of nonlinear optical (NLO) crystals are limited by their laser damage threshold. We report a detailed study of the laser damage threshold of an NLO crystal glucuronic acid γ-lactone. Second-harmonic generation efficiency of glucuronic acid γ-lactone was estimated to be 3.5 times that of standard potassium dihydrogen phosphate. Conic sections due to spontaneous noncollinear phase matching were observed. Surface laser damage studies carried out for 1064-nm radiation on a (010) plate of the crystal yielded high-threshold values of 77.72±0.27 and 32.72±0.41 GW/cm2 for single- and multiple-shot damages, respectively. The possible mechanisms for the laser-induced damage are discussed.

  19. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  20. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.

    PubMed

    Parker, Amanda M; Proctor, Andrew; Eason, Robert L; Jain, Vishal

    2007-01-01

    Surface free fatty acid (FFA) on milled rice is a key factor in determining rice quality and acceptability to the brewing industry. Rice FFA oxidizes, causing off-flavors and odors to develop, compromising the brewing quality of milled rice. The effect of harvest moisture (13%, 16%, and 20%), harvester type (1688 Case and 9500 John Deere), and rice variety (Cocodrie and Bengal) on harvest damaged rough rice and milled rice surface FFA after drying to 12% moisture and 6 mo rough rice storage was examined. The Case harvester produced more damaged kernels than the John Deere harvester, but this was not reflected in surface FFA development. There were no significant FFA differences in variety or harvester type. Rice harvested at a higher moisture content (20%) produced significantly greater FFA values, with a peak near 0.1%, than rice harvested at lower moisture contents (13% and 16%), which had FFA values near 0.08%. Retention of bran by damaged kernels at high harvest moisture probably was responsible for promoting surface FFA development, but if bran was lost at lower harvest moistures, surface FFA, development was limited. Harvest moisture affected milled rice FFA, although rough rice was dried to 12% immediately after harvesting.

  1. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  2. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A; Perry, George

    2010-03-01

    In an analysis of amyloid pathology in Alzheimer disease, we used an in situ approach to identify amyloid-beta (Abeta) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal-specific antibodies directed against Abeta40 and Abeta42 were used for immunocytochemical analyses, Abeta42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Abeta-oligomer. In comparison to the Abeta42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Abeta42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r=- 0.61, p<0.02). Together with recent evidence that the Abeta peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Abeta may be a compensatory response in neurons to oxidative stress in Alzheimer disease.

  3. Dry heat popping of amaranth seed might damage some of its essential amino acids.

    PubMed

    Tovar, L R; Brito, E; Takahashi, T; Miyazawa, T; Soriano, J; Fujimoto, K

    1989-12-01

    Amaranth was a major crop among the Aztecs. In Mexico the seed is popped and eaten with brown sugar. The crude protein content of the seed is 14 +/- 2% but its contents of lysine and tryptophan are 6.2 and 1.6 g/16 g N respectively. We developed a popping method based on a fluid bed system (FBS) whereas the traditional method (TM) is just to pop the seeds manually in a hot plate. Assays carried out were evaluation of racemization of the amaranth protein due to heat treatment, amino acid composition of the raw and heat treated seeds and a biological experiment testing whether leucine was the most limiting amino acid of amaranth protein. Male rats were fed both popped amaranths and roasted amaranth. Parboiled amaranth and casein were controls. The results were: (a) Lys, Arg and Cys were damaged in the heat treated seeds; (b) Asp, Met, Glu, Ala and Phe were racemized in that decreasing order in the seeds popped and roasted by the TM; (c) the estimated net protein retention (NPR) and estimated net protein utilization (NPU) of popped amaranths by either method were not different, but were lower than for the parboiled amaranth. The parboiled amaranth was not different from casein; (d) Leu was not the most limiting amino acid in any of the amaranth seeds tested. After Lys, sulfur amino acids appear to be the next most limiting in severely heat treated amaranth. The FBS seems to be a promising method for popping amaranth at industrial level.

  4. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  5. Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic cardiomyopathy.

    PubMed

    Saran, Varun; Sharma, Vijay; Wambolt, Richard; Yuen, Violet G; Allard, Michael; McNeill, John Hugh

    2014-10-01

    Metabolic disturbances and oxidative stress have been highlighted as potential causative factors for the development of diabetic cardiomyopathy. The β-blocker metoprolol is known to improve function in the diabetic rat heart and ameliorates the sequelae associated with oxidative stress, without lowering oxidative stress. The antioxidant ascorbic acid is known to improve function in the diabetic rat heart. We tested whether a combination of ascorbic acid and metoprolol treatment would improve function further than each drug individually. Control and streptozotocin-induced diabetic Wistar rats were treated with metoprolol (15 mg·(kg body mass)(-1)·day(-1), via an osmotic pump) and (or) ascorbic acid (1000 mg·(kg body mass)(-1)·day(-1), via their drinking water). To study the effect of treatment on the development of dysfunction, we examined time points before (5 weeks diabetic) and after (7 weeks diabetic) development of overt systolic dysfunction. Echocardiography and working-heart-perfusion were used to assess cardiac function. Blood and tissue samples were collected to assess the severity of disease and oxidative stress. While both drugs improved function, only ascorbic acid had effects on oxidative damage. Combination treatment had a more pronounced improvement in function. Our β-blocker + antioxidant treatment strategy focused on oxidative stress, not diabetes specifically; therefore, it may prove useful in other diseases where oxidative stress contributes to the pathology.

  6. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats.

    PubMed

    Ishizuka, Toshiaki; Niwa, Atsuko; Tabuchi, Masaki; Ooshima, Kana; Higashino, Hideaki

    2008-03-26

    Inflammatory processes may play a pivotal role in the pathogenesis of cerebrovascular injury in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Recent reports revealed that acetylsalicylic acid (aspirin) has anti-oxidative properties and elicits nitric oxide release by a direct activation of the endothelial NO synthase. The present study was designed to determine whether low-dose aspirin might prevent cerebrovascular injury in salt-loaded SHRSP by protecting oxidative damage. Nine-week-old SHRSP were fed a 0.4% NaCl or a 4% NaCl diet with or without treatment by naproxen (20 mg/kg/day), salicylic acid (5 mg/kg/day), or aspirin (5 mg/kg/day) for 5 weeks. Blood pressure, blood brain barrier impairment, mortality, and the parameters of cerebrovascular inflammation and damage were compared among them. High salt intake in SHRSP significantly increased blood brain barrier impairment and early mortality, which were suppressed by treatment with aspirin independent of changes in blood pressure. Salt loading significantly increased superoxide production in basilar arteries of SHRSP, which were significantly suppressed by treatment with aspirin. Salt loading also significantly decreased NOS activity in the basilar arteries of SHRSP, which were significantly improved by treatment with aspirin. At 5 weeks after salt loading, macrophage accumulation and matrix metalloproteinase-9 activity at the stroke-negative area in cerebral cortex of SHRSP were significantly reduced by treatment with aspirin. These results suggest that low-dose aspirin may exert protective effects against cerebrovascular inflammation and damage by salt loading through down-regulation of superoxide production and induction of nitric oxide synthesis.

  7. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  8. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  9. The Effects of Gaseous Ozone and Nitric Acid Deposition on two Crustose Lichen Species From Joshua Tree National Park

    NASA Astrophysics Data System (ADS)

    Hessom, Elizabeth Curie

    Lichens are dependent on atmospheric deposition for much of their water and nutrients, and due to their sensitivity to pollutants, are commonly used as bioindicators for air quality. While studies have focused on epiphytic (tree dwelling) lichens as bioindicators, virtually nothing is known about crustose (rock dwelling) lichens. The atmospheric pollutants ozone (O 3) and nitric acid (HNO3) are two major pollutants found within the Los Angeles Basin. While recent O3 research suggests it does not significantly affect lichen growth, HNO3 appears to be phytotoxic to some lichens. As both of these pollutants are deposited downwind from the L.A. basin into Joshua Tree National Park (JOTR), lichen species located in the park may provide a sensitive indicator of pollution effects. This research studied two lichen species of particular interest from Joshua Tree National Park, Lobothallia praeradiosa (Nyl.) Hafellner, and Acarospora socialis H. Magn., both of which are crustose species with unknown sensitivities to O3, as well as hypothesized and unknown sensitivities to nitrogen compounds, respectively. Little research exists for either species, possibly because of the difficulty in working with crustose lichens. This research attempted to expand the background knowledge of these species by exposing them to varying levels of O3 and HNO3, to ascertain their physiological responses. Physiological measures of chlorophyll fluorescence, dark respiration, microscopic imaging, and lichen washes (as a proxy for membrane leakage), were measured throughout the exposure period. Results indicated that both species had similar sensitivities to O3 and HNO3. Both species registered physical damage during the O3 fumigation, as well as a decrease in respiration. Neither species showed major physical damage to HNO3, but both manifested a decrease in chlorophyll fluorescence, suggesting damage to the photosynthetic systems of the algae symbiont. These results suggest that both of these

  10. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  11. Physicochemical basis for dilated intercellular spaces in non-erosive acid-damaged rabbit esophageal epithelium.

    PubMed

    Tobey, N A; Gambling, T M; Vanegas, X C; Carson, J L; Orlando, R C

    2008-01-01

    Dilated intercellular spaces (DIS) within esophageal epithelium (EE) is a histopathologic feature of non-erosive reflux disease and early lesion in acid-damaged rabbit EE associated with increased paracellular permeability. Its cause remains unknown, but the lesion's morphology suggests a significant fluid shift into the intercellular spaces (ICS). Since water follows osmotic forces and consequently ion movements, we explored the role of active (ion) transport and ion gradients in its pathogenesis. This was done by quantifying the effect of inhibited active transport and altered ion gradients on electrical resistance (R(T)) and ICS diameter in acid-exposed Ussing-chambered rabbit EE. Compared with normal Ringer, pH 7.5, 30 minutes of luminal HCl (100 mmol/L), pH 1.1, increased permeability (R(T): +5 +/- 4% vs-52 +/- 4%) and ICS diameter (0.25 +/- 0.01 microm vs 0.42 +/- 0.02 microm), but had no effect on cell morphology or diameter. Ouabain pretreatment significantly reduced active transport but had no effect on the acid-induced changes. However, negating the chloride gradient created by luminal HCl either by adding choline chloride, 100 mmol/L, serosally or by replacing luminal HCl, pH 1.1, with luminal H(2)SO(4), pH 1.1, prevented the development of DIS while maintaining the increase in permeability. DIS was also prevented in the presence of a 100 mmol/L (choline) chloride gradient by luminal exposure at neutral pH. DIS in HCl-damaged EE is caused by an H(+)-induced increase in epithelial permeability; this enables Cl(-) to diffuse along its gradient into the ICS, creating an osmotic force for water movement into and (hydrostatic) dilation of the ICS.

  12. Using Australian Acidic Playa Lakes as Analogs for Phyllosilicate and Sulfate Depositional Environments on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Michalski, J.; Kargel, J.; Hook, S.; Marion, G.; Crowley, J.; Bridges, N.; Brown, A.; Ribeiro da Luz, B.; de Souza Filho, C. R.; Thomson, B.

    2008-12-01

    Recent work on the origin of martian sulfates and their relationship to phyllosilicate deposits suggest that these deposits formed in different eras of Mars' history, under distinct environmental conditions. In southwestern Meridiani Planum phyllosilicates exist in close proximity to sulfate deposits. One possible explanation for this relationship is that it is an unconformable stratigraphic sequence, representing a significant change in aqueous geochemical conditions over time. Specifically, it may be interpreted to record a change in environment from neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to the Hesperian. On Earth, two different geochemical systems need not be evoked to explain such chemical variation. Acidic playa lakes in Western Australia have large pH differences separated by only a few tens of meters and demonstrate how highly variable chemistries can coexist over short distances in natural environments. Playa lakes on Earth tend to be dominated by lateral flow of water and salts leading to lateral chemical variation. Heterogeneity of playa mineralogy in Australia is due to the varied source rocks of brines and the mixing of dilute oxidizing brines and freshwater with the saturated evaporitic brines. This is evidenced by the ferricretes in the near-shore environment and more soluble phases in basin interiors. Playa lakes on Mars would be much larger than their terrestrial counterparts, leading to the prevalence of large-scale surface and crustal advection of water and salt rather than short-distance lateral flow, except at lake boundaries. Little or no influx of freshwater would preclude the formation of playa rim (e.g., crater rim) ferricretes and silcretes. Instead, we expect to see mainly vertical facies changes, and any diachronous lateral facies changes are expected to occur on very large spatial scales. Comparison of high spatial resolution, hyperspectral airborne data for Australian playa

  13. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  14. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  15. Effect of lipoxygenase oxidation on surface deposition of unsaturated fatty acids.

    PubMed

    Tayeb, Ali H; Hubbe, Martin Allen; Zhang, Yanxia; Rojas, Orlando J

    2017-04-14

    We studied the interactions of lipid molecules (linoleic acid, glycerol trilinoleate and a complex mixture of wood extractives) with hydrophilic and hydrophobic surfaces (cellulose nanofibrils, CNF, and polyethylene terephthalate, PET, respectively). The effect of lipoxygenase treatment to minimize the affinity of the lipids with the given surface was considered. Application of an electroacoustic sensing technique (QCM) allowed the monitoring of the kinetics of oxidation as well as dynamics of lipid deposition on CNF and PET. The effect of the lipoxygenase enzymes (LOX) was elucidated with regards to their ability to reduce the formation of soiling lipid layers. The results pointed to the fact that the rate of colloidal oxidation depended on the type of lipid substrate. The pre-treatment of the lipids with LOX reduced substantially their affinity to the surfaces, especially PET. Surface plasmon resonance (SPR) sensograms confirmed the effect of oxidation in decreasing the extent of deposition on the hydrophilic CNF. QCM energy dissipation analyses revealed the possible presence of a loosely adsorbed lipid layer on the PET surface. The morphology of the deposits accumulated on the solids was determined by atomic force microscopy and indicated important changes upon lipid treatment with LOX. The results highlighted the benefit of enzyme as a bio-based treatment to reduce hydrophobic interactions, thus providing a viable solution to the control of lipid deposition from aqueous media.

  16. Declining Acidic Deposition Begins Reversal of Forest-Soil Acidification in the Northeastern U.S. and Eastern Canada.

    PubMed

    Lawrence, Gregory B; Hazlett, Paul W; Fernandez, Ivan J; Ouimet, Rock; Bailey, Scott W; Shortle, Walter C; Smith, Kevin T; Antidormi, Michael R

    2015-11-17

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  17. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    USGS Publications Warehouse

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  18. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage.

    PubMed

    Ahn, Hong Ryul; Lee, Hee Ju; Kim, Kyung-A; Kim, Chul Young; Nho, Chu Won; Jang, Holim; Pan, Cheol-Ho; Lee, Chang Yong; Jung, Sang Hoon

    2014-02-12

    We investigated the effects of an ethanol extract of C. denticulatum (EECD) in a mouse model of glaucoma established by optic nerve crush (ONC), and found that EECD significantly protected against retinal ganglion cell (RGC) death caused by ONC. Furthermore, EECD effectively protected against N-methyl-d-aspartate-induced damage to the rat retinas. In vitro, EECD attenuated transformed retinal ganglion cell (RGC-5) death and significantly blunted the up-regulation of apoptotic proteins and mRNA level induced by 1-buthionine-(S,R)-sulfoximine combined with glutamate, reduced reactive oxygen species production by radical species, and inhibited lipid peroxidation. The major EECD components were found to be chicoric acid and 3,5-dicaffeoylquinic acid (3,5-DCQA) that have shown beneficial effects on retinal degeneration both in vitro and in vivo studies. Thus, EECD could be used as a natural neuroprotective agent for glaucoma, and chicoric acid and 3,5-DCQA as mark compounds for the development of functional food.

  19. Esophageal mucosal damage may promote dysmotility and worsen esophageal acid exposure.

    PubMed

    Meneghetti, Adam T; Tedesco, Pietro; Damani, Tanuja; Patti, Marco G

    2005-12-01

    This study determines the relationship among esophageal dysmotility, esophageal acid exposure, and esophageal mucosal injury in patients with gastroesophageal reflux disease (GERD). A total of 827 patients with GERD (confirmed by ambulatory pH monitoring) were divided into three groups based on the degree of mucosal injury: group A, no esophagitis, 493 patients; group B, esophagitis grades I to III, 273 patients; and group C, Barrett's esophagus, 61 patients. As mucosal damage progressed from no esophagitis to Barrett's esophagus, there was a significant decrease in lower esophageal sphincter pressure and amplitude of peristalsis in the distal esophagus, with a subsequent increase in the number of reflux episodes in 24 hours, the number of reflux episodes longer than 5 minutes, and the reflux score. These data suggest that in patients with GERD, worsening of esophageal mucosal injury may determine progressive deterioration of esophageal motor function with impairment of acid clearance and increase of esophageal acid exposure. These findings suggest that Barrett's esophagus is an end-stage form of gastroesophageal reflux, and that if surgical therapy is performed early in the course of the disease, this cascade of events might be blocked.

  20. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites.

    PubMed

    Cooper, D M

    2005-09-01

    Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.

  1. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-05

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  2. Sensitivity of stream basins in Shenandoah National Park to acid deposition

    USGS Publications Warehouse

    Lynch, D.D.; Dise, N.B.

    1985-01-01

    Six synoptic surveys of 56 streams that drain the Shenandoah National Park, Virginia, were conducted in cooperation with the University of Virginia to evaluate sensitivity of dilute headwater streams to acid deposition and to determine the degree of acidification of drainage basins. Flow-weighted alkalinity concentration of most streams is below 200 microequivalents per liter, which is considered the threshold of sensitivity. Streams draining resistant siliceous bedrocks have an extreme sensitivity (alkalinity below 20 microequivalents/L); those draining granite and granodiorite have a high degree of sensitivity (20 to 100 microequivalents/L); and streams draining metamorphosed volcanics have moderate to marginal sensitivity (100 to 200 microequivalents/L). A comparison of current stream water chemistry to that predicted by a model based on carbonic acid weathering reactions suggests that all basins in the Park shows signs of acidification by atmospheric deposition. Acidification is defined as a neutralization of stream water alkalinity and/or an increase in the base cation weathering rate. Acidification averages 50 microequivalents/L, which is fairly evenly distributed in the Park. However, the effects of acidification are most strongly felt in extremely sensitive basins, such as those underlain by the Antietam Formation, which have stream water pH values averaging 4.99 and a mineral acidity of 7 microequivalents/L. (USGS)

  3. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  4. How laser damage resistance of HfO2/SiO2 optical coatings is affected by embedded contamination caused by pausing the deposition process

    NASA Astrophysics Data System (ADS)

    Field, Ella; Bellum, John; Kletecka, Damon

    2015-07-01

    Reducing contamination is essential for producing optical coatings with high resistance to laser damage. One aspect of this principle is to make every effort to limit long interruptions during the coating's deposition. Otherwise, contamination may accumulate during the pause and become embedded in the coating after the deposition is restarted, leading to a lower laser-induced damage threshold (LIDT). However, pausing a deposition is sometimes unavoidable, despite our best efforts. For example, a sudden hardware or software glitch may require hours or even overnight to solve. In order to broaden our understanding of the role of embedded contamination on LIDT, and determine whether a coating deposited under such non-ideal circumstances could still be acceptable, this study explores how halting a deposition overnight impacts the LIDT, and whether ion cleaning can be used to mitigate any negative effects on the LIDT. The coatings investigated are a beam splitter design for high reflection at 1054 nm and high transmission at 527 nm, at 22.5° angle of incidence in S-polarization. LIDT tests were conducted in the nanosecond regime.

  5. Proposal of New Precursors for Plasma-Enhanced Chemical Vapor Deposition of SiOCH Low-k Films with Plasma Damage Resistance

    NASA Astrophysics Data System (ADS)

    Yoshi Ohashi,; Nobuo Tajima,; Yonghua Xu,; Takeshi Kada,; Shuji Nagano,; Hideharu Shimizu,; Satoshi Hasaka,

    2010-05-01

    We propose new precursors for bulk low-k films with plasma damage resistance. Our newly designed precursors contain long-chain hydrocarbon groups such as i-butyl and n-propyl groups. Using these precursors, we successfully produced films containing Si-CH2-Si groups by plasma-enhanced chemical vapor deposition (PECVD). The plasma damage resistance of these films under NH3 plasma treatment was studied. It was found that the increase in the k-value (Δ k) is smaller in films with more Si-CH2-Si groups.

  6. Proposal of New Precursors for Plasma-Enhanced Chemical Vapor Deposition of SiOCH Low-k Films with Plasma Damage Resistance

    NASA Astrophysics Data System (ADS)

    Ohashi, Yoshi; Tajima, Nobuo; Xu, Yonghua; Kada, Takeshi; Nagano, Shuji; Shimizu, Hideharu; Hasaka, Satoshi

    2010-05-01

    We propose new precursors for bulk low-k films with plasma damage resistance. Our newly designed precursors contain long-chain hydrocarbon groups such as i-butyl and n-propyl groups. Using these precursors, we successfully produced films containing Si-CH2-Si groups by plasma-enhanced chemical vapor deposition (PECVD). The plasma damage resistance of these films under NH3 plasma treatment was studied. It was found that the increase in the k-value (Δk) is smaller in films with more Si-CH2-Si groups.

  7. Monochloroacetic acid toxicity in the mouse associated with blood-brain barrier damage

    SciTech Connect

    Berardi, M.R.

    1986-01-01

    Monochloroacetic acid (MCA) damages the blood-brain barrier (BBB) of mice when administered orally at lethal doses. Damage was characterized by the finding of RBC's in the brain parenchyma of mice exhibiting neurologic dysfunction after MCA treatment, and by the entry of (/sup 14/C)inulin and (/sup 3/H)dopamine into the brain following a lethal dose of MCA. Results of acute toxicity studies, pharmacological antidote studies, and toxicokinetics studies in mice and rats are also presented. Acute toxicity of MCA in rats and mice by several routes of administration was determined. Toxicity of molten MCA by the dermal route was characterized by a small amount of surface area exposure and short application time necessary to produce death in both species. Some mice surviving an acute lethal oral dose of MCA exhibited a rigid clasping of the front paws (myotonia) with impairment of walking. Oral administration of (/sup 14/C)MCA to both mice and rats was followed by a rapid elimination of radioactivity from non-cerebral tissues and rapid appearance in the urine. As the dose was increased from a trace dose to a toxic dose, the percent of the administrated dose which was found in the tissues, including brain regions, was greatly increased. Two hours after oral administration of an LD80 of MCA to mice, and coinciding with the onset of toxic signs, entry of (/sup 14/C)inulin into brain regions was significantly increased compared to controls. Both MCA lethality and front paw dysfunction in mice appear to be associated with damage to the BBB.

  8. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain.

  9. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus.

    PubMed

    Rimbau, V; Camins, A; Romay, C; González, R; Pallàs, M

    1999-12-03

    The neuroprotective role of C-phycocyanin was examined in kainate-injured brains of rats. The effect of three different treatments with C-phycocyanin was studied. The incidence of neurobehavioral changes was significantly lower in animals receiving C-phycocyanin. These animals also gained significantly more weight than the animals only receiving kainic acid, whereas their weight gain did not differed significantly from controls. Equivalent results were found when the neuronal damage in the hippocampus was evaluated through changes in peripheral benzodiazepine receptors (microglial marker) and heat shock protein 27 kD expression (astroglial marker). Our results are consistent with the oxygen radical scavenging properties of C-phycocyanin described elsewhere. Our findings and the virtual lack of toxicity of C-phycocyanin suggest this drug could be used to treat oxidative stress-induced neuronal injury in neurodegenerative diseases, such as Alzheimer's and Parkinson's.

  10. Topical retinoic acid enhances the repair of ultraviolet damaged dermal connective tissue.

    PubMed

    Kligman, L H; Duo, C H; Kligman, A M

    1984-01-01

    Ultraviolet (UV) irradiation induces excessive accumulations of elastic fibers in animal and human skin. Collagen is damaged and glycosaminoglycans are vastly increased. Formerly considered an irreversible change, we recently showed, post-irradiation, that a band of normal connective tissue was laid down subepidermally . Because of its ability to stimulate fibroblasts and enhance healing of wounds, we thought it likely that retinoic acid (RA) would promote the formation of this subepidermal zone of reconstruction. Hairless mice were irradiated for 10 weeks with Westinghouse FS20 sunlamps for a total UV dose of 7 J/cm2. Then, 0.05% RA was applied for 5 and 10 weeks. Observations were made by light and electron microscopy. In contrast to controls treated with vehicle, the reconstruction zone was significantly wider in RA-treated mice. The enhanced repair was dose related. Histochemically and ultrastructurally, collagen was normal, fibroblasts were numerous and in a configuration of high metabolic activity.

  11. Hypohalous Acids Contribute to Renal Extracellular Matrix Damage in Experimental Diabetes

    PubMed Central

    Brown, Kyle L.; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A.; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G.

    2015-01-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid–derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W28 and W192 are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid–derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes. PMID:25605804

  12. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  13. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.

  14. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects

    SciTech Connect

    Brezonik, P.L.; Hendry, C.D. Jr.; Edgerton, E.S.; Schulze, R.L.; Crisman, T.L.

    1983-06-01

    A monitoring network of 21 bulk and 4 wet/dry collectors located throughout Florida measured spatial and temporal trends during a one-year period from May 1978 to April 1979. The project summary notes that statewide deposition rates of nitrogen and phosphorus were below the loading rates associated with eutrophication, although nutrient concentrations were higher during the summer. Overall, pH appears to have relatively small effects (in the range 4.7-6.8) on community structure in soft-water Florida lakes. More dramatic effects could occur under more acidic conditions in the future. 4 references, 5 figures, 1 table.

  15. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes.

    PubMed

    Mittra, Indraneel; Khare, Naveen Kumar; Raghuram, Gorantla Venkata; Chaubal, Rohan; Khambatti, Fatema; Gupta, Deepika; Gaikwad, Ashwini; Prasannan, Preeti; Singh, Akshita; Iyer, Aishwarya; Singh, Ankita; Upadhyay, Pawan; Nair, Naveen Kumar; Mishra, Pradyumna Kumar; Dutt, Amit

    2015-03-01

    Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored.We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.

  16. An Investigation into the Association between DNA Damage and Dietary Fatty Acid in Men with Prostate Cancer

    PubMed Central

    Bishop, Karen S.; Erdrich, Sharon; Karunasinghe, Nishi; Han, Dug Yeo; Zhu, Shuotun; Jesuthasan, Amalini; Ferguson, Lynnette R.

    2015-01-01

    Prostate cancer is a growing problem in New Zealand and worldwide, as populations adopt a Western style dietary pattern. In particular, dietary fat is believed to be associated with oxidative stress, which in turn may be associated with cancer risk and development. In addition, DNA damage is associated with the risk of various cancers, and is regarded as an ideal biomarker for the assessment of the influence of foods on cancer. In the study presented here, 20 men with prostate cancer adhered to a modified Mediterranean style diet for three months. Dietary records, blood fatty acid levels, prostate specific antigen, C-reactive protein and DNA damage were assessed pre- and post-intervention. DNA damage was inversely correlated with dietary adherence (p = 0.013) and whole blood monounsaturated fatty acids (p = 0.009) and oleic acid (p = 0.020). DNA damage was positively correlated with the intake of dairy products (p = 0.043), red meat (p = 0.007) and whole blood omega-6 polyunsaturated fatty acids (p = 0.015). Both the source and type of dietary fat changed significantly over the course of the dietary intervention. Levels of DNA damage were correlated with various dietary fat sources and types of dietary fat. PMID:25580814

  17. Assessing biogeographic patterns in the changes in soil invertebrate biodiversity due to acidic deposition

    SciTech Connect

    Sugg, P.M.; Kuperman, R.G.; Loucks, O.L. |

    1995-09-01

    We are studying the response of soil faunal communities to a gradient in acidic deposition across midwestern hardwood forests. We have documented a pattern of population decrease and species loss for soil invertebrates along the acidification gradient. We now ask the following question: When confronted with apparent diversity changes along a region-wide pollution gradient, how can one assess the possibility of natural biogeographic gradients accounting for the pattern? As a first approximation, we use published range maps from taxonomic monographs to determine the percent of the regional fauna with ranges encompassing each site. For staphylinid beetles, range data show no sign of a biogeographic gradient. Yet for soil staphylinids, a large decrease is seen in alpha diversity (as species richness) from low to high acid dose sites (from 20 species to 8). Staphylinid species turnover is greatest in the transition from low to intermediate dose sites.

  18. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  19. Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Bitz, C. M.; Steig, E. J.; Holmes, C. D.; Yang, X.; Sciare, J.

    2011-12-01

    Methanesulfonic acid (MSA) has previously been measured in ice cores in Antarctica as a proxy for sea ice extent and Southern Hemisphere circulation. In a series of chemical transport model (GEOS-Chem) sensitivity experiments, we identify mechanisms that control the MSA concentrations recorded in ice cores. Sea ice is linked to MSA via dimethylsulfide (DMS), which is produced biologically in the surface ocean and known to be particularly concentrated in the sea ice zone. Given existing ocean surface DMS concentration data sets, the model does not demonstrate a strong relationship between sea ice and MSA deposition in Antarctica. The variability of DMS emissions associated with sea ice extent is small (11-30%) due to the small interannual variability of sea ice extent. Wind plays a role in the variability in DMS emissions, but its contribution relative to that of sea ice is strongly dependent on the assumed DMS concentrations in the sea ice zone. Atmospheric sulfur emitted as DMS from the sea ice undergoes net transport northward. Our model runs suggest that DMS emissions from the sea ice zone may account for 26-62% of MSA deposition at the Antarctic coast and 36-95% in inland Antarctica. Though our results are sensitive to model assumptions, it is clear that an improved understanding of both DMS concentrations and emissions from the sea ice zone are required to better assess the impact of sea ice variability on MSA deposition to Antarctica.

  20. Field comparison of methods for the measurement of gaseous and particulate contributors to acidic dry deposition

    SciTech Connect

    Sickles, J.E.; Hodson, L.L.; McClenny, W.A.; Paur, R.J.; Ellestad, T.G.

    1990-01-01

    A field study was conducted to compare methods for sampling and analysis of atmospheric constituents that are important contributors to acidic dry deposition. Three multicomponent samplers were used: the Canadian filter pack (FP), the annular denuder system (ADS), and the transition flow reactor (TFR). A tunable diode laser absorption spectrometer (TDLAS) provided continuous reference measurements of NO2 and HNO3. Nitrogen dioxide was also monitored with continuous luminol-based chemiluminescence monitors and with passive sampling devices (PSDs). The study was designed to provide a database for statistical comparison of the various methods with emphasis on the multicomponent samplers under consideration for use in a national dry deposition network. The study was conducted at the EPA dry deposition station in Research Triangle Park, NC between 29 September and 12 October, 1986. Daily averaging and/or sampling times were employed for the 13-day study; weekly samples were also collected, but results from these samples are not compared in the paper. Different measurements of ambient concentrations of the following constituents are compared: total particulate and gaseous NO3(-), HNO3, NO2, total particulate NH4(-), NH3, total particulate SO4(-), and SO2.

  1. Protective effects of fish omega-3 fatty acids on doxorubicin-induced testicular apoptosis and oxidative damage in rats.

    PubMed

    Uygur, R; Aktas, C; Tulubas, F; Uygur, E; Kanter, M; Erboga, M; Caglar, V; Topcu, B; Ozen, O A

    2014-10-01

    The aim of this study was to examine the protective effects of fish omega-3 (n-3) fatty acids on acute doxorubicin (DOX)-induced testicular apoptosis and oxidative damage. 24 male rats were divided into three groups: control, DOX-treated and DOX+fish n-3 fatty acids. Fish n-3 fatty acids (400 mg kg(-1) ) were given for 30 days by intragastric gavage. The rats received a single intraperitoneal injection of DOX (30 mg kg(-1) ) and were sacrificed after 48 h. The DOX+fish n-3 fatty acids group showed a decrease in malondialdehyde levels and increased activities of superoxide dismutase and glutathione peroxidase in comparison with the DOX-treated group. Acute DOX treatment caused severe damage such as disorganisation and separation of germ cells. The fish n-3 fatty acids-pretreated rats showed an improved histological appearance in the DOX-treated group. Our data indicate a reduction in the activity of terminal deoxynucleotidyl transferase mediated dUTP nick end labelling; there was a rise in the expression of proliferating cell nuclear antigen in testis tissues of the DOX+fish n-3 fatty acids group compared with DOX-treated group. These data suggested that fish n-3 fatty acids pre-treatment may be beneficial for spermatogenesis following acute DOX-induced testicular damage by decreasing germ cell apoptosis and oxidative stress.

  2. Inhibition of N-nitrosamine carcinogenesis and aflatoxin DNA damage by ellagic acid

    SciTech Connect

    Mandal-Chaudhuri, S.

    1988-01-01

    The effect of ellagic acid (EA), on the tumorigenicity of N-nitrosobenzylmethylamine (NBMA) in the rat esophagus was investigated. Groups of 30 male F-344 rats were fed a semipurified diet containing EA for 27 weeks. N-nitrosobenzylmethylamine was administered subcutaneously, once a week for 18 weeks. Ellagic acid produced a significant inhibition in the average number of esophageal tumors at both 20 weeks and 27 weeks. To investigate the mechanism(s) of this inhibition, EA was tested for its effect on the metabolism, DNA-binding and DNA-adduct formation of NBMA in cultured explants of rat esophagus. Explants were incubated in medium containing EA at concentrations of 10, 50, and 100 {mu}M for 16 hours, followed by the addition of 1{mu}M ({sup 3}H)NBMA and EA for 12 hours. Explant DNA was isolated by phenol extraction and hydroxylapatite chromatography, and benzaldehyde formation was determined by h.p.l.c. analysis of the culture medium. Finally, EA was examined for its ability to inhibit DNA damage induced by aflatoxin B{sub 1} (AFB{sub 1}) in cultured explants of rat trachea and esophagus, and human tracheobronchus.

  3. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf . E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  4. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  5. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  6. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  7. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Zhang, Yi; Wang, Zhangwei; Mulder, Jan

    2011-09-01

    Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.

  8. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    PubMed

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation.

  9. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  10. Laser induced damage threshold and optical properties of TiO2 and Al2O3 coatings prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jensen, Lars O.; Mädebach, Heinrich; Maula, Jarmo; Gürtler, Karlheinz; Ristau, Detlev

    2012-11-01

    Atomic Layer Deposition (ALD) allows for the deposition of homogeneous and conformal coatings with superior microstructural properties and well controllable thickness. As a consequence, ALD-processes have moved into the focus of optical thin film research during the last decade. In contrast to this, only a relatively small number of investigations in the power handling capability of ALD-coatings have been reported until now. The present contribution summarizes results of a study dedicated to the optical properties of single layers and high reflecting coating systems of TiO2 and Al2O3 deposited by ALD. Besides Laser Induced Damage Threshold (LIDT) values, the spectral characteristics as well the absorption and scatter losses are discussed.

  11. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells.

    PubMed

    Huo, Xiaofang; Juergens, Stefanie; Zhang, Xi; Rezaei, Davood; Yu, Chunhua; Strauch, Eric D; Wang, Jian-Ying; Cheng, Edaire; Meyer, Frank; Wang, David H; Zhang, Qiuyang; Spechler, Stuart J; Souza, Rhonda F

    2011-08-01

    Gastroesophageal reflux is associated with adenocarcinoma in Barrett's esophagus, but the incidence of this tumor is rising, despite widespread use of acid-suppressing medications. This suggests that refluxed material other than acid might contribute to carcinogenesis. We looked for potentially carcinogenetic effects of two bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on Barrett's epithelial cells in vitro and in vivo. We exposed Barrett's (BAR-T) cells to DCA or UDCA and studied the generation of reactive oxygen/nitrogen species (ROS/RNS); expression of phosphorylated H2AX (a marker of DNA damage), phosphorylated IkBα, and phosphorylated p65 (activated NF-κB pathway proteins); and apoptosis. During endoscopy in patients, we took biopsy specimens of Barrett's mucosa before and after esophageal perfusion with DCA or UDCA and assessed DNA damage and NF-κB activation. Exposure to DCA, but not UDCA, resulted in ROS/RNS production, DNA damage, and NF-κB activation but did not increase the rate of apoptosis in BAR-T cells. Pretreatment with N-acetyl-l-cysteine (a ROS scavenger) prevented DNA damage after DCA exposure, and DCA did induce apoptosis in cells treated with NF-κB inhibitors (BAY 11-7085 or AdIκB superrepressor). DNA damage and NF-κB activation were detected in biopsy specimens of Barrett's mucosa taken after esophageal perfusion with DCA, but not UDCA. These data show that, in Barrett's epithelial cells, DCA induces ROS/RNS production, which causes genotoxic injury, and simultaneously induces activation of the NF-κB pathway, which enables cells with DNA damage to resist apoptosis. We have demonstrated molecular mechanisms whereby bile reflux might contribute to carcinogenesis in Barrett's esophagus.

  12. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters.

    PubMed

    Milazzo, Rachela G; Mio, Antonio M; D'Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  13. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    PubMed Central

    Mio, Antonio M; D’Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices. PMID:28243555

  14. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    SciTech Connect

    Kuperman, R.G.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  15. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  16. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    PubMed

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process.

  17. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

    PubMed

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2017-02-01

    Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1-1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125-0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

  18. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  19. Loss of Photoreversibility of Damage to Deoxyribonucleic Acid Replication in Ultraviolet-Irradiated Escherichia coli B/r thy trp

    PubMed Central

    Doudney, C. O.

    1974-01-01

    Loss of photoreversibility (LOP) of the ultraviolet (UV) damage which prevents reinitiation of deoxyribonucleic acid (DNA) replication occurred with incubation of Escherichia coli B/r thy trp cultures after UV doses of 240, 320, and 400 ergs/mm2. LOP occurred at the time of reinitiation of DNA replication in the cultures (i.e., after postirradiation lag periods of 45 min or more). Neither the absence of thymine nor the absence of tryptophan prevented LOP of the damage to DNA replication, suggesting that neither DNA replication nor protein synthesis is necessary for the process. These findings suggest that attempted initiation of DNA replication results in transformation of pyrimidine damage into permanent damage to chromosome structure at the reinitiation site. PMID:4607425

  20. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2016-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish (Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  1. Acidification and recovery of a Spodosol BS horizon from acidic deposition

    SciTech Connect

    Dahlgren, R.A.; McAvoy, D.C.; Driscoll, C.T.

    1990-01-01

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. A mechanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40, 100, or 160 micromol/L SO4(2-). Following 44 d of leaching, all treatments were decreased to the 40 micromol/L SO4(2-) level to examine recovery from acidification. Acidic additions were initially neutralized by release of basic cations and sulfate adsorption. Following attainment of steady state conditions for basic cations and SO4(2-) with respect to the soil adsorption complex, Al dissolution was the primary neutralization mechanism. Aqueous Al activities appeared to be regulated by equilibrium with an Al(OH)3 mineral phase. Following decreases in acid loadings, recovery was rapid resulting in retention of basic cations, reversible release of SO4(2-) and a marked reduction in the concentrations of soluble Al.

  2. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  3. Comparison of acidic deposition to semi-natural ecosystems in Denmark—Coastal heath, inland heath and oak wood

    NASA Astrophysics Data System (ADS)

    Hansen, Birgitte; Nielsen, Knud Erik

    Acidic deposition to coastal heath, inland heath and oak wood in Denmark was determined from analysis of bulk precipitation and throughfall measurements for up to 3 yrs. The analysis aimed to determine the total annual sulphur and nitrogen deposition to the three different ecosystems. Total nitrogen deposition is especially difficult to assess due to uptake of nitrogen by the canopy, and difficulties in determining the dry deposition of each nitrogen species. An NH x-uptake estimation model is presented which assumes co-deposition of NH x+H + and SO x+NO y and exchange of NH x+H + for the leached Mg 2+, Ca 2+ and K + in the canopy. This approach makes it possible to estimate the dry deposition of reduced nitrogen (NH x). Dry deposited oxidized nitrogen (NO y) still remains unquantified with the throughfall method, and therefore this term is estimated from a generalized micro-meteorological model. Total annual nitrogen deposition was 29.0 kg ha -1 yr -1 for the oak wood, 18.3 kg ha -1 yr -1 for the inland heathland and 13.5 kg ha -1 yr -1 for the coastal heathland. The total annual acidic deposition (the sum of H +, SO x, NO y and NH x) was 3202 mol c ha -1 for the oak wood, 2228 mol c ha -1 for the inland heathland, and 2060 mol c ha -1 for the coastal heathland. However, this acid load has different effects on the ecosystems depending on the actual bio-geochemical reactions. The potential maximum acidification estimated for the oak wood (5512 mol c ha -1 yr -1) was almost twice as high as for the inland heathland (3815 mol c H + ha -1 yr -1) and for the coastal heathland (3383 mol cH + ha -1 yr -1).

  4. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    SciTech Connect

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  5. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    NASA Astrophysics Data System (ADS)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  6. Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle.

    PubMed

    Hernández-Echeagaray, Elizabeth; González, Nancy; Ruelas, Angélica; Mendoza, Ernesto; Rodríguez-Martínez, Erika; Antuna-Bizarro, Rafael

    2011-04-01

    Mitochondrial alterations are believed to play a critical role in the pathophysiology of neurodegenerative diseases and in some well-described myopathies. In the present study, we evaluated muscle changes in vivo after blocking the mitochondrial complex II of the respiratory chain by using 3-nitropropionic acid (3-NP). This neurotoxin has been used as a pharmacological tool in animal models to address some of the metabolic modifications that might underlie central neurodegeneration; however, changes in peripheral musculature have not been documented. We believe that skeletal muscles must be affected because their integrity highly depends on oxidative metabolism. Therefore, histochemical, ultrastructural, and biochemical changes were studied in the muscles of mice treated with low doses of 3-NP (15 mg/kg, i.p., for 5 days). 3-NP-treated mice displayed changes in alkaline phosphatase (APase), succinic dehydrogenase (SDH), and cytochrome c oxidase (COX) levels in the gracilis and gastrocnemius muscles. These changes were statistically significant for APase and SDH in both muscles and for COX only in the gastrocnemius. No significant alterations in acetylcholinesterase (AChE) expression were observed in either muscle. Analysis of the muscle ultrastructure revealed mitochondrial atrophy as well as sarcomere and nuclei disorganization. At the biochemical level, nitric oxide (NO) and lipid peroxidation (LPO) changed in the muscles of 3-NP-treated mice, suggesting metabolic alterations due to oxidative stress. Early damage in the striatal tissue and behavioral modifications are also documented.

  7. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage

    PubMed Central

    Li, Xiao-Qiang; Tian, Wen; Liu, Xiao-Xiao; Zhang, Kai; Huo, Jun-Cheng; Liu, Wen-Juan; Li, Ping; Xiao, Xiong; Zhao, Ming-Gao; Cao, Wei

    2016-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of GMCs by immunostaining and MTT assay. Further immunoblotting, siRNA, qPCR analysis, and detecting of NADPH oxidase activity and reactive oxygen species (ROS) generation were performed to explore relevant molecular mechanisms. In CA-treated diabetic animals, diabetes-induced albuminuria, increased serum creatinine and blood urea nitrogen were significantly attenuated, and glomerular hypertrophy, mesangial expansion and fibrosis were ameliorated. Furthermore, CA significantly inhibited proliferation of GMCs and phosphorylation of ERK1/2 and p38 MAPK in both diabetic animals and high glucose (HG)-induced GMCs. CA also normalized Δψm and inhibited HG-induced NADPH oxidase activity, ROS generation and NOX4, NOX2, p22phox and p47phox expression. More importantly, CA inhibited GMC proliferation mediated by NADPH/ERK1/2 and p38 MAPK signaling pathways. These findings suggest that CA exert the protective effect on DN by anti-proliferation resulted from inhibition of p38 MAPK- and NADPH-mediated inactivation of ERK1/2. PMID:27229751

  8. Limestone characterization to model damage from acidic precipitation: Effect of pore structure on mass transfer

    USGS Publications Warehouse

    Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.

    1996-01-01

    The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.

  9. Post-depositional migration and preservation of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, M.; Marchal, O.; Guo, W.; Das, S. B.; Evans, M. J.

    2015-12-01

    Methanesulfonic acid (MSA; CH3SO3-) in ice cores is a unique, high-resolution proxy of regional sea ice behavior, marine primary productivity, and synoptic climatology. Significant uncertainties remain, however, in both our understanding of the production and transfer of MSA to the ice sheet, as well as its preservation over time, compromising the paleoclimatological utility of the proxy. Here we apply a numerical modeling approach to quantitatively investigate the post-depositional processes affecting MSA migration and preservation within the firn and ice column, building on recent observational and theoretical studies. Our model allows us to evaluate the timing and magnitude of the vertical movement of MSA in response to varying influences, including the competing effects of 1) concentration gradients of sea-salts typically deposited asynchronously to MSA, 2) snow accumulation and densification rates, and 3) in situ temperature gradients. We first test the model against a recently collected ice core from a high accumulation site in coastal West Antarctica, where monthly-resolved MSA records show an abrupt shift from a summer-to-winter maximum in MSA at ~23m depth (ρ ≈ 650 kg/m3), near the firn-ice transition. We find our model to be a robust predictor of the observed migrational features in this record, capturing both (i) the abrupt shift in summer-to-winter maximal concentrations of MSA (steady state ≈ 3.2 yrs), and (ii) the depression of the seasonal amplitude at depth. Further, our modeling results suggest post-depositional effects can lead to substantial interannual alteration of the MSA signal, contrary to previous assumptions that MSA migration is confined within annual layers at high accumulation sites. Using a broad range of polar MSA records and their associated, site-specific environmental conditions, we will evaluate the fidelity of subannual to interannual variability of MSA records and systematically determine the factors conducive to its

  10. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    USGS Publications Warehouse

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  11. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    SciTech Connect

    Rezaee, Mohammad Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  12. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  13. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  14. Issues in model validation: assessing the performance of a regional-scale acid deposition model using measured and modelled data

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Whyatt, J. D.; Nicholson, J. P. G.; Derwent, R. G.; Heywood, E.

    The development and validation of a new version of the Hull Acid Rain Model (HARM12.1) is described in the context of changes in emissions and deposition estimates supplied by the Centre for Ecology and Hydrology (CEH) Edinburgh based on the available measurement networks. Major changes to the model include greater vertical resolution, the adoption of new background concentrations and ecosystem-specific deposition velocities. HARM output for 1998-2000 is compared with data from the rural SO 2, NO 2 and NH 3 networks and results from the nitric acid and aerosol network. The ability to reproduce deposition estimates based on measurements is key to a regional-scale model like HARM. Changes in these estimates between 1995-97 and 1998-2000 are discussed. Comparing HARM modelled deposition and the CEH data indicates that the new version of the model performs better in this respect than its predecessor (HARM11.5). The trend in deposition over the time period does not seem to reflect the marked reduction in emissions. The possible reasons for this are explored with particular emphasis on changes in precipitation. 1995-97 was unusually dry, while 1998-2000 was wet. Changes in rainfall concentration and unmodified deposition are presented for comparison with HARM and CEH estimates. It is clear that the impact of precipitation variability on modelled acid deposition requires further investigation. Finally, we compare HARM12.1 and HARM 11.5 deposition in 2010 following emissions reductions to meet the terms of the National Emissions Ceilings Directive.

  15. Acid deposition in the Athabasca Oil Sands Region: a policy perspective.

    PubMed

    Whitfield, Colin J; Watmough, Shaun A

    2015-12-01

    Industrial emissions of sulphur (S) and nitrogen (N) to the atmosphere associated with the oil sands industry in north-eastern Alberta are of interest as they represent the largest localized source in Canada (with potential for future growth) and the region features acid-sensitive upland terrain. Existing emission management policy for the Regional Municipality of Wood Buffalo, where the industry is located, is based on a time-to-effect approach that relies on dynamic model simulations of temporal changes in chemistry and features highly protective chemical criteria. In practice, the policy is difficult to implement and it is unlikely that a scientifically defensible estimate of acidification risk can be put forward due to the limitations primarily associated with issues of scale, chemical endpoint designation (selection of chemical limit for ecosystem protection from acidification) and data availability. A more implementable approach would use a steady-state critical load (CL) assessment approach to identify at-risk areas. The CL assessment would consider areas of elevated acid deposition associated with oil sands emissions rather than targeted political jurisdictions. Dynamic models should only be (strategically) used where acidification risk is identified via CL analysis, in order to characterize the potential for acidification-induced changes that can be detrimental to sensitive biota within the lifespan of the industry.

  16. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply.

    PubMed

    Hartley, Sue E; Fitt, Rob N; McLarnon, Emma L; Wade, Ruth N

    2015-01-01

    Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si) is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and three different grass species (F. ovina, F. rubra, and Deschampsia cespitosa) differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F. arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species.

  17. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply

    PubMed Central

    Hartley, Sue E.; Fitt, Rob N.; McLarnon, Emma L.; Wade, Ruth N.

    2015-01-01

    Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si) is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and three different grass species (F. ovina, F. rubra, and Deschampsia cespitosa) differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F. arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species. PMID:25717331

  18. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  19. Photo-induced oxidative damage to dissolved free amino acids by the photosensitizer polycyclic musk tonalide: Transformation kinetics and mechanisms.

    PubMed

    Fang, Hansun; Gao, Yanpeng; Wang, Honghong; Yin, Hongliang; Li, Guiying; An, Taicheng

    2017-05-15

    Residue from the polycyclic musks (PCMs) in household and personal care products may harm human beings through skin exposure. To understand the health effects of PCMs when exposed to sunlight at molecular level, both experimental and computational methods were employed to investigate the photosensitized oxidation performance of 19 natural amino acids, the most basic unit of life. Results showed that a typical PCM, tonalide, acts as a photosensitizer to significantly increase photo-induced oxidative damage to amino acids. Both common and exceptional transformation pathways occurred during the photosensitization damage of amino acids. Experimental tests further identified the different mechanisms involved. The common transformation pathway occurred through the electron transfer from α amino-group of amino acids, accompanying with the formation of O2(•-). This pathway was controlled by the electronic density of N atom in α amino-group. The exceptional transformation pathway was identified only for five amino acids, mainly due to the reactions with reactive oxygen species, e.g. (1)O2 and excited triplet state molecules. Additionally, tonalide photo-induced transformation products could further accelerate the photosensitization of all amino acids with the common pathway. This study may support the protection of human health, and suggests the possible need to further restrict polycyclic musks use.

  20. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  1. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  2. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  3. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    PubMed Central

    Lee, De-Hyung; Gold, Ralf; Linker, Ralf A.

    2012-01-01

    Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE. PMID:23109883

  4. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain.

    PubMed

    Astiz, Mariana; de Alaniz, María J T; Marra, Carlos Alberto

    2012-12-01

    We have previously demonstrated that the administration of low doses of dimethoate, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5weeks) provokes severe oxidative stress (OS) in specific brain regions: substantia nigra, cortex and hippocampus. These effects were also observed in plasma. Lipoic acid (LA) is considered an "ideal antioxidant" due to its ability to scavenge reactive species, reset antioxidant levels and cross the blood-brain barrier. To investigate its protective effect we administered LA (i.p. 25, 50 and 100mg/kg) simultaneously with the pesticide mixture (PM) for 5weeks. After suppression of PM administration, we evaluated the restorative effect of LA for a further 5weeks. LA prevented OS and the production of nitrites+nitrates [NOx] caused by PM in a dose-dependent manner. The PM-induced decrease in reduced glutathione and α-tocopherol levels in all brain regions was completely restored by LA at both high doses. PM administration also caused an increase in prostaglandins E(2) and F(2α) in brain that was reduced by LA in a dose-dependent fashion. Taking into account the relationship between OS, inflammation and apoptosis, we measured caspase and calpain activity. Only milli- and micro-calpain isoforms were increased in the PM-treated group and LA reduced the activities to basal levels. We also demonstrated that interrupting PM administration is not enough to restore the levels of all the parameters measured and that LA is necessary to achieve basal status. In our experimental model LA displayed a protective role against pesticide-induced damage, suggesting that LA administration is a promising therapeutic strategy to cope with disorders suspected to be caused by OS generators, especially in brain.

  5. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis.

    PubMed

    Seyhun, Ersin; Malo, Antje; Schäfer, Claus; Moskaluk, Christopher A; Hoffmann, Ralf-Thorsten; Göke, Burkhard; Kubisch, Constanze H

    2011-11-01

    In acute pancreatitis, endoplasmic reticulum (ER) stress prompts an accumulation of malfolded proteins inside the ER, initiating the unfolded protein response (UPR). Because the ER chaperone tauroursodeoxycholic acid (TUDCA) is known to inhibit the UPR in vitro, this study examined the in vivo effects of TUDCA in an acute experimental pancreatitis model. Acute pancreatitis was induced in Wistar rats using caerulein, with or without prior TUDCA treatment. UPR components were analyzed, including chaperone binding protein (BiP), phosphorylated protein kinase-like ER kinase (pPERK), X-box binding protein (XBP)-1, phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CCAAT/enhancer binding protein homologues protein, and caspase 12 and 3 activation. In addition, pancreatitis biomarkers were measured, such as serum amylase, trypsin activation, edema formation, histology, and the inflammatory reaction in pancreatic and lung tissue. TUDCA treatment reduced intracellular trypsin activation, edema formation, and cell damage, while leaving amylase levels unaltered. The activation of myeloperoxidase was clearly reduced in pancreas and lung. Furthermore, TUDCA prevented caerulein-induced BiP upregulation, reduced XBP-1 splicing, and caspase 12 and 3 activation. It accelerated the downregulation of pJNK. In controls without pancreatitis, TUDCA showed cytoprotective effects including pPERK signaling and activation of downstream targets. We concluded that ER stress responses activated in acute pancreatitis are grossly attenuated by TUDCA. The chaperone reduced the UPR and inhibited ER stress-associated proapoptotic pathways. TUDCA has a cytoprotective potential in the exocrine pancreas. These data hint at new perspectives for an employment of chemical chaperones, such as TUDCA, in prevention of acute pancreatitis.

  6. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.

    PubMed

    Tian, Chunjie; Kim, Young Ho; Kim, Young Chul; Park, Kyung Tae; Kim, Seung Won; Kim, Youn Ju; Lim, Hye Jin; Choung, Yun-Hoon

    2013-01-01

    3-Nitropropionic acid (3-NP), a mitochondrial toxin, has been reported to induce an acute cochlear damage. Korean red ginseng (KRG) is known to have protective effects from some types of hearing loss. This study aimed to observe the protective effect of KRG in an ototoxic animal model using 3-NP intratympanic injection. BALB/c mice were classified into 5 groups (n=15) and dose-dependent toxic effects after intratympanic injection with 3-NP (300-5000 mM) on the left ear were investigated to determine the appropriate toxicity level of 3-NP. For observation of the protective effects of KRG, 23 mice were grouped into 3-NP (500 mM, n=12) and KRG+3-NP groups (300 mg/kg KRG for 7 days before 500 mM 3-NP administration, n=11). Auditory brain response (ABR) and cochlear morphological evaluations were performed before and after drug administration. The ABR thresholds in the 800-5000 mM groups exceeded the maximum recording limit at 16 and 32 kHz 1 day after 3-NP administration. The ABR threshold in the 500 mM 3-NP+KRG group was significantly lower than that in the 500 mM 3-NP group from post 1 week to 1 month. The mean type II fibrocyte counts significantly differed between the control and 3-NP groups and between the 3-NP and 3-NP+KRG groups. Spiral ganglion cell degeneration in the 3-NP group was more severe than that in the 3-NP+KRG group. This animal model exhibited a dose-dependent hearing loss with histological changes. KRG administration ameliorated the deterioration of hearing by 3-NP.

  7. Microbial Response to Soil Liming of Damaged Ecosystems Revealed by Pyrosequencing and Phospholipid Fatty Acid Analyses

    PubMed Central

    Narendrula-Kotha, Ramya; Nkongolo, Kabwe K.

    2017-01-01

    Aims To assess the effects of dolomitic limestone applications on soil microbial communities’ dynamics and bacterial and fungal biomass, relative abundance, and diversity in metal reclaimed regions. Methods and Results The study was conducted in reclaimed mining sites and metal uncontaminated areas. The limestone applications were performed over 35 years ago. Total microbial biomass was determined by Phospholipid fatty acids. Bacterial and fungal relative abundance and diversity were assessed using 454 pyrosequencing. There was a significant increase of total microbial biomass in limed sites (342 ng/g) compared to unlimed areas (149 ng/g). Chao1 estimates followed the same trend. But the total number of OTUs (Operational Taxonomic Units) in limed (463 OTUs) and unlimed (473 OTUs) soil samples for bacteria were similar. For fungi, OTUs were 96 and 81 for limed and unlimed soil samples, respectively. Likewise, Simpson and Shannon diversity indices revealed no significant differences between limed and unlimed sites. Bacterial and fungal groups specific to either limed or unlimed sites were identified. Five major bacterial phyla including Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, and Proteobacteria were found. The latter was the most prevalent phylum in all the samples with a relative abundance of 50%. Bradyrhizobiaceae family with 12 genera including the nitrogen fixing Bradirhizobium genus was more abundant in limed sites compared to unlimed areas. For fungi, Ascomycota was the most predominant phylum in unlimed soils (46%) while Basidiomycota phylum represented 86% of all fungi in the limed areas. Conclusion Detailed analysis of the data revealed that although soil liming increases significantly the amount of microbial biomass, the level of species diversity remain statistically unchanged even though the microbial compositions of the damaged and restored sites are different. Significance and Impact of the study Soil liming still have a significant

  8. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  9. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  10. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  11. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (beta-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.

  12. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios.

  13. Modeling methanesulfonic acid (MSA) deposition on Antarctica to understand the MSA-sea ice link

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Steig, E. J.; Bitz, C. M.

    2010-12-01

    Sea ice plays a large role in global energy balance and climate. Much research has focused on methanesulfonic acid (MSA) as measured in Antarctic ice cores as a proxy for sea ice extent, but observations suggest that even the sign of the relationship between sea ice and MSA varies by region. The proxy is predicated on assumptions that dimethyl sulfide (DMS) emitted from the sea ice zone, for which MSA is an oxidation product, varies sufficiently from the open ocean across the ice edge to imprint a signal in MSA deposition, though just how DMS emissions in sea ice differ from open water DMS emissions has yet to be fully understood. Expansive winter sea ice cover followed by a sharp reduction in summer may stimulate biological productivity and hence DMS emissions; Diatoms within sea ice may release DMS at high enough rates to equal or exceed emissions from open water; and the sea-to-air gas flux parameterization may be fundamentally different in the stratified waters of melting sea ice. We have modified surface DMS concentrations in sea ice in a series of global chemical transport model (GEOS-Chem) simulations driven by reanalysis meteorological data, in an effort to mimic different plausible scenarios of DMS emissions from within sea ice. We show that variability in MSA deposition on Antarctica is primarily driven by wind speeds that govern the DMS fluxes from the ocean, as determined by the sea-to-air gas flux parameterization; Interannual variability in ice extent insufficiently modulates DMS emissions above this wind-driven variability. We also show that one-third to two-thirds of MSA deposition on Antarctica originates from north of the sea ice zone (i.e., North of 60 S), though the fraction is strongly dependent on the assumed seasonal concentrations of DMS within the sea ice zone. Given the limitations of the model processes and scenarios, we also demonstrate where a MSA signal associated with sea ice might be found on Antarctica.

  14. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  15. Persistent neurological damage associated with spontaneous recurrent seizures and atypical aggressive behavior of domoic acid epileptic disease.

    PubMed

    Tiedeken, Jessica A; Ramsdell, John S

    2013-05-01

    The harmful alga Pseudo-nitzschia sp. is the cause of human amnesic shellfish poisoning and the stranding of thousands of sea lions with seizures as a hallmark symptom. A human case study and epidemiological report of hundreds of stranded sea lions found individuals presenting months after recovery with a neurological disease similar to temporal lobe epilepsy. A rat model developed to establish and better predict how epileptic disease results from domoic acid poisoning demonstrated that a single episode of status epilepticus (SE), after a latent period, leads to a progressive state of spontaneous recurrent seizure (SRS) and expression of atypical aggressive behaviors. Structural damage associated with domoic acid-induced SE is prominent in olfactory pathways. Here, we examine structural damage in seven rats that progressed to epileptic disease. Diseased animals show progressive neuronal loss in the piriform cortex and degeneration of terminal fields in these layers and the posteromedial cortical amygdaloid nucleus. Animals that display aggressive behavior had additional neuronal damage to the anterior olfactory cortex. This study provides insight into the structural basis for the progression of domoic acid epileptic disease and relates to the California sea lion, where poisoned animals progress to a disease characterized by SRS and aggressive behaviors.

  16. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)?

    PubMed

    Shen, Chen-Chao; Shen, Dong-Sheng; Shentu, Jia-Li; Wang, Mei-Zhen; Wan, Ming-Yang

    2015-12-01

    The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA.

  17. Effect of oxcarbazepine pretreatment on convulsive activity and brain damage induced by kainic acid administration in rats.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; Campos-Sepúlveda, Efraín; Romero, Rosa María; Reynoso-Robles, Rafael; González-Maciel, Angélica

    2008-11-01

    Temporal lobe epilepsy is one of the most common types of epilepsy. Progress in the understanding and treatment of this type of epilepsy would be greatly facilitated by the availability of an animal model, which reproduced the behavioral and electrographic features of this condition. In this context, kainic acid (KA, 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine) administration causes a syndrome characterized by an acute status epilepticus and subsequent brain damage similar to that in temporal lobe epilepsy of humans. The aim of the present study was to investigate whether oxcarbazepine (10,11-dihydro-10-oxo-5 H -dibenz(b,f)azepine-5-carboxamide), an antiepileptic drug, protects against both epileptic activity and brain damage induced by KA administration. Chronically implanted adult male Wistar rats were polygraphically recorded during 10 continuous hours under 4 different conditions: a) control, b) after KA administration alone, c) after KA administration in oxcarbazepine pretreated animals and d) after the administration of oxcarbazepine alone. Animals treated with KA alone presented behavioral and electrophysiological convulsive activity as well as brain damage. Latency of seizure installation was lengthened significantly and convulsive activity was slightly reduced, however, brain damage was still present in oxcarbazepine pretreated animals. Administration of oxcarbazepine alone induced a hypnotic behavior and brain damage was also present.

  18. Variation of Atmospheric Deposition of Acid Species and Yellow Sand Particles From 1987 to 1999 Through Modeling Studies and Observations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Uno, I.; Zhang, M.; Akimoto, H.

    2002-05-01

    Acid deposition is of serious environmental concern in East Asia. Wet and dry deposition monitoring datasets have been collected for long enough to understand the deposition distribution and its variation in time and space in this region Field observations indicate that acid precipitation often occurs in the southern part of China, even though emissions of the precursors are stronger in the north, where such high levels of strong acids in precipitation have not been widely. The acidity of rainwater is heavily influenced and modified by natural soil dust from desert and semi-arid areas. This soil aerosol, or _gKOSA", is lifted from Asian deserts and the Loess plateau, and then carried by the prevailing wind over East Asia. A comprehensive Air Quality Prediction Modeling System (AQPMS) is used to perform year-long, quantitative simulation of rainwater pH in East Asia for 1987 and 1999, respectively with emissions of Akimoto et al.(1987) and Street et al.(2000), to discuss the variation of deposition of acid species and yellow sand particles due to the emission change in the past dozen years. Monitoring data at 17 sites of EANET (the Acid Deposition Monitoring Network in East Asia) in addition to the field observation data of SEPA(State Environmental Protection Agency) of China are used to evaluate the model, and a reasonable agreement is obtained. Emission in Sichuan province has decreased and emission in central China including Hubei province and Hunan province has increased. Model simulation shows the change of emission pattern caused the serious acid-rain-hit area moving southeastward as observed. In the west part of Sichuan province, the pH value increased, this is partly due to the success of countermeasures against acid rain in China since 1996, which reduce the emission in Sichuan area much more than expected. The variations of annual distribution of rain pH, sulfate, nitrite and yellow sand particles deposition are also discussed in detail, so do the

  19. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers

    PubMed Central

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming

    2016-01-01

    Nicotinic acid (NA) acting as the precursor of NAD+/NADH and NADP+/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  20. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  1. Geology-based method of assessing sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1991-01-01

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.

  2. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  3. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  4. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland.

    PubMed

    Arróniz-Crespo, María; Leake, Jonathan R; Horton, Peter; Phoenix, Gareth K

    2008-01-01

    Atmospheric nitrogen deposition can cause major declines in bryophyte abundance yet the physiological basis for such declines is not fully understood. Bryophyte physiological responses may also be sensitive bioindicators of both the impacts of, and recovery from, N deposition. Here, responses of tissue nutrients (nitrogen (N), phosphorus (P) and potassium (K): NPK), N and P metabolism enzymes (nitrate reductase and phosphomonoesterase), photosynthetic pigments, chlorophyll fluorescence, sclerophylly and percentage cover of two common bryophytes (Pseudoscleropodium purum and Rhytidiadelphus squarrosus) to long-term (11 yr) enhanced N deposition (+3.5 and +14 g N m(-2) yr(-1)) are reported in factorial combination with P addition. Recovery of responses 22 months after treatment cessation were also assessed. Enhanced N deposition caused up to 90% loss of bryophyte cover but no recovery was observed. Phosphomonoesterase activity and tissue N:P ratios increased up to threefold in response to N loading and showed clear recovery, particularly in P. purum. Smaller responses and recovery were also seen in all chlorophyll fluorescence measurements and altered photosynthetic pigment composition. The P limitation of growth appears to be a key mechanism driving bryophyte loss along with damage to photosystem II. Physiological measurements are more sensitive than measurements of abundance as bioindicators of N deposition impact and of recovery in particular.

  5. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  6. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  7. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate.

    PubMed

    Carmichael, Gregory R; Streets, David G; Calori, Giuseppe; Amann, Markus; Jacobson, Mark Z; Hansen, James; Ueda, Hiromasa

    2002-11-15

    In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.

  8. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy.

    PubMed

    Guo, Xiaolan; Cui, Ruibing; Zhao, Jianjian; Mo, Rui; Peng, Lei; Yan, Ming

    2016-11-15

    The reactive oxygen species(ROS)/mitogen-activated protein kinase (MAPK) destroyed autophagy and the reactive oxygen species/mitogen-activated protein kinase (MAPK) pathway are considered closely related to ethanol-induced hepatocellular injury. Previous work indicated that corosolic acid, the natural extracts of leaves of the banaba tree, Lagerstroemia speciosa L., could protect the liver against ethanol-induced damage, but the underlying mechanism is unclear. In the study we found that corosolic acid significantly inhibited ethanol-induced apoptosis, increased level of tumor necrosis factor-α(TNF-α) and reactive oxygen species accumulation in vitro. Corosolic acid inhibited ethanol-activated p38 and c-Jun N-terminal kinase MAPK signaling in BRL-3A and HepG2 cells as well as in experimental rats. Corosolic acid restored the ethanol-suppressed expression of autophagy-related genes, including beclin-1 and the ratio of microtubule-associated protein light chain 3II/I (LC3II/I) via AMP-activated protein kinase (AMPK) activation both in vitro and in vivo. In experimental rats, corosolic acid ameliorated the detrimental histopathological findings. Corosolic acid may protect the liver against ethanol-induced injury by modulation of MAPK signaling and autophagy activation. These findings suggested that corosolic acid might be a promising agent in treatment of alcoholic liver diseases.

  9. Sex differences in skin carotenoid deposition and acute UVB-induced skin damage in SKH-1 hairless mice after consumption of tangerine tomatoes

    PubMed Central

    Kopec, Rachel E.; Schick, Jonathan; Tober, Kathleen L.; Riedl, Ken M.; Francis, David M.; Young, Gregory S.; Schwartz, Steven J.; Oberyszyn, Tatiana M.

    2015-01-01

    Scope UVB exposure, a major factor in the development of skin cancer, has differential sex effects. Tomato product consumption reduces the intensity of UVB-induced erythema in humans, but the mechanisms are unknown. Methods and results Four week old SKH-1 hairless mice (40 females, 40 males) were divided into two feeding groups (control or with 10% tangerine tomatoes naturally rich in UV-absorbing phytoene and phytofluene) and two UV exposure groups (with or without UV). After 10 weeks of feeding, the UV group was exposed to a single UV dose and sacrificed 48 hours later. Blood and dorsal skin samples were taken for carotenoid analysis. Dorsal skin was harvested to assess sex and UV effects on carotenoid deposition, inflammation (skinfold thickness, myeloperoxidase levels) and DNA damage (cyclobutane pyrimidine dimers, p53). Females had significantly higher levels of both skin and blood carotenoids relative to males. UV exposure significantly reduced skin carotenoid levels in females but not males. Tomato consumption attenuated acute UV-induced increases in CPD in both sexes, and reduced myeloperoxidase activity and % p53 positive epidermal cells in males. Conclusion Tangerine tomatoes mediate acute UV-induced skin damage in SKH-1 mice via reduced DNA damage in both sexes, and through reduced inflammation in males. PMID:26394800

  10. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  11. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  12. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  13. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  14. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models.

    PubMed

    Du, Ying-Chi; Chang, Fang-Rong; Wu, Tung-Ying; Hsu, Yu-Ming; El-Shazly, Mohamed; Chen, Chieh-Fu; Sung, Ping-Jyun; Lin, Yan-Yu; Lin, Yi-Hsin; Wu, Yang-Chang; Lu, Mei-Chin

    2012-06-15

    Antrodia camphorata (AC) is a native Taiwanese mushroom which is used in Asian folk medicine as a chemopreventive agent. The triterpenoid-rich fraction (FEA) was obtained from the ethanolic extract of AC and characterized by high performance liquid chromatography (HPLC). FEA caused DNA damage in leukemia HL 60 cells which was characterized by phosphorylation of H2A.X and Chk2. It also exhibited apoptotic effect which was correlated to the enhancement of PARP cleavage and to the activation of caspase 3. Five major triterpenoids, antcin K (1), antcin C (2), zhankuic acid C (3), zhankuic acid A (4), and dehydroeburicoic acid (5) were isolated from FEA. The cytotoxicity of FEA major components (1-5) was investigated showing that dehydroeburicoic acid (DeEA) was the most potent cytotoxic component. DeEA activated DNA damage and apoptosis biomarkers similar to FEA and also inhibited topoisomerase II. In HL 60 cells xenograft animal model, DeEA treatment resulted in a marked decrease of tumor weight and size without any significant decrease in mice body weights. Taken together, our results provided the first evidence that pure AC component inhibited tumor growth in vivo model backing the traditional anticancer use of AC in Asian countries.

  15. Acid fog Deposition of Crusts on Basaltic Tephra Deposits in the Sand Wash Region of Kilauea Volcano: A Possible Mechanism for Siliceous-Sulfatic Crusts on Mars

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Zierenberg, R.; Marks, N.; Bishop, J. L.

    2004-12-01

    Although the presence of sulfate minerals in martian outcrops may imply the prior existence of standing bodies of surface water, in terrestrial volcanic settings, sulfatic alteration may also occur above the water table within the vadose zone. On the summit of Kilauea volcano, sulfur dioxide, which is continuously emitted from Halemaumau crater and rapidly sequestered into sulfuric acid-rich aerosol entrained in the prevailing trade winds, is subsequently precipitated as acid-fog immediately downwind from the caldera in the Kau Desert. The characteristic pH of surface tephra deposits is < 4.0 in Sand Wash, a region of continuous, acidic aerosol fall-out immediately SW of the caldera. The upper portion of the Keanakakoi Ash tephra in Sand Wash, deposited in the late 18th century, has a ubiquitous, 0.1-0.2 mm-thick coating of amorphous silica. Conversely, vertical walls of unconsolidated tephra, exposed within small, dry gullies eroded into the ca. 3-4 m-thick Keanakakoi section at Sand Wash, are coated with ca. 0.5-1.0 mm-thick, mixed amorphous silica and jarosite-bearing crusts. Since these crusts are denuded from their outcrops during ephemeral, but probably annual flooding events in Sand Wash, we believe that they must accumulate rapidly. These crusts are apparently formed via an evaporative mechanism whereby acidic pore fluids, circulating in the upper few m's within the highly porous tephra, are wicked towards the walls of the gullies. Geochemical modeling of the crust-forming process implies that the sulfate formation via evaporation occurs subsequent to minimal interaction of acidic pore fluids with the basaltic tephra. This also suggests that the cycle from acid-fog fall-out to precipitation of the siliceous-sulfatic crusts must occur quite rapidly. Production of siliceous-sulfatic crusts via acid-fog alteration may also be occurring on Mars. The occurrence of evaporitic sulfate and silica at Sand Wash in Kilauea may serve as an example of how the jarosite

  16. Oral Toxicity of Okadaic Acid in Mice: Study of Lethality, Organ Damage, Distribution and Effects on Detoxifying Gene Expression

    PubMed Central

    Vieira, Andres C.; Rubiolo, Juan A.; López-Alonso, Henar; Cifuentes, José Manuel; Alfonso, Amparo; Bermúdez, Roberto; Otero, Paz; Vieytes, Mercedes R.; Vega, Félix V.; Botana, Luis M.

    2013-01-01

    In vivo, after administration by gavage to mice and rats, okadaic acid has been reported to produce lesions in liver, small intestine and forestomach. Because several reports differ in the damage detected in different organs, and on okadaic acid distribution after consumption, we determined the toxicity of this compound after oral administration to mice. After 24 hours, histopathological examination showed necrotic foci and lipid vacuoles in the livers of intoxicated animals. By immunohistochemical analysis, we detected this toxin in the liver and kidneys of intoxicated animals. Okadaic acid induces oxidative stress and can be activated in vitro into reactive compounds by the post-mitochondrial S9 fraction, so we studied the okadaic effect on the gene expression of antioxidant and phase II detoxifying enzymes in liver. We observed a downregulation in the expression of these enzymes and a reduction of protein expression of catalase and superoxide dismutase 1 in intoxicated animals. PMID:24217398

  17. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    PubMed

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  18. Exopolysaccharides Isolated from Milk Fermented with Lactic Acid Bacteria Prevent Ultraviolet-Induced Skin Damage in Hairless Mice

    PubMed Central

    Morifuji, Masashi; Kitade, Masami; Fukasawa, Tomoyuki; Yamaji, Taketo; Ichihashi, Masamitsu

    2017-01-01

    Background: We studied the mechanism by which fermented milk ameliorates UV-B-induced skin damage and determined the active components in milk fermented with lactic acid bacteria by evaluating erythema formation, dryness, epidermal proliferation, DNA damage and cytokine mRNA levels in hairless mice exposed to acute UV-B irradiation. Methods: Nine week-old hairless mice were given fermented milk (1.3 g/kg BW/day) or exopolysaccharide (EPS) concentrate (70 mg/kg BW/day) orally for ten days. Seven days after fermented milk or EPS administration began, the dorsal skin of the mice was exposed to a single dose of UV-B (20 mJ/cm2). Results: Ingestion of either fermented milk or EPS significantly attenuated UV-B-induced erythema formation, dryness and epidermal proliferation in mouse skin. Both fermented milk and EPS were associated with a significant decrease in cyclobutane pyrimidine dimers and upregulated mRNA levels of xeroderma pigmentosum complementation group A (XPA), which is involved in DNA repair. Furthermore, administration of either fermented milk or EPS significantly suppressed increases in the ratio of interleukin (IL)-10/IL-12a and IL-10/interferon-gamma mRNA levels. Conclusion: Together, these results indicate that EPS isolated from milk fermented with lactic acid bacteria enhanced DNA repair mechanisms and modulated skin immunity to protect skin against UV damage. PMID:28098755

  19. Low-damage milling of an amino acid thin film with cluster ion beam

    SciTech Connect

    Hada, Masaki; Ibuki, Sachi; Ninomiya, Satoshi; Matsuo, Jiro; Hontani, Yusaku; Yamamoto, Yasuyuki; Ichiki, Kazuya; Seki, Toshio; Aoki, Takaaki

    2011-11-01

    In this work, we characterized the surface damage layer and sputtering yield of polycrystalline L-leucine films before and after irradiation with Ar cluster or monomer ion beams with x ray photoelectron spectroscopy and ellipsometry. Irradiation with Ar monomer ion beams induced heavy damage on the surface of L-leucine films, such as bond breaking and carbonization. In contrast, no significant surface damage was observed in the films irradiated with Ar cluster ion beams. The sputtering yield of L-leucine decreased dramatically with increasing fluence of monomer Ar ions and approached the value of the sputtering yield of graphite; but under irradiation with Ar cluster ion beams, the sputtering yield remained constant with fluence. The differences in sputtering yield behavior were explained in relation with the surface damage layer on organic materials. Thus, cluster ion beams could potentially be used to mill down biological materials without significant damage on the surface and could contribute to various applications in the analysis and processing of life matter.

  20. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation.

    PubMed

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  1. Acanthoic Acid Can Partially Prevent Alcohol Exposure-Induced Liver Lipid Deposition and Inflammation

    PubMed Central

    Yao, You-Li; Han, Xin; Li, Zhi-Man; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling

    2017-01-01

    Aims: The present study aims to detect the effect of acanthoic acid (AA) on alcohol exposure-induced liver lipid deposition and inflammation, and to explore the mechanisms. Methods: C57BL/6 mice were pretreated with single dose of AA (20 and 40 mg/kg) by oral gavage or equal volume of saline, and then exposed to three doses of ethanol (5 g/kg body weight, 25%, w/v) by gavage within 24 h. The mice were sacrificed at 6 h after the last ethanol dosing. Serum and hepatic indexes were detected by western blot, RT-PCR, and histopathological assay. AML-12 cells were pretreated with AA (5, 10, 20 μM), or AICAR (500 μM), GW3965 (1 μM), SRT1720 (6 μM), Nicotinamide (20 mM) for 2 h, respectively, and then following treated with EtOH (200 mM) and lipopolysaccharide (LPS) (10 ng/ml) for additional 48 h. Cell protein and mRNA were collected for western blot and RT-PCR. Cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release were detected by ELISA assay. Results: It was found that AA significantly decreased acute ethanol-induced increasing of the serum ALT/AST, LDH, ALP levels, and hepatic and serum triglyceride levels, and reduced fat droplets accumulation in mice liver. AA significantly suppressed the levels of sterol regulatory element binding protein 1 (SREBP-1), cytochrome P4502E1 (CYP2E1), IL-1β, and caspase-1 induced by ethanol. Furthermore, a significant decline of sirtuin 1 (Sirt1) and liver X receptors (LXRs) levels was observed in EtOH group, compared with normal group mice. And AA pretreatment increased the Sirt1 and LXRs levels, and also ameliorated phosphorylation of liver kinase B-1 (LKB-1), adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC) proteins, compared with EtOH group. However, the levels of peroxisome proliferator activated receptor -α or -γ (PPAR-α or PPAR-γ) induced by acute ethanol were reversed by AA. In EtOH/LPS cultivated AML-12 cells, AA decreased IL-1β and TNF-α levels, lipid

  2. The Influence of Iodide Adsorption on Copper Underpotential Deposition on Polycrystalline Palladium Electrodes in Mildly Acidic Solutions.

    PubMed

    Zinola; Castro Luna AM

    1999-01-15

    The effects of I- adsorption on the electrodeposition (under and overpotential deposition) of Cu on polycrystalline Pd electrodes were studied in dilute perchloric acid solutions at 18 degreesC. It had been found that Cu underpotential deposition on polycrystalline Pd exhibits different potentiodynamic features, which are characteristic of defined crystallographic planes of Pd. However, these features varied when the voltammograms were performed in the presence of strongly adsorbable anions, such as I-. In spite of having found a partial inhibition of the Cu voltammetric features in the presence of I-, we calculated integer numbers in the electron transfer to Cu2+ and I- ions. The change in the values of Cu massive deposition potential due to the presence of I- was caused by the appearence of a new electrode, that is, the Cu/CuI/I- interface. Copyright 1999 Academic Press.

  3. Potential cytoprotection: antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins.

    PubMed

    Wang, Ting; Chen, Lixiang; Wu, Weimin; Long, Yuan; Wang, Rui

    2008-05-01

    Oxidative stress is considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. Caffeic acid phenethyl ester (CAPE), derived from the propolis of honeybee hives, possesses a variety of biological and pharmacological properties including antioxidant and anticancer activity. In the present study, we focused on the diverse antioxidative functionalities of CAPE and its related polyphenolic acid esters on cellular macromolecules in vitro. The effects on human erythrocyte membrane ghost lipid peroxidation, plasmid pBR322 DNA, and protein damage initiated by the water-soluble initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) and hydrogen peroxide (H(2)O(2)) were monitored by formation of hydroperoxides and by DNA nicking assay, single-cell alkaline electrophoresis, and SDS-polyacrylamide gel electrophoresis. Our results showed that CAPE and its related polyphenolic acid esters elicited remarkable inhibitory effects on erythrocyte membrane lipid peroxidation, cellular DNA strand breakage, and protein fragmentation. The results suggest that CAPE is a potent exogenous cytoprotective and antigenotoxic agent against cell oxidative damage that could be used as a template for designing novel drugs to combat diseases induced by oxidative stress components, such as various types of cancer.

  4. Dune development and migration to damage long established vegetation colonies in the lahar deposition zone of Ruapehu Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Ohno, Y.; Kasai, M.; Marutani, T.

    2012-04-01

    This study reports migration of dunes that mainly originate from lahar deposits and gully erosion, in the Rangipo Desert on the skirts of the Ruapehu Volcano, New Zealand. Although the Rangipo Desert is not a dry desert (average annual rainfall: 1100mm), the occasional supply of volcanic materials from Ruapehu, strong wind (average maximum speed in a day: 12 m/s) together with low winter temperatures has created a desert-like landscape. The study site consists of a flood plain with sporadic tussock and alpine to sub-alpine vegetation colonies which often form mound-like structures and sand dunes on terraces on the flanks of the volcano. The accretionary mounds and dunes comprise layers of tephra and pumice of various ages, together with interstitial wind-blown materials. While shrubs thrive on these terrace tops, it was observed that migrating dunes of 3 m in height have progressively buried and killed vegetation at two sites. Aerial photographs taken in 2000 and 2011 indicated that the dunes originated from pockets of lahar deposits and gully out-wash materials on the flood plain and were migrating in the major leeward wind direction (Northeast), or towards the sites. The migration rate at one site was estimated at 5 m/year from the photography. The flood plain pockets had formed at points where the floor slope changed from steep to gentle. As they contain finer materials than their surroundings, they have produced a series of sequential dunes. The exposed floor between the dunes comprises pumice layers of low infiltration capacity, suggesting that dunes migrate and develop as they strip off floor deposits. Subsequent exposure of the layers induces surface flow concentration in wet weather to cause gully incision. In conclusion, lahar occurrence is a major controlling factor in development in the landscape of the Rangipo Desert, by not only directly flowing at times into the flood plain, but also by producing migrating dunes that impact on existing vegetation

  5. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats

    PubMed Central

    Kumar, Venkatashivam Shiva; Rajmane, Anuchandra Ramchandra; Adil, Mohammad; Kandhare, Amit Dattatraya; Ghosh, Pinaki; Bodhankar, Subhash Laxman

    2014-01-01

    The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage. PMID:24683411

  6. An Investigation of the Solid-State Condensation Polymerization Reaction in Vapor-Deposited Poly(amic acid)

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Letts, Stephan A.; Day, Katherine; Cook, Robert C.; Gies, Anthony P.; Nonidez, William K.

    2004-03-01

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FTIR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of films prepared at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments suggest that poly(amic acid) oligomers form upon vapor-deposition and have a number-average molecular weights of about 1500 Daltons. Between 100-130 °C these chains undergo additional condensation reactions to form slightly higher molecular weight oligomers. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  7. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    PubMed Central

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit

    2014-01-01

    Summary Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281

  8. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    PubMed

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  9. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  10. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  11. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage.

    PubMed

    Yang, Sung-Yong; Hong, Chung-Oui; Lee, Gung Pyo; Kim, Cheong-Tae; Lee, Kwang-Won

    2013-05-01

    Perilla frutescens leaves are often used in East Asian gourmet food. In this study, we investigated the hepatoprotective effects of caffeic acid (CA), rosmarinic acid (RA), and their combination. P. frutescens contains 1.32μg CA/mg dry material (DM) and 26.84μg RA/mg DM analyzed by HPLC-DAD and HPLC-MS. CA remarkably reduced the oxidative damage than rosmarinic acid in an in vitro study. Oral intubation with CA or RA alone for five days was conducted prior to treatment with a single dose of tert-butyl hydroperoxide (0.5mmol/kg b.w., i.p.), which led to a significant reduction of indicators of hepatic toxicity, such as aspartate aminotransferase, alanine aminotransferase, oxidized glutathione, lipid peroxidation and enzyme activities related to antioxidant such as catalase, glutathione peroxidase and superoxide dismutase. Interestingly, compared to treatment with CA or RA alone, a combination of both compounds more increased the endogenous antioxidant enzymes and glutathione (GSH) and decreased lipid peroxidation in livers. These results suggest that CA from perilla leaves plays a role in the increased hepatic GSH concentration, and shows an additive hepatic protection with RA against oxidative hepatic damage.

  12. Fatty Acid Saturation of Albumin Used in Resuscitation Fluids Modulates Cell Damage in Shock: In Vitro Results Using a Novel Technique to Measure Fatty Acid Binding Capacity.

    PubMed

    Penn, Alexander H; Dubick, Michael A; Torres Filho, Ivo P

    2017-03-21

    The use of albumin for resuscitation has not proven as beneficial in human trials as expected from numerous animal studies. One explanation could be the practice of adding fatty acid (FA) during manufacture of pharmaceutical albumin. During ischemia, unbound free FAs (FFA) in the circulation could potentially induce cellular damage. We hypothesized that albumins with higher available binding capacities (ABC) for FFAs may prevent that damage. Therefore, we developed a technique to measure ABC, determined if pharmaceutical human serum albumin (HSA) has decreased ABC compared to FA-free bovine serum albumin (BSA), and if binding capacity would affect hemolysis when blood is mixed with exogenous FFA at levels similar to those observed in shock. The new assay used exogenous oleic acid (OA), glass fiber filtration, and a FFA assay kit. RBC hemolysis was determined by mixing 0-5 mM OA with PBS, HSA, FA-free BSA, or FA-saturated BSA and measuring plasma hemoglobin after incubation with human blood. 5% HSA contained 4.7±0.2 mM FFA, leaving an ABC of 5.0 ± 0.6 mM, compared to FA-free BSA's ABC of 7.0 ± 1.3 mM (P < 0.024). Hemolysis after OA was reduced with FA-free BSA but increased with FA-saturated BSA. HSA provided intermediate results. 25% solutions of FA-free BSA and HSA were more protective, while 25% FA-saturated BSA was more damaging than 5% solutions. These findings suggest that increased FA saturation may reverse albumin's potential benefit to lessen cellular damage and may explain, at least in part, its failure in human trauma studies.

  13. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  14. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration.

    PubMed

    Limpens, J; Berendse, F

    2003-05-01

    We tested the relationship between Sphagnum growth and the amount of nitrogen stored in free amino acids in a fertilisation experiment with intact peat monoliths in an open greenhouse in The Netherlands. Three nitrogen deposition scenarios were used: no nitrogen deposition, field conditions and a doubling of the latter, corresponding to 0, 40 and 80 kg N ha(-1 )year(-1). Growth of Sphagnum as expressed by height increment was reduced in the 80 kg N treatment, but showed no correlation with the total nitrogen tissue concentration or with the concentration of individual or pooled free amino acids. The amount of nitrogen stored in free amino acids increased concomitantly with deposition, although it lagged more and more behind the total nitrogen concentration, the latter pointing to the accumulation of unmeasured nitrogen compounds. Asparagine clearly acted as the major storage compound for nitrogen in Sphagnum stem tissue, whereas arginine fulfilled this function to a lesser extent in the capitulum. It appears that nitrogen-induced growth inhibition of Sphagnum is related to acclimation rather than to certain threshold concentrations of amino nitrogen or total nitrogen. We propose that when Sphagnum is exposed to a step increase of nitrogen, its nitrogen metabolism does not adapt fast enough to keep up with the enhanced uptake rate. This imbalance between nitrogen uptake and assimilation may lead to an accumulation of toxic NH(4)(+ )in the cell and a subsequent reduction in growth.

  15. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-03

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.

  16. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    SciTech Connect

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A.

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  17. The Effect of Ascorbic Acid and Garlic Administration on Lead-Induced Neural Damage in Rat Offspring’s Hippocampus

    PubMed Central

    Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein

    2013-01-01

    Objective(s): The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. Materials and Methods: 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. Results: BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Conclusion: Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus. PMID:24298384

  18. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO.

  19. Patterns of wet deposition of acidic matter in Maryland: January-June 1984. Final report

    SciTech Connect

    Maxwell, C.; Bartoshesky, J.; Pfeffer, N.; Campbell, S.

    1987-03-03

    A data base containing precipitation-chemistry data collected by multiple monitoring programs in and around Maryland for the January through June 1984 time period was compiled. Isopleth maps were constructed showing the spatial variation in the precipitation concentrations and depositions of hydrogen ion, sulfate, nitrate, ammonium, calcium, sodium, chloride, potassium, and magnesium. For each parameter, the concentration pattern was very similar to its deposition pattern. The patterns suggest the occurrence of a ridge of high sulfate, nitrate, and hydrogen ion concentrations and depositions extending from south-central Pennsylvania, south into Maryland along the western shore of the Chesapeake Bay.

  20. Ascorbic acid, catalase and chlorpromazine reduce cryopreservation-induced damages to crossbred bull spermatozoa.

    PubMed

    Paudel, K P; Kumar, S; Meur, S K; Kumaresan, A

    2010-04-01

    The present study evaluated the effectiveness of ascorbic acid, catalase, chlorpromazine and their combinations in reducing the cryodamages to crossbred bull (Bos taurus x Bos indicus) spermatozoa. A total of 32 ejaculates (eight each from four bulls) were diluted in Tris-citric acid-fructose-egg yolk-glycerol extender. Each ejaculate was split into six parts (five treatment and one control). Treatment groups included 10 mm ascorbic acid, 0.1 mm chlorpromazine, 200 IU/ml catalase, 10 mm ascorbic acid + 0.1 mm chlorpromazine or 200 IU/ml catalase + 0.1 mm chlorpromazine in the extender. Fluorescent probes (Fluorescein isothiocyanate--Pisum sativum agglutinin + Propidium iodide) were used for the assessment of spermatozoa viability and acrosomal status. The proportion of acrosome intact live (AIL), acrosome intact dead, acrosome reacted live and acrosome reacted dead sperm was assessed in fresh, equilibrated and frozen-thawed semen. The functional status of the sperm was assessed using hypo-osmotic sperm swelling test (HOSST). Activities of acrosin and hyaluronidase enzyme were also determined. Lipid peroxidation level was assayed based on the melonaldehyde (MDA) production. In cryopreserved semen, the values of AIL spermatozoa, HOSST response, hyaluronidase and acrosin activity were reduced by 53%, 47%, 34% and 54%, respectively from their initial values in fresh semen. However, MDA level was threefold higher in the frozen-thawed sperm compared with fresh sperm. Significant (p < 0.05) improvement in motility, viability, HOSST response, retention of hyaluonidase and acrosin and reduction in MDA was recorded in ascorbic acid, catalase, ascorbic acid + chlorpromazine and catalase + chlorpromazine incorporated groups. The percentage of AIL sperm was significantly (p < 0.05) higher in ascorbic acid, catalase and ascorbic acid + chlorpromazine incorporated groups compared with the control. Chlorpromazine alone did not improve the post-thaw semen quality but when combined

  1. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

    PubMed

    Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan

    2014-11-01

    Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth.

  2. DNA damage in lymphocytes of benzene exposed workers correlates with trans,trans-muconic acids and breath benzene levels.

    PubMed

    Sul, Donggeun; Lee, Eunil; Lee, Mi-Young; Oh, Eunha; Im, Hosub; Lee, Joohyun; Jung, Woon-Won; Won, Namhee; Kang, Hyung-Sik; Kim, Eun-Mi; Kang, Seong-Kyu

    2005-04-04

    Benzene causes many kinds of blood disorders in workers employed in many different environments. These diseases include myelodisplastic syndrome and acute and chronic myelocytic leukemia. In the present study, five occupational work places, including six industrial process types, namely, printing, shoe-making, methylene di-aniline (MDA), nitrobenzene, carbomer, and benzene production were selected, and the levels of breath benzene, and trans,trans-muconic acids (t,t-MA) and phenol in urine were evaluated, as well as hematological changes and lymphocyte DNA damage. The concentration of benzene in breath was less than 3 ppm in the workplaces, and benzene exposure was found to be higher in work places where benzene is used, than in those where benzene is produced. At low levels of benzene exposure, urinary t,t-MA correlated strongly with benzene in air. Highest Olive tail moments were found in workers producing carbomer. Levels of breathzone benzene were found to be strongly correlated with Olive tail moment values in the lymphocytes of workers, but not with hematological data in the six workplaces types. In conclusion, the highest benzene exposures found occurred in workers at a company, which utilized benzene in the production of carbomer. In terms of low levels of exposure to benzene, urinary t,t-MA and DNA damage exhibited a strong correlation with breath benzene, but not with hematological data. We conclude that breath benzene, t,t-MA and lymphocytic DNA damage are satisfactory biomonitoring markers with respect to benzene exposure in the workplace.

  3. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  4. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    Rainfall samples were collected over a period of 3 years and 8 months in subtropical East Asia. They are categorized into different rainfall types and analyzed to assess the ionic composition and its effect on the acidity of wet deposition in southern Taiwan. Only 4% of samples had a pH of <5.0, indicating that the study area is not impacted significantly by acid rain. The volume-weighted mean (VWM) pH by rainfall type was Spring Rain 5.74, Typhoon Rain 5.56, Summer Rain 5.46, Typhoon Outer Circulation (TOC) Rain 5.45, Plum Rain 5.32 and Autumn-Winter Rain 5.29. Dilution effects were important to the equivalent ionic concentration of different rainfall types. HCO 3-, SO 42- and Cl - were detected as major anions whereas NH 4+, Na + and Ca 2+ were major cations. CO 2-derived HCO 3- was the major ionic species in all but Typhoon Rain and Spring Rain, in which the major species were Na + and Cl - and Ca 2+, respectively. Excluding HCO 3-, the major species were NH 4+, Na + and Ca 2+ in Plum Rain, the secondary photochemical products SO 42-, NO 3- and NH 4+ in TOC Rain and Summer Rain, and Na + and Ca 2+ in Autumn-Winter Rain. Calculation of arithmetic means showed that dicarboxylic acids contributed between 0.25% and 0.53% of the total ionic concentration and of these, oxalic acid contributed the least (81.3% of the dicarboxylic acid) to TOC Rain and the most (96.1% of the dicarboxylic acid) to Spring Rain, suggestive of long-range transport in the latter. Differences in wet deposition composition were shown to be a result of differences in local emissions and long-range transport (hence of prevailing wind direction) during the period of rainfall and of the frequency and volume of rain that typifies each rainfall type. Principal component analysis (PCA) further revealed that traffic-related and industrial organic and inorganic pollutants, their secondary photochemical products, sea salts, and dust are important contributors to wet deposition. Moreover, the ratio of

  5. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats.

    PubMed

    Ince, Sinan; Kucukkurt, Ismail; Cigerci, Ibrahim Hakki; Fatih Fidan, A; Eryavuz, Abdullah

    2010-07-01

    The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu-Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study.

  6. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  7. Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Hwang, Bang Yeon; Kim, SeungHwan; Yoo, Jae Kuk; Seong, Yeon Hee

    2012-06-01

    Ilex latifolia (Aquifoliaceae), one of the primary components of "Ku-ding-cha", has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10-100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca(2+)](i), generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca(2+)](i), generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.

  8. Dietary CLA combined with palm oil or ovine fat differentially influences fatty acid deposition in tissues of obese Zucker rats.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alves, Susana P; Alfaia, Cristina M; Castro, Matilde F; Bessa, Rui J B; Prates, José A M

    2012-01-01

    The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13-38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60-80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation.

  9. National Acid Precipitation Assessment Program: Acidic deposition: An inventory of non-Federal research, monitoring, and assessment information

    SciTech Connect

    Herrick, C.N.

    1990-01-01

    The Acid Precipitation Act of 1990 (Title VII of the Energy Security Act of 1980, P.L. 96-294) established the Interagency Task Force on Acid Precipitation to develop and implement the National Acid Precipitation Assessment Program (NAPAP). The information included in the document was provided to NAPAP's Task Group Leaders and State-of-Science and State-of-Technology authors in July 1989. The early release was intended to assure that the authors would be aware of the information at an early phase in the assessment production process.

  10. Acid rain and weathering damage to carbonate building stone: Results of material loss measurements

    SciTech Connect

    Reddy, M.M.; Youngdahl, C.A.

    1986-11-01

    Marble and limestone specimens were exposed to atmospheric conditions at four eastern US sites. A number of methods were employed for damage assessment; this paper describes the results of chemical and physical measurements of material loss. Good agreement was observed among results obtained with different methods. A rate of surface recession near 15 ..mu..m/y was observed for skyward surfaces of marble tested in North Carolina, and comparable results were obtained at the other test sites. Response of the porous limestone was assessed with greater difficulty; a rate of loss similar to that of marble was inferred. Initial correlations of material loss with environmental factors are briefly discussed.

  11. Acid rain and weathering damage to carbonate building stone: Results of material loss measurements

    SciTech Connect

    Reddy, M.; Youngdahl, C.A.

    1987-01-01

    Marble and limestone specimens were exposed to atmospheric conditions at four eastern U.S. sites. A number of methods were employed for damage assessment; this paper describes the results of chemical and physical measurements of material loss. Good agreement was observed among results obtained with different methods. A rate of surface recession near 15 ..mu..m/y was observed for skyward surfaces of marble tested in North Carolina, and comparable results were obtained at the other test sites. Response of the porous limestone was assessed with greater difficulty; a rate of loss similar to that of marble was inferred. Initial correlations of material loss with environmental factors are briefly discussed.

  12. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    Instrumental records and monitoring of high elevation lakes began in most areas of the western US in the early 1980s. Much effort has been devoted to detecting changes in these aquatic ecosystems resulting from increased atmospheric deposition of acids and nutrients. However, there is growing evidence that thresholds for atmospheric pollutants were crossed much earlier in the 20th Century and that some of the subsequent hydrochemical and ecological changes observed in these lakes may be the result of recovery from earlier atmospheric forcing. We examine responses of high elevation lakes to atmospheric deposition on annual to century timescales using data from a 29-year study of Emerald Lake (Sequoia National Park) and paleolimnological analyses of other high elevation lakes incorporating diatom species analyses and geochemical proxies for fossil-fuel burning. At Emerald Lake, we have observed multiple transitions between nitrogen and phosphorus limitation of phytoplankton, the earliest of which occurred in the beginning of the 1980s and may be the result of reduction in N deposition due to the Clean Air Act. Critical loads analyses incorporating diatom species in lake sediments suggest that thresholds for N deposition were crossed in the period of 1950-1980 in the Rocky Mountains and likely much earlier, 1900-1920, in the Sierra Nevada. Diatom species composition is strongly controlled by acid neutralizing capacity (ANC) in the Sierra Nevada and we have observed a pronounced decline and recovery of ANC over the period of 1920-1980 in some Sierra Nevada lakes that coincides with the abundance of spheroidal carbonaceous particles (i.e., a diagnostic tracer of fossil fuel combustion) preserved in lake sediments; these patterns appear to be driven by increased emissions of oxidized N and S in the mid-20th Century and reductions in acid precursor levels caused by the Clean Air Act in the 1970s. Thus, when interpreting observational records from western high elevation

  13. Acid deposition coverage in five North American newspapers, 1979-1982

    SciTech Connect

    Kauffeld, J.A.; Fortner, R.W.

    1987-01-01

    Daily newspapers in some areas receiving acid rain, in some areas reported to be producing acid rain, and in some areas apparently ''neutral'' in the issue were content analyzed for their coverage of acid rain between 1979 and 1982. Of the five papers, the greatest amount of coverage was in the Cleveland Plain Dealer and the Toronto Globe and Mail. Coverage of acid rain effects was greatest in the Washington Post, as was the number of items suggesting remedies for the problem. Articles from papers in areas receiving acid rain contained more indications of urgency than those from areas blamed for the problem.

  14. Watershed surveys to support an assessment of the regional effects of acidic deposition on surface water chemistry

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; Church, Robbins; Lammers, Duane; Liegel, Leon; Johnson, Mark; Coffey, Deborah; Holdren, Richard; Stevens, Donald; Turner, Robert; Blume, Louis

    1989-01-01

    Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future

  15. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Arenas-Valgañón, Jorge; Céspedes-Camacho, Isaac Fabián; Calle, Emilio; Casado, Julio

    2011-10-15

    Hydroxyhalofuranones form a group of genotoxic disinfection byproduct (DBP) of increasing interest. Among them, mucohalic acids (3,4-dihalo-5-hydroxyfuran-2(5H)-one, MXA) are known mutagens that react with nucleotides, affording etheno, oxaloetheno, and halopropenal derivatives. Mucohalic acids have also found use in organic synthesis due to their high functionalization. In this work, the alkylation kinetics of mucochloric and mucobromic acids with model nucleophiles aniline and NBP has been studied experimentally. Also, the alkylation mechanism of nucleosides by MXA has been studied in silico. The results described allow us to reach the following conclusions: (i) based on the kinetic and computational evidence obtained, a reaction mechanism was proposed, in which MXA react directly with amino groups in nucleotides, preferentially attacking the exocyclic amino groups over the endocyclic aromatic nitrogen atoms; (ii) the suggested mechanism is in agreement with both the product distribution observed experimentally and the mutational pattern of MXA; (iii) the limiting step in the alkylation reaction is addition to the carbonyl group, subsequent steps occurring rapidly; and (iv) mucoxyhalic acids, the hydrolysis products of MXA, play no role in the alkylation reaction by MXA.

  16. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury.

    PubMed

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-10-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  17. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    PubMed Central

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-01-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions. PMID:27904499

  18. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.

    PubMed

    Stone, Trevor W; Behan, Wilhelmina M H

    2007-04-01

    Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.

  19. Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice.

    PubMed

    Gouk, Shiou-Wah; Cheng, Sit-Foon; Ong, Augustine Soon-Hock; Chuah, Cheng-Hock

    2014-04-14

    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  20. Review of the ophthalmic manifestations of gout and uric acid crystal deposition.

    PubMed

    Ao, Jack; Goldblatt, Fiona; Casson, Robert J

    2017-01-01

    Gout is a clinical disorder that is characterized by the deposition of monosodium urate crystals (MSU) in joints and tendons, usually in the presence of prolonged hyperuricaemia. Following an asymptomatic phase of hyperuricaemia, gout usually presents as acute monoarthritis followed by periods of remission and exacerbation. Conjunctival hyperaemia and subconjunctival haemorrhage exacerbated by purine intake are two of the more common manifestations that may go unrecognized. Other ocular and adnexal structures can be affected by urate crystal deposition and associated inflammation, with potentially vision-threatening consequences; however, ocular manifestations of gout are rare and may have been over-reported in the older literature, but our understanding of the clinic-pathological features of ocular urate deposits remains limited.

  1. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress.

    PubMed

    Moretti, Morgana; Colla, André; de Oliveira Balen, Grasiela; dos Santos, Danúbia Bonfanti; Budni, Josiane; de Freitas, Andiara Espíndola; Farina, Marcelo; Severo Rodrigues, Ana Lúcia

    2012-03-01

    Reactive oxygen species (ROS) have been shown to play a role in the pathophysiology of depression. Taking into account that experimental chronic unpredictable stress (CUS) induces depressive-like behavior and that ascorbic acid has antidepressant-like effect in animals, the objective of this study was to investigate the influence of ascorbic acid on depressive-like behavior induced by CUS paradigm, serum corticosterone levels and markers of oxidative stress in cerebral cortex and hippocampus of mice. Animals were submitted to CUS procedure during 14 days. From the 8th to the 14th day mice received ascorbic acid (10 mg/kg) or fluoxetine (10 mg/kg, conventional antidepressant, positive control) once a day by oral route. On 15th day behavioral and biochemical parameters were analyzed. CUS exposure caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test and decreased time in which mice spent grooming in the splash test. Depressive-like behavior induced by CUS was accompanied by a significant increased lipid peroxidation (cerebral cortex and hippocampus), decreased catalase (CAT) (cerebral cortex and hippocampus) and glutathione reductase (GR) (hippocampus) activities and reduced levels of glutathione (cerebral cortex). Repeated ascorbic acid or fluoxetine administration significantly reversed CUS-induced depressive-like behavior and oxidative damage. No alteration was observed in locomotor activity, corticosterone levels and glutathione peroxidase (GPx) activity. These findings indicate a rapid and robust effect of ascorbic acid in reversing behavioral and biochemical alterations induced by CUS in mice, suggesting that this vitamin may be an alternative approach for the management of depressive symptoms.

  2. First year sugar maple (Acer saccharum, Marsh. ) seedling nutrition, vesicular-arbuscular mycorrhizal colonization, physiology, and growth along an acidic deposition gradient in Michigan

    SciTech Connect

    McLaughlin, J.W.

    1992-01-01

    A field study was conducted to evaluate the use of foliar amino acid and root reducing sugar accumulations to separate acidic deposition from natural (i.e., soil phosphorus, mycorrhizae, and temperature) ecosystem stressors on first-year sugar maple seedling growth in three Michigan forests. Seedling growth was greatest at the sites exposed to highest levels of acidic deposition. However, sites receiving greatest acidic deposition rates also had high available soil phosphorus contents. No significant differences occurred, suggesting increased nitrogen loadings were not reflected in seedling tissue nitrogen. Seedling root or foliar calcium, magnesium, or potassium also were not significantly different, suggesting those elements were not growth limiting. Significant differences, however, occurred for seedling arginine and glutamine concentrations in foliage and reducing sugar concentrations in roots and were negatively correlated with seedling tissue phosphorus concentrations, suggesting phosphorus was limiting seedling growth at the low acidic deposition site. Vesicular-arbuscular mycorrhizal colonization of seedling roots was greater at the low acidic deposition site and positively correlated with seedling amino acid and reducing sugar accumulation but negatively correlated with sucrose concentrations in seedling roots, indicating that the fungal partner may have stimulated sucrose degradation to reducing sugars. Both air and soil temperatures were positively correlated with total sugar and sucrose concentrations in seedling roots. High levels of arginine, glutamine, and reducing sugars were negatively correlated with seedling growth indicating that seedlings at the low acidic deposition site were more stressed than seedlings at the sites receiving higher levels of pollutant loads. The results suggest differences in foliar arginine and glutamine and root reducing sugars in the forests in this study are likely due to natural rather than acidic deposition stress.

  3. Long-term response of surface water acid neutralizing capacity in a central Appalachian (USA) river basin to declining acid deposition

    NASA Astrophysics Data System (ADS)

    Kline, Kathleen M.; Eshleman, Keith N.; Garlitz, James E.; U'Ren, Sarah H.

    2016-12-01

    Long-term changes in acid-base chemistry resulting from declining regional acid deposition were examined using data from repeating synoptic surveys conducted within the 275 km2 Upper Savage River Watershed (USRW) in western Maryland (USA); a randomly-selected set of 40 stream reaches was sampled 36 times between 1999 and 2014 to: (1) repeatedly characterize the acid-base status of the entire river basin; (2) determine whether an extensive network of streams of varying order has shown signs of recovery in acid neutralizing capacity (ANC); and (3) understand the key factors controlling the rate of ANC recovery across the river network. Several non-parametric analyses of trends (i.e., Mann Kendall Trend: MKT tests; and Regional Kendall Trend: RKT) in streamwater acid-base chemistry suggest that USRW has significantly responded to declining acid deposition during the study period; the two most robust, statistically significant trends were decreasing surface water SO42- (∼1.5 μeq L-1 yr-1) and NO3- (∼1 μeq L-1 yr-1) concentrations-consistent with observed downward trends in regional wet S and N deposition. Basin-wide decreasing trends in K+, Mg2+, and Ca2+ were also observed, while Na+ concentrations increased. Significant ANC recovery was observed in 10-20% of USRW stream reaches (depending on the p level used), but the magnitude of the trend relative to natural variability was apparently insufficient to allow detection of a basin-wide ANC trend using the RKT test. Watershed factors, such as forest disturbances and increased application of road deicing salts, appeared to contribute to substantial variability in concentrations of NO3- and Na+ in streams across the basin, but these factors did not affect our overall interpretation of the results as a systematic recovery of USRW from regional acidification. Methodologically, RKT appears to be a robust method for identifying basin-wide trends using synoptic data, but MKT results for individual systems should be

  4. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado

    USGS Publications Warehouse

    Rattray, G.; Sievering, H.

    2001-01-01

    Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70ngNm-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200ngNm-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20ngNm-3. Large deposition velocities (>2cms-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols. Copyright (C) 2001 Elsevier Science B.V.Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200 ng N m-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to

  5. Protective effect of anacardic acids from cashew (Anacardium occidentale) on ethanol-induced gastric damage in mice.

    PubMed

    Morais, Talita C; Pinto, Natália B; Carvalho, Karine Maria M B; Rios, Jeison B; Ricardo, Nagila Maria P S; Trevisan, Maria Teresa S; Rao, Vietla S; Santos, Flávia A

    2010-01-05

    Cashew nut-shell liquid and the contained anacardic acids (AAs) have been shown to possess antioxidant, lipoxygenase inhibitory, anti-Helicobacter pylori and antitumor properties. Despite these known effects, hitherto there were no published reports on their likely gastroprotective effects. The present study was designed to verify whether AAs afford gastroprotection against the ethanol-induced gastric damage and to examine the underlying mechanism(s). Gastric damage was induced by intragastric administration of 0.2mL of ethanol (96%). Mice in groups were pretreated orally with AAs (10, 30 and 100mg/kg), misoprostol (50 microg/kg), or vehicle (2% Tween 80 in saline, 10mL/kg), 45min before ethanol administration. They were sacrificed 30min later, the stomachs excised, and the mucosal lesion area (mm(2)) measured by planimetry. Gastroprotection was assessed in relation to inhibition of gastric lesion area. To study the gastroprotective mechanism(s), its relations to capsaicin-sensitive fibers, endogenous prostaglandins, nitric oxide and ATP-sensitive potassium channels were analysed. Treatments effects on ethanol-associated oxidative stress markers GSH, MDA, catalase, SOD, and total nitrate/nitrite levels as an index of NO were measured in gastric tissue. Besides, the effects of AAs on gastric secretory volume and total acidity were analysed in 4-h pylorus-ligated rat. AAs afforded a dose-related gastroprotection against the ethanol damage and further prevented the ethanol-induced changes in the levels of GSH, MDA, catalase, SOD and nitrate/nitrite. However, they failed to modify the gastric secretion or the total acidity. It was observed that the gastroprotection by AAs was greatly reduced in animals pretreated with capsazepine, indomethacin, l-NAME or glibenclamide. These results suggest that AAs afford gastroprotection principally through an antioxidant mechanism. Other complementary mechanisms include the activation of capsaicin-sensitive gastric afferents

  6. Trajectory analysis of acid deposition data from the new jersey pine barrens

    NASA Astrophysics Data System (ADS)

    Budd, William W.

    This research provides an example of the application of a simple method for evaluating regional interrelationships using air parcel trajectory analysis. An assessment of trajectories associated with storms affecting McDonald's Branch watershed (39°50'N, 74°30'W) is presented. A simple classification system is used to examine regional contributions of acid precursors. The results of the work suggest that major regional sources of acid precursor emissions dominated precipitation acidity for the Pine Barrens region from 1978 to 1981. An incremental approach to acid precipitation policy is suggested.

  7. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  8. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro.

    PubMed

    Kanski, J; Lauderback, C; Butterfield, D A

    2001-01-01

    The antioxidant properties of 5-aminosalicylic acid in vitro were evaluated in a synaptosomal membrane system prepared from gerbil cortical synaptosomes using EPR spin labeling and spectroscopic techniques. MAL-6 (2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl) and 5-NS (5-nitroxide stearate) spin labels were used to assess changes in protein oxidation and membrane lipid fluidity, respectively. Synaptosomal membranes were subjected to oxidative stress by incubation with 1 mM azo-bis(isobutyronitrile) (AIBN) or 1 mM 2,2'-azobis(amidino propane) dihydrochloride (AAPH) at 37 degrees C for 30 minutes. The EPR analyses of the samples showed significant oxidation of synaptosomal proteins and a decrease in membrane fluidity. 5-Aminosalicylic acid also was evaluated by means of FRAP (the ferric reducing ability of plasma) test as a potential antioxidant. 5-Aminosalicylic acid also showed protection against the oxidation in gerbil cortical synaptosomes system caused by AIBN and AAPH. These results are consistent with the notion of antioxidant protection against free radical induced oxidative stress in synaptosomal membrane system by this agent.

  9. Long-term impact of acid resin waste deposits on soil quality of forest areas I. Contaminants and abiotic properties.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    Acid resins are residues characterised by elevated concentrations of hydrocarbons and trace elements, which were produced by mineral oil industries in Central Europe during the first half of the last century. Due to the lack of environmental legislation at that time, these wastes were dumped into excavated ponds in public areas without further protection. In this work, the long-term effects of such resin deposits on soil quality of two forest areas (Bayern, Germany) were assessed. We evaluated the distribution and accumulation of contaminants in the surroundings of the deposits, where the waste was disposed of about 60 years ago. General soil chemical properties such as pH, C, N and P content were also investigated. Chemical analysis of resin waste from the deposits revealed large amounts of potential contaminants such as hydrocarbons (93 g kg(-1)), As (63 mg kg(-1)), Cd (24 mg kg(-1)), Cu (1835 mg kg(-1)), Pb (8100 mg kg(-1)) and Zn (873 mg kg(-1)). Due to the location of the deposits on a hillside and the lack of adequate isolation, contaminants have been released downhill despite the solid nature of the waste. Five zones were investigated in each site: the deposit, three affected zones along the plume of contamination and a control zone. In affected zones, contaminants were 2 to 350 times higher than background levels depending on the site. In many cases, contaminants exceeded the German environmental guidelines for the soil-groundwater path and action levels based on extractable concentrations. Resin contamination yielded larger total C/total N ratios in affected zones, but no clear effect was observed on absolute C, N and P concentrations. In general, no major acidification effect was reported in affected zones.

  10. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf

    NASA Astrophysics Data System (ADS)

    Kazil, J.; McKeen, S.; Kim, S.-W.; Ahmadov, R.; Grell, G. A.; Talukdar, R. K.; Ravishankara, A. R.

    2014-12-01

    Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (≥100μgL-1), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89μgL-1, with peak values of 7.8μgL-1, for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations.

  11. Hyperspectral data for assessment of temporal changes in Norway spruce forest conditions in the mountainous region of the Czech Republic affected by long-term acidic deposition

    NASA Astrophysics Data System (ADS)

    Albrechtova, J.; Lhotakova, Z.; Misurec, J.; Kopackova, V.; Campbell, P. K. E.; Edwards-Jonasova, M.; Kupkova, L.; Cervena, L.; Potuckova, M.; Cudlin, P.

    2015-12-01

    The Ore Mts. located in the western part of the Czech Republic suffered during 1950's-1990´s heavy atmospheric pollution due to the mining activities and brown coal combustion. Acidic deposition in combination with harsh climatic conditions led there to large-scale forest decline. Although the load of SO2 has significantly decreased since 1991, tree damage was still visible in 1998 in terms of high defoliation or dead trees. Nowadays Norway spruce trees do not exhibit visible symptoms of damage but the full recovery of Norway spruce forests is not complete yet due to persisting adverse soil conditions. The temporal changes in the physiological status of Norway spruce forests in the Krušné Hory Mts. were evaluated using two sets of spectral images acquired in 1998 (ASAS) and in 2013 (APEX) and ground truth data (LAI, tree crown status, photosynthetic pigment contents, leaf spectral properties measured by spectroradiometer, soil properties - pH, contents of basic cations, heavy metals, etc.). Ground truth data were evaluated by unconstrained and constrained multivariate analyses using Canoco 5. The high resolution spectral images (ASAS and APEX) enabled the identification of a gradient of forest conditions and their comparison. In 1998 the stands exhibited different physiological status corresponding to the pollution gradient with healthier trees at the western part of the mountains. Analysis of the foliar chemistry in 2013 show a slight improvement of the Norway spruce physiological status in the eastern part of the mountains while the status of the western-located stands slightly worsened. In 2013 we also studied the differences in soil geochemical conditions, which appeared to be less favorable in the western part of the mountains characterized by a low base cation contents in the top organic horizon and a very low pH (pH<3).

  12. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  13. The Goldfield mining district, Nevada: an acid sulfate bonanza gold deposit

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2000-01-01

    This paper provides an introduction to the geology, ore deposits, and fluid geochemistry of the Goldfield mining district, Esmerelda and Nye Counties, Nevada. Also included is a brief interpretation of mineral maps of the western half of the district which were recently produced from remotely sensed imagery acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) systems operated by NASA JPL.

  14. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H₂S and SO₂.

    PubMed

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-11-10

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF₆, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H₂S and SO₂, two decomposed products of SF₆ under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H₂S and SO₂ when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H₂S and SO₂ in gas-insulated switchgears at room temperature.

  15. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2

    PubMed Central

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-01-01

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature. PMID:27834895

  16. Contributions of acid deposition and natural processes to cation leaching from forest soils: a review

    SciTech Connect

    Johnson, D.W.; Van Miegroet, H.; Cole, D.W.; Richter, D.D.

    1983-01-01

    Methods of quantifying the roles of atmospheric acid inputs and internal acid generation by carbonic, organic, and nitric acids are illustrated by reviewing data sets from several intensively studied sites in North America. Some of the sites (tropical, Costa Rica (La Selva); temperate deciduous, Tennessee (Walker Branch); and temperate coniferous, Washington (Thompson)) received acid precipitation whereas others (northern, southeast Alaska (Petersburg); and subalpine, Washington Cascades (Findley Lake)) did not. Natural leaching by carbonic acid dominated soil leaching in the tropical and temperate coniferous sites, nitric acid (caused by nitrification) dominated leaching in an N-fixing temperate deciduous site (red alder in Washington), and organic acids dominated surface soil leaching in the subalpine site and contributed to leaching of surface soils in several other sites. Only at the temperate deciduous sites in eastern Tennessee did atmospheric acid input play a major role in soil leaching. In no case, however, are the annual net losses of cations regarded as alarming as compared to soil exchangeable cation capital.

  17. Uric acid deposits and estivation in the invasive apple-snail, Pomacea canaliculata.

    PubMed

    Giraud-Billoud, Maximiliano; Abud, María A; Cueto, Juan A; Vega, Israel A; Castro-Vazquez, Alfredo

    2011-04-01

    The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.

  18. Hyaluronic acid uptake in the assessment of sinusoidal endothelial cell damage after cold storage and normothermic reperfusion of rat livers.

    PubMed

    Reinders, M E; van Wagensveld, B A; van Gulik, T M; Frederiks, W M; Chamuleau, R A; Endert, E; Klopper, P J

    1996-01-01

    The uptake of hyaluronic acid (HA) was used to assess preservation damage to sinusoidal endothelial cells (SEC) during cold storage and subsequent normothermic reperfusion of rat livers. After 8, 16, 24, and 48 h storage in University of Wisconsin (UW) solution, livers were gravity-flushed via the portal vein with a standard volume of cold UW solution containing 50 micrograms/l HA. The effluent was collected for analysis of HA, aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). The mean uptake of HA at 0 h was 59.1% +/- 4.6% (mean +/- SEM). After 8 h of storage, HA uptake was similar (55.5% +/- 7.3%), whereas after 16 h of storage it was reduced to 34.7% +/- 5.8%. At 24 and 48 h of storage, no uptake of HA was found. In a second series of experiments, livers were stored in UW solution and subsequently reperfused for 90 min with a Krebs-Henseleit solution (37 degrees C) in a recirculating system containing 150 micrograms/l HA. Following 8 h of storage, 34.6% +/- 8.0% of the initial HA concentration was taken up from the perfusate. After 16 and 24 h of storage, no uptake of HA was found. The results of this study indicate that damage to SEC occurs progressively during storage, leading to zero uptake of HA by the rat livers at 24 h of cold ischemia time. Additional reperfusion injury to the SEC was demonstrated by the reduced ability of the SEC to take up HA following normothermic reperfusion. The uptake of exogenous HA in preserved livers, used as a tool to assess SEC injury, enables the detection of early preservation damage.

  19. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    PubMed Central

    Li, Y.; Ma, Q. G.; Zhao, L. H.; Guo, Y. Q.; Duan, G. X.; Zhang, J. Y.; Ji, C.

    2014-01-01

    Alpha-lipoic acid (α-LA) is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1). Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver. PMID:25050030

  20. Evidence that d-cysteine protects mice from gastric damage via hydrogen sulfide produced by d-amino acid oxidase.

    PubMed

    Souza, Luan Kelves M; Araújo, Thiago S L; Sousa, Nayara A; Sousa, Francisca Beatriz M; Nogueira, Kerolayne M; Nicolau, Lucas A D; Medeiros, Jand Venes R

    2017-04-01

    Hydrogen sulfide (H2S) is a signaling molecule in the gastrointestinal tract. H2S production can derive from d-cysteine via various pathways, thus pointing to a new therapeutic approach: delivery of H2S to specific tissues. This study was designed to evaluate the concentration and effects of H2S (generated by d-amino acid oxidase [DAO] from d-cysteine) in the gastric mucosa and the protective effects against ethanol-induced lesions in mice. Mice were treated with l-cysteine or d-cysteine (100 mg/kg per os). Other groups received oral l-propargylglycine (cystathionine γ-lyase inhibitor, 100 mg/kg) or indole-2-carboxylate (DAO inhibitor), and 30 min later, received d- or l-cysteine. After 30 min, 50% ethanol (2.5 mL/kg, per os) was administered. After 1 h, the mice were euthanized and their stomachs excised and analyzed. Pretreatment with either l-cysteine or d-cysteine significantly reduced ethanol-induced lesions. Pretreatment of d-cysteine- or l-cysteine-treated groups with indole-2-carboxylate reversed the gastroprotective effects of d-cysteine but not l-cysteine. Histological analysis revealed that pretreatment with d-cysteine decreased hemorrhagic damage, edema, and the loss of the epithelium, whereas the administration of indole-2-carboxylate reversed these effects. d-Cysteine also reduced malondialdehyde levels but maintained the levels of reduced glutathione. Furthermore, pretreatment with d-cysteine increased the synthesis of H2S. Thus, an H2S-generating pathway (involving d-cysteine and DAO) is present in the gastric mucosa and protects this tissue from ethanol-induced damage by decreasing direct oxidative damage.

  1. Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation.

    PubMed

    Nunan, David; Howatson, Glyn; van Someren, Ken A

    2010-02-01

    The purpose of this study was to examine the effects of combined oral beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on indices of exercise-induced muscle damage (EIMD) after an acute bout of eccentric-biased exercise. Fourteen male subjects were allocated to 2 groups: a placebo group (3 g.d corn flour, N = 7) or an HMB + KIC group (3 g.d HMB and 0.3 g.d KIC, N = 7). Supplementation commenced 11 days before a 40-minute bout of downhill running and continued for 3 days post-exercise. Delayed-onset muscle soreness, mid-thigh girth, knee extensor range of motion, serum creatine kinase (CK) activity, and isometric and concentric torque were assessed pre-exercise and at 24, 48, and 72 hours post-exercise. Delayed-onset muscle soreness, CK activity, and isometric and concentric torque all changed over the 72-hour period (p < 0.05); however, HMB + KIC had no significant effect on any of the indices of muscle damage. Although 14 days HMB and KIC supplementation did not attenuate indices of EIMD after an acute bout of unaccustomed eccentric-biased exercise, there was a trend for a more rapid rate of recovery in isometric and isokinetic muscle function. beta-hydroxy-beta-methylbutyrate and KIC may therefore provide limited benefit in the recovery of muscle function after EIMD in untrained subjects or after unaccustomed exercise.

  2. Phenolic acid protects of renal damage induced by ochratoxin A in a 28-days-oral treatment in rats.

    PubMed

    Cariddi, L N; Escobar, F M; Sabini, M C; Campra, N A; Bagnis, G; Decote-Ricardo, D; Freire-de-Lima, C G; Mañas, F; Sabini, L I; Dalcero, A M

    2016-04-01

    The present study aimed to characterize the chlorogenic acid (ChlA) capacity to reverse the toxic effects induced by ochratoxin A (OTA) in a subacute toxicity test in rats. Male Wistar rats were fed orally by gavage for 28 days with OTA (0.4mg/kg bw/day), ChlA (5mg/kg bw/day) or the combination OTA (0.4mg/kg bw/day)+ChlA (5mg/kg bw/day). No deaths, no decrease in feed intake or body weight in any experimental group were recorded. The negative control group and the animals treated with ChlA alone showed no changes in any parameters evaluated. In OTA-treated group significant changes such as decrease in urine volume, proteinuria, occult blood, increase in serum creatinine values; decrease in absolute and relative kidney weight and characteristics histopathological lesions that indicated kidney damage were observed. However, limited effect on oxidative stress parameters were detected in kidneys of OTA-treated group. Animals treated with the combination OTA+ChlA were showed as negative control group in the evaluation of several parameters of toxicity. In conclusion, ChlA, at given concentration, improved biochemical parameters altered in urine and serum and pathological damages in kidneys induced by OTA exposure, showing a good protective activity, but not by an apparent antioxidant mechanism.

  3. Protective effects of PF-4708671 against N-methyl-d-aspartic acid-induced retinal damage in rats.

    PubMed

    Hayashi, Ikumi; Aoki, Yuto; Ushikubo, Hiroko; Asano, Daiki; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2016-12-01

    We previously demonstrated that rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), protects against N-methyl-d-aspartic acid (NMDA)-induced retinal damage in rats. Rapamycin inhibits mTOR activity, thereby preventing the phosphorylation of ribosomal protein S6, which is a downstream target of S6 kinase. Therefore, we aimed to determine whether PF-4708671, an inhibitor of S6 kinase, protects against NMDA-induced retinal injury. Intravitreal injection of NMDA (200 nmol/eye) caused cell loss in the ganglion cell layer and neuroinflammatory responses, such as an increase in the number of CD45-positive leukocytes and Iba1-positive microglia. Surprisingly, simultaneous injection of PF-4708671 (50 nmol/eye) with NMDA significantly attenuated these responses without affecting phosphorylated S6 levels. These results suggest that PF-4708671 and rapamycin likely protect against NMDA-induced retinal damage via distinct pathways. The neuroprotective effect of PF-4708671 is unlikely to be associated with inhibition of the S6 kinase, even though PF-4708671 is reported to be a S6 kinase inhibitor.

  4. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  5. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Xu, Wenqing; Yang, Fujun; Zhang, Yujie; Shen, Xiu

    2016-01-01

    Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony–forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of 137Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice. PMID:27006381

  6. Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant.

    PubMed

    Zhou, Yang; Ding, Chunyue; Qian, Xueren; An, Xianhui

    2015-01-22

    Polyaniline (PANI)-deposited electrically conductive and flame retardant paper composite was prepared using phytic acid (PA) as dopant or co-dopant. PA as doping acid greatly improved the flame retardancy of PANI-deposited paper composite whilst the conductivity was lower compared with using 5-sulfosalicylic acid (SSA) as doping acid. Lower temperature was favorable to obtain PANI-deposited paper composite with both higher conductivity and better flame retardancy. Conductivity of PANI-deposited paper composite increased with increase of doping acid concentration and the suitable PA concentration range was 0.15-0.3 mol/L depending on the requirement of conductivity and flame retardancy. The PANI-deposited paper composite was characterized by SEM, TGA and XPS. The outstanding flame retardancy of PA-doped paper composite was caused by the synergetic effect of PANI coating and H3PO4. Both higher flame retardancy and higher conductivity of PANI-deposited paper composite were obtained by co-doping of SSA with PA.

  7. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-02-20

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity.

  8. Field and airborne spectral characterization of suspected damage in red spruce (picea rubens) from Vermont

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.; Williams, D. L.

    1985-01-01

    The utilization of remote sensing to monitor forest damage due to acid deposition is investigated. Spectral and water measurements and aircraft radiance data of red spruce and balsam fir, collected in Camels Hump Mountain and Ripton, Vermont between August 13-20, 1984, are analyzed to evaluate the damage levels of the trees. Variations in reflectance features and canopy moisture content are studied. It is observed that damage correlates with elevation (greater damage at higher elevations); xylem water column tension is greater at higher damage sites; and a 'blue shift' is indicated in the spectral data at high damage sites.

  9. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition

    PubMed Central

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-01-01

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO2 concentration, and SO4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes. PMID:28393872

  10. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the

  11. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    SciTech Connect

    Lu, Yunxia; Cheng, Jingjing; Chen, Li; Li, Chaofei; Chen, Guanjun; Gui, Li; Shen, Bing; Zhang, Qiu

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  12. Ursolic Acid-Regulated Energy Metabolism—Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage?

    PubMed Central

    Lee, Yuan-Hao; Sun, Youping; Glickman, Randolph D.

    2014-01-01

    acid (UA), which results in the metabolic adaptation of normal cells against UV-induced ROS, and the metabolic switch of tumor cells subject to UV-induced damage. The multifaceted natural compound, UA, specifically inhibits photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, this article reviews the disparities in glucose metabolism between tumor and normal cells, along with (peroxisome proliferator-activated receptor-γ coactivator 1α)-dependent mitochondrial metabolism and redox (reduction-oxidation) control to demonstrate UA-induced synthetic lethality in tumor cells. PMID:28250388

  13. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  14. Induction of DNA Damage Response by the Supravital Probes of Nucleic Acids

    PubMed Central

    Zhao, Hong; Traganos, Frank; Dobrucki, Jurek; Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2009-01-01

    The aim of this study was to assess the potential DNA damage response (DDR) to four supravitally used biomarkers Hoechst 33342 (Ho 42), DRAQ5, DyeCycle Violet (DCV) and SYTO 17. A549 cells were exposed to these biomarkers at concentrations generally applied to live cells and their effect on histone H2AX (Ser 139), p53 (Ser15), ATM (Ser1981) and Chk2 (Thr68) phosphorylation was assessed using phospho-specific Abs. Short-term treatment with Ho 42 led to modest degree of ATM activation with no evidence of H2AX, Chk2 or p53 phosphorylation. However, pronounced ATM, Chk2 and p53 phosphorylation and perturbed G2 progression were seen after 18 h. While short-term treatment with DRAQ5 induced ATM activation with no effect on H2AX, Chk2 and p53, dramatic changes marked by a high degree of H2AX, ATM, Chk2 and p53 phosphorylation, all occurring predominantly in S phase cells, and a block in cell cycle progression, were seen after 18 h exposure. These changes suggest that the DRAQ5-induced DNA lesions may become converted into double-strand DNA breaks during replication. Exposure to DCV also led to an increase in the level of activated ATM and Chk2 as well as of phosphorylated p53 and accumulation of cells in G2M and S phase. Exposure to SYTO 17 had no significant effect on any of the measured parameters. The data indicate that supravital use of Ho 42, DRAQ5 and DCV induces various degrees of DDR, including activation of ATM, Chk2 and p53, which may have significant consequences on regulatory cell cycle pathways and apoptosis. PMID:19373929

  15. Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery

    PubMed Central

    Yuan, Hong; Bao, Xin; Du, Yong-Zhong; You, Jian; Hu, Fu-Qiang

    2012-01-01

    Purpose: Both polymer micelles and mesoporous silica nanoparticles have been widely researched as vectors for small molecular insoluble drugs. To combine the advantages of copolymers and silica, studies on the preparation of copolymer-silica composites and cellular evaluation were carried out. Methods: First, a stearic acid-g-chitosan (CS-SA) copolymer was synthesized through a coupling reaction, and then silicone oxide (SiO2)-deposited doxorubicin (DOX)-loaded stearic acid-g-chitosan (CS-SA/SiO2/DOX) nanoparticles were prepared through the sol-gel reaction. Physical and chemical properties such as particle size, zeta potential, and morphologies were examined, and small-angle X-ray scattering (SAXS) analysis was employed to identify the mesoporous structures of the generated nanoparticles. Cellular uptake and cytotoxicity studies were also conducted. Results: CS-SA/SiO2/DOX nanoparticles with different amounts of SiO2 deposited were obtained, and SAXS studies showed that mesoporous structures existed in the CS-SA/SiO2/DOX nanoparticles. The mesoporous size of middle-ratio and high-ratio deposited CS-SA/SiO2/DOX nanoparticles were 4–5 nm and 8–10 nm, respectively. Based on transmission electron microscopy images of CS-SA/SiO2/DOX nanoparticles, dark rings around the nanoparticles could be observed in contrast with CS-SA/DOX micelles. Furthermore, CS-SA/SiO2/DOX nanoparticles exhibited faster release behavior in vitro than CS-SA/DOX micelles; cellular uptake research in A549 indicated that the CS-SA/SiO2/DOX nanoparticles were taken up by A549 cells more rapidly, and that CS-SA/SiO2/DOX nanoparticles entered the cell more easily when the amount of SiO2 was higher. IC50 values of CS-SA/DOX micelles, CS-SA/SiO2/DOX-4, CS-SA/SiO2/DOX-8, and CS-SA/SiO2/DOX-16 nanoparticles against A549 cells measured using the MTT assay were 1.69, 0.93, 0.32, and 0.12 μg/mL, respectively. Conclusion: SiO2-deposited stearic acid-g-chitosan organic–inorganic composites show promise

  16. Features of the damage produced by proflavine on transforming deoxyribonucleic acid.

    PubMed

    Cabrera-Juárez, E; Sánchez-Rincón, D A

    1979-03-01

    Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation.

  17. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  18. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  19. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats.

    PubMed

    Arteaga, Olatz; Revuelta, M; Urigüen, L; Martínez-Millán, L; Hilario, E; Álvarez, A

    2016-10-29

    As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

  20. Dry deposition of acidic air pollutants to tree leaves, determined by a modified leaf-washing technique

    NASA Astrophysics Data System (ADS)

    Watanabe, Mirai; Takamatsu, Takejiro; Koshikawa, Masami K.; Yamamura, Shigeki; Inubushi, Kazuyuki

    Dry deposition fluxes ( FL) of NO 3- and SO 42- to leaf surfaces were measured for Japanese red pine ( Pinus densiflora), Japanese cedar ( Cryptomeria japonica), Japanese cypress ( Chamaecyparis obtusa), and Japanese white oak ( Quercus myrsinaefolia), together with atmospheric concentrations ( CL) of NO x (NO + NO 2), T-NO 3 (gaseous HNO 3 + particulate NO 3-) and SO x (gaseous SO 2 + particulate SO 42-) around the leaves in a suburban area of Japan, using a modified leaf-washing technique. FL of NO 3- and SO 42- decreased as follows: pine >> cedar > cypress ≥ oak and pine >> cedar > oak ≥ cypress, respectively. FL of NO 3- for all tree species fluctuated synchronously with CL of T-NO 3. FL of SO 42- fluctuated with CL of SO x, but the dominant pollutant deposited (SO 2 or SO 42-) appeared to differ for different tree species. Dry deposition conductance ( KL) of T-NO 3 and SO x was derived as an FL/ CL ratio. Seasonal variations of KL likely reflect the gas/particle ratios of T-NO 3 and SO x, which were affected by meteorological conditions such as temperature. Dry deposition velocities ( Vd) of T-NO 3 and SO x were obtained as the mathematical product of annual mean KL and the total leaf surface areas in the forests. The comparison of Vd among tree species indicated that the loads of acidic air pollutants were higher to coniferous forests than broad-leaved forest because of the higher KL and/or larger leaf surface areas.

  1. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Yang, Xuezhi; Wang, Qi; Qu, Xiaolei; Jiang, Wei

    2017-02-12

    Natural organic matter influences the carbon nanotube transport in aqueous environments. The role of bound humic acid (HA) on carbon nanotubes and unbound HA in bulk solution in the aggregation and deposition of carboxylated multi-walled carbon nanotubes (C-MWNTs) was examined in NaCl and CaCl2 electrolyte solution. Time-resolved dynamic light scattering and quartz crystal microbalance with dissipation monitoring were employed to investigate the C-MWNT aggregation and deposition kinetics, respectively. The critical coagulation concentration (CCC) of C-MWNTs is 30mM in NaCl and 3mM in CaCl2. The bound HA results in CCCs of 32mM in NaCl and 2.9mM in CaCl2. However, the existing unbound HA causes much slower aggregation in both NaCl and CaCl2 electrolytes and results in CCCs of 86mM in NaCl and 5.8mM in CaCl2. The HA adsorption experiment confirms the additional adsorption of unbound HA in the presence of cations, which can increase the steric effect between C-MWNTs. The more negative charge of C-MWNTs in the presence of unbound HA also stabilizes the suspension. In contrast, the bound HA on C-MWNTs has a more remarkable effect on the deposition rate on the SiO2 surface than the unbound HA. Bound HA changes the C-MWNT surface functional groups, leading to differences in the interaction between C-MWNTs and the SiO2 surface. Hence, the C-MWNTs dispersed by their covalently bonded oxygen-containing groups on the carbon framework and dispersed by the bound HA show nearly the same aggregation rates but quite different deposition rates. The additional unbound HA adsorption does not change the surface functional groups or the changing trend of the CNT deposition rate. Distinguishing the role of bound and unbound HA in the aggregation and deposition of carbon nanomaterials is important to predict their transport in various natural waters.

  2. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  3. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective

    PubMed Central

    Peng, Mengling; Han, Jing; Li, Longlong; Ma, Haitian

    2016-01-01

    (-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens. PMID:27586962

  4. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  5. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage

    PubMed Central

    Chen, SH; Wu, HM; Ossola, B; Schendzielorz, N; Wilson, BC; Chu, CH; Chen, SL; Wang, Q; Zhang, D; Qian, L; Li, X; Hong, JS; Lu, RB

    2012-01-01

    BACKGROUND AND PURPOSE Prevention or disease-modifying therapies are critical for the treatment of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. However, no such intervention is currently available. Growing evidence has demonstrated that administration of histone deacetylase (HDAC) inhibitors ameliorates a wide range of neurologic and psychiatric disorders in experimental models. Suberoylanilide hydroxamic acid (SAHA) was the first HDAC inhibitor approved by the Food and Drug Administration for the sole use of cancer therapy. The purpose of this study was to explore the potential new indications of SAHA for therapy of neurodegenerative diseases in in vitro Parkinson's disease models. EXPERIMENTAL APPROACH Mesencephalic neuron–glia cultures and reconstituted cultures were used to investigate neurotrophic and neuroprotective effects of SAHA. We measured toxicity in dopaminergic neurons, using dopamine uptake assay and morphological analysis and expression of neurotrophic substances by enzyme-linked immunosorbent assay and real-time RT PCR. KEY RESULTS In mesencephalic neuron–glia cultures, SAHA displayed dose- and time-dependent prolongation of the survival and protection against neurotoxin-induced neuronal death of dopaminergic neurons. Mechanistic studies revealed that the neuroprotective effects of SAHA were mediated in part by promoting release of neurotrophic factors from astroglia through inhibition of histone deacetylation. CONCLUSION AND IMPLICATIONS The novel neurotrophic and neuroprotective effects of SAHA demonstrated in this study suggest that further study of this HDAC inhibitor could provide a new therapeutic approach to the treatment of neurodegenerative diseases. PMID:21726209

  6. Alternate deposition of oriented calcite and amino acid layer on calcite substrates.

    PubMed

    Qiao, Li; Feng, Qingling; Li, Zhuo; Lu, Shanshan

    2008-10-30

    Material synthesis inspired by novel nacre architecture and mechanism is popular and has attracted more and more attention. In this paper, iso-oriented calcite tablets/layers and amino acid layers were formed alternately on calcite wafers. It is interesting that the neonatal calcite tablets/layers have the same crystal orientation with their inorganic substrates through amino acid layers. It is quite possible that the amino acid layers in this study could transfer crystal orientation from formed inorganic layers to neighboring neonatal layers due to their fixed and appropriate structures, which may imply the process of nacre formation, and the role of aligned organic matrix sheets in nacre. Moreover, it could provide a new way to produce oriented calcite tablets/layers.

  7. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  8. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  9. Simulation of Stream Water Alkalinity Under Scenarios of Changing Acidic Deposition and Changing Climate.

    NASA Astrophysics Data System (ADS)

    Welsch, D. L.; Cosby, B.; Hornberger, G. M.

    2003-12-01

    Models of soil and stream water and catchment acidification have typically been applied without consideration of climate change. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter. We simulate this increase by applying a coupled series of models which simulate soil temperature, soil tension, catchment hydrology, soil air CO2 concentrations, and soil and stream water chemistry to predict daily stream water alkalinity values for a small catchment in the Blue Ridge of Virginia for 60 years into the future given stochastically generated daily climate values. This is done for four different scenarios of climate change and atmospheric deposition change. We find that stream water alkalinity continues to decline for all scenarios except when climate is gradually warming and becoming more moist, indicating the influence of increasing soil air CO2 concentrations on stream water chemistry. In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity change resulting from climate change. This has strong implications given the extent that models such as MAGIC are used to establish policy and legislation concerning deposition and emissions.

  10. Hydrocaffeic and p-coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells in vitro and rabbit eye in vivo.

    PubMed

    Larrosa, Mar; Lodovici, Maura; Morbidelli, Lucia; Dolara, Piero

    2008-10-01

    This paper studied the effect on UV-B ocular damage of 10microM hydrocaffeic acid (HCAF) alone and as a mixture (MIX) (5 microM HCAF+5 microM p-coumaric acid). Since ocular UV-B damage is mediated by reactive oxygen species, the aim was to test if HCAF and MIX could reduce oxidation damage in human conjunctival cells (WKD) in vitro and in cornea and sclera of rabbits in vivo. After UVB irradiation (44 J/m(2)) of WKD cells, 8-oxodG levels in DNA were markedly increased and this effect was attenuated by HCAF and MIX. Rabbit eyes were treated by application of HCAF and MIX drops before UV-B exposure (79 J/m(2)). Corneal and scleral DNA oxidation damage, xanthine-oxidase (XO) activity and malondialdehyde levels (MDA) in corneal tissue and prostaglandin E(2) (PGE(2)) in the aqueous humour were reduced by HCAF alone and in combination with p-coumaric acid, showing their potential as a topical treatment against UV-B damage.

  11. ELECTROCHEMICALLY DEPOSITED POLYMER-COATED GOLD ELECTRODES SELECTIVE FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Electropolymerized membranes on gold electrodes doped with 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared from a solution containing resorcinol, o-phenylenediamine and 2,4-D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interact...

  12. Characterization of a DNA-damage-recognition protein from F9 teratocarcinoma cells, which is inducible by retinoic acid and cyclic AMP.

    PubMed

    Chao, C C; Sun, N K; Lin-Chao, S

    1993-02-15

    A nuclear protein that recognizes u.v.-damaged DNA was detected in extracts from murine F9 embryonic stem cells using a DNA-binding assay. The nuclear-protein-binding activity was increased in cells after treatment with retinoic acid/dibutyryl cyclic AMP (dbcAMP), with optimum induction at 6 days. In vitro treatment of nuclear extracts with agents that affect protein conformation (such as urea, Nonidet P40 and Ca2+) slightly modulated the damage-recognition activity. Furthermore, treatment of nuclear extracts with phosphatase dramatically inhibited the binding activity. In addition, damaged-DNA recognition of the nuclear extracts was effectively inhibited by damaged double- and single-stranded DNA. The expression of the nuclear protein with similar characteristics was abundant in HeLa cells and was increased in drug- or u.v.-resistant cells. The findings suggest that the recognition of a u.v.-DNA adduct is modulated, at least in part, by an activity that is induced during retinoic acid/dbcAMP-induced differentiation. These results also imply that the identified damage-recognition protein may be important for the sensitivity or resistance of mammalian cells to DNA damage.

  13. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells.

    PubMed

    Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay

    2014-01-01

    Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.

  14. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia.

    PubMed

    Zendedel, Adib; Habib, Pardes; Dang, Jon; Lammerding, Leoni; Hoffmann, Stefanie; Beyer, Cordian; Slowik, Alexander

    2015-01-15

    Omega-3 polyunsaturated fatty acids (PUFA n3) provide neuroprotection due to their anti-inflammatory and anti-apoptotic properties as well as their regulatory function on growth factors and neuronal plasticity. These qualities enable PUFA n3 to ameliorate stroke outcome and limit neuronal damage. Young adult male rats received transient middle cerebral artery occlusion (tMCAO). PUFA n3 were intravenously administered into the jugular vein immediately after stroke and 12h later. We analyzed stroke volume and behavioral performance as well as the regulation of functionally-relevant genes in the penumbra. The extent of ischemic damage was reduced and behavioral performance improved subject to applied PUFA n3. Expression of Tau and growth-associated protein-43 genes were likewise restored. Ischemia-induced increase of cytokine mRNA levels was abated by PUFA n3. Using an in vitro approach, we demonstrate that cultured astroglial and microglia directly respond to PUFA n3 administration by preventing ischemia-induced increase of cyclooxygenase 2, hypoxia-inducible factor 1alpha, inducible nitric oxide synthase, and interleukin 1beta. Cultured cortical neurons also appeared as direct targets, since PUFA n3 shifted the Bcl-2-like protein 4 (Bax)/B-cell lymphoma 2 (Bcl 2) ratio towards an anti-apoptotic constellation. Thus, PUFA n3 reveal a high neuroprotective and anti-inflammatory potential in an acute ischemic stroke model by targeting astroglial and microglial function as well as improving neuronal survival strategies. Our findings signify the potential clinical feasibility of PUFA n3 therapeutic treatment in stroke and other acute neurological diseases.

  15. Free amino acid concentrations and nitrogen isotope signatures in Pinus massoniana (Lamb.) needles of different ages for indicating atmospheric nitrogen deposition.

    PubMed

    Xu, Yu; Xiao, Huayun

    2017-02-01

    Free amino acid concentrations and nitrogen (N) isotopic composition in new current-year (new), mature current-year (middle-aged) and previous-year (old) Masson pine (Pinus massoniana Lamb.) needles were determined to indicate atmospheric N deposition in Guiyang (SW China). In different areas, free amino acids (especially arginine) concentrations in new and middle-aged needles were higher than in old needles, and the variation of free amino acids (especially arginine) concentrations in new and middle-aged needles was also greater than in old needles. This indicate that free amino acids in new and middle-aged needles may be more sensitive to N deposition compared to old needles. Moreover, concentrations of total free amino acids, arginine, histidine, γ-aminobutyric acid and alanine in middle-aged needles exhibited a strong relationship with N deposition (P < 0.05). Needle δ(15)N values showed a strong gradient from central Guiyang to the rural area, with more positive δ(15)N (especially in old needles) in the city center (0-5 km) and more negative δ(15)N (especially in old needles) in rural area (30-35 km). These suggest that N deposition in the urban center may be dominated by (15)N-enriched NOx-N from traffic exhausts, while it is dominated by isotopically light atmospheric NHx-N from agriculture in rural area. Soil δ(15)N decreased slightly with distance from the city center, and the difference in δ(15)N values between the soil and needles (especially for old needles) increased significantly with the distance gradient, indicating that atmospheric N deposition may be an important N source for needles. This study provides novel evidence that free amino acids in needles and age-dependent needle δ(15)N values are useful indicators of atmospheric N deposition.

  16. A cupric silver histochemical analysis of domoic acid damage to olfactory pathways following status epilepticus in a rat model for chronic recurrent spontaneous seizures and aggressive behavior.

    PubMed

    Tiedeken, Jessica A; Muha, Noah; Ramsdell, John S

    2013-01-01

    The amnesic shellfish toxin, domoic acid, interferes with glutamatergic pathways leading to neuronal damage, most notably causing memory loss and seizures. In this study, the authors utilized a recently developed rat model for domoic acid-induced epilepsy, an emerging disease appearing in California sea lions weeks to months after poisoning, to identify structural damage that may lead to a permanent epileptic state. Sprague Dawley rats were kindled with several low hourly intraperitoneal doses of domoic acid until a state of status epilepticus (SE) appears. This kindling approach has previously been shown to induce a permanent state of epileptic disease in 96% animals within 6 months. Three animals were selected for neurohistology a week after the initial SE. An amino cupric silver staining method using neutral red counterstain was used on every eighth 40 µm coronal section from each brain to highlight neural degeneration from the olfactory bulb through the brain stem. The most extensive damage was found in the olfactory bulb and related olfactory pathways, including the anterior/medial olfactory cortices, endopiriform nucleus, and entorhinal cortex. These findings indicate that damage to olfactory pathways is prominent in a rat model for domoic acid-induced chronic recurrent spontaneous seizures and aggressive behavior.

  17. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II.

    PubMed

    Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-03-18

    Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.

  18. Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric mucosal damage induced by intensive stress

    PubMed Central

    Akinci, Aysin; Cetin, Asli; Ates, Burhan

    2015-01-01

    Introduction Oxidative stress has been considered to play a primary role in the pathogenesis of stress-induced gastric damage. The aim of this study was to investigate the effects of melatonin, ascorbic acid and β-carotene on stress-induced gastric mucosal damage. Material and methods Fifty-six male Wistar albino rats were divided into control, stress, stress + standard diet, stress + saline, stress + melatonin, stress + ascorbic acid and stress + β-carotene groups. The rats from stress groups were exposed to starvation, immobilization and cold by immobilizing for 8 h at +4°C following 72-hour food restriction. Following stress application, melatonin, ascorbic acid and β-carotene were administered for 7 days. Specimens of gastric tissue were prepared for microscopic and biochemical examinations. Results Mean histopathological damage scores and mean tissue malondialdehyde levels were significantly decreased but mean tissue glutathione levels and glutathione peroxidase and superoxide dismutase activities were increased in treatment groups vs. stress groups in general. Mean histopathological damage scores of the stress + Mel group was lower than those of stress + D, stress + S, stress + β-car (p < 0.05) and stress + Asc groups (p < 0.005). Additionally, mean tissue catalase activity of the stress + Mel group was higher than that of stress + S (p < 0.005), stress + D (p < 0.05) and stress + β-car groups (p < 0.05). Conclusions Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric damage induced by intensive stress. We suggest that as well as the direct antioxidant and free radical scavenging potency of melatonin, its indirect effect via the brain-gut axis might account for its greater beneficial action against stress-induced gastric damage. PMID:26528359

  19. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines.

    PubMed

    Ibáñez-Escriche, N; Magallón, E; Gonzalez, E; Tejeda, J F; Noguera, J L

    2016-01-01

    The aim of this study was to estimate the genetic and environmental parameters and crossbreeding effects on fatty acid and fat traits in the Iberian pig. Our final goal is to explore target selection traits and define crossbreeding strategies. The phenotypes were obtained under intensive management from 470 animals in a diallelic experiment involving Retinto, Torbiscal, and Entrepelado lines. The data set was composed of backfat thickness at the fourth rib (BFT), intramuscular fat (IMF) in the longissimus thoracis (LT), and the fatty acid profile for IMF and subcutaneous fat (SCF) traits. Data were analyzed through a Bayesian bivariate animal model by using a reparameterization of Dickerson's model. The results obtained showed an important genetic determinism for all traits analyzed with heritability ranging from 0.09 to 0.67. The common environment litter effect also had an important effect on IMF (0.34) and its fatty acid composition (0.06-0.53) at slaughter. The additive genetic correlation between BFT and IMF (additive genetic correlation [] = 0.31) suggested that it would be possible to improve lean growth independent of the IMF with an appropriate selection index. Furthermore, the high additive genetic correlation ( = 0.68) found between MUFA tissues would seem to indicate that either the LT or SCF could be used as the reference tissue for MUFA selection. The relevance of the crossbreeding parameters varied according to the traits analyzed. Backfat thickness at the fourth rib and the fatty acid profile of the IMF showed relevant differences between crosses, mostly due to line additive genetic effects associated with the Retinto line. On the contrary, those for IMF crosses were probably mainly attributable to heterosis effects. Particularly, heterosis effects were relevant for the Retinto and Entrepelado crosses (approximately 16% of the trait), which could be valuable for a crossbreeding system involving these lines.

  20. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  1. Preliminary study of the acid deposition in the Tijuana Area (Mexico)

    SciTech Connect

    Bravo, H.; Sosa, R.; Torres, R. )

    1988-01-01

    Transboundary air pollution is of widespread international concern. Tijuana, Mexico, and San Diego, California, form one of the fastest growing border communities in the world. Projections place the current population of three million residents at nearly five million by the year 2000. Although the two cities are divided by an international border they share a common air base. Tijuana and southern portions of San Diego County are particularly affected by the exchange of air flow through the Tijuana River Canyon. The development of an air pollution acid rain monitoring and sampling program across the border, particularly in Tijuana is imperative because of a planned new Tijuana industrial city, large numbers of existing industries without adequate emission controls, and thousands of vehicles generated pollutants on both sides of the border. The first steps toward an acid rain study along the mexican border began in 1985, with a project between the National Council of Science and Technology - (CONACYT) and the Center of the Atmospheric Sciences of the University of Mexico (CCA, UNAM). The goal of this project is to obtain acid rain data from five sites along the border. One of these sites is Tijuana, B.C., Mexico. The data obtained are reported in the paper.

  2. Cutaneous mucinosis in shar-pei dogs is due to hyaluronic acid deposition and is associated with high levels of hyaluronic acid in serum.

    PubMed

    Zanna, G; Fondevila, D; Bardagí, M; Docampo, M J; Bassols, A; Ferrer, L

    2008-10-01

    Cutaneous mucinosis affects primarily shar-pei dogs. Hyaluronic acid (HA) is considered to be the main component of mucin and CD44 is the major cell surface receptor of HA, necessary for its uptake and catabolism. The aims of this study were to identify the composition of the mucin in cutaneous mucinosis of shar-pei dogs, investigate the correlation between the deposition of HA and the expression of CD44, and determine whether shar-pei dogs with cutaneous mucinosis presented with elevated levels of serum HA. In skin biopsies, the mucinous material was stained intensely with Alcian blue and bound strongly by the hyaluronan-binding protein. No correlation was found between the degree of HA deposition in the dermis and the expression of CD44 in the skin of shar-pei dogs affected or unaffected by cutaneous mucinosis. A clear positive correlation was found between the existence of clinical mucinosis and the serum HA concentration. In control dogs, serum HA ranged from 155.53 to 301.62 microg L(-1) in shar-pei dogs; without mucinosis it ranged from 106.72 to 1251.76 microg L(-1) and in shar-pei dogs with severe mucinosis it ranged between 843.51 to 2330.03 microg L(-1). Altogether, the results reported here suggest that mucinosis of shar-pei dogs is probably the consequence of a genetic defect in the metabolism of HA.

  3. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    PubMed

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo.

  4. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    SciTech Connect

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulation in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.

  5. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use.

  6. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  7. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    USGS Publications Warehouse

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Growth and reproductive ecology of the eastern brook trout, Salvelinus fontinalis, in streams of differing vulnerability to acidic atmospheric deposition

    SciTech Connect

    Light, R.W.

    1983-01-01

    Three naturally infertile streams of differing vulnerability to acidic atmospheric deposition were studied to determine the status of their brook trout, Salvelinus fontinalis, populations and associated benthic communities. Of the three streams, Upper Three Runs was judged to be the least fertile, followed by Little Fishing Creek, with Roaring Run being the most fertile. The median weighted pH of acidic deposition impacting the watersheds was 3.8 for Upper Three Runs and 4.0 for Little Fishing Creek and Roaring Run. Brook trout from Roaring Run grew at a similar rate to those from Little Fishing Creek, with trout from Upper Three Runs showing the slowest growth. Roaring Run brook trout also had the highest relative condition of the three streams. Brook trout from Roaring Run and Little Fishing Creek generally matured one year later (age group II) than those from Upper Three Runs. Early maturity may be selected for in Upper Three Runs due to small annual increases in fecundity in higher age groups. Although the data were limited, there was a trend for brook trout from Upper Three Runs to produce fewer and larger ova. Roaring Run had higher volumes of benthos during fall and summer, and higher numbers during fall. Roaring Run and Little Fishing Creek had more, larger crayfish present, which added significantly to the volume of benthos in these streams. Qualitatively, Upper Three Runs had more shredders and fewer scrapers on a volume basis than the other two streams. On a per fish basis, the drift available to the fish in Roaring Run was always highest in volume, and highest in number during fall and spring. The brook trout from Roaring Run therefore had an advantage over those in the other two streams, by having a higher drift available per fish.

  9. Fish oil and 3-thia fatty acid have additive effects on lipid metabolism but antagonistic effects on oxidative damage when fed to rats for 50 weeks.

    PubMed

    Vigerust, Natalya Filipchuk; Cacabelos, Daniel; Burri, Lena; Berge, Kjetil; Wergedahl, Hege; Christensen, Bjørn; Portero-Otin, Manuel; Viste, Asgaut; Pamplona, Reinald; Berge, Rolf Kristian; Bjørndal, Bodil

    2012-11-01

    The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.

  10. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch

    PubMed Central

    Li, Zhen Fang; He, Chen Ling; Wang, Ying; Li, Ming Jie; Dai, Ya Jing; Wang, Tong; Lin, Wenxiong

    2016-01-01

    Rehmannia glutinosa is an important medicinal herb that cannot be replanted in the same field due to the effects of autotoxic substances. The effects of these substances on R. glutinosa in continuous cropping systems are unknown. In the present study, bioassays revealed that R. glutinosa exhibited severe growth restriction and higher disease indices in the FO+FA (F.oxysporum pretreated with ferulic acid) treatment. The increases in the contents of MDA and H2O2 were greater in the FA+FO treatment than in the FA or FO only treatments, respectively. Consistent with this result, the enzyme activities in the seedlings increased with treatment time. To identify the main factor underlying the increased pathogenicity of FO, macroconidia and trichothecene mycotoxins coproduced by FO were separated and used to treat R. glutinosa seedlings. The MDA and H2O2 contents were similar in the seedlings treated with deoxynivalenol and in the FA+FO treatment. Quantification of the relative expression of certain genes involved in Ca2+ signal transduction pathways suggested that trichothecene mycotoxins play an important role in the increased pathogenicity of FO. In conclusion, FA not only directly enhances oxidative damage in R. glutinosa but also increases wilting symptom outbreaks by promoting the secretion of trichothecene mycotoxins by FO. PMID:27667444

  11. Apocynin protects against neurological damage induced by quinolinic acid by an increase in glutathione synthesis and Nrf2 levels.

    PubMed

    Cruz-Álvarez, Silvia; Santana-Martínez, Ricardo; Avila-Chávez, Euclides; Barrera-Oviedo, Diana; Hernández-Pando, Rogelio; Pedraza-Chaverri, José; Maldonado, Perla D

    2017-03-19

    Apocynin (APO) is a well-known NADPH oxidase (NOX) inhibitor. However, several studies have reported its ability to increase glutathione (GSH) levels. Due to GSH is a major non-enzymatic antioxidant in brain, the aim of this study was to evaluate, in the striatum of control and quinolinic acid (QUIN) injected rats, the effect of APO administration on: (1) GSH levels, (2) activity of some enzymes involved in the GSH metabolism, and (3) nuclear factor erythroid-2-related factor 2 (Nrf2) mRNA levels. Animals received QUIN 240nmol in right striatum and APO (5mg/kg, i.p.), 30min before and 60min after intrastriatal injection. APO treatment prevented the QUIN-induced histological damage to the striatum. In control rats, APO treatment increased GSH and Nrf2 mRNA levels and the activities of gamma-glutamylcysteine ligase (γ-GCL), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, APO treatment prevented the QUIN-induced decrease in GSH and Nrf2 levels, and in γ-GCL and GPx activities. These data indicate that APO is able to increase GSH levels and the activity of proteins involved in its metabolism, which could be associated with its ability to increase the Nrf2 mRNA levels.

  12. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress.

    PubMed

    Yang, Yinong; Qi, Min; Mei, Chuansheng

    2004-12-01

    Salicylic acid (SA) is a key endogenous signal that mediates defense gene expression and disease resistance in many dicotyledonous species. In contrast to tobacco and Arabidopsis, which contain low basal levels of SA, rice has two orders of magnitude higher levels of SA and appears to be insensitive to exogenous SA treatment. To determine the role of SA in rice plants, we have generated SA-deficient transgenic rice by expressing the bacterial salicylate hydroxylase that degrades SA. Depletion of high levels of endogenous SA in transgenic rice does not measurably affect defense gene expression, but reduces the plant's capacity to detoxify reactive oxygen intermediates (ROI). SA-deficient transgenic rice contains elevated levels of superoxide and H2O2, and exhibits spontaneous lesion formation in an age- and light-dependent manner. Exogenous application of SA analog benzothiadiazole complements SA deficiency and suppresses ROI levels and lesion formation. Although an increase of conjugated catechol was detected in SA-deficient rice, catechol does not appear to significantly affect ROI levels based on the endogenous catechol data and exogenous catechol treatment. When infected with the blast fungus (Magnaporthe grisea), SA-deficient rice exhibits increased susceptibility to oxidative bursts elicited by avirulent isolates. Furthermore, SA-deficient rice is hyperresponsive to oxidative damage caused by paraquat treatment. Taken together, our results strongly suggest that SA plays an important role to modulate redox balance and protect rice plants from oxidative stress.

  13. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage.

    PubMed

    Zhao, Danyue; Shah, Nagendra P

    2016-03-23

    In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.

  14. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B1-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers

    PubMed Central

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-01-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B1 (AFB1). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB1. In the AFB1 group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB1 group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  15. Mass spectrometric quantification of amino acid oxidation products identifies oxidative mechanisms of diabetic end-organ damage

    PubMed Central

    Vivekanadan-Giri, Anuradha; Wang, Jeffrey H.; Byun, Jaeman

    2010-01-01

    Diabetes mellitus is increasingly prevalent worldwide. Diabetic individuals are at markedly increased risk for premature death due to cardiovascular disease. Furthermore, substantial morbidity results from microvascular complications which include retinopathy, nephropathy, and neuropathy. Clinical studies involving diabetic patients have suggested that degree of diabetic hyperglycemia correlates with risk of complications. Recent evidence implicates a central role for oxidative stress and vascular inflammation in all forms of insulin resistance, obesity, diabetes and its complications. Although, glucose promotes glycoxidation reactions in vitro and products of glycoxidation and lipoxidation are elevated in plasma and tissue in diabetics, the exact relationships among hyperglycemia, the diabetic state, and oxidative stress are not well-understood. Using a combination of in vitro and in vivo experiments, we have identified amino acid oxidation markers that serve as molecular fingerprints of specific oxidative pathways. Quantification of these products utilizing highly sensitive and specific gas chromatography/mass spectrometry in animal models of diabetic complications and in humans has provided insights in oxidative pathways that result in diabetic complications. Our studies strongly support the hypothesis that unique oxidants are generated in the microenvironment of tissues vulnerable to diabetic damage. Potential therapies interrupting these reactive pathways in target tissue are likely to be beneficial in preventing diabetic complications. PMID:18752069

  16. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  17. Reduction of β-amyloid deposits by γ-secretase inhibitor is associated with the attenuation of secondary damage in the ipsilateral thalamus and sensory functional improvement after focal cortical infarction in hypertensive rats.

    PubMed

    Zhang, Yusheng; Xing, Shihui; Zhang, Jian; Li, Jingjing; Li, Chuo; Pei, Zhong; Zeng, Jinsheng

    2011-02-01

    Abnormal β-amyloid (Aβ) deposits in the thalamus have been reported after cerebral cortical infarction. In this study, we investigated the association of Aβ deposits, with the secondary thalamic damage after focal cortical infarction in rats. Thirty-six stroke-prone renovascular hypertensive rats were subjected to distal middle cerebral artery occlusion (MCAO) and then randomly divided into MCAO, vehicle, and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) groups and 12 sham-operated rats as control. The DAPT was administered orally at 72 hours after MCAO. Seven days after MCAO, sensory function, neuron loss, and glial activation and proliferation were evaluated using adhesive removal test, Nissl staining, and immunostaining, respectively. Thalamic Aβ accumulation was evaluated using immunostaining and enzyme-linked immunosorbent assay (ELISA). Compared with vehicle group, the ipsilateral thalamic Aβ, neuronal loss, glial activation and proliferation, and the mean time to remove the stimulus from right forepaw significantly decreased in DAPT group. The mean time to remove the stimulus from the right forepaw and thalamic Aβ burden were both negatively correlated with the number of thalamic neurons. These findings suggest that Aβ deposits are associated with the secondary thalamic damage. Reduction of thalamic Aβ by γ-secretase inhibitor may attenuate the secondary damage and improve sensory function after cerebral cortical infarction.

  18. Different responses of two Mosla species to potassium limitation in relation to acid rain deposition.

    PubMed

    Wang, Meng; Gu, Bao-jing; Ge, Ying; Liu, Zhen; Jiang, De-an; Chang, Scott X; Chang, Jie

    2009-08-01

    The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (P(n)), soluble protein content, and superoxide dismutase (SOD) activity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on P(n), soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.

  19. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  20. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  1. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells.

  2. Stability of kaolin sand from the Vyšný Petrovec deposit (south Slovakia) in an acid environment

    NASA Astrophysics Data System (ADS)

    Martin, Pentrák; Jana, Madejová; Slávka, Andrejkovičová; Peter, Uhlík; Peter, Komadel

    2012-12-01

    Comprehensive characterization of kaolin sand from the Vyšný Petrovec (VP) deposit in Slovakia by a variety of experimental methods was performed. The quantitative XRD analysis (RockJock software) revealed that the acid-untreated sample contained mainly kaolinite (~60 wt. %), a considerable amount of dioctahedral micas (~32 wt. %) and quartz (~ 7 wt. %). The Hinckley index (HI) and Aparicio-Galán-Ferrel index (AGFI) calculated from the 02l and 11l reflections showed medium-defect kaolinite to be present in the VP kaolin. The influence of the mineral composition of VP kaolin on its stability in 6 mol · dm-3 HCl at 95 °C was investigated. The solid reaction products were examined by chemical analysis; XRD and infrared spectroscopy in both middle (MIR) and near (NIR) regions. Considerably higher dissolution rate of Fe compared to Al indicated that Fe was bounded in a readily soluble phase rather than in kaolinite. While the MIR spectra confirmed the gradual release of the central atoms from the clay minerals layers and creation of amorphous silica upon acid treatment, the NIR spectra revealed the formation of Si-OH groups in the solid reaction product. Relatively high dissolution rate of VP kaolin resulted from the presence of small-grains of mediumdefect kaolinite and clay admixtures in VP kaolin sand.

  3. Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed: implications for dry deposition of atmospheric nitrogen.

    PubMed

    Tarnay, L; Gertler, A W; Blank, R R; Taylor, G E

    2001-01-01

    Over the past 50 years, Lake Tahoe, an alpine lake located in the Sierra Nevada mountains on the border between California and Nevada, has seen a decline in water clarity. With significant urbanization within its borders and major urban areas 130 km upwind of the prevailing synoptic airflow, it is believed the Lake Tahoe Basin is receiving substantial nitrogen (N) input via atmospheric deposition during summer and fall. We present preliminary inferential flux estimates to both lake surface and forest canopy based on empirical measurements of ambient nitric acid (HNO3), ammonia (NH3), and ammonium nitrate (NH4NO3) concentrations, in an effort to identify the major contributors to and ranges of atmospheric dry N deposition to the Lake Tahoe Basin. Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha-1 for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha-1 year-1. These preliminary results suggest that dry deposition of HNO3 is the major source of atmospheric N deposition for the Lake Tahoe Basin, and that overall N deposition is similar in magnitude to deposition reported for sites exposed to moderate N pollution in the southern California mountains.

  4. Visible-light active thin-film WO{sub 3} photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    SciTech Connect

    Oka, Nobuto Murata, Akiyo; Nakamura, Shin-ichi; Jia, Junjun; Shigesato, Yuzo; Iwabuchi, Yoshinori; Kotsubo, Hidefumi

    2015-10-01

    A process based on reactive gas flow sputtering (GFS) for depositing visible-light active photocatalytic WO{sub 3} films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO{sub 3} films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH{sub 3}CHO under visible light irradiation. The decomposition time for 60 ppm of CH{sub 3}CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO{sub 3} films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH{sub 3}CHO.

  5. Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    PubMed Central

    Valencak, Teresa G.; Raith, Johannes; Staniek, Katrin; Gille, Lars; Strasser, Alois

    2016-01-01

    Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C) while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation. PMID:26805895

  6. Tracking the Effects of Acidic Deposition in Medium-Scale Forested Watersheds of the Eastern US

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.; Shanley, J. B.; Huntington, T. G.

    2001-05-01

    The US Geological Survey Hydrologic Benchmark Network (HBN) was established in the mid-1960's for continuously monitoring flow and seasonally monitoring water quality in medium-scale naturally-vegetated watersheds (100-500 km2) throughout the United States. Unlike small watershed research sites, the HBN sites are large enough to contain well-developed riparian zones, and as such are more representative of a natural reference landscape for assessing the relative effects of air pollution, development and agriculture on water quality in the US. During the past three years more frequent water quality monitoring (biweekly and during stormflows) has been established at 5 of these stations in the eastern United States. The stations are located in eastern Tennessee (Little River, 275 km2), western North Carolina (Cataloochee Creek, 127km2), north-central Pennsylvania (Young Woman's Creek, 120 km2), southeastern New York (Neversink River, 168 km2), and north- western Maine (Wild River, 180 km2), and thus lie along southeastern and northeastern gradients of decreasing sulfate deposition from west to east across the region. Concentrations of nitrate and sulfate in streamwater decrease in the Northeastern sites from the southwestern-most watershed to the northeastern-most watershed. Sulfate concentrations have decreased at the Little River, Neversink River and the Wild River during the period of record, but sulfate concentrations in Young Woman's Creek and Cataloochee Creek show no trend. No trend in sulfate concentrations is evident in any of the three Northeastern streams since 1995, when the last significant reduction in emissions was enacted. Sulfate concentrations in Little River have continued to fall since 1995. No trends are observed in ANC in any of the streams, but calcium concentrations in streamwater have decreased in Little River, Neversink River, and Wild River since the 60's. Calcium concentrations in streamwater decrease from a range of 80-120 umole per liter

  7. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  8. Oxidative DNA damage induced by HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer in the presence of Au(III).

    PubMed

    Habib, Ahsan; Tabata, Masaaki

    2004-11-01

    Oxidative DNA damage was investigated by free radicals generated from HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer, which is widely used in biochemical or biological studies, in the presence of Au(III). The effect of free radicals on the DNA damage was ascertained by gel electrophoresis, electron spin resonance (ESR) spectroscopy and circular dichroism (CD) spectroscopy. ESR results indicated the generation of nitrogen-centered cationic free radicals from the HEPES in the presence of Au(III) which cause the DNA damage. No ESR spectra were observed for phosphate, tris(hydroxymethyl)aminomethane (Tris-HCl) and acetate buffers in the presence of Au(III) or for HEPES buffer in the presence of other metal ions such as Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) or [Au(III)(TMPyP)](5+) and [Pd(II)(TMPyP)](4+), where [H(2)(TMPyP)](4+) denotes tetrakis(1-methylpyridium-4-yl)porphyrin. Consequently, no DNA damage was observed for these buffer agents (e.g., phosphate, Tris-HCl or acetate) in the presence of Au(III) or for HEPES in the presence of other metal ions or the metalloporphyrins mentioned above. No detectable inhibitory effect on the DNA damage was observed by using the typical scavengers of reactive oxygen species (ROS) ()OH, O(2)(-) and H(2)O(2). This non-inhibitory effect indicated that no reactive oxygen species were generated during the incubation of DNA with HEPES and Au(III). The drastic change in CD spectra from positive ellipticity to negative ellipticity approximately at 270 nm with increasing concentration of Au(III) also indicated the significant damage of DNA. Only HEPES or Au(III) itself did not damage DNA. A mechanism for the damaging of DNA is proposed.

  9. Lipoic acid inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after pilocarpine-induced seizures.

    PubMed

    dos Santos, Pauline Sousa; Feitosa, Chistiane Mendes; Saldanha, Gláucio Barros; Tomé, Adriana da Rocha; Feng, Dejiang; de Freitas, Rivelilson Mendes

    2011-01-01

    Alpha-lipoic acid has some neuroprotective properties, but this action has not been investigated in models of epilepsy. The aim of the present study was to investigate the protective efficacy of α-lipoic acid (lipoic acid) against pilocarpine-induced cell death through the caspase-dependent or -independent mitochondrial apoptotic pathways. Wistar rats were injected intraperitoneally with 0.9% saline (control group), pilocarpine (400 mg/kg, pilocarpine group) alone, or α-lipoic acid (20 mg/kg) in association with pilocarpine (400 mg/kg) 30 min before administration of α-lipoic acid. After the treatments all groups were observed for 24 h. Cell death was reduced in lipoic acid-treated rats. Cytosolic translocation of cytochrome c and subsequent activation of caspase-3 were reduced by lipoic acid treatment. AIF nuclear translocation and subsequent large-scale DNA fragmentation were also decreased in lipoic acid-treated rats. Our study suggests that lipoic acid inhibits both caspase-dependent and -independent apoptotic pathways and may be neuroprotective against hippocampal damage during pilocarpine-induced seizures.

  10. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats.

    PubMed

    Colle, Dirleise; Santos, Danúbia Bonfanti; Moreira, Eduardo Luiz Gasnhar; Hartwig, Juliana Montagna; dos Santos, Alessandra Antunes; Zimmermann, Luciana Teixeira; Hort, Mariana Appel; Farina, Marcelo

    2013-01-01

    Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when

  11. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    PubMed

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available.

  12. Protective effect of ascorbic acid against double-strand breaks in giant DNA: Marked differences among the damage induced by photo-irradiation, gamma-rays and ultrasound

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Ogawa, Naoki; Yoshikawa, Yuko; Mori, Toshiaki; Imanaka, Tadayuki; Watanabe, Yoshiaki; Yoshikawa, Kenichi

    2015-10-01

    The protective effect of ascorbic acid against double-strand breaks in DNA was evaluated by single-molecule observation of giant DNA (T4 DNA; 166 kbp) through fluorescence microscopy. Samples were exposed to three different forms of radiation: visible light, γ-ray and ultrasound. With regard to irradiation with visible light, 1 mM AA reduced the damage down to ca. 30%. Same concentration of AA decreased the damage done by γ-ray to ca. 70%. However, AA had almost no protective effect against the damage caused by ultrasound. This significant difference is discussed in relation to the physico-chemical mechanism of double-strand breaks depending on the radiation source.

  13. Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    PubMed Central

    Huang, Yaowei; Hou, Xusheng; Wu, Wenyu; Nie, Lei; Tian, Yinghong; Lu, Yanmeng

    2016-01-01

    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions. PMID:27340672

  14. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    PubMed

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution.

  15. Mitigation of indomethacin-induced gastrointestinal damages in fat-1 transgenic mice via gate-keeper action of ω-3-polyunsaturated fatty acids

    PubMed Central

    Han, Young-Min; Park, Jong-Min; Kang, Jing X.; Cha, Ji-Young; Lee, Ho-Jae; Jeong, Migeyong; Go, Eun-Jin; Hahm, Ki Baik

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) damage the gastrointestinal (GI) epithelial cell membranes by inducing several signals through lipid raft organization after membrane incorporation, whereas ω-3 polyunsaturated fatty acids (PUFAs) relieve inflammation, reduce oxidative stress, and provide cytoprotection, consequent to lipid raft disorganization. Therefore, we hypothesized that ω-3 PUFAs can protect the GI from NSAID-induced damages by initiating the gatekeeper action of cell membranes, subsequent to anti-inflammatory and anti-oxidative actions. Administration of indomethacin (IND) leads to the formation of lipid rafts and activation of caveolin-1; however, no such observations were made upon co-administration of eicosapentaenoic acid (EPA) and IND. In addition, the EPA-induced lipid raft disorganization, caveolin-1 inactivation, and cellular cytotoxicity were inhibited when target cells were knocked-out using G-protein coupled receptor 120 (GPR 120). EPA significantly attenuated IND-induced oxidative damage and apoptosis. IND administration induced significant ulceration, bleeding, and oedema in the stomach or small intestine of wild-type (WT) mice; however, such severe damages to the GI significantly decreased in fat-1 transgenic (TG) mice (P < 0.001), which exhibited decreased cyclooxygenase-2 expression and apoptosis, decreased interleukin-1β and FAS concentrations, and increased heme oxygenase-1 concentration. Our study indicates that the gatekeeper function of ω-3 PUFAs improves GI safety when administered with NSAID. PMID:27658533

  16. Protective effect of L-ascorbic acid against oxidative damage in the liver of rats with water-immersion restraint stress.

    PubMed

    Kaida, Shingo; Ohta, Yoshiji; Imai, Yoichiro; Kawanishi, Minoru

    2010-01-01

    We examined whether L-ascorbic acid (AA) (or reduced ascorbic acid) protects against oxidative damage in the liver of rats subjected to water-immersion stress (WIRS). AA (100, 250 or 500 mg/kg) was orally administered at 0.5 h before the onset of WIRS. Rats with 6 h of WIRS had increased serum corticosterone, glucose, total ascorbic acid (T-AA), AA, lipid peroxide (LPO), and NOx concentrations and alanine aminotransferase and aspartate aminotrasferase activities. The stressed rats had increased hepatic LPO, NOx, and dehydroascorbic acid concentrations and myeloperoxidase activity, decreased hepatic T-AA, AA, reduced glutathione concentrations and superoxide dismutase activity, and unchanged hepatic vitamin E concentration. Pre-administered AA attenuated the stress-induced changes in serum LPO and NOx concentrations and alanine aminotransferase and aspartate aminotrasferase activities and hepatic LPO, NOx, and T-AA, AA, dehydroascorbic acid, and reduced glutathione concentrations and myeloperoxidase and superoxide dismutase activities dose-dependently. Pre-administered AA did not affect the stress-induced changes in serum corticosterone and glucose concentrations. These results indicate that pre-administered AA protects against oxidative damage in the liver of rats with WIRS possibly by attenuating disruption of the antioxidant defense system and increases in NO generation and neutrophil infiltration in the tissue.

  17. Lower ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Decrease Fat Deposition by Inhibiting Fat Synthesis in Gosling

    PubMed Central

    Yu, Lihuai; Wang, Shunan; Ding, Luoyang; Liang, Xianghuan; Wang, Mengzhi; Dong, Li; Wang, Hongrong

    2016-01-01

    The objective of the current study was to investigate the effects of dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratios on lipid metabolism in goslings. One hundred and sixty 21-day-old Yangzhou geese of similar weight were randomly divided into 4 groups. They were fed different PUFA-supplemented diets (the 4 diets had ω-6/ω-3 PUFA ratios of 12:1, 9:1, 6:1, or 3:1). The geese were slaughtered and samples of liver and muscle were collected at day 70. The activities and the gene expression of enzymes involved in lipid metabolism were measured. The results show that the activities of acetyl coenzyme A carboxylase (ACC), malic enzyme (ME), and fatty acid synthase (FAS) were lower (p<0.05), but the activities of hepatic lipase (HL) and lipoprotein lipase (LPL) were higher (p<0.05), in the liver and the muscle from the 3:1 and 6:1 groups compared with those in the 9:1 and 12:1 groups. Expression of the genes for FAS (p<0.01), ME (p<0.01) and ACC (p<0.05) were higher in the muscle of groups fed diets with higher ω-6/ω-3 PUFA ratios. Additionally, in situ hybridization tests showed that the expression intensities of the high density lipoprotein (HDL-R) gene in the 12:1 and 9:1 groups were significantly lower (p<0.01) than that of the 3:1 group in the muscle of goslings. In conclusion, diets containing lower ω-6/ω-3 PUFA ratios (3:1 or 6:1) could decrease fat deposition by inhibiting fat synthesis in goslings. PMID:27189638

  18. Potential driven deposition of poly(diallyldimethylammonium chloride) onto the surface of 3-mercaptopropionic acid monolayers assembled on gold.

    PubMed

    Sanders, Wesley; Anderson, Mark R

    2008-11-18

    Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.

  19. Lower ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Decrease Fat Deposition by Inhibiting Fat Synthesis in Gosling.

    PubMed

    Yu, Lihuai; Wang, Shunan; Ding, Luoyang; Liang, Xianghuan; Wang, Mengzhi; Dong, Li; Wang, Hongrong

    2016-10-01

    The objective of the current study was to investigate the effects of dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratios on lipid metabolism in goslings. One hundred and sixty 21-day-old Yangzhou geese of similar weight were randomly divided into 4 groups. They were fed different PUFA-supplemented diets (the 4 diets had ω-6/ω-3 PUFA ratios of 12:1, 9:1, 6:1, or 3:1). The geese were slaughtered and samples of liver and muscle were collected at day 70. The activities and the gene expression of enzymes involved in lipid metabolism were measured. The results show that the activities of acetyl coenzyme A carboxylase (ACC), malic enzyme (ME), and fatty acid synthase (FAS) were lower (p<0.05), but the activities of hepatic lipase (HL) and lipoprotein lipase (LPL) were higher (p<0.05), in the liver and the muscle from the 3:1 and 6:1 groups compared with those in the 9:1 and 12:1 groups. Expression of the genes for FAS (p<0.01), ME (p<0.01) and ACC (p<0.05) were higher in the muscle of groups fed diets with higher ω-6/ω-3 PUFA ratios. Additionally, in situ hybridization tests showed that the expression intensities of the high density lipoprotein (HDL-R) gene in the 12:1 and 9:1 groups were significantly lower (p<0.01) than that of the 3:1 group in the muscle of goslings. In conclusion, diets containing lower ω-6/ω-3 PUFA ratios (3:1 or 6:1) could decrease fat deposition by inhibiting fat synthesis in goslings.

  20. Tissue deposition and residue depletion in rainbow trout following continuous voluntary feeding with various levels of melamine or a blend of melamine and cyanuric acid.

    PubMed

    Liu, Haiyan; Xue, Min; Wang, Jia; Qiu, Jing; Wu, Xiufeng; Zheng, Yinhua; Li, Junguo; Qin, Yuchang

    2014-11-01

    This study determined the deposition and depletion in rainbow trout after continuous administration of melamine (MEL) alone or a blend of MEL and cyanuric acid (CYA). The plasma, muscles, kidneys, liver and gills were sampled at 0, 3, 7, 13, 21, 28 and 42d. After the final sampling at 42d, fish from the MEL0.05, MEL20 and MCA groups were fed the control diet (MEL0) for the depletion test. Co-administration with cyanuric acid accelerated the deposition time to the Css for melamine; during the withdrawal phrase, the melamine and CYA concentrations in the tissues decreased exponentially. Compared to the t(½) for single oral administration, the t(½) for melamine and cyanuric acid after 42d continuous feeding was prolonged. The presence of trace CYA in the plasma and kidneys of trout was detected in the MEL20 group, indicating that MEL can convert into CYA in rainbow trout.

  1. Post-treatment with the Ca(2+)-Mg(2+)-endonuclease inhibitor aurintricarboxylic acid prevents peroxynitrite-induced DNA damage and death of murine astrocytes.

    PubMed

    Zhu, Keqing; Lu, Huafei; Ying, Weihai

    2006-06-09

    Oxidative stress plays critical roles in aging, cell death, and many diseases. Peroxynitrite is one of the major reactive oxygen species which mediates cell injury in a number of illnesses. It is of importance to identify the downstream events in peroxynitrite-initiated cell death cascade for preventing peroxynitrite toxicity. Ca(2+)-Mg(2+)-endonucleases have been suggested as the endonucleases that execute DNA fragmentation in several apoptotic cascades. In this study, we determined if astrocytes and neurons express the genes of Ca(2+)-Mg(2+)-endonucleases. We also tested our hypothesis that post-treatment with the Ca(2+)-Mg(2+)-endonuclease inhibitor aurintricarboxylic acid can decrease peroxynitrite-induced DNA damage and death of astrocytes. We found that both astrocytes and neurons express DNase I-like endonuclease-a major isoform of Ca(2+)-Mg(2+)-endonucleases. Treatment of astrocytes with aurintricarboxylic acid either before or after peroxynitrite exposures can profoundly decrease peroxynitrite-induced DNA damage and cell death. These results suggest that Ca(2+)-Mg(2+)-endonucleases may be a key downstream component in peroxynitrite-initiated cell death cascade in astrocytes and some other cell types, and aurintricarboxylic acid could be used to decrease peroxynitrite-induced DNA damage at delayed phases.

  2. Acid-fog deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter; Zierenberg, Robert; Marks, Naomi; Bishop, Janice L.; Darby Dyar, M.

    2006-11-01

    On the summit of Kilauea volcano, sulfur dioxide, which is continuously emitted from Halemaumau crater and rapidly sequestered into sulfuric-acid rich aerosol entrained in the prevailing trade winds, is subsequently precipitated as acid fog immediately downwind from Kilauea caldera in the Kau Desert. The characteristic pH of surface tephra deposits is <4.0 in Sand Wash, a region of nearly continuous, acidic aerosol fallout immediately southwest of the caldera. Vertical exposures of unconsolidated tephras of the Keanakakoi Ash found within fissures and small, dry gullies are coated with thin rock coatings of amorphous silica and jarosite. These rock coatings are formed via an evaporative mechanism whereby acidic pore fluids, circulating in the upper few meters within the highly porous tephra, are wicked toward the walls of the gullies. Geochemical modeling of the rock coating formation process implies that the sulfate formation via evaporation occurs subsequent to minimal interaction of acidic pore fluids with the basaltic tephra. This also suggests that the cycle from acid-fog fallout to precipitation of the siliceous-sulfate rock coatings must occur quite rapidly. Acid-fog deposition of sulfate and silica at Kilauea may provide one mechanism for the origin of jarosite-bearin