Science.gov

Sample records for acid deposition impacts

  1. (Acidic deposition: Its nature and impacts)

    SciTech Connect

    Cook, R.B.; Turner, R.S. ); Ryan, P.F. )

    1990-10-18

    The travelers presented papers on various aspects of modeling performed as part of the US National Acidic Precipitation Assessment Program (NAPAP) at the Fourth International Conference on Acidic Deposition: Its Nature and Impacts. The meeting was sponsored by the Royal Society of Edinburgh and was attended by over 800 scientists, primarily from Europe and North America. The conference focused on nine aspects of the nature and impacts of atmospheric pollutants, including ozone: chemistry of atmospheric pollutants; processes controlling the deposition of pollutants; effects of pollutants on soils; physiology of plant responses to pollutants; effects of pollutants in agricultural and natural or seminatural ecosystems; atmospheric pollutants and forests; effects of pollutants on the chemistry of freshwater streams and lakes; effects of pollutants on freshwater plants and animals; and effects of pollutants, indoors and outdoors, on materials and buildings.

  2. Impacts of acid deposition on watersheds of the Quabbin Reservoir

    SciTech Connect

    Yuretich, R.

    1992-01-01

    The potential impacts of acid deposition on the Quabbin Reservoir, the major drinking-water reservoir for the Boston metropolitan area, were evaluated. Separate abstracts were prepared for 7 sections of this monograph.

  3. Global impacts of sulfate deposition from acid rain on methane emissions from natural wetlands.

    NASA Astrophysics Data System (ADS)

    Gauci, V.

    2003-04-01

    Natural wetlands form the largest methane (CH_4) source to the atmosphere. A collection of recent field and laboratory studies point to an anthropogenic control on CH_4 emissions from these systems: acid rain sulfate (SO_42-) deposition. These studies ranging from the UK, USA, Canada, Sweden and Czech Republic demonstrate that low rates of SO_42- deposition, within the range commonly experienced in acid rain impacted regions, can suppress CH_4 emissions by as much as 40% and that the response of CH_4 emissions to increasing rates of SO_42- deposition closely mirrors changes in sulfate reduction rates with SO_42- deposition. This indicates that the suppression in CH_4 flux is the result of acid rain stimulating a competitive exclusion of methanogenesis by sulfate reducing bacteria, resulting in reduced methane production. These findings were extrapolated to the global scale by combining modelled, spatially explicit data sets of CH_4 emission from wetlands across the globe with modelled S deposition. Results indicate that this interaction may be important at the global scale, suppressing CH_4 emissions from wetlands in 2030 by as much as 20--28Tg, and, in the process, offsetting predicted climate induced growth in the wetland CH_4 source.

  4. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    SciTech Connect

    Not Available

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  5. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe.

    PubMed

    Stevens, Carly J; Duprè, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J G; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J Owen; Vandvik, Vigdis; Aarrestad, Per Arild; Muller, Serge; Dise, Nancy B

    2011-10-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha(-1) yr(-1)) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.

  6. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  7. Chapter 5: Acid deposition

    Treesearch

    Cliff F. Hunt; Warren E. Heilman

    1999-01-01

    This publication provides information about the atmospheric conditions in and near the national forest in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark and St. Francis in Arkansas. This report includes information about particulate matter, visibility, ozone concentrations, and acid deposition in the Ozark...

  8. Thermal and Trophic Stability of Deeper Maine Lakes in Granite Watersheds Impacted by Acid Deposition

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1990-09-01

    Acid deposition can lead to lake and watershed acidification, increases in lake transparency, and reductions in thermal stability and hypolimnetic oxygen deficits. On the basis of lake surveys during August-September 1985, we determined to what extent the deeper (maximum depth zm > 17 m) Maine lakes in acid-sensitive granitic watersheds have registered changes in temperature and oxygen stratification, as compared to 1938-1942, when G. P. Cooper performed the earliest scientific surveys of the state's lakes. After correcting for small but geographically consistent interannual differences in summer hypolimnetic temperatures related to spring turnover, and weather-dependent differences in mixed layer depth, there has been no significant change in thermal stratification in these Maine lakes over approximately 43 years. On the basis of specific historical contrasts in the late summer metalimnetic, hypolimnetic, and bathylimnetic oxygen concentrations there has been no significant change in lake trophic state or transparency.

  9. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  10. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  11. Acid rain and dry deposition

    SciTech Connect

    Canter, L.W.

    1985-01-01

    This book provides information on the formation of acid rain and the long-range transport of air pollutants. The effects of acid precipitation on both terrestrial and aquatic ecosystems are highlighted and technical and policy issues associated with the delineation and implementation of control strategies for acid rain and dry deposition are covered. Dry deposition is addressed, with emphasis given to precipitation metals and organics.

  12. (Acidic deposition and the environment)

    SciTech Connect

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  13. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (beta-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.

  14. (International conference on acidic deposition)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1990-10-05

    The traveler took the opportunity to participate in a mini-sabbatical at the Institute of Terrestrial Ecology (ITE) in Edinburgh, Scotland, as a part of planned travel to Glasgow, Scotland, to attend the International Conference on Acidic Precipitation. The purpose of the sabbatical was to provide quality time for study and interchange of ideas with scientists at ITE working on physiological effects of acidic deposition and to allocate significant time for writing and synthesizing of results of physiological studies from the National Forest Response Program's Spruce/Fir Research Cooperative. The study focused on the very significant cytological and physiological effects of calcium deficiency in trees, a response that appears to be amplified in spruce by acidic deposition.

  15. Long-term impact of acid resin waste deposits on soil quality of forest areas I. Contaminants and abiotic properties.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    Acid resins are residues characterised by elevated concentrations of hydrocarbons and trace elements, which were produced by mineral oil industries in Central Europe during the first half of the last century. Due to the lack of environmental legislation at that time, these wastes were dumped into excavated ponds in public areas without further protection. In this work, the long-term effects of such resin deposits on soil quality of two forest areas (Bayern, Germany) were assessed. We evaluated the distribution and accumulation of contaminants in the surroundings of the deposits, where the waste was disposed of about 60 years ago. General soil chemical properties such as pH, C, N and P content were also investigated. Chemical analysis of resin waste from the deposits revealed large amounts of potential contaminants such as hydrocarbons (93 g kg(-1)), As (63 mg kg(-1)), Cd (24 mg kg(-1)), Cu (1835 mg kg(-1)), Pb (8100 mg kg(-1)) and Zn (873 mg kg(-1)). Due to the location of the deposits on a hillside and the lack of adequate isolation, contaminants have been released downhill despite the solid nature of the waste. Five zones were investigated in each site: the deposit, three affected zones along the plume of contamination and a control zone. In affected zones, contaminants were 2 to 350 times higher than background levels depending on the site. In many cases, contaminants exceeded the German environmental guidelines for the soil-groundwater path and action levels based on extractable concentrations. Resin contamination yielded larger total C/total N ratios in affected zones, but no clear effect was observed on absolute C, N and P concentrations. In general, no major acidification effect was reported in affected zones.

  16. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  17. Acid deposition in east Asia

    SciTech Connect

    Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.

    1996-12-31

    A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long in winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.

  18. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    SciTech Connect

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulation in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.

  19. Acid deposition in Asia: Emissions, deposition, and ecosystem effects

    NASA Astrophysics Data System (ADS)

    Duan, Lei; Yu, Qian; Zhang, Qiang; Wang, Zifa; Pan, Yuepeng; Larssen, Thorjørn; Tang, Jie; Mulder, Jan

    2016-12-01

    We review and synthesize the current state of knowledge regarding acid deposition and its environmental effects across Asia. The extent and magnitude of acid deposition in Asia became apparent only about one decade after this issue was well described in Europe and North America. In addition to the temperate zone, much of eastern and southern Asia is situated in the tropics and subtropics, climate zones hitherto little studied with respect to the effects of high loads of acid deposition. Surface waters across Asia are generally not sensitive to the effects of acid deposition, whereas soils in some regions are sensitive to acidification due to low mineral weathering. However, soil acidification was largely neutralized by such processes as base cation deposition, nitrate (NO3-) denitrification, and sulfate (SO42-) adsorption. Accompanying the decrease in S deposition in recent years, N deposition is of increasing concern in Asia. The acidifying effect of N deposition may be more important than S deposition in well drained tropical/subtropical soils due to high SO42- adsorption. The risk of regional soil acidification is a major threat in Eastern Asia, indicated by critical load exceedance in large areas.

  20. Effects of acid deposition on terrestrial ecosystems in southwest China

    SciTech Connect

    Zong wei Feng

    1996-12-31

    Acid deposition is widely recognized as one of serious global atmospheric environmental issues. China also facing this problem. According to the monitoring data of national surveys, that the acid deposition in China was mainly distributed within the areas to the south of Yangtze River, particularly in the southwest. Those with the lowest rain water pH were centered around Chongqing City, Sichuan Province and Guiyang City, Guizhou Province. The China and Japan cooperative studies on impacts and control strategies of acid deposition on terrestrial ecosystems have been carried out since 1990 at Congqing area. In this paper some ecological monitoring results are summarized.

  1. Mesoscale acid deposition modeling studies

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.

    1989-01-01

    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.

  2. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  3. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume II, appendices

    SciTech Connect

    Not Available

    1983-12-01

    This document contains 2 appendices. The first documents the methodologies used to calculate production, unit energy consumption, fuel type and emission estimates for 16 industries and 35 types of facilities utilizing direct-fired industrial combustion processes, located in 26 states (and the District of Columbia) east of the Mississippi River. As discussed in the text of this report, a U.S. total of 16 industries and 45 types of facilities utilizing direct-fired combustion processes were identified by an elimination type method that was developed based on evaluation of fuel use in industrial SIC codes 20-39 to identify pollutant sources contributing to acid rain. The final population included only plants that have direct-fired fuel consumption greater than or equal to 100 x 10/sup 9/ Btu/yr of equivalent energy consumption. The goal for this analysis was to provide at least a 1980 base year for the data. This was achieved for all of the industries and in fact, 1981 data were used for a number of the industries evaluated. The second contains an analysis of all consumption of major fossil fuels to: (1) identify all fuel usage categories, and (2) identify the kinds of combustion equipment used within each category. This analysis provides a frame of reference for the balance of the study and permits using an energy accounting methodology to quantify the degree to which the inventoried sources in individual consuming sectors are complete and representative of the total population for the sector.

  4. Acidic deposition: A review of biological effects

    USGS Publications Warehouse

    Sparling, Donald W.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    The problem of acidic deposition and its possible effects on habitats, organisms, materials, and human health has been recognized for centuries. Earliest accounts date to Cicero (about 100 B.C.), who linked structural damage to buildings and statues in Rome to the smokey rains of wood and charcoal burning.3 Based on estimated of human demographics and centers of population, problems caused by acidic deposition may extend back to 400 to 500 B.C., but were not fully manifested until the mid-1800s with the rise of the Industrial revolution. the term "acid rain" was apparently first coined by R.A. Smith in 1972.4

  5. Acidic deposition and soil processes

    SciTech Connect

    Newton, R.M.; April, R.H.

    1985-08-01

    The results of the Integrated Lake-Watershed Acidification Study (ILWAS) show that the sensitivity of a watershed to surface water acidification is determined by the flow paths of water through the terrestrial system. If the water infiltrates through the soils into the groundwater system, acid neutralization occurs through weathering reactions involving minerals in the soils and till. Runoff and shallow interflow result in acid surface waters. Flow paths are determined in the ILWAS watersheds by the thickness of the glacial till. Complete neutralization can occur even in areas underlain by sensitive bedrock if the flow path through the mineral horizons is long enough. This appears to hold even in areas outside of the Adirondacks. 11 references, 5 figures.

  6. Acid deposition in Maryland: Summary of results through 1989. Final report

    SciTech Connect

    DeMuro, J.; Bowman, M.; Maxwell, C.; Asante-Duah, D.; Meyers, S.

    1990-06-01

    The Chesapeake Bay Research and Monitoring Program coordinates Maryland's acid deposition research and reports research results annually. The report evaluates several major topic areas including transport and chemistry of acid deposition, its potential impacts on the State's streams and fish, possible impacts on terrestrial resources such as crops and forests and on materials, the ability of energy conservation programs to reduce emissions of acid-forming pollutants, and mitigation techniques for neutralizing acid waters.

  7. Effects of Acid Deposition on Wood

    Treesearch

    Mark Knaebe

    2013-01-01

    Since acid deposition increases the rate of deterioration of unpainted wood, it can also affect the performance of paint applied to this weathered wood. In tests conducted near Madison, Wisconsin, smooth-planed wood was allowed to weather before painting. Exposure for as little as 2 weeks shortened the service life of the subsequently applied paint. The paint bond was...

  8. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  9. RESULTS FROM THE MOUNTAIN ACID DEPOSITION PROGRAM

    EPA Science Inventory

    The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the. requirements of the Clean Air Act Amendments (CAAA). The main ob...

  10. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  11. CASTNet mountain acid deposition monitoring program

    SciTech Connect

    Bowser, J.J.; Anderson, J.B.; Edgerton, E.S.; Mohnen, V.; Baumgardener, R.

    1994-12-31

    Concern over the influence of air pollution on forest decline has led the USEPA to establish the Mountain Acid Deposition Monitoring Program (MADMP) to quantify total deposition at high altitudes, i.e., above cloud base. Clouds can be a major source of atmospheric deposition to sensitive, mountain ecosystems. This program is a part of the Clean Air Status and Trends Network (CASTNet), a national assessment of the effects of the 1990 Clean Air Act. The objectives of MADMP are to estimate total deposition, measure cloud chemistry, and characterize spacial and temporal trends at four selected high altitude sites in the Eastern US. Four MADMP sites have been established for the 1994 field season: Clingman`s Dome, Great Smoky Mountain Nat. Park, TN; Slide Mountain, Catskill State Park, NY; Whiteface Mountain, Adirondack State Park, NY; and Whitetop Mountain, Mt. Rogers Nat`l Recreational Area, VA. An automated cloud collection system will be utilized in combination with continuous measurements of cloud liquid water content in order to estimate cloudwater deposition. Other relevant data will include continuous meteorological measurements, ozone and sulfur dioxide concentrations, wet deposition from rainfall analysis, and dry deposition from filter pack analysis. Quality assurance and quality control measures will be employed to maximize accuracy and precision.

  12. Acidic deposition and cistern drinking water supplies

    SciTech Connect

    Olem, H.; Berthouex, P.M.

    1989-03-01

    The water quality characteristics, including the trace elements Cd, Cu, Pb, and Zn, in rainwater cistern supplies representing an area receiving acidic deposition were compared to cistern water chemistry in a control area that does not receive a significant input of acidic deposition. Mean volume-weighted pH for bulk deposition was two pH units higher and SO/sub 4/ was 50% lower in the control region. Rainwater was neutralized upon contact with cistern masonry in both regions, as indicated by a 1.5-unit increase in pH and an increase in calcium and alkalinity. While there seemed to be a clear difference in water quality for the two study region, any difference in trace metals was marginal. Metal concentrations were below current drinking water limits in all but a few samples. Cistern water that remained in the home plumbing system overnight exceeded the proposed drinking water standard of 5 ..mu..g/L for lead in 18 homes in the region receiving acidic deposition and 10 homes in the control region. No relation between metal concentrations and roofing material, plumbing materials, or water stability indices could be found.

  13. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  14. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  15. Meteoritic Microfossils in Eltanin Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2006-01-01

    We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km-sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain nun-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored approximately 80,000 sq-km. of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 0.4 to 2.8 g/cm2. This is the most meteorite-rich locality known on Earth.

  16. Acidic Depositions: Effects on Wildlife and Habitats

    USGS Publications Warehouse

    1993-01-01

    The phenomenon of 'acid rain' is not new; it was recognized in the mid-1800s in industrialized Europe. In the 1960s a synthesis of information about acidification began in Europe, along with predictions of ecological effects. In the U.S. studies of acidification began in the 1920s. By the late 1970s research efforts in the U.S. and Canada were better coordinated and in 1980 a 10-year research program was undertaken through the National Acid Precipitation Assessment Plan (NAPAP) to determine the causes and consequences of acidic depositions. Much of the bedrock in the northeastern U.S. and Canada contains total alkalinity of 20 kg/ha/yr of wet sulphate depositions and are vulnerable to acidifying processes. Acidic depositions contribute directly to acidifying processes of soil and soil water. Soils must have sufficient acid-neutralizing capacity or acidity of soil will increase. Natural soil-forming processes that lead to acidification can be accelerated by acidic depositions. Long-term effects of acidification are predicted, which will reduce soil productivity mainly through reduced availability of nutrients and mobilization of toxic metals. Severe effects may lead to major alteration of soil chemistry, soil biota, and even loss of vegetation. Several species of earthworms and several other taxa of soil-inhabiting invertebrates, which are important food of many vertebrate wildlife species, are affected by low pH in soil. Loss of canopy in declining sugar maples results in loss of insects fed on by certain neotropical migrant bird species. No definitive studies categorically link atmospheric acidic depositions with direct or indirect effects on wild mammals. Researchers have concentrated on vegetative and aquatic effects. Circumstantial evidence suggests that effects are probable for certain species of aquatic-dependent mammals (water shrew, mink, and otter) and that these species are at risk from the loss of foods or contamination of these foods by metals

  17. Acid deposition study in the Asian countries

    SciTech Connect

    Soon, Ting-Kueh; Lau, Wai-Yoo

    1996-12-31

    The Association of South East Asian Nations or ASEAN is a regional association of seven countries, namely Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei and Vietnam, located at the south eastern part of the Asian continent. Together with the East Asian States of Japan, China, Korea and Taiwan, this part of the world is experiencing rapid economic growth, especially in the last decade. Rapid industrialization has resulted in an increased demand for energy in the manufacturing and transport sectors, and also for infrastructure development. This has led to a significant increase in gaseous emissions and a corresponding increase in atmospheric acidity. Acid deposition study in the ASEAN countries began in the mid-70s when Malaysia first started her acid rain monitoring network in 1976. This was followed closely by Singapore and the other ASEAN countries in the 80s. By now all ASEAN countries have their own acid rain monitoring networks with a number of these countries extending the monitoring to dry deposition as well.

  18. Emerging acid deposition research and monitoring issues

    SciTech Connect

    Birnbaum, R.

    1997-12-31

    The research baselines established for acid rain in the 1980s position scientists and policy makers to evaluate the environmental effectiveness of the acid rain control program and to test the variety of scientific hypotheses made regarding the chemical, transport and biological processes involved in acidic deposition. Several new research questions have evolved. How effective are the emissions reductions? What is the residual risk? How have ecological recovery rates been affected and what other environmental factors influence recovery? What are the critical requirements to measure ecological change including the extent and rate while also capturing the extent and severity of emerging ecological stressors (such as watershed nitrogen saturation)? These and other questions are currently being synthesized within and outside of EPA to develop a long-term strategy to provide guidance to emerging research and monitoring issues.

  19. Acid deposition research in the private sector

    SciTech Connect

    Kinsman, J.D.; Wisniewski, J.; Nelson, J.

    1984-02-01

    Acid deposition research funded by the private sector since 1980 is reviewed. Types of studies (e.g., atmospheric processes, emissions and monitoring, environmental effects) supported by the private sector during this period are overviewed. The specific industries/organizations (e.g., electric utility industry, environmental interest groups) funding reserach during 1980-1982 are discussed, with relation to the number of studies supported and funds (by year) provided by each. Finally, 13 research projects supported by the private sector and initiated by December 1983, each at greater than $1 million, are described.

  20. Influence of acid deposition on regeneration dynamics along a disturbance intensity gradient

    Treesearch

    Sarah E. Stehn; Christopher R. Webster; Michael A. Jenkins; Shibu. Jose

    2010-01-01

    Now considered one of the most threatened vegetation communities in North America, spruce-fir forests of the southern Appalachians have been devastated by the combined impacts of the exotic balsam woolly adelgid (Adelges piceae, BWA) and chronic acid deposition.

  1. Ancillary effects of selected acid deposition control policies

    SciTech Connect

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  2. The Meteoritic Component in Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    This proposal requested support for a broad-based research program designed to understand the chemical and mineralogical record of accretion of extraterrestrial matter to the Earth. The primary goal of this research is to study the accretion history of the Earth, to understand how this accretion history reflects the long-term flux of comets, asteroids, and dust in the inner solar system and how this flux is related to the geological and biological history of the Earth. This goal is approached by seeking out the most significant projects that can be attacked utilizing the expertise of the PI and potential collaborators. The greatest expertise of the PI is the analysis of meteoritic components in terrestrial sediments. This proposal identifies three primary areas of research, involving impact events in the early Archean (3.2 Ga), the late Eocene (35 Ma) and the late Pliocene (2 Ma). In the early Archean we investigate sediments that contain the oldest recorded impacts on Earth. These are thick spherule beds, three of which were deposited within 20 m.y. If these are impact deposits the flux of objects to Earth at this time was much greater than predicted by current models. Earlier work used Cr isotopes to prove that one of these contain extraterrestrial matter, from a projectile with Cr isotopes similar to CV chondrites. We planned to expand this work to other spherule beds and to search for additional evidence of other impact events. With samples from D. Lowe (Stanford Univ.) the PI proposed to screen samples for high Ir and Cr so that appropriate samples can be provided to A. Shukolyukov for Cr-isotopic analyses. This work was expected to provide evidence that at least one interval in the early Archean was a period of intense bombardment and to characterize the composition of objects accreted. The late Eocene is also a period of intense bombardment with multiple spherule deposits and two large craters. Farley et al. (1998) demonstrated an increased (3)He flux to

  3. Impediments to recovery from acid deposition

    NASA Astrophysics Data System (ADS)

    Watmough, Shaun A.; Eimers, Catherine; Baker, Scott

    2016-12-01

    In response to large reductions in sulphur (S) emissions over the past 30 years, sulphate (SO42-) concentrations in precipitation at Plastic Lake in south-central Ontario, Canada, have declined by more than 70%. More recent decreases in NOx emissions have similarly led to a reduction in nitrate deposition (NO3-) and consequently the pH of bulk precipitation has increased by approximately 0.8 pH units since 1980. Despite the large decrease in acidic deposition, chemical recovery of the streams, as measured by an increase in pH and decrease in aluminum (Al), has been much less than expected, primarily due to losses of base cations from the shallow, base-poor soils. While nitrogen (N) is almost totally retained within the terrestrial catchment, S export continues to exceed inputs measured in bulk deposition and during the early part of the record approximately 70% of the anions in streams were buffered by calcium (Ca2+) and magnesium (Mg2+) compared with only 60% in 2011/12. In the wetland-draining stream (PC1), peak depressions in stream pH and peaks in SO42- and Al concentration in the fall are significantly positively correlated with annual drought days defined as the number of days when stream flow ceases. Even though reductions in SO2 and NOx emissions in Canada have resulted in large improvements in precipitation chemistry, the combined influence of soil acidification and climate-mediated biogeochemical processes occurring in wetlands cause acidification-related issues to persist. Forecasting the longer-term response of soils and surface waters in light of these observations is required to fully assess the need for further emission reductions.

  4. Meteoritic Microfossils In Eltanin Impact Deposits

    NASA Astrophysics Data System (ADS)

    Kyte, F. T.; Wollenburg, J.; Gersonde, R.; Kuhn, G.

    2006-12-01

    Introduction: We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km- sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain mm-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored 80,000 square km of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 5 to 50 kg per square meter. This is the most meteorite-rich locality known on Earth. Results: Two cores were taken in a basin near the top of the Freeden Seamounts at a water depth of 2.7 km. Sediments in this shallow basin are compositionally different than those at all other sites as they contain abundant calcareous microfossils. In deeper water sites (4 to 5 km depth), higher pressures and CO2 concentrations cause dissolution of calcite and sediments contain siliceous (opal) microfossils or are barren. An exception to this is a few sites in the immediate vicinity of the seamounts that contain calcareous sediments that flowed off the seamounts after being disturbed by the impact. At the top of the seamounts, sediments with meteoritic ejecta

  5. Regional estimates of acid deposition fluxes in California. Final report

    SciTech Connect

    Blanchard, C.L.; Michaels, H.

    1994-03-01

    Acidic deposition occurs via precipitation, fog, cloud water, and dry deposition. Each of these processes is potentially important in California. The specific objectives of this project were to (1) evaluate the quality of the available deposition data; (2) compute estimates of the deposition of each species of interest, by mode of deposition, at each monitoring location in California having sufficient data available; (3) generalize the estimated deposition amounts to larger regions of interest, to the extent possible; (4) compare wet with dry deposition; and (5) identify measurement and methodological requirements for improving the results.

  6. Impact Crater Deposits in the Martian Highlands

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. a.

    2005-01-01

    The martian highlands of Noachis Terra (20-30 deg S, 20-50 deg E), Tyrrhena Terra (0-30 deg S, 50- 100 deg E) and Terra Cimmeria (0-60 deg S, 120-170 deg E) preserve long and complex histories of degradation, but the relative effects of such factors as fluvial, eolian, and mass wasting processes have not been well constrained. The effects of this degradation are best observed on large (D greater than 10 km) impact craters that characterize the ancient highlands. Some craters exhibit distinct interior deposits, but precise origins of these deposits are enigmatic; infilling may occur by sedimentary (e.g., fluvial, lacustrine, eolian), mass wasting and (or) volcanic processes.

  7. Estimating lake susceptibility to acidification due to acid deposition.

    Treesearch

    Dale S. Nichols

    1990-01-01

    Presents a graphical procedure for evaluating the same sensitivity of lakes to acidification due to acid deposition. The procedure is based on empirical relationships between sulfur (and in some cases nitrogen) deposition rates and lake pH, acid-neutralizing capacity, base cation concentrations, and the amount of runoff.

  8. Acid deposition: Atmospheric processes in Eastern North America

    SciTech Connect

    Not Available

    1983-01-01

    This report examines scientific evidence on the relationship between emissions of acid-forming pollutants and damage to sensitive ecosystems from acid rain and other forms of acid deposition. The report's conclusions represent the most authoritative statement yet that reductions in emissions of these pollutants will result in proportional reductions in acid rain.

  9. Small Impact Craters with Dark Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    1999-01-01

    When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here.

    The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  10. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs.

    PubMed

    Ruiz-Ascacibar, I; Stoll, P; Kreuzer, M; Boillat, V; Spring, P; Bee, G

    2017-03-01

    Breeding leaner pigs during the last decades may have changed pig's empty body (EB) composition, a key trait for elaborating feeding recommendations. This research aimed to provide new experimental data on changes in the chemical composition of the EB of pigs from 20 to 140 kg BW. In addition, the impact of a reduction in the dietary CP associated with lower lysine, methionine+cystine, threonine and tryptophan levels was determined. In total, 48 males, castrates and females weighing 20 kg BW were allocated either to a control grower-finisher diet formulated according to current Swiss feeding recommendations, or a low CP grower-finisher diet (80% of control). Feed intake was monitored and pigs were weighed weekly. The chemical composition of EB (blood, hairs and hoofs, offals, bile, carcass) was determined at 20, 40, 60, 80, 100, 120 and 140 kg BW on four pigs per gender and diet (eight pigs per gender at 20 kg). The five fractions were weighed and samples were analysed for dry matter, protein, fat and energy. Nutrient deposition rates and N efficiency were calculated by using the 20 kg BW category as reference. Analysis revealed an accurate feed optimisation for the aforementioned essential amino acids (EAA), whereas digestible isoleucine content in the low CP diet was at 70% of the control diet. Despite similar feed intake, daily gain and feed efficiency were impaired (P<0.01) from 20 to 100 kg BW in the low CP compared with the control pigs. In the same growth period, castrates had the greatest feed intake but, together with females, displayed the lowest (P<0.01) feed efficiency. Protein deposition was reduced (P<0.01) by up to 31% with low CP diet and was lower (P<0.01) in castrates and females than males at 100 kg BW. The greatest fat deposition rates were found with low CP diet and castrates. N efficiency improved (P<0.05) by 10% with the low CP diet from 100 to 140 kg. The males displayed the greatest (P<0.05) N efficiency. These findings suggest that the CP

  11. Analysis of survey data on the chemistry of twenty-three streams in the Chesapeake Bay watershed: some implications of the impact of acid deposition. Final report

    SciTech Connect

    Janicki, A.; Cummins, R.

    1983-12-01

    A survey of the chemistry of 23 streams within the Chesapeake Bay watershed was conducted in the spring of 1983 to determine whether a potential for changes in water chemistry due to atmospheric inputs of acidic materials exists in any of these streams. Sampling was conducted weekly through the months of March and April. Three streams were identified as being likely affected by acid inputs due to relatively high H(+) and SO4(-2) concentrations and low alkalinities: Stockett's Run, Lyons Creek, and Muddy Creek. Elevated dissolved aluminum concentrations were observed in some Eastern Shore streams and are likely related to the predominance of clay soils in their watersheds.

  12. ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

  13. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  14. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  15. Study of the acidic deposition phenomenon over Alexandria city.

    PubMed

    Noweir, Kamal H; El-Marakby, Fadia A; Zaki, Gihan R; Ibrahim, Alaa K

    2008-01-01

    Acid deposition commonly occurs due to conversion of primary acidic pollutants (SO2 & NO2) into secondary pollutants (H2SO4 & HNO3 and their salts). The main natural sources of acid deposition in Alexandria include lightening and microbial processes. Anthropogenic sources include traffic, industrial, fuel burning, and incineration activities. Acid deposition has ecological and economic effects in addition to health effects. The objective of this study is to assess acidity of dry and wet depositions in the atmosphere of Alexandria. Dry samples were collected as settled dust using plastic jar. Wet samples were collected as rain water using polyethylene bottle. All samples were analyzed for pH, sulfates, and nitrates. The relatively high pH values observed in depositions of Alexandria city (6.95+/-0.22) and (7.14+/-0.49) for settled dust and rain water respectively indicating the conversion of the formed acids (H2SO4 & HNO3) into their salts. This explanation was confirmed by the relatively high concentrations of sulfates and nitrates. The average values were (14.3+/-4.21 g/km2/month and 20.5+/-9.5mg/L for sulfates), and (22.6+/-10.6 g/km2/month and 0.5+/-0.32 mg/L for nitrates) for settled dust and rainwater samples respectively. It can be concluded that Alexandria is a lucky city regarding acidity of the atmosphere due to its geographic, topographic, and meteorological features. Building up acid deposition monitoring network that covers all Egyptian cities to be a nucleus for African network, using new technologies that reduce emission of acid deposition precursors and alternative sources of energy, implementing and enforcing regulations and standards for major pollutants, and increasing public awareness are recommended.

  16. Acidic deposition--ecological effects on surface waters

    SciTech Connect

    Harter, P.

    1989-01-01

    The acidification of soft water aquatic ecosystems, with consequent damage to the flora and fauna, is considered in this report. The evidence that environmental effects are ocurring is examined to see if a trend of increasing acidification can be related to changes in atmospheric deposition of sulphates and nitrates. Possible causes of change are considered, to clarify the contributions of variations in human activities and natural factors. It is concluded that acidic deposition, originating partly from emissions of sulphur and nitrogen compounds arising from man-made sources including combustion of fossil fuels, is causing acidification of surface waters in some areas of Europe and North America. There is proof that acidification of surface waters (to less than pH 6) is deleterious to many of the organisms whose habitat it forms. Acidified surface waters in some of the impacted areas are showing signs of recovery, where emissions of sulphur and nitrogen compounds from human activities are decreasing. There is some evidence that reversibility of acidification has started to occur, in some instances, about a decade after emissions were reduced. 219 refs., 13 figs., 9 tabs.

  17. Acid deposition and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1986-04-01

    In August, 1983 members of the Research Staff of Ford Motor Company carried out a field experiment at two rural sites in southwestern Pennsylvania involving various aspects of the acid deposition phenomenon. This presentation focuses on the wet (rain) deposition during the experiment, as well as the relative importance of wet and dry deposition processes for nitrate and sulfate at the sites. Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO/sub 3/ and SO/sub 2/ to surrogate surfaces (2), and the role of elemental carbon in light absorption and of light absorption in degradation of visibility (3).

  18. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  19. Temporal perspective on acid deposition research

    SciTech Connect

    Hendrey, G R

    1980-02-20

    This statement presented to the Subcommittee on Natural Resources of the US House of Representatives gives a definition of acid rain, presents new data on the regional and temporal nature of the problem, and discusses research needs. (ACR)

  20. Acid deposition effects on forest composition and growth on the Monongahela National Forest, West Virginia

    Treesearch

    P.E. Elias; J.A. Burger; M.B. Adams

    2009-01-01

    The northern and central Appalachian forests are subject to high levels of atmospheric acid deposition (AD), which has been shown in some forests to negatively impact forest growth as well as predispose the forest system to damage from secondary stresses. The purpose of this study was to evaluate the possible contribution of AD to changes in composition and...

  1. Uric acid deposits in symbiotic marine algae.

    PubMed

    Clode, Peta L; Saunders, Martin; Maker, Garth; Ludwig, Martha; Atkins, Craig A

    2009-02-01

    The symbiosis between cnidarians and dinoflagellate algae is not understood at the cell or molecular level, yet this relationship is responsible for the formation of thousands of square kilometres of coral reefs. We have investigated the nature of crystalline material prominent within marine algal symbionts of Aiptasia sp. anemones. This material, which has historically been considered to be calcium oxalate, is shown to be uric acid. We demonstrate that these abundant uric acid stores can be mobilized rapidly, thereby allowing the algal symbionts to flourish in an otherwise N-poor environment. This is the first report of uric acid accumulation by symbiotic marine algae. These data provide new insight and considerations for understanding the physiological basis of algal symbioses, and represent a new and previously unconsidered aspect of N metabolism in cnidarian, and a variety of other, marine symbioses.

  2. The contribution from shipping emissions to air quality and acid deposition in Europe.

    PubMed

    Derwent, Richard G; Stevenson, David S; Doherty, Ruth M; Collins, William J; Sanderson, Michael G; Johnson, Colin E; Cofala, Janusz; Mechler, Reinhard; Amann, Markus; Dentener, Frank J

    2005-02-01

    A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO2, NOx, VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m(-2) yr(-1) over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met.

  3. Acid depositions and concrete attack: Main influences

    SciTech Connect

    Sersale, R.; Frigione, G.; Bonavita, L.

    1998-01-01

    The results of an experimental research on the factors responsible to a greater extent for the action of simulated acid precipitations on cement concrete works, both in static and in dynamic conditions, are discussed. The influence of the cement type, the role of calcium hydroxide, the influence of water-cement ratio, and the retard effect on assault, owing to a surface treatment with a water repellent agent, are emphasized.

  4. Impact of sludge deposition on biodiversity.

    PubMed

    Manzetti, Sergio; van der Spoel, David

    2015-11-01

    Sludge deposition in the environment is carried out in several countries. It encompasses the dispersion of treated or untreated sludge in forests, marsh lands, open waters as well as estuarine systems resulting in the gradual accumulation of toxins and persistent organic compounds in the environment. Studies on the life cycle of compounds from sludge deposition and the consequences of deposition are few. Most reports focus rather on treatment-methods and approaches, legislative aspects as well as analytical evaluations of the chemical profiles of sludge. This paper reviews recent as well as some older studies on sludge deposition in forests and other ecosystems. From the literature covered it can be concluded that sludge deposition induces two detrimental effects on the environment: (1) raising of the levels of persistent toxins in soil, vegetation and wild life and (2) slow and long-termed biodiversity-reduction through the fertilizing nutrient pollution operating on the vegetation. Since recent studies show that eutrophication of the environment is a major threat to global biodiversity supplying additional nutrients through sludge-based fertilization seems imprudent. Toxins that accumulate in the vegetation are transferred to feeding herbivores and their predators, resulting in a reduced long-term survival chance of exposed species. We briefly review current legislation for sludge deposition and suggest alternative routes to handling this difficult class of waste.

  5. Regional source-receptor relationships for atmospheric acidity and acid deposition in California. Final report

    SciTech Connect

    Karamchandani, P.; Pilinis, C.; Shah, J.

    1993-12-01

    The report describes the results of a database management and semi-empirical modeling study that was performed to evaluate regional soure-receptor relationships (SRRs) for atmospheric acidity and acidic deposition in California. The objectives of the study were to quantify the contributions of the various source regions in California to acidic deposition at selected receptors in the state and to estimate the uncertainties in the derived values.

  6. Impact-induced Hydrothermal Systems and Mineral Deposition on Mars

    NASA Technical Reports Server (NTRS)

    Thorsos, I. E.; Newsom, H. E.; Davies, A. G.

    2002-01-01

    Modeling of hydrothermal circulation at impact craters on Mars to determine system duration and potential mineral deposition in the context of Mars exploration. Additional information is contained in the original extended abstract.

  7. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  8. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  9. Watershed Deposition Tool for air quality impacts

    EPA Pesticide Factsheets

    The WDT is a software tool for mapping deposition estimates from the CMAQ model to watersheds. It provides users with the linkage of air and water needed for the total maximum daily load (TMDL) and related nonpoint-source watershed analyses.

  10. Evaluation of acid deposition models using principal component spaces

    SciTech Connect

    Cohn, R.D.; Dennis, R.L.

    1994-01-01

    The purpose of this paper is to motivate, introduce, and illustrate a useful analytical technique in the evaluation of acid deposition models and other regional models. This technique is used to identify the dominant multivariate relationships present in measured data, and to compare these relationships with those found in the model predictions themselves.

  11. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites.

  12. MOUNTAIN ACID DEPOSITION PROGRAM (MADPRO): CLOUD DEPOSITION TO THE APPALACHIAN MOUNTAINS, 1994 THROUGH 1999

    EPA Science Inventory

    The mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the requirements of the Clean Air Act Amendments (CAAA). The two ma...

  13. MOUNTAIN ACID DEPOSITION PROGRAM (MADPRO): CLOUD DEPOSITION TO THE APPALACHIAN MOUNTAINS, 1994 THROUGH 1999

    EPA Science Inventory

    The mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support the objectives of the Clean Air Status and Trends Network (CASTNet), which was created to address the requirements of the Clean Air Act Amendments (CAAA). The two ma...

  14. Distal Ejecta from Lunar Impacts: Extensive Regions of Rocky Deposits

    NASA Technical Reports Server (NTRS)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2016-01-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A approximate 18,000 sq km area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5 deg E, 42.5 deg N). This region has been identified previously, using radar and aging data. 2) A much larger and more diffuse region, covering approximately 730,000 sq km, centered near 310 deg E, 35 deg S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (approximately 10-30 deg) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history

  15. Distal ejecta from lunar impacts: Extensive regions of rocky deposits

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2017-02-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A ∼18,000 km2 area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5°E, 42.5°N). This region has been identified previously, using radar and imaging data. 2) A much larger and more diffuse region, covering ∼730,000 km2, centered near 310°E, 35°S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (∼10-30°) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history.

  16. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China.

    PubMed

    Tao, Yu; Dan, Dai; Chengda, He; Qiujin, Xu; Fengchang, Wu

    2016-11-01

    Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0-10 cm) and deeper sediments (>10 cm). The interstitial water Ca(2+) and Mg(2+), ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid

  17. Role of acid rain in atmospheric deposition. Final report

    SciTech Connect

    Winchester, J.W.

    1990-12-31

    A study was conducted to assess the potential importance of atmospheric nitrate deposition for a north Florida estuary. A comparison, based on statistical analysis of fluxes of ten dissolved constituents of rain water and river water, has been carried out for the watershed of the Apalachicola River, utilizing weekly rain water chemical data from the National Acid Deposition Program (NADP) for five sites within the watershed area, monitored from 1978-84 until late 1989, and less frequent river water chemical data from the U.S. Geological Survey for one site at Chattahoochee, Florida, monitored from 1965 until late 1989. Similar statistical analysis was performed on monitoring data for the Sopchoppy and Ochlockonee Rivers of north Florida. Atmospheric deposition to the watershed appears to be sufficient to account for essentially all the dissolved nitrate and ammonium and total organic nitrogen flow in the three rivers. However, after deposition most of the nitrate may be transformed to other chemical forms during the flow of the rivers toward their estuaries. In an additional statistical analysis of rain water monitoring data from the eight state southeastern USA region, it was found that both meteorological conditions and transport from pollution sources appear to control deposition fluxes of nitrate and sulfate acid air pollutants.

  18. Acidic deposition and cistern drinking-water supplies

    SciTech Connect

    Olem, H.; Berthouex, P.M.

    1989-01-01

    The water-quality characteristics, including the trace elements Cd, Cu, Pb, and Zn, in rainwater cistern supplies representing an area receiving acidic deposition were compared to cistern-water chemistry in a control area that does not receive a significant input of acidic deposition. Mean volume-weighted pH for bulk deposition was two pH units higher and SO{sub 4} was 50% lower in the control region. Rainwater was neutralized upon contact with cistern masonry in both regions, as indicated by a 1.5-unit increase in pH and an increase in calcium and alkalinity. While there seemed to be a clear difference in water quality for the two study regions, any difference in trace metals was marginal. Metal concentrations were below current drinking-water limits in all but a few samples. Cistern water that remained in the home-plumbing system overnight exceeded the proposed drinking-water standard of 5 micrograms/L for lead in 18 homes in the region receiving acidic deposition and 10 homes in the control region. No relation between metal concentrations and roofing material, plumbing materials, or water stability indices could be found.

  19. Simulated seasonal variations in wet acid depositions over East Asia.

    PubMed

    Ge, Cui; Zhang, Meigen; Zhu, Lingyun; Han, Xiao; Wang, Jun

    2011-11-01

    The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental

  20. The spatial extent of tephra deposition and environmental impacts from the 1912 Novarupta eruption

    NASA Astrophysics Data System (ADS)

    Payne, Richard J.; Symeonakis, Elías

    2012-12-01

    The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500 km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions.

  1. Vapor-deposited water and nitric acid ices

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun; Keyser, Leon F.

    Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance

  2. ACIDIC DEPOSITION IN THE NORTHEASTERN U.S.: SOURCES AND INPUTS, ECOSYSTEM EFFECTS, AND MANAGEMENT STRATEGIES

    EPA Science Inventory

    Acidic deposition results from the emissions of air pollutants. Effects of acidic deposition in the northeastern US include the acidification of soil and water, causing stresses to terrestrial and aquatic biota.

  3. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  4. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S

    Treesearch

    Gregory B. Lawrence; Paul W. Hazlett; Ivan J. Fernandez; Rock Ouimet; Scott W. Bailey; Walter C. Shortle; Kevin T. Smith; Michael R. Antidormi

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been...

  5. Regional estimates of acid deposition fluxes in California for 1985-1994. Final report

    SciTech Connect

    Blanchard, C.L.; Michaels, H.; Tanenbaum, S.

    1996-04-01

    Acid deposition occurs via precipitation, fog, cloud water and dry deposition. The specific objectives of this project were to (1) evaluate the quality of the available deposition data; (2) compute estimates of the deposition of each species of interest, by mode of deposition, at each monitoring location in California; (3) generalize the estimated deposition amounts to larger regions of interest; (4) compare the magnitudes of wet and dry deposition; and (5) identify measurement and methodological requirements for improving the results.

  6. Fat deposition, fatty acid composition and meat quality: A review.

    PubMed

    Wood, J D; Enser, M; Fisher, A V; Nute, G R; Sheard, P R; Richardson, R I; Hughes, S I; Whittington, F M

    2008-04-01

    This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time

  7. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  8. Measurements of dry-deposition parameters for the California acid-deposition monitoring program. Final report

    SciTech Connect

    Watson, J.G.; Chow, J.C.; Egami, R.T.; Bowen, J.L.; Frazier, C.A.

    1991-06-01

    The State of California monitors the concentrations of acidic gases and particles at 10 sites throughout the state. Seven sites represent urban areas (South Coast Air Basin - three sites, San Francisco Bay Area, Bakersfield, Santa Barbara, and Sacramento) and three represent forested areas (Sequoia National Park, Yosemite National Park, and Gasquet). Several sites are collocated with monitoring instruments for other air quality and forest response networks. Continuous monitors for the dry deposition network collect hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation. A newly-designed gas/particle sampler collects daytime (6 a.m. to 6 p.m.) and nighttime (6 p.m. to 6 a.m.) samples every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid. Particles are collected on the same day/night schedule in PM(10) and PM(2.5) size ranges, and are analyzed for mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ions. The sampling schedule follows the regulatory schedule adopted by the EPA and ARB for suspended particulate matter. Wet deposition data are collected at or nearby the dry deposition stations. The first year of the monitoring program included installation of the network, training of technicians, acquisition and validation of data, and transfer of the sampling and analysis technology to Air Resources Board operating divisions. Data have been validated and stored for the period May, 1988 through September, 1989.

  9. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  10. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  11. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice

    PubMed Central

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component—presenilin 1 (PS1)—in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression. PMID:27618097

  12. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice.

    PubMed

    Tian, Tian; Bai, Dong; Li, Wen; Huang, Guo-Wei; Liu, Huan

    2016-09-09

    Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.

  13. Impact of declining atmospheric deposition on forest soil solution chemistry in Flanders, Belgium

    NASA Astrophysics Data System (ADS)

    Verstraeten, Arne; Neirynck, Johan; Genouw, Gerrit; Cools, Nathalie; Roskams, Peter; Hens, Maarten

    2012-12-01

    Throughout Europe and the USA, forest ecosystem functioning has been impacted by long-term excessive deposition of acidifying compounds. In this study, we report on trends in stand deposition and soil solution fluxes of inorganic nitrogen (N) and sulphur (S) compounds over a 17-year period (1994-2010) in five ICP Forests monitoring plots in Flanders, northern Belgium. Deposition was dominated by N, and primarily NH4+. Deposition of SO42- and NH4+ declined by 56-68% and 40-59% respectively. Deposition of NO-3 decreased by 17-30% in deciduous forest plots, but remained stable in coniferous forest plots. The decrease of N and S deposition was parallelled by a simultaneous decline in base cation (BC = Ca2+ + K+ + Mg2+) deposition, resulting in a 45-74% decrease of potentially acidifying deposition. Trends in soil solution fluxes of NH4+, NO3-, SO42- and BC mirrored declining depositions. Nitrate losses below the rooting zone were eminent in both coniferous forest plots and in one deciduous forest plot, while net SO42- release was observed in two deciduous forest plots. Critical limits for BC/Al ratio were exceeded at the three plots on sandy soils with lower cation exchange capacity and base saturation. Soil solution acid neutralizing capacity increased but remained negative, indicating that soil acidification continued, as the start of recovery was delayed by a simultaneous decrease of BC depositions and short-term soil buffering processes. Despite substantial reductions, current N deposition levels still exceed 4-8 times the critical load for safeguarding sensitive lichen species, and are still 22-69% above the critical load for maintaining ground vegetation diversity.

  14. Acid deposition in aquatic ecosystems: Setting limits empirically

    NASA Astrophysics Data System (ADS)

    Newcombe, Charles P.

    1985-07-01

    The problem of acid deposition and its harmful effects on aquatic ecosystems has created a new branch of science that is called upon to provide the knowledge on which legislative controls can be based. However, because of the nature of existing legislation, which requires evidence of cause and effect between industrial emissions and pollution, and because of science's inability to provide this information over the short term, considerable controversy has arisen about whether sufficient information exists to warrant control measures at this time. Among those who advocate controls, there is genuine divergence of opinion about how stringent the controls must be to achieve any desired level of protection. The controversy has led to an impasse between the scientific and political participants, which is reflected in the slow pace of progress toward an effective management strategy. Resolution of the impasse, at least in the short term, may demand that science and politics rely on empirical models rather than explanatory ones. The empirical model, which is the major proposal in this article, integrates all of the major variables and many of the minor ones, and constructs a three-dimensionally curved surface capable of representing the status of any waterbody subjected to the effects of acid deposition. When suitably calibrated—a process involving the integration of knowledge and data from aquatic biology, geochemistry, meteorology, and limnology—it can be used to depict limits to the rate of acid deposition required for any level of environmental protection. Because it can generate a pictorial display of the effects of management decisions and legislative controls, the model might serve as a basis for enhancing the quality of communication among all the scientific and political participants and help to resolve many of their controversies.

  15. Modeling the impact of bay breeze circulations on nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Loughner, C. P.; Tzortziou, M.; Pickering, K. E.; Duffy, M.; Satam, C.

    2012-12-01

    Atmospheric gases and aerosols are deposited into watersheds and estuarine waters contributing to water quality degradation and affecting estuarine and coastal biogeochemical processes. Pollution that is deposited onto land can be transported into storm drains, groundwater, streams, and rivers where it is eventually transported into near-shore waters. Air quality models, which simulate the chemical transformation, atmospheric transport, and deposition of pollutants onto land and surface waters, can play an integral role in forecasting water quality, preparing water quality regulations and providing information on the sources of nutrients and pollutants for advanced estuarine biogeochemical models. Previous studies have found that Chesapeake Bay breezes cause localized areas of high air pollution concentrations and that model simulations with horizontal resolutions coarser than about 5 km are not able to capture bay breeze circulations. Here, we investigate the importance of capturing bay breeze circulations with high resolution model simulations (horizontal resolution of 1.33 km) to accurately simulate the spatial and temporal variability of nitrogen deposition into the Chesapeake Bay watershed. Nitrogen deposition into the watershed from air quality model simulations are compared with observed wet deposition and estimated dry deposition rates from the National Acid Deposition Program (NADP) and the Clean Air Status and Trends Network (CASTNET), respectively. The model simulation is conducted for the months of June and July 2011. Two concurrent air and water quality field campaigns, DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) and GeoCAPE-CBODAQ (Geostationary Coastal and Air Pollution Events-Chesapeake Bay Oceanographic Campaign with DISCOVER-AQ), were conducted in July 2011, and data obtained from these field experiments are used to evaluate the model simulations.

  16. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  17. A Study of Effects of Acid Deposition on Pine Forest Ecosystem in Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, F.; Lv, Z.; Song, W.; Yang, S.

    2013-12-01

    We used a long-term soil acidification model (LTSAM) and a terrestrial biogeochemical model (CENTURY) coupled to simulate the effects of acid deposition on pine forest ecosystem in southwestern China, based on indoor experiment results of aluminum toxicity to individual plant growth. The results of indoor aluminum experiments show that high aluminum concentration may restrict the plant growth and the acidic condition may aggravate it. The behavior of restriction of plant growth includes decreases of pine seedling biomass, root elongation and the sorption of soil cations (e.g. Ca2+, Mg2+, Na+ and K+). The model simulation results about soil chemistry show that, as acid deposition increases more, the pH value decreases faster, the soil aluminum ion concentration increase more rapidly, and the nutrition ions in soil solution decrease more quickly. The increased acid deposition also has negative impacts on the forest ecosystem according to the biogeochemical model simulation, for example, decreases of vegetation biomass, net primary productivity (NPP) and net CO2 uptake. Furthermore, the decrease of plant biomass will result in the decrease of the soil organic carbon content for the limited decomposition material supply.

  18. Using the regional acid deposition model to determine the nitrogen deposition airshed of the Chesapeake Bay watershed. Book chapter

    SciTech Connect

    Dennis, R.L.

    1995-08-25

    The Regional Acid Deposition Model, RADM, an advanced Eulerian model, is used to develop an estimate of the primary airshed of nitrogen oxide (NOx) emissions that is contributing nitrogen deposition to the Chesapeake Bay watershed. A brief description of RADM together with a summary of the aggregation method used to develop annual average deposition is given. The evaluation background of RADM is summarized. The transport range of the nitrogen affecting deposition, principally the termination product nitric acid, is first established in the model. This range is compared to that determined for sulfur.

  19. Lunar and Planetary Science XXXV: Impact-Related Deposits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Impact-Related Deposits" included:Evidence for a Lightning-Strike Origin of the Edeowie Glass; 57Fe M ssbauer Spectroscopy of Fulgurites: Implications for Chemical Reduction; Ca-Metasomatism in Crystalline Target Rocks from the Charlevoix Structure, Quebec, Canada: Evidence for Impact-related Hydrothermal Activity; Magnetic Investigations of Breccia Veins and Basement Rocks from Roter Kamm Crater and Surrounding Region, Namibia; Petrologic Complexities of the Manicouagan Melt Sheet: Implications for 40Ar-39Ar Geochronology; Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for Possible Relationship to Late Devonian Extinction Events; Lunar Impact Crater, India: Occurrence of a Basaltic Suevite?; Age of the Lunar Impact Crater, India: First Results from Fission Track Dating; The Fluidized Chicxulub Ejecta Blanket, Mexico: Implications for Mars; Low Velocity Ejection of Boulders from Small Lunar Craters: Ground Truth for Asteroid Surfaces; Ejecta and Secondary Crater Distributions of Tycho Crater: Effects of an Oblique Impact; Potassium Isotope Systematics of Crystalline Lunar Spherules from Apollo 16; Late Paleocene Spherules from the North Sea: Probable Sea Floor Precipitates: A Silverpit Provenance Unproven; A Lithological Investigation of Marine Strata from the Triassic-Jurassic Boundary Interval, Queen Charlotte Islands, British Columbia, Including a Search for Shocked Quartz; Triassic Cratered Cobbles: Shock Effects or Tectonic Pressure?; Regional Variations of Trace Element Composition Within the Australasian Tektite Strewn Field; Cretaceous-Tertiary Boundary Microtektite-bearing Sands and Tsunami Beds, Alabama Gulf Coastal Plain; Sand Lobes on Stewart Island as Probable Impact-Tsunami Deposits; Distal Impact Ejecta, Uppermost Eocene, Texas Coastal Plain; and Continental Impact Debris in the Eltanin Impact Layer.

  20. Distribution and effects of acidic deposition on wildlife and ecosystems

    USGS Publications Warehouse

    Stromborg, K.L.; Longcore, J.R.; Kaemar, Peter; Legath, J.

    1987-01-01

    Acidic deposition occurs over most of the United States and the deposition patterns and theoretical vulnerabilities of aquatic ecosystems to chemical changes can be delineated, but few data exist on concomitant biological effects. Hypothetical direct effects are limited primarily to toxicity of various heavy metals mobilized at reduced pH. Results of studies in Scandinavia suggest that aluminum interferes with avian reproduction near acidified lakes. Some amphibian populations located on acid-vulnerable substrates may be adversely affected by reduced pH in the vernal pools used for egg laying and larval growth. Indirect effects on populations are difficult to detect because few historical data exist for wildlife populations and trophic relationships in vulnerable areas. Current research in the U.S.A. focuses on measuring habitat characteristics, food availability, and avian use of vulnerable wetland habitats. Results of Scandinavian studies suggest that some species of waterfowl may prefer acidified, I fish-free habitats because invertebrates essential for meeting nutritional requirements are more easily obtained in the absence of competition from fish. However, avian species dependent on fish would be absent from these habitats. Alteration of either the vegetative structure or primary productivity of wetlands might indirectly affect avian populations by causing decreased invertebrate productivity and consequent food limitations for birds.

  1. Amino acid survival in large cometary impacts

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  2. Aluminum toxicity risk reduction as a result of reduced acid deposition in Adirondack lakes and ponds.

    PubMed

    Michelena, Toby M; Farrell, Jeremy L; Winkler, David A; Goodrich, Christine A; Boylen, Charles W; Sutherland, James W; Nierzwicki-Bauer, Sandra A

    2016-11-01

    In 1990, the US Congress amended the Clean Air Act (CAA) to reduce regional-scale ecosystem degradation from SO x and NO x emissions which have been responsible for acid deposition in regions such as the Adirondack Mountains of New York State. An ecosystem assessment project was conducted from 1994 to 2012 by the Darrin Fresh Water Institute to determine the effect of these emission reduction policies on aquatic systems. The project investigated water chemistry and biota in 30 Adirondack lakes and ponded waters. Although regulatory changes made in response to the 1990 CAA amendments resulted in a reduction of acid deposition within the Adirondacks, the ecosystem response to these reductions is complicated. A statistical analysis of SO4, pH, Al, and DOC data collected during this project demonstrates positive change in response to decreased deposition. The changes in water chemistry also have lowered the risk of Al toxicity to brook trout (Salvelinus fontinalis [Mitchill]), which allowed the re-introduction of this species to Brooktrout Lake from which it had been extirpated. However, pH and labile aluminum (Alim) fluctuate and are not strongly correlated to changes in acid deposition. As such, toxicity to S. fontinalis also is cyclic and provides rationale for the difficulties inherent in re-establishing resident populations in impacted aquatic environments. Overall, aquatic ecosystems of the Adirondacks show a positive response to reduced deposition driven by changes in environmental policy, but the response is more complex and indicates an ecosystem-wide interaction between aquatic and watershed components of the ecosystem.

  3. Olivine Deposits Associated with Impact Basins and Craters on Mars

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Langevin, Y.; Gondet, B.; Bibring, J.; Carter, J.

    2011-12-01

    An analysis of the 1μm olivine spectral signature applied to the entire and final OMEGA dataset [1] shows numerous olivine-bearing deposits in the 3 main basins of Mars (Argyre, Isidis and Hellas). These signatures are among the strongest of Mars, which suggests compositions with higher iron content and/or larger grain size and/or larger abundance than the ones of widespread olivine-bearing deposits observed on large parts of the southern highlands [1]. A spectral modeling based on a radiative transfer model [2] indicates that their compositions are still close to the forsterite one with abundance in the range of [15,40%] and grain sizes of a few hundreds of μm. These deposits are exclusively localized on Noachian terrains. Distribution of these deposits around Argyre basin clearly takes the form of discontinuous patches of olivine-bearing rocks on the basin terrace, which strongly suggest that their formation is related to the basin formation event. Recent numerical simulations of basin formation show that impact that formed the Argyre basin could have excavated upper mantle materials and emplaced discontinuous patches of melted mantle on the basin terraces [3]. The observed olivine deposits in Argyre are thus interpreted as olivine-bearing material excavated from the upper mantle during the impact. Olivine deposits distribution around the Hellas basin is not as clear as for Argyre because of young resurfacing processes that strongly affected its region. Olivine deposits are fewer and mainly localized on the northern terrace of Hellas. Most of them are detected in crater ejecta, while a few similar to Argyre olivine discontinuous patches are also observed suggesting that a mantle origin as for Argyre is possible. Olivine has been detected by several datasets in the Nili Fossae region and in the south of Isidis basin. The spectral modeling of OMEGA spectra indicates an olivine abundance of about 40% and megacrysts of several millimeters for the region of Nili

  4. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  5. Sulfate sorption in soils under acid deposition: Comparison of two modeling approaches

    SciTech Connect

    Prenzel, J.

    1994-01-01

    Soil acidification under the impact of acid deposition is often modeled by adsorption isotherms. The assumption of solubility equilibria for basic Al sulfates is an alternative modeling approach. Similarities and differences between both concepts are discussed. A simple solubitity equilibrium model is defined and used to demonstrate that the second model can explain results that are well described by typical adsorption isotherms. The same model can also explain a pH dependency of adsorption isotherms that has been widely reported. In the application to assumed soil acidification scenarios, predictions are presented that could not be described by an adsorption isotherm approach. 38 refs., 8 figs., 1 tab.

  6. Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment.

    PubMed

    Bituh, Tomislav; Petrinec, Branko; Skoko, Božena; Vučić, Zlatko; Marović, Gordana

    2015-03-01

    Phosphogypsum (PG) is a waste product (residue) from the production of phosphoric acid characterized by technologically enhanced natural radioactivity. Croatia's largest PG deposition site is situated at the edge of Lonjsko Polje Nature Park, a sensitive ecosystem possibly endangered by PG particles. This field study investigates two aspects relevant for the general radiological impact of PG: risk assessment for the environment and risk assessment for occupationally exposed workers and local inhabitants. Activity concentrations of natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Pb, and (40)K) were measured in the PG (at the deposition site), soil, and grass samples (in the vicinity of the site). The ERICA Assessment Tool was used to estimate the radiological impact of PG particles on non-human biota of the Lonjsko Polje Nature Park. The average annual effective dose for occupationally exposed workers was 0.4 mSv which was within the worldwide range.

  7. Potential impact of acid precipitation on arsenic and selenium.

    PubMed Central

    Mushak, P

    1985-01-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075

  8. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  9. Impact of future land-cover changes on HNO3 and O3 surface dry deposition

    NASA Astrophysics Data System (ADS)

    Verbeke, T.; Lathière, J.; Szopa, S.; de Noblet-Ducoudré, N.

    2015-12-01

    Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between the present day (2006) and the future (2050) on dry deposition velocities at the surface, with special interest for ozone (O3) and nitric acid (HNO3), two compounds which are characterized by very different physicochemical properties. The 3-D chemistry-transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections, RCPs 2.6, 4.5 and 8.5, and present-day (2007) meteorology. The 2050 RCP 8.5 vegetation distribution leads to a rise of up to 7 % (+0.02 cm s-1) in the surface deposition velocity calculated for ozone (Vd,O3) and a decrease of -0.06 cm s-1 in the surface deposition velocity calculated for nitric acid (Vd,HNO3) relative to the present-day values in tropical Africa and up to +18 and -15 %, respectively, in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land-cover change in Eurasia, Vd,HNO3 increases by up to 20 % (annual-mean value) and reduces Vd,O3 by the same magnitude in this region. When analyzing the impact of surface dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual-mean surface ozone concentration for both the RCP 8.5 and RCP 2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a

  10. Impact of biomass burning on nutrient deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  11. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  12. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  13. Impacts of nitrogen deposition on vascular plants in Britain: an analysis of two national observation networks

    NASA Astrophysics Data System (ADS)

    Henrys, P. A.; Stevens, C. J.; Smart, S. M.; Maskell, L. C.; Walker, K. J.; Preston, C. D.; Crowe, A.; Rowe, E. C.; Gowing, D. J.; Emmett, B. A.

    2011-12-01

    Large areas of Great Britain currently have nitrogen (N) deposition at rates which exceed the thresholds above which there is risk of damage to sensitive components of the ecosystem (critical loads). Previous studies have focussed primarily on the relationship of species richness to nitrogen, whereas here we look at individual species. We used data from two national observation networks over Great Britain to examine the response of individual vascular plant species to N in acid grasslands, calcareous grasslands and heathlands. Presence absence records of individual species, along with mean Ellenberg N scores, within 10 km hectads were modelled against N deposition whilst at the same time controlling for the effects of climate, land use and sulphur deposition using generalised additive models. Ellenberg N showed a significant increase with increasing N deposition in almost all habitats across both surveys indicating increased fertility. Many individual species showed strong relationships with N deposition and clear negative trends in species prevalence to increasing nitrogen were found in all habitats. A number of these species were either habitat dominants or possessed traits known to be influential in controlling ecosystem function. Many community dominants showing significant negative relationships with N deposition highlight a potentially significant loss of function. Some species that showed negative relationships to N showed signs of decline at low levels, far below the current critical load levels. Some species also showed continuous changes as N deposition levels rose above the current critical load values. This work contributes to the growing evidence base suggesting species level impacts at low N deposition values.

  14. Do the paleolimnological reconstructions reflect the influence of acid deposition?

    SciTech Connect

    Smirnov, D.Y.

    1996-12-31

    The using possibility of paleolimnological analyses was considered with the documentation aim of acid-forming substances distant transfer on territory of Northern Fennoscandia. The Holocene and ancient interglacial lakes pH-and alkalinity trends, reconstructed by means of bottom sediments diatomic analyses, were studied. It has been made evident that the tendency to sharp changes of these data is revealed on final stages of interglacial periods. At that time the high amplitude of climatic changes with low periodicity is resulting in catastrophic changes of landscapes in the frames of water-catchments bodies. During the last millennium the climatic situation in the Northern Fennoscandia was changing repeatedly (Medieval Warm Epoch, Little Ice Age, the rise in temperature in 20-40`s of XXth century). In the Little Ice Age (XVI-XIX centuries) the decrease of average annual temperature and intensification of winds velocity have caused a rapid retreat of latitudinal and high-altitude forest boundaries, accompanied by sharp reconstruction of tundra-,forest-tundra-and northern taiga landscapes. These processes have accelerated due to the enforcement of economic activity which caused the destruction of vegetation cover (salt-working, and ship-building since the XIXth century, pasture of reindeer herds since the end of XIXth century). Acidifying of ground and surface waters in the current century could be caused by the increased entry of organic acids, as a result of plant residues decomposition. The decomposition process was activated in the end of XIXth - beginning of XXth century in connection with the rise of temperature and increase of precipitation. Thus, the trends in pH and alkalinity changes in this region can not be used as indicators of acid-forming substances atmospheric deposition increase.

  15. Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    NASA Astrophysics Data System (ADS)

    Battler, Melissa M.; Osinski, Gordon R.; Lim, Darlene S. S.; Davila, Alfonso F.; Michel, Frederick A.; Craig, Michael A.; Izawa, Matthew R. M.; Leoni, Lisa; Slater, Gregory F.; Fairén, Alberto G.; Preston, Louisa J.; Banerjee, Neil R.

    2013-06-01

    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ˜100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m × 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite

  16. Deposition of Asian Dust in the Tahoe Basin and the Impact of Climate Patterns on Deposition

    NASA Astrophysics Data System (ADS)

    Snyder, Jason

    Routine monitoring of fine aerosols in the Lake Tahoe basin began with the Tahoe Regional Planning Association (TRPA) in 1988 (Molenar et. al., 1994). During this time two sites of aerosol impact analysis were chosen based on prior work done by the ARB (Cahill et. al., 1997). These sites included Bliss SP, which is located near Emerald Bay at 200 m Lake Tahoe. Aerosols deposited at the Bliss SP site during each spring from 1988 to 2004, were predominately from sources outside of the Lake Tahoe basin and contained signatures from an "unknown north Sacramento Valley source" (Cahill and Cliff, 2002). The aerosols amounted to about ½ of all fine soil seen at South Lake Tahoe. With a better knowledge regarding the efficiency of the transport of fine aerosol plumes across the Pacific Ocean to North American combined with the presence of Asian dust signatures at other sites including Crater Lake and the Yukon, it was now determined that the source of fine particles to the Lake Tahoe basin was possibly Asian in origin. For this study, aerosols were collected during spring 2006, which coincides with the annual peak of Asian dust transport toward North America. Aerosols were collected at the TERC Tahoe Fish Hatchery, a relatively pollution free site northeast of Tahoe City. Aerosol collections at this site were done on an offshore pier, which reduced the amount of contamination for shore sources of aerosols and pollution such as road dust. The result was the identification of Asian dust signatures in aerosol deposition data for the period of April 28 to May 15, 2006. Such dust plumes were identified using HYSPLIT trajectories. Chemical signatures were also used including the Fe/Ca ratio, which is unique in Asian dust plumes. The particulate matter in these dust plumes produce a regional haze across the Lake Tahoe basin, which could impact incoming solar radiation. Furthermore, deposition of particles from the aerosol plume into the lake not only contributed to suspended

  17. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA.

    PubMed

    Josephson, Daniel C; Robinson, Jason M; Chiotti, Justin; Jirka, Kurt J; Kraft, Clifford E

    2014-07-01

    Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries.

  18. Impact of nitrogen deposition at the species level

    PubMed Central

    Payne, Richard J.; Dise, Nancy B.; Stevens, Carly J.; Gowing, David J.; Duprè, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis; Aarrestad, Per Arild; Muller, Serge

    2013-01-01

    In Europe and, increasingly, the rest of the world, the key policy tool for the control of air pollution is the critical load, a level of pollution below which there are no known significant harmful effects on the environment. Critical loads are used to map sensitive regions and habitats, permit individual polluting activities, and frame international negotiations on transboundary air pollution. Despite their fundamental importance in environmental science and policy, there has been no systematic attempt to verify a critical load with field survey data. Here, we use a large dataset of European grasslands along a gradient of nitrogen (N) deposition to show statistically significant declines in the abundance of species from the lowest level of N deposition at which it is possible to identify a change. Approximately 60% of species change points occur at or below the range of the currently established critical load. If this result is found more widely, the underlying principle of no harm in pollution policy may need to be modified to one of informed decisions on how much harm is acceptable. Our results highlight the importance of protecting currently unpolluted areas from new pollution sources, because we cannot rule out ecological impacts from even relatively small increases in reactive N deposition. PMID:23271811

  19. Impact of nitrogen deposition at the species level.

    PubMed

    Payne, Richard J; Dise, Nancy B; Stevens, Carly J; Gowing, David J

    2013-01-15

    In Europe and, increasingly, the rest of the world, the key policy tool for the control of air pollution is the critical load, a level of pollution below which there are no known significant harmful effects on the environment. Critical loads are used to map sensitive regions and habitats, permit individual polluting activities, and frame international negotiations on transboundary air pollution. Despite their fundamental importance in environmental science and policy, there has been no systematic attempt to verify a critical load with field survey data. Here, we use a large dataset of European grasslands along a gradient of nitrogen (N) deposition to show statistically significant declines in the abundance of species from the lowest level of N deposition at which it is possible to identify a change. Approximately 60% of species change points occur at or below the range of the currently established critical load. If this result is found more widely, the underlying principle of no harm in pollution policy may need to be modified to one of informed decisions on how much harm is acceptable. Our results highlight the importance of protecting currently unpolluted areas from new pollution sources, because we cannot rule out ecological impacts from even relatively small increases in reactive N deposition.

  20. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    NASA Astrophysics Data System (ADS)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  1. Implications of a gradient in acid and ion deposition across the northern Great Lakes states

    SciTech Connect

    Glass, G.E.; Loucks, O.L.

    1986-01-01

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. This answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, H/sup +/, NH/sub 2//sup +/) that increase from west to east. Except for higher concentrations of Ca/sup 2 +/ and Mg/sup 2 +/ observed at one site in the cultivated areas of southwestern Minnesota, the contribution of soil-related metal cations to the total ions in solution is small (17%) and relatively uniform across the region. Significant seasonal and geographic patterns in precipitation chemistry and deposition values are observed. Close correspondence of the sums of strong acid anions with the sums of hydrogen and ammonium ions in precipitation is observed, indicating anthropogenic sources of sulfur and nitrogen oxides. Present atmospheric inputs show close chemical correspondence when precipitation chemistry values are compared to the resulting ionic composition of weakly buffered lakes in north central Wisconsin and northern Michigan. The wet deposition of total acidity in the middle and eastern part of the region is comparable to that of impacted sites in the Adirondacks and in regions of Scandinavia. 39 references, 3 figures, 6 tables.

  2. Evaluation, selection and economic assessment of control strategies for acidic deposition

    SciTech Connect

    Hovey, H.H.; Davis, E.; Sistla, G.; Galvin, P.; Twaddell, R.; Rao, S.T.

    1985-01-01

    Over the past ten years, several studies have been undertaken to assess the problem of acid rain and its mitigation strategies. In general, the various solutions presented were geared toward achieving a stated tonnage reduction in sulfur dioxide emissions over a given geographic area, e.g. a specific tonnage reduction in the 31 states east of and contiguous to the Mississippi River. A primary focus of these solutions has been required emissions reduction for the electric power generation industry with national costs estimated to range from $3 to $6 billion. This type of approach for the mitigation of the acid rain problem is to start with a solution and then determine how much reduction in deposition is achieved. The New York five-step approach to mitigation differs markedly in that it: selects areas sensitive to the effects of acid rain; determines sulfate deposition levels at these areas; estimates source impacts at these areas; establishes environmental threshold values for these areas, and develops a mix of control strategies that considers economics, fuel availability and distribution, and ease of enforcement. How this mix of control strategies was evaluated, selected and assessed is discussed in this paper.

  3. Long-term impacts of nitrogen deposition on coastal plant communities.

    PubMed

    Pakeman, Robin J; Alexander, Jim; Brooker, Rob; Cummins, Roger; Fielding, Debbie; Gore, Sarah; Hewison, Richard; Mitchell, Ruth; Moore, Emily; Orford, Katy; Pemberton, Clare; Trinder, Clare; Lewis, Rob

    2016-05-01

    Nitrogen deposition has been shown to have significant impacts on a range of vegetation types resulting in eutrophication and species compositional change. Data from a re-survey of 89 coastal sites in Scotland, UK, c. 34 years after the initial survey were examined to assess the degree of change in species composition that could be accounted for by nitrogen deposition. There was an overall increase in the Ellenberg Indicator Value for nitrogen (EIV-N) of 0.15 between the surveys, with a clear shift to species characteristic of more eutrophic situations. This was most evident for Acid grassland, Fixed dune, Heath, Slack and Tall grass mire communities and despite falls in EIV-N for Improved grass, Strand and Wet grassland. The increase in EIV-N was highly correlated to the cumulative deposition between the surveys, and for sites in south-east Scotland, eutrophication impacts appear severe. Unlike other studies, there appears to have been no decline in species richness associated with nitrogen deposition, though losses of species were observed on sites with the very highest levels of SOx deposition. It appears that dune vegetation (specifically Fixed dune) shows evidence of eutrophication above 4.1 kg N ha(-1) yr(-1), or 5.92 kg N ha(-1) yr(-1) if the lower 95% confidence interval is used. Coastal vegetation appears highly sensitive to nitrogen deposition, and it is suggested that major changes could have occurred prior to the first survey in 1976. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Economic assessment of acid deposition and ozone damage on the San Joaquin Valley agriculture. Final report

    SciTech Connect

    Howitt, R.

    1993-02-01

    The California Agricultural Resources Model (CARM) was used to estimate the economic impact of acidic deposition and ozone on crops in the San Joaquin Valley. Data on ozone exposure-crop response and agricultural markets are used in the CARM to estimate the potential economic benefits of an improvement in air quality. The study focused on the economic impact of two ozone reduction scenarios in agricultural regions of California. The CARM projected that if growing season concentrations of ozone were reduced to 0.04 ppm, annual benefits to consumers (higher availability and lower prices) and producers (higher production and lower production costs) would be approximately $489 million. In comparison, the benefit projected if statewide levels of ozone were uniformly reduced to 0.025 ppm was approximately $1.5 billion. Although the 0.025 ppm scenario is unlikely, the economic benefits were estimated to be correspondingly large.

  5. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence; Mark B. David

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical...

  6. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  7. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  8. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  9. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack

  10. Acid deposition and air quality related values in north central Colorado wilderness areas. Final report

    SciTech Connect

    Hidy, G.M.

    1995-05-01

    Terrestrial and aquatic ecosystem response to atmospheric acid, sulfur, and nitrate deposition has been studied only in a very limited way in Colorado wilderness areas. However, the observed deposition rates in north central Colorado remain low relative to affected areas in the eastern United States and well within a range where no adverse ecological effects are expected. This report presents a survey of scientific information describing acid deposition and air quality related values, which may have implications for utility plant operations.

  11. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.

    PubMed

    Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J

    2007-09-11

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.

  12. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system

    PubMed Central

    Doney, Scott C.; Mahowald, Natalie; Lima, Ivan; Feely, Richard A.; Mackenzie, Fred T.; Lamarque, Jean-Francois; Rasch, Phil J.

    2007-01-01

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO3 and H2SO4) and bases (NH3) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO3−) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air–sea efflux of CO2, reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air–sea CO2 flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO2. However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind. PMID:17804807

  13. Wet acid deposition in Chinese natural and agricultural ecosystems: Evidence from national-scale monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Xu, Li; Zhu, Zhilin; Yu, Guirui

    2016-09-01

    Acid deposition in precipitation has received widespread attention. However, it is necessary to monitor the acid deposition in Chinese agricultural and natural ecosystems because data derived from traditional urban/suburban observations might overestimate it to some extent. In this study, we continuously measured the acid deposition through precipitation (pH, sulfate (SO42-), and nitrate (NO3-)) in 43 field stations from 2009 to 2014 to explore the spatial patterns and the main influencing factors of acid deposition in Chinese agricultural and natural ecosystems. The results showed that the average precipitation pH at the 43 stations varied between 4.10 and 8.25 (average: 6.2) with nearly 20% of the observation sites being subjected to acid precipitation (pH < 5.6). The average deposition of SO42- and NO3- was 115.99 and 32.93 kg ha-1 yr-1, respectively. An apparent regional difference of acid deposition in Chinese agricultural and natural ecosystems was observed, which was most serious in south and central China and less serious in northwest China, Inner Mongolia, and Qinghai-Tibet. The level of economic development and amount of precipitation could explain most of the spatial variations of pH, SO42-, and NO3- depositions. It is anticipated that acid deposition might increase further, although the current level of acid deposition in these Chinese agricultural and natural ecosystems was found to be less serious than projected from urban/suburban data. The control of energy consumption should be strengthened in future to prevent an increase of acid deposition in China.

  14. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  15. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  16. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  17. Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Bitz, C. M.; Steig, E. J.; Holmes, C. D.; Yang, X.; Sciare, J.

    2011-12-01

    Methanesulfonic acid (MSA) has previously been measured in ice cores in Antarctica as a proxy for sea ice extent and Southern Hemisphere circulation. In a series of chemical transport model (GEOS-Chem) sensitivity experiments, we identify mechanisms that control the MSA concentrations recorded in ice cores. Sea ice is linked to MSA via dimethylsulfide (DMS), which is produced biologically in the surface ocean and known to be particularly concentrated in the sea ice zone. Given existing ocean surface DMS concentration data sets, the model does not demonstrate a strong relationship between sea ice and MSA deposition in Antarctica. The variability of DMS emissions associated with sea ice extent is small (11-30%) due to the small interannual variability of sea ice extent. Wind plays a role in the variability in DMS emissions, but its contribution relative to that of sea ice is strongly dependent on the assumed DMS concentrations in the sea ice zone. Atmospheric sulfur emitted as DMS from the sea ice undergoes net transport northward. Our model runs suggest that DMS emissions from the sea ice zone may account for 26-62% of MSA deposition at the Antarctic coast and 36-95% in inland Antarctica. Though our results are sensitive to model assumptions, it is clear that an improved understanding of both DMS concentrations and emissions from the sea ice zone are required to better assess the impact of sea ice variability on MSA deposition to Antarctica.

  18. Issues in model validation: assessing the performance of a regional-scale acid deposition model using measured and modelled data

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Whyatt, J. D.; Nicholson, J. P. G.; Derwent, R. G.; Heywood, E.

    The development and validation of a new version of the Hull Acid Rain Model (HARM12.1) is described in the context of changes in emissions and deposition estimates supplied by the Centre for Ecology and Hydrology (CEH) Edinburgh based on the available measurement networks. Major changes to the model include greater vertical resolution, the adoption of new background concentrations and ecosystem-specific deposition velocities. HARM output for 1998-2000 is compared with data from the rural SO 2, NO 2 and NH 3 networks and results from the nitric acid and aerosol network. The ability to reproduce deposition estimates based on measurements is key to a regional-scale model like HARM. Changes in these estimates between 1995-97 and 1998-2000 are discussed. Comparing HARM modelled deposition and the CEH data indicates that the new version of the model performs better in this respect than its predecessor (HARM11.5). The trend in deposition over the time period does not seem to reflect the marked reduction in emissions. The possible reasons for this are explored with particular emphasis on changes in precipitation. 1995-97 was unusually dry, while 1998-2000 was wet. Changes in rainfall concentration and unmodified deposition are presented for comparison with HARM and CEH estimates. It is clear that the impact of precipitation variability on modelled acid deposition requires further investigation. Finally, we compare HARM12.1 and HARM 11.5 deposition in 2010 following emissions reductions to meet the terms of the National Emissions Ceilings Directive.

  19. Charge state dependent energy deposition by ion impact.

    PubMed

    Lake, R E; Pomeroy, J M; Grube, H; Sosolik, C E

    2011-08-05

    We report on a measurement of craters in thin dielectric films formed by Xe(Q+) (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify the effect of charge-dependent cratering through the exponential dependence of tunneling conductance on barrier thickness. Electrical conductance of a crater σ(c)(Q) increased by 4 orders of magnitude (7.9 × 10(-4) μS to 6.1 μS) as Q increased, corresponding to crater depths ranging from 2 to 11 Å. By employing a heated spike model, we determine that the energy required to produce the craters spans from 8 to 25 keV over the investigated charge states. Considering energy from preequilibrium nuclear and electronic stopping as well as neutralization, we find that at least (27 ± 2)% of available projectile neutralization energy is deposited into the thin film during impact.

  20. Identification of Late Eocene Impact Deposits at ODP Site 1090

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2001-01-01

    Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene- bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177- 1090B-30X-5,105-106 cm (954 pg/g) and the net Ir fluence (14 ng/cm2) at this site are higher that at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.

  1. Impact of deposition-rate fluctuations on thin-film thickness and uniformity

    DOE PAGES

    Oliver, Joli B.

    2016-11-04

    Variations in deposition rate are superimposed on a thin-film–deposition model with planetary rotation to determine the impact on film thickness. Variations in magnitude and frequency of the fluctuations relative to the speed of planetary revolution lead to thickness errors and uniformity variations up to 3%. Sufficiently rapid oscillations in the deposition rate have a negligible impact, while slow oscillations are found to be problematic, leading to changes in the nominal film thickness. Finally, superimposing noise as random fluctuations in the deposition rate has a negligible impact, confirming the importance of any underlying harmonic oscillations in deposition rate or source operation.

  2. Impact of deposition-rate fluctuations on thin-film thickness and uniformity

    SciTech Connect

    Oliver, Joli B.

    2016-11-04

    Variations in deposition rate are superimposed on a thin-film–deposition model with planetary rotation to determine the impact on film thickness. Variations in magnitude and frequency of the fluctuations relative to the speed of planetary revolution lead to thickness errors and uniformity variations up to 3%. Sufficiently rapid oscillations in the deposition rate have a negligible impact, while slow oscillations are found to be problematic, leading to changes in the nominal film thickness. Finally, superimposing noise as random fluctuations in the deposition rate has a negligible impact, confirming the importance of any underlying harmonic oscillations in deposition rate or source operation.

  3. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  4. Impact of future land cover changes on HNO3 and O3 surface dry deposition

    NASA Astrophysics Data System (ADS)

    Verbeke, T.; Lathière, J.; Szopa, S.; de Noblet-Ducoudré, N.

    2015-07-01

    Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries, and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between present-day (2006) and the future (2050) on dry deposition rates, with special interest for ozone (O3) and nitric acid vapor (HNO3), two compounds which are characterized by very different physico-chemical properties. The 3-D chemistry transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections RCPs 2.6, 4.5 and 8.5. The 2050 RCP 8.5 vegetation distribution leads to a rise up to 7 % (+0.02 cm s-1) in VdO3 and a decrease of -0.06 cm s-1 in VdHNO3 relative to the present day values in tropical Africa, and up to +18 and -15 % respectively in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land cover change in Eurasia, VdHNO3 increases by up to 20 % (annual-mean value) and reduces VdO3 by the same magnitude in this region. When analyzing the impact of dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual mean surface ozone concentration, for both for the RCP8.5 and RCP2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios, regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally up to 5 ppb (+5 %) is calculated on average during the June-August period. This scenario induces also an increase of

  5. Impact wave deposits provide new constraints on the location of the K/T boundary impact

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture.

  6. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  7. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  8. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Zhang, Yi; Wang, Zhangwei; Mulder, Jan

    2011-09-01

    Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.

  9. Acid deposition in Maryland. Summary of 1993 research and monitoring results and evaluation of status and trends

    SciTech Connect

    Southerland, M.; DeLisle, C.

    1995-03-01

    To address the issue of acidic deposition in Maryland, the state has developed a comprehensive program to evaluate the formation of acidic deposition and its environmental effects on Maryland resources. The eighth annual report summarizes the results of research and monitoring projects conducted during 1993 and includes new analyses of the status and trends of acidic deposition in Maryland.

  10. The emerging role of NO{sub x} in acid deposition

    SciTech Connect

    Price, D.A.; Birnbaum, R.E.

    1997-12-31

    The oxides of nitrogen (NO{sub x}) have long been recognized as a principal precursor to acid deposition. Until recently, however, scientific knowledge about the nature and extent of NO{sub x}`s contribution to acidity in the atmosphere and to acid deposition damages on earth has been nascent; the National Acid Precipitation Assessment Program (NAPAP) and related research during the 1980s focused primarily on the linkage between sulfur dioxide (SO{sub 2}) emissions with acid deposition. This paper summarizes an integrative assessment on the science of NO{sub x} and acid deposition and the multiple environmental benefits associated with decreases in NO{sub x} emissions from coal-fired power plants. The Acid Rain Program performed this staff assessment to support the Phase II Acid Rain NO{sub x} Emission Reduction Rule, proposed on January 19, 1996 (61 FR 1442), and the Office of Air and Radiation (OAR) Integrated NO{sub x} Strategy. Model projections from EPA`s Acid Deposition Standard Feasibility Study (October 1995) provided the initial indication of the important role of NO{sub x} in the future chronic acidification of certain sensitive watershed ecosystems. Corroborative findings from the Bear Brook Watershed Manipulation Experiment and other recent field studies are discussed. This paper also presents an overview discussion of the current state-of-knowledge with respect to NO{sub x}`s role in the acidification of forests, soils, and vegetation as well as acidic-related damage to materials and structures. Basic terms and processes such as {open_quotes}atmospheric nitrogen deposition,{close_quotes} {open_quotes}nitrogen saturation,{close_quotes} {open_quotes}chronic vs. episodic acidification,{close_quotes} and {open_quotes}direct vs. soil-mediated acidification effects{close_quotes} are defined in context so as to facilitate understanding of the emerging role of NO{sub x} in acid deposition.

  11. Is Recovery of Forest Soils from Acidic Deposition Accelerating Watershed Release of Atmospherically Deposited Nitrogen Accumulated over Past Decades?

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Sabo, R.; Scanga, S. E.; Momen, B.

    2016-12-01

    The trend of decreasing atmospheric N deposition in the northeastern U.S. has accelerated since 2000, leading to the possibility that surface water concentrations of NO3 and its acidifying effects would also decrease. Decreases of NO3 in lakes have been observed in regions such as the Adirondacks of NY, but these decreases were linked to increased productivity within the lakes. Less information is available on changes in NO3 concentrations in streams and watershed export of N. In a previous analysis, monitoring from 2000-2012 of the North and South Tributary watersheds of Buck Creek, in the western Adirondack region, showed no trends in annual watershed NO3 export, despite a decline in atmospheric N deposition. Surveys of 64 Adirondack streams also showed no overall change in NO3 concentrations between 2004 and 2014. Following on these studies, controls of N retention in the Buck Creek watersheds were investigated with data on tree growth, soil chemistry, stream flow, and stream chemistry. Tree measurements showed little change in basal area from 2000-2015 in the North Watershed (+ 0.8 percent) and an increase (+16 percent) in the South Watershed; results inconsistent with decreased N retention by vegetation. However, large decreases in Al and stable or increasing Ca were measured in O horizons of these watersheds (1997- 2009/10, North; 1998-2014, South), as the soils responded to long-term decreases in acidic deposition. Past increases in Al and decreases in Ca from acidic deposition have been linked to slowed decomposition rates. The lower Al concentrations and higher Ca availability measured at Buck Creek may have led to increased decomposition rates, providing an explanation for the sustained watershed export of N since 2000. These results suggest a possible legacy effect of atmospheric N deposition that is reversing as these ecosystems recover from acidic deposition.

  12. Geochemical investigations of selected Eastern United States watersheds affected by acid deposition.

    USGS Publications Warehouse

    Bricker, O.P.

    1986-01-01

    The effects of acid deposition on surface waters in eastern USA watersheds of similar size, physiography, climate and land-use are related to the composition of the underlying bedrock. Watersheds developed on greenstone, calcareous shale, sandstone, granite and schist differ in their ability to neutralize acid rain; consequently, stream acidity is similar to that of precipitation. Watersheds developed on granite and schist are intermediate in their capacity to neutralize acid deposition. Bedrock composition appears to be the major property controlling surface-water chemistry in these systems; hydrological flowpaths and the nature of surficial materials and vegetation also influence chemical responses to acid deposition in watersheds. 453This and the following 10 abstracts are for papers forming a thematic set on geochemical aspects of acid rain. -P.Br.

  13. Diagnostic Clast-Texture Criteria for Recognition of Impact Deposits

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Bratton, C.; Pope, K. O.; Ocampo, A. C.

    1999-09-01

    It is difficult to find definitive evidence for impact in the geological record because there are many endogenous geological processes that can produce diamictites similar to those generated by impact ejecta. The classic impact criteria of shock fabrics in certain minerals, and iridium layers, for example, may be either difficult to find, or long-since erased from the impact site (shock fabrics also anneal with time). It is important to be able to recognize impact-generated materials in order to understand earth's crustal development and biological evolution. In future exploration of Mars and other solar-system bodies, recognition of impact materials will be important for elucidating planetary evolution, planetary volatile inventories, and exobiological issues. The cobble depicted is typical of many that have been found in diamictite deposits in Belize generated by the Chicxulub K-T impact event. The pebbles are roughly-hewn in general shape with smoothed corners and edges. Surfaces are almost uniformly frosted (on both protuberances and hollows), but some asperities are glazed. Optical microscopy and thin-section petrographic microscopy reveal the frosting to be only a few microns thick, with a well-defined granular structure; grains are the same size as those composing the bulk of the limestone, but their clearer appearance may represent annealing. One or two adjacent pebble faces are often decorated with striated gouges and closely-spaced hemispherical depressions representing indentation hollows produced by well-rounded impacting clasts of up to 0.5 cm in diameter. Some of the impactors are still embedded in the cobble surface. Non-destructive x-ray diffraction techniques showed the impactors to be of the same mineralogy as the target cobble. We believe this unusual glazing and frosting to be related to the impact event, but this must be reconciled with its survival for over 60 my. since it is composed of one of the most alterable substances, CaCO3. We focus

  14. Diagnostic Clast-Texture Criteria for Recognition of Impact Deposits

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Bratton, C.; Pope, K. O.; Ocampo, A. C.

    1999-01-01

    It is difficult to find definitive evidence for impact in the geological record because there are many endogenous geological processes that can produce diamictites similar to those generated by impact ejecta. The classic impact criteria of shock fabrics in certain minerals, and iridium layers, for example, may be either difficult to find, or long-since erased from the impact site (shock fabrics also anneal with time). It is important to be able to recognize impact-generated materials in order to understand earth's crustal development and biological evolution. In future exploration of Mars and other solar-system bodies, recognition of impact materials will be important for elucidating planetary evolution, planetary volatile inventories, and exobiological issues. The cobble depicted is typical of many that have been found in diamictite deposits in Belize generated by the Chicxulub K-T impact event. The pebbles are roughly-hewn in general shape with smoothed corners and edges. Surfaces are almost uniformly frosted (on both protuberances and hollows), but some asperities are glazed. Optical microscopy and thin-section petrographic microscopy reveal the frosting to be only a few microns thick, with a well-defined granular structure; grains are the same size as those composing the bulk of the limestone, but their clearer appearance may represent annealing. One or two adjacent pebble faces are often decorated with striated gouges and closely-spaced hemispherical depressions representing indentation hollows produced by well-rounded impacting clasts of up to 0.5 cm in diameter. Some of the impactors are still embedded in the cobble surface. Non-destructive x-ray diffraction techniques showed the impactors to be of the same mineralogy as the target cobble. We believe this unusual glazing and frosting to be related to the impact event, but this must be reconciled with its survival for over 60 my. since it is composed of one of the most alterable substances, CaCO3. We focus

  15. Diagnostic Clast-Texture Criteria for Recognition of Impact Deposits

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Bratton, C.; Pope, K. O.; Ocampo, A. C.

    1999-01-01

    It is difficult to find definitive evidence for impact in the geological record because there are many endogenous geological processes that can produce diamictites similar to those generated by impact ejecta. The classic impact criteria of shock fabrics in certain minerals, and iridium layers, for example, may be either difficult to find, or long-since erased from the impact site (shock fabrics also anneal with time). It is important to be able to recognize impact-generated materials in order to understand earth's crustal development and biological evolution. In future exploration of Mars and other solar-system bodies, recognition of impact materials will be important for elucidating planetary evolution, planetary volatile inventories, and exobiological issues. The cobble depicted is typical of many that have been found in diamictite deposits in Belize generated by the Chicxulub K-T impact event. The pebbles are roughly-hewn in general shape with smoothed corners and edges. Surfaces are almost uniformly frosted (on both protuberances and hollows), but some asperities are glazed. Optical microscopy and thin-section petrographic microscopy reveal the frosting to be only a few microns thick, with a well-defined granular structure; grains are the same size as those composing the bulk of the limestone, but their clearer appearance may represent annealing. One or two adjacent pebble faces are often decorated with striated gouges and closely-spaced hemispherical depressions representing indentation hollows produced by well-rounded impacting clasts of up to 0.5 cm in diameter. Some of the impactors are still embedded in the cobble surface. Non-destructive x-ray diffraction techniques showed the impactors to be of the same mineralogy as the target cobble. We believe this unusual glazing and frosting to be related to the impact event, but this must be reconciled with its survival for over 60 my. since it is composed of one of the most alterable substances, CaCO3. We focus

  16. Executive summary of NAPAP's interim assessment of acidic deposition effects

    SciTech Connect

    Not Available

    1987-11-01

    The National Acid Precipitation Assessment Program (NAPAP), released its interim assessment of the causes and effects of acid rain. The four-volume report presents the current state of knowledge about acid rain at about halfway through NAPAP's 10 year scientific investigation of the problem.

  17. Acid rain: the impact of local sources

    SciTech Connect

    Spaite, P.; Esposito, M.P.; Szabo, M.F.; Devitt, T.W.

    1980-11-24

    It has been assumed that acid rain is predominantly a problem of long-range transport of pollutants from large fossil fuel combustion sources, namely coal-fired utilities. However, close examination of fuel use information and source emission characteristics in the Adirondacks, Florida, and California suggests that local oil burning and automotive sources may be major contributors to the occurrence of acid rain in these areas. This report describes the possible role of local combustion sources in the production of acid rain, discusses the implications of the findings, and their relevance to alternative control strategies for acid rain. Oil-fired boilers, especially the smaller commercial, industrial, and residential units, produce at least 3 to 10 times as much primary sulfate per unit of sulfur content as coal-fired units. Moreover, oil-fired units emit comparatively large quantities of catalytic compounds capable of rapidly converting still more sulfur oxide to sulfate in the atmosphere. Thus, in areas where large quantities of oil are burned, the direct impact from locally generated sulfates may equal or even exceed that produced by imported sulfates derived from distant coal-burning sources. Fuel consumption data show that large quantities of oil are being consumed in areas experiencing acid rain. Forty percent of the residual and 36 percent of the distillate oil burned in the United States is consumed in the eight-state area surrounding the Adirondacks. California is the next largest oil-consuming area and Florida is third. Nitric acid is responsible for about 30 percent of rainfall acidity in the Northeast and Florida, and for about 30 to 75 percent of the rainfall acidity in California.

  18. Physical characteristics of study plots across the Lake States acidic deposition gradient.

    Treesearch

    Lewis F. Ohmann; David F. Grigal; Sandra Brovold

    1989-01-01

    Describes the location and physical setting of the 171 plots that were remeasured and sampled for a study of the relation between various aspects of forest conditions and atmospheric position across the northwestern Minnesota to southeastern Michigan acidic deposition gradient.

  19. Student Knowledge of Scientific and Natural Resource Concepts Concerning Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    1989-01-01

    Assessed is the level of scientific and natural resource knowledge possessed by fourth-, eighth- and eleventh-grade students. Misconceptions are noted. Discussed are implications for teaching about acidic deposition. (CW)

  20. Patterns of Forest invertebrates Along an Acidic Deposition Gradient in the Midwestern United States

    Treesearch

    Robert A. Haack

    1996-01-01

    The Ohio Corridor Study (OCS) was designed to detect possible effects of acidic deposition on oak-hickory (Quercus-Carya) forests in the midwestem United States. There was one study site in Arkansas, and two each in Illinois, Indiana, and Ohio. Estimates of total sulfate deposition have generally increased about two-fold from west (Arkansas) to east (Ohio) during the...

  1. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

    Treesearch

    Pamela E. Padgett; Hillary Cook; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to...

  2. Acid deposition in Maryland: Summary of 1992 research and monitoring results

    SciTech Connect

    Mountain, D.

    1994-07-01

    This is the seventh annual report submitted under Maryland legislative requirements. The report discusses acid deposition monitoring programs being conducted throughout the state; current research results; evaluation of short-term methods for the mitigation of habitat acidification; relevant monitoring, research, and mitigation programs underway outside of Maryland; and the control of sulfur dioxide (SO2) and nitrogen oxides (NOx), the major acid deposition precursors, for the calendar year 1992.

  3. Acidic Deposition along the Appalachian Trail Corridor and its Effects on Acid-Sensitive Terrestrial and Aquatic Resources

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Sullivan, T. J.; Burns, D. A.; Bailey, S. W.; Cosby, B. J., Jr.; Dovciak, M.; Ewing, H. A.; McDonnell, T. C.; Riemann, R.; Quant, J.; Rice, K. C.; Siemion, J.; Weathers, K. C.

    2015-12-01

    The Appalachian National Scenic Trail (AT) spans 3,500 km from Georgia to Maine. Over its length, the trail passes through a corridor with wide variations in climate, bedrock type, soils, and stream water quality. These factors create a diverse range of ecosystems. The health of these ecosystems is a cause for concern because the AT passes through the heavily populated eastern U.S. with its many sources of sulfur (S) and nitrogen (N) emissions that produce acidic deposition. To address concerns about the health of the AT, a study was designed to evaluate the condition and sensitivity of the AT corridor with respect to acidic deposition. Collections of stream water (265 sites), soil (60 sites), tree cores (15 sites) and atmospheric deposition samples (4 sites) were made along with understory and overstory vegetation measurements (30 sites) over the full trail length within a 40 km-wide corridor. Existing data on atmospheric deposition, geology, vegetation, stream chemistry, and soil chemistry were also used in the analysis. Mean acid-neutralizing capacity (ANC) was lowest in the streams in the North section, intermediate in the Central section and highest the South section, despite the South having the highest acid rain levels. At least 40% of the study streams exhibited pH and/or Ali measurements that indicated potential harm to biota. Approximately 70% of the soil sites had values of base saturation under 20%, the threshold below which acidic deposition can mobilize inorganic aluminum (Ali), the form harmful to terrestrial and aquatic life. Compositional similarity of understory and canopy species was positively correlated with acidic deposition, suggesting that during past decades, species poorly adapted to acidic deposition were replaced with tolerant species. Target loads modeling indicated that exceedance of sulfur target loads to achieve stream ANC = 50 μeq/L by the year 2100occurred throughout the trail corridor.

  4. Review of acid-deposition-catchment interaction and comments on future research needs

    NASA Astrophysics Data System (ADS)

    Krug, Edward C.

    1991-11-01

    This review of acid-deposition-catchment interaction follows from the Journal of Hydrology's Special Issue of August, 1990 (Volume 116). For some years acid deposition research has laboured under the constraint of a |Dspolitically correct|DS paradigm. Nevertheless, this review documents appreciable advances in the state of the science. These advances have led to the point where a paradigm shift is possible. Atmospheric acid deposition contributes to the acidity of catchments. It necessarily interacts with all catchment materials: organic, biological, and mineral. However, acid-deposition-catchment interactions need to be critically revisited and put into perspective with the fundamental knowledge of catchment biogeochemistry, geography and the effects of disturbance history possessed by other disciplines. Each natural acid-neutralizing and acid-producing mechanism ignored by popular acidification theory contributes to a cumulative overestimate of the importance of acidic deposition in catchment acidity. Previous research on catchment sulphur sources has been deficient to the degree it has accepted the paradigm that such catchments have negligible natural sources of sulphur. This cannot be so given the need ecosystems have for sulphur as an essential macronutrient, their adaptation to excessive amounts of it (i.e. ecosystems are leaky in respect to sulphur), the sulphur content of bedrock, and weatherability of sulphur-bearing minerals. Research needs to be initiated on all aspects of catchment retention of atmospherically deposited sulphur, especially enhanced retention by imperfectly drained terrestrial soils. Deficiencies in catchment sulphur cycle research are not random; they err cumulatively on the side of overestimating the importance of atmospheric sulphur deposition.

  5. The Response of Stream and Soil Chemistry to Decreases in Acid Deposition in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Burns, D. A.; Siemion, J.; Antidormi, M. R.

    2016-12-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, acid deposition levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. The purpose of this study is to provide updated trends in acid deposition and stream-water chemistry in the southeastern Catskill Mountains and to examine whether soil chemistry has shown signs of recovery during the past 2 decades. We measured significant reductions in acid deposition in the region during the 23 year period from 1992 to 2014. The reductions were reflected in significant improvement in stream-water quality in all 5 of the streams included in this study. The largest and most significant trends were for sulfate (SO42-) concentrations (mean trend of -2.5 μeq L-1 yr-1 for 5 sites); hydrogen ion (H+) also decreased significantly as did inorganic monomeric aluminum (Alim) which is toxic to some aquatic biota (mean trends of -0.3 μeq L-1 yr-1 for H+ and -0.1 μeq L-1 yr-1 for Alim for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased a mean of 0.65 μeq L-1 yr-1 for all 5 sites, which was 4 fold less than the decrease in SO42- concentrations. These upward trends in ANC were limited in part by coincident decreases in base cations (-1.3 μeq L-1 yr-1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO3-) concentrations despite significant decreasing trends in NO3- deposition. This incongruity is likely caused by the large biological demand and complex cycling processes of nitrogen. Despite the decreases in stream-water acidity, we measured no recovery in soil chemistry which we attributed to soils with low buffering capacity that have been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (-0.2 μeq L-1 yr-1) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a

  6. Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Parnell, Roderic A.; Burke, Kelly J.

    1990-07-01

    Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these

  7. THE DEPOSITION OF LINOLEIC ACID IN RATS FED CORN OIL,

    DTIC Science & Technology

    Rats were fed different levels (0-30%) of corn oil in a purified basal diet, and the proportion of linoleic acid in the total fatty acids of carcass...fat was 2%, wherea in those receiving 20% corn oil the proportion was 46%; this level was not exceeded when 0% corn oil was fed for the same time. In...rats fed 2 or 20% corn oil for intervals up to 24 days, the proportion of linoleic acid in the liver fatty acids reached a maximum more quickly than

  8. Comparison of analytical and numerical particle deposition using commercial CFD packages: impaction and sedimentation.

    PubMed

    Robinson, Risa J; Snyder, Pamela; Oldham, Michael J

    2008-03-01

    Whole-lung dosimetry codes and computational fluid dynamics (CFD) techniques have been used extensively to predict particle deposition in the respiratory tract of animals and humans. Although these predictions implement three well-known deposition mechanisms (impaction, sedimentation, and diffusion), validation of deposition due to each deposition mechanism in isolation has been difficult. In the current work, impaction deposition predictions using equations from the leading whole-lung dosimetry codes were compared to experimental data for the same Stokes and Reynolds numbers. In addition, impaction was predicted numerically using two commercial CFD packages (CFX and Fluent) and compared to experimental particle deposition, for the same geometry, and flow conditions that were overwhelmingly impaction dominated as measured by the Stokes number. Significant differences were found between CFD predicted deposition due to impaction and the analytical equations contained in whole-lung dosimetry models (NCRP, Trumpet, MPPD). Of the two CFD software packages, CFX typically had the best agreement with the experimental data; however, neither software package agreed well for all Stokes numbers examined. In addition, predicted impaction deposition from whole-lung dosimetry code equations did not agree well with experimental data for all Stokes numbers. These discrepancies highlight the current state of uncertainty in particle deposition predictions and indicate that any single technique or equation may be unsuitable to accurately explain the flow and particle behavior in an airway bifurcation.

  9. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    PubMed

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression. © 2015 Japanese Society of Animal Science.

  10. CORRECTION FOR THE IMPACTS OF COVARIANCE BETWEEN CONCENTRATION AND DEPOSITION VELOCITY OR CASTNET HNO, DEPOSITION ESTIMATES

    EPA Science Inventory

    The covariance between hourly concentration (C) and deposition velocity (V) for various atmospheric; species may act to bias the, deposition (D) computed from the product of the weekly average C and 'V. This is a potential problem for the CASTNet filter pack (FP) species, nitric ...

  11. Efficient Fractionation and Analysis of Fatty Acids and their Salts in Fat, Oil and Grease (FOG) Deposits.

    PubMed

    Benecke, Herman P; Allen, Sara K; Garbark, Daniel B

    2017-02-01

    A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.

  12. Deposition of acidifying species in the Waterberg region of South Africa and the potential for stream chemistry impacts

    NASA Astrophysics Data System (ADS)

    Piketh, S.; Curtis, C.; Pienaar, K.; Khuzwayo, L.; van Zyl, P. G.; Conradie, E.

    2016-12-01

    South Africa is rich in natural resources that include large deposits of coal. As a result more than 90% of the energy in the country is generated by 13 coal fired power stations located on the Highveld region. Over the past 7 years South Africa has experienced severe power shortages which has resulted in the approval of two new mega coal fired power stations each with a 4800 Mw generating capacity. One of these power stations is at Lephalale in the Waterberg. This region is largely dominated by a natural to semi-natural landscape, but some areas have acid sensitive sub-soils (pH < 5.5) rendering their headwater streams vulnerable to acidification. There are only three other important sources of emissions close to Lephalale, a second coal fired power station, a char plant and domestic coal combustion. In an attempt to determine baseline conditions of air pollution, deposition and stream chemistry impacts prior to the commissioning of the new PS the following measurements have been undertaken, ambient concentrations of SO2, NOx, NH3 and O3 (at seven sites since 2010), rain water chemistry ( at one site for 2015 and 2016) and headwater stream vulnerability (2015 and 2016). Concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate 21 (NO3-), chloride (Cl-), sulphate (SO42-) in the rain water will be presented and compared to other long term sites around South Africa. Total deposition of S and N will in the Lephalale region will be presented. At least 30 acid-sensitive headwater streams, many with low pH <6 and low acid neutralizing capacity that are extremely sensitive to acid deposition inputs have been identified. Future deposition in the area of acidifying species will be modelled by including emissions from the new Power station and estimates of the potential impact will be assessed.

  13. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  14. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  15. Deposition of sulfate acid aerosols in the developing human lung

    SciTech Connect

    Martonen, T.B.; Zhang, Z.; Hester, J.

    1993-01-01

    Computations of aerosol deposition as affected by (1) aerosol hygroscopicity, (2) human age, and (3) respiratory intensity are accomplished using a validated mathematical model. The interactive effects are very complicated but systematic. Few general observations can be made; rather, the findings presented within should be addressed on a case-by-case basis. The behavior of inhaled H2SO4 particles subsequent to water vapor uptake significantly influences their total deposition values and relative spatial distribution patterns within tracheobronchial and pulmonary airways. These results must be accounted for in risk assessment protocols, since compartments of the lung have different clearance processes and sensitivities to toxic materials. There is a critical size in the 0.2-0.4 micrometer range: For larger particles the influence of hygroscopicity is to increase total deposition, whereas for smaller particles the opposite occurs. The dosimetric model was developed to provide a scientific basis for extrapolation modeling of factors (1), (2), and (3) in the hazard evaluation of airborne contaminants.

  16. MICS-Asia II: Model inter-comparison and evaluation of acid deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zifa; Xie, Fuying; Sakurai, T.; Ueda, H.; Han, Zhiwei; Carmichael, G. R.; Streets, D.; Engardt, M.; Holloway, T.; Hayami, H.; Kajino, M.; Thongboonchoo, N.; Bennet, C.; Park, S. U.; Fung, C.; Chang, A.; Sartelet, K.; Amann, M.

    This paper focuses on the comparison of chemical deposition of eight regional chemical models used in Model Inter-Comparison Study for Asia (MICS-Asia) II. Monthly-mean depositions of chemical species simulated by these models, including dry deposition of SO 2, HNO 3, NH 3, sulfate, nitrate and ammonium and wet deposition of SO 42-, NO 3- and NH 4+, have been provided for four periods (March, July, December 2001 and March 2002) in this work. Observations at 37 sites of the Acid Deposition Monitoring Network in East Asia (EANET) are compared with SO 42-, NO 3- and NH 4+ wet deposition model results. Significant correlations appeared between the observation and computed ensemble mean of participant models. Also, differences among modeled sulfur and nitrogen dry depositions have been studied at the EANET sites. Based on the analysis of acid deposition for various species from different models, total depositions of sulfur (SO 2 and sulfate) and nitrogen (nitrate and ammonium) have been evaluated as the ensemble mean of the eight models. In general, all models capture the observed spatial distribution of sulfur and nitrogen deposition, although the absolute values may differ from measurements. High deposition often occurs in eastern China, Japan, the Republic of Korea, Thailand, Vietnam, Philippines and other parts of Southeast Asia. The magnitude of model bias is quite large for many of the models. In examining the reasons for model-measurement disagreement, we find that differences in chemical processes, deposition parameterization, and modeled precipitation are the main reasons for large model disparities.

  17. Temporal and spatial variations of atmospheric reactive nitrogen deposition and impacts in China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, Y.; Pan, Y.; Xu, W.; Zhang, L.; Vitousek, P.; Zhang, F.

    2016-12-01

    China is experiencing intense air pollution caused in large part by anthropogenic reactive nitrogen (Nr) emissions, which result in the deposition of Nr from the atmosphere to terrestrial and aquatic ecosystems with implications for human and environmental health. But information on the magnitude and impact of N deposition in China is still limited. Here we quantify Nr deposition through two different approaches: (1) summarizing all published data on Nr emissions, bulk deposition and plant/crop N data to show the historical change of Nr deposition from 1980 to 2010; (2) using a Nationwide Nitrogen Deposition Monitoring Network (NNDMN) to evaluate the current spatial distribution of dry and wet Nr deposition. These datasets are robust for us to have a systematic analysis on China's atmospheric Nr pollution, deposition and impacts. We find that average annual bulk deposition of Nr has significantly increased (p<0.001) by approx. 60% from the 1980s (13 kg N ha-1) to 2000s (21 kg N ha-1). NH4-N is the dominant form of Nr in deposition, but the rate of increase is largest for NO3-N deposition, in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also observe significant impacts of elevated Nr deposition on vegetation, including increased plant foliar N concentrations in semi-natural ecosystems and crop N uptake from long-term unfertilized croplands (all p<0.01 or 0.05). According to the NNDMN monitoring results and the simulated deposition velocity (Vd) of Nr species, we find equal importance of dry deposition (estimated by measured Nr concentrations with modeled Vd) and wet (i.e. bulk) deposition in China. Average dry and wet Nr deposition fluxes were 20.6±11.2 and 19.3±9.2 kg N ha-1 yr-1 across China, with distinct spatial variations of total dry plus wet Nr deposition: North China>Southeast China>Southwest China>Northeast China>Northwest China> Tibetan Plateau. Significant positive relationships between Nr emissions and deposition were found as

  18. [Trend in acid deposition at Tieshanping, Chonging during 2001-2010].

    PubMed

    Yu, De-Xiang; Xiao-Xiao, Ma; Tan, Bing-Quan; Zhao, Da-Wei; Zhang, Dong-Bao; Duan, Lei

    2014-01-01

    Although the total emission of sulphure dioxide (SO2) was reduced by more than 10% in the Eleventh Five-Year-Plan (2006-2010) in China, the total emission of nitrogen oxides (NOx) in the same period kept increasing. In order to evaluate the effects of the emission changes on acid depostion, a ten-year monitoring on forest throughfall was carried out from 2001 to 2010 at Tieshanping, Chongqing in Southwestern China. The results indicated there was a significantly decreasing trend of sulphur deposition and an increasing trend of nitrogen deposition, which coincided well with the dicreasing trend of SO2 emission and increasing tread of NOx emission in Chongqing, respectively. As the net effect, acid deposition was reduced by the emission contol. However, the total deposition of sulphur and nitrogen in 2010 was estimated to be 9.9 keq x (hm2 x a)(-1) and 4.5 keq x (hm2 x a)(-1), respectively according to the throughfall data, with the former probably overestimated by 28% and the latter underestimated by 50%. Since both the sulphur deposition and nitrogen deposition are higher than the highest levels in the history in Europe and North America, acid deposition is still a serious issue in Chongqing.

  19. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

    USGS Publications Warehouse

    Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C.

    2001-01-01

    North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across

  20. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China.

    PubMed

    Qiu, Rongliang; Wang, Shizhong; Qiu, Hao; Wang, Xuemei; Liao, Jin; Zhang, Zhentian

    2009-01-01

    The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km x 3 km resolution. Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2 x year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.

  1. Economic valuation of acid deposition induced changes in the productivity of commercial forests

    SciTech Connect

    Callaway, J.M. Jr.

    1984-02-01

    Several recent studies have reported localized decreases in the growth of several commercially important forest species in the northeast United States. These observed reductions in basal area growth may be related to increases in acid deposition and other man-made pollutants over the last two or three decades. If this is the case, then increases in region-wide levels of acid deposition may have effects on the biomass content and age-species composition of the regional timber inventory. These physical changes can influence regional stumpage prices and harvest levels through changes in the marginal cost of harvesting timber as a product and through changes in the opportunity cost of holding timber as an asset. Resultant changes in the profits earned by timber owners and the buyers of stumpage can be used to attach monetary value to the effects of acid deposition on the timber resource base. The objective of this study is to develop a capability to value acid deposition-induced changes in the productivity of commercial timberland in the northeast United States. Simulations will be conducted to determine the effects of acid deposition-induced changes in species growth rates on the profits earned by timber owners and buyers in relevant stumpage markets. The sensitivity of these results to different rates of return to private owners, alternative management practices, and to the levels of exogenous variables which influence the demand for stumpage will be assessed. 8 references.

  2. A modified approach for estimating the aquatic critical load of acid deposition in northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Whitfield, Colin J.; Mowat, Aidan C.; Scott, Kenneth A.; Watmough, Shaun A.

    2016-12-01

    Acid-sensitive ecosystems are found in northern Saskatchewan, which lies downwind of major sulphur (S) and nitrogen (N) emissions sources associated with the oil sands extraction industry. In order to protect these ecosystems against acidification, tolerance to acid deposition must be quantified. The suitability of the central empirical relationship used in the Steady-State Water Chemistry (SSWC) model to predict historical sulphate (SO4) concentrations was investigated, and an alternate approach for determining aquatic critical loads of acidity (CL(A)) was employed for the study lakes (n = 260). Critical loads of acidity were often low, with median values of 12-16 mmolc m-2 yr-1, with the lower value reflecting a region-specific limit for acid-neutralizing capacity identified in this study. Uncertain levels of atmospheric deposition in the region, however, are problematic for characterizing acidification risk. Accurate S and chloride (Cl) deposition are needed to identify catchment sources (and sinks) of these elements in the new approach for CL(A) calculation. Likewise, accurate depiction of atmospheric deposition levels can prove useful for evaluation of lake runoff estimates on which estimates of CL(A) are contingent. While CL(A) are low and exceedance may occur according to projected increases in S deposition in the near-term, S retention appears to be an important feature in many catchments and risk of acidification may be overstated should long-term S retention be occurring in peatlands.

  3. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada.

    PubMed

    Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean

    2016-05-01

    The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered.

  4. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy; Fowler, David

    2002-01-01

    The effect of acid rain SO42- deposition on peatland CH4 emissions was examined by manipulating SO42- inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha-1 yr-1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m-2 from the controls and (in order of increasing SO42- dose size) 10.7, 13.2, and 9.8 g m-2 from the three SO42- treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42- at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42- from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

  5. Amino acid geochemistry of fossil bones from the Rancho La Brea asphalt deposit, California

    USGS Publications Warehouse

    McMenamin, M.A.S.; Blunt, D.J.; Kvenvolden, K.A.; Miller, S.E.; Marcus, L.F.; Pardi, R.R.

    1982-01-01

    Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 ?? 10-6yr-1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 ?? 10-6yr-1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits. ?? 1982.

  6. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  7. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  8. Growth of and mineral deposition in young rats fed saturated and unsaturated fatty acids

    SciTech Connect

    Magee, A.; D'Souza, D. John Hopkins Univ., Baltimore, MD )

    1991-03-15

    Male weanling rats were used in 4 week experiments to study effects of saturated and unsaturated fatty acids on growth and mineral deposition in several organs (bone, kidneys, liver, spleen, testes). Minerals evaluated were calcium, copper, iron, magnesium, manganese, phosphorus, and zinc, and levels of these minerals in tests diets were appropriate for growing rats. Two levels of dietary fat were used, and fatty acids included in the study were butyric/capronic, palmitic/stearic, oleic, and linoleic/linolenic acids. Decreased weight gains were observed in rats fed saturated fatty acids or 10% fat, while increases in weight gains were associated with increases in polyunsaturated/saturated (P/S) ratios. Copper, iron, or zinc levels tended to be higher in organs of rats fed saturated fatty acids. P/S ratios had no effect on copper or zinc deposition, but decreases in liver iron and increases in spleen iron were observed in rats fed the higher P/S ratios. Manganese levels were generally unaffected by fatty acid types, fat level, or P/S ratio, although liver manganese levels were higher in rats fed unsaturated fatty acids. Dietary fatty acids, fat level, or P/S ratios had no apparent effects on calcium, magnesium, phosphorus, or zinc deposition in femurs and tibias of rats.

  9. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  10. Dry deposition of sulfur dioxide and nitric acid to oak, elm and pine leaves

    SciTech Connect

    Dash, J.M. )

    1988-01-01

    In this study, the deposition of SO{sub 2} and HNO{sub 3} was measured to three tree species, elm, oak and pine. Earlier work has shown that these three species cover of physical types (smooth oak leaves, rough elm leaves, and needles) and chemical types (acid and alkaline leaves) The total deposition is compared to the deposition measured through the stomata. After deposition, removal by revolatilization or extraction was determined. The data is used to estimate dry deposition fluxes of SO{sub 2} and HNO{sub 3} to forests that can then be combined with wet fluxes to determine total atmospheric inputs. Based on these results, a preliminary estimate is made of the possible detrimental effects to forests from atomspheric inputs.

  11. Matrix-assisted pulsed laser deposition of croconic acid, a diprotic organic ferroelectric

    NASA Astrophysics Data System (ADS)

    O'Malley, S. M.; Yi, Sun Yong; Jimenez, Richard; Corgan, Jeffrey; Borchert, James; Kuchmek, John; Papantonakis, M. R.; McGill, R. A.; Bubb, D. M.

    2011-11-01

    MAPLE has long been demonstrated as a successful tool for the deposition of relatively large polymerics and biomaterials. Less work has been done with small-mass organic compounds. In this work, MAPLE has been demonstrated as a viable materials processing technique for 4,5-dihydroxycyclopentenetrione, a diprotic hydroxylic acid, more commonly known as croconic acid ((C=O)3(COH)2). Croconic acid readily dissociates in solution, and, as prepared in the solvent matrices used in this study, was deposited in large part as the solvated croconate conjugate base. Various substrates were utilized and the deposited films were characterized by infrared spectroscopy, atomic and piezo-force microscopy, scanning electron microscopy, and second harmonic generation measurements. This material has potential application in nonlinear optics and green computing as memory elements.

  12. Impact of Al2O3 on the aggregation and deposition of graphene oxide.

    PubMed

    Ren, Xuemei; Li, Jiaxing; Tan, Xiaoli; Shi, Weiqun; Chen, Changlun; Shao, Dadong; Wen, Tao; Wang, Longfei; Zhao, Guixia; Sheng, Guoping; Wang, Xiangke

    2014-05-20

    To assess the environmental behavior and impact of graphene oxide (GO) on living organisms more accurately, the aggregation of GO and its deposition on Al2O3 particles were systematically investigated using batch experiments across a wide range of solution chemistries. The results indicated that the aggregation of GO and its deposition on Al2O3 depended on the solution pH and the types and concentrations of electrolytes. MgCl2 and CaCl2 destabilized GO because of their effective charge screening and neutralization, and the presence of NaH2PO4 and poly(acrylic acid) (PAA) improved the stability of GO with the increase in pH values as a result of electrostatic interactions and steric repulsion. Specifically, the dissolution of Al2O3 contributed to GO aggregation at relatively low pH or high pH values. Results from this study provide critical information for predicting the fate of GO in aquatic-terrestrial transition zones, where aluminum (hydro)oxides are present.

  13. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  14. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  15. Dry acid deposition on leaves of Ligustrum and a new surrogate leaf

    SciTech Connect

    Ondo, J.L.; John, W.; Wall, S.M.

    1984-01-01

    The dry deposition of acidic particles and gases on plants depends on micrometeorology in the canopy and on the surface structure of the leaves. The authors chose two methods to collect and analyze this deposition: washing sulfate and nitrate deposits from the leaves of two species of Ligustrum, an ornamental shrub, and using a surrogate leaf which would absorb acidic gases through pores into a reservoir. The plants are kept in 5-gallon pots in order to be transportable. The leaves are washed, then exposed for a given length of time. Then the leaves are harvested and extracted in distilled water. This extract is analyzed by ion chromatography for sulfate and nitrate. The surrogate leaf is constructed with a nuclepore filter membrane simulating the stomatal openings of a leaf. There is a moist filter in the interior leading to a reservoir. Sulfur dioxide and other acidic gases diffuse through the nuclepore pores and are absorbed in the moist filter. After exposure the exterior surfaces are washed to extract any dry particulate, and the interior filter is analyzed for dissolved acidic gases. The ''leaf'' is small enough to be placed in the canopy in field studies. This surrogate leaf has also been used as a passive monitor in indoor air pollution studies. The surrogate leaves and the ligustrum have been exposed side by side at sites in Berkeley and in the Los Angeles air basin. A comparison has been made between the deposition on natural leaves and the deposition on the artificial leaves.

  16. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  17. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  18. Acid deposition and vehicle emissions: European environmental pressures on Britain

    SciTech Connect

    Brackley, P.

    1987-01-01

    This study, from the Joint Energy Programme and the Policy Studies Institute, examines the increasing political pressure being placed on Britain by members of the European community to take major steps toward improved environmental protection. Taking acid rain and vehicle emissions as typical examples of the conflict, the author examines Sweden, West Germany and France, as well as Britain, and unravels the criticisms, the arguments and the various approaches being taken to deal with environmental concerns. His conclusions point to widespread conflicts between differing national priorities and indicate that Britain may not be the only 'black sheep' in this continuing debate.

  19. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.

    PubMed

    McHale, Michael R; Burns, Douglas A; Siemion, Jason; Antidormi, Michael R

    2017-10-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO4(2-)) concentrations (mean trend of -2.5 μeq L(-1) yr(-1)); hydrogen ion (H(+)) and inorganic monomeric aluminum (Alim) also decreased significantly (mean trends of -0.3 μeq L(-1) yr(-1) for H(+) and -0.1 μeq L(-1) yr(-1) for Alim for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L(-1) yr(-1) for all 5 sites, which was 4 fold less than the decrease in SO4(2-) concentrations. These upward trends in ANC were limited by coincident decreases in base cations (-1.3 μeq L(-1) yr(-1) for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO3(-)) concentrations despite significant decreasing trends in NO3(-) wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (-0.2 μeq L(-1) yr(-1)) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations. Published by Elsevier Ltd.

  20. Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Fan, Q.

    2015-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change

  1. Projection of response of trees and forests to acidic deposition and associated pollutants

    SciTech Connect

    Kiester, A.R.; Ford, E.D.; Avery, A.; Gay, C.; Droessler, T.

    1990-09-01

    In 1986 the National Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern and trends of forest condition and physiological studies of seedlings, saplings, and branches of mature trees. The goals of the modeling effort were to simulate the dynamics of the processes by which acidic deposition and ozone affect tree physiological processes and therefore lead to changes in growth. Results from models of the physiological function of leaves, branches, roots, xylem, and canopies are presented here. These models illustrate three aspects of the dynamics of these processes. First, growth and the effects of pollutants are stochastic processes; that is, they vary randomly over time. The models help to account for the large amount of variability seen in normal field conditions. Second, some physiological processes can compensate for the effects of acidic deposition or ozone. Third, pollutants may have more than one effect on tree growth, and these effects may be synergistic. The potential nonlinearities and the variabilities demonstrated by these models lead to the conclusions that forest health effects may be developing that are not yet apparent; and for regulation of acidic deposition and associated pollutants to have a detectable effect, regulatory changes will probably have to be of substantial magnitude.

  2. Acid Deposition Simulations for Alberta, Saskatchewan, and the Canadian Oil Sands, using the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) System

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Akingunola, Ayodeji; Moran, Michael; Wong, Isaac; Aherne, Julian; Hayden, Katherine; Li, Shao-Meng; Zhang, Junhua; Baratzedah, Pegha; Pabla, Balbir; Cheung, Philip; Cole, Amanda; Kirk, Jane; Scott, Ken

    2017-04-01

    The Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) system (version 2) was used to carry out simulations of acid deposition for the Canadian provinces of Alberta and Saskatchewan. These model predictions include the hourly deposition of four sulphur and eleven nitrogen containing species (SO2(g), HSO3(-)(aq) , SO4(2-)(aq), particulate sulphate, and NH3(g), NO2(g), HNO3(g), NH4(+)(aq), NO3(-)(aq), HONO(g), PAN(g), HNO4(g), particulate nitrate, particulate ammonium, and gaseous organic nitrate, respectively). A two-bin aerosol size distribution configuration of GEM-MACH was used to estimate the annual deposition of these chemicals, for the period August 1, 2013 through July 31, 2014, at two resolutions—a 10km resolution North American domain and a 2.5km resolution Alberta and Saskatchewan domain. The model estimates of acid deposition from both resolutions (version 2), were used to determine the relative contributions of the different species towards total sulphur and nitrogen deposition, and to evaluate the effect of model resolution on estimates of acid deposition. The potential ecosystem impacts of acid deposition were examined via comparison of model-predicted total deposition to different sources of sulphur and nitrogen critical load data, for forest and lake ecosystems in northern Alberta and Saskatchewan. The deposition estimates were compared to observations of snowpack sulphur and nitrogen ions, collected during the winter of 2013. The processes underlying acidifying deposition in the vicinity of the Canadian oil sands were examined in more detail using the 12-bin aerosol size distribution configuration of GEM-MACH (version 2), for a period from mid-August to mid-September 2013. This time period corresponds to an aircraft measurement intensive campaign designed to examine emissions, transportation, and deposition associated with air pollution sources in the Canadian oil sands. Multiple model simulation scenarios were

  3. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  4. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  5. Mapping impact indicators to link airborne ammonia emissions with nitrogen deposition in Natura 2000 sites

    NASA Astrophysics Data System (ADS)

    De Pue, David; Roet, David; Lefebvre, Wouter; Buysse, Jeroen

    2017-10-01

    Ammonia (NH3) deposition in natural areas is a pollution problem that is suited for spatially differentiated pollution control. The heterogeneous impact of nitrogen deposition from airborne ammonia emissions could serve as the basis for differentiated policy measures. Maps were developed that show the potential impact of ammonia emissions on protected Natura 2000 sites in Flanders, Belgium. These maps link the output of atmospheric dispersion and deposition models with data on the nitrogen sensitivity of protected habitats in the Natura 2000 network. The maps demonstrate that the indicator used for impact assessment is a crucial factor in the design of the spatially differentiated policy. The currently used impact indicator in Flanders, the Significance Score, was compared with the Aggregate Deposition Score, an alternative that is a better reflection of the total damage caused by airborne ammonia emissions in nearby Natura 2000 sites. Both indicators are based on the ratio of ammonia deposition to the critical load of nitrogen of the impacted habitat. Spatial effects related to the choice of impact indicator were evaluated. The results indicate that the choice of impact indicator has a decisive role in the geographical outcome of spatially differentiated policies.

  6. Conjugated linoleic acid alters growth performance, tissue lipid deposition, and fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli).

    PubMed

    Dong, Gui-Fang; Liu, Wen-Zuo; Wu, Lin-Zhou; Yu, Deng-Hang; Huang, Feng; Li, Peng-Cheng; Yang, Yan-Ou

    2015-02-01

    Fatty liver syndrome is a prevalent problem of farmed fish. Conjugated linoleic acid (CLA) has received increased attention recently as a fat-reducing fatty acid to control fat deposition in mammals. Therefore, the aim of the present study was to determine whether dietary CLA can reduce tissue lipid content of darkbarbel catfish (Pelteobagrus vachelli) and whether decreased lipid content is partially due to alterations in lipid metabolism enzyme activities and fatty acid profiles. A 76-day feeding trial was conducted to investigate the effect of dietary CLA on the growth, tissue lipid deposition, and fatty acid composition of darkbarbel catfish. Five diets containing 0 % (control), 0.5 % (CLA0.5), 1 % (CLA1), 2 % (CLA2), and 3 % (CLA3) CLA levels were evaluated. Results showed that fish fed with 2-3 % CLA diets showed a significantly lower specific growth rate and feed conversion efficiency than those fed with the control diet. Dietary CLA decreased the lipid contents in the liver and intraperitoneal fat with the CLA levels from 1 to 3 %. Fish fed with 2-3 % CLA diets showed significantly higher lipoprotein lipase and hepatic triacylglycerol lipase activities in liver than those of fish fed with the control, and fish fed with 1-3 % CLA diets had significantly higher pancreatic triacylglycerol lipase activities in liver than those of fish fed with the control. Dietary CLA was incorporated into liver, intraperitoneal fat, and muscle lipids, with higher percentages observed in liver compared with other tissues. Liver CLA deposition was at the expense of monounsaturated fatty acids (MUFA). In contrast, CLA deposition appeared to be primarily at the expense of MUFA and n-3 polyunsaturated fatty acids (PUFA) in the intraperitoneal fat, whereas in muscle it was at the expense of n-3 PUFA. Our results suggested that CLA at a 1 % dose can reduce liver lipid content without eliciting any negative effect on growth rate in darkbarbel catfish. This lipid-lowering effect could

  7. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  8. Quantification of hydrochloric acid and particulate deposition resulting from space shuttle launches at John F. Kennedy space center, Florida, USA

    NASA Astrophysics Data System (ADS)

    Dreschel, Thomas W.; Hall, Carlton R.

    1990-07-01

    Observations of damage to vegetation, acute reductions in surface water pH, and kills of small fish prompted the Biomedical Operations and Research Office at the John F. Kennedy Space Center to initiate intensive environmental evaluations of possible acute and long-term chronic impacts that may be produced by repeated launches of the space shuttle. An important step in this evaluation was the identification of deposition patterns and the quantification of ecosystem loading rates of exhaust constituents from the solid rocket motors (SRMs) in the area of the launch pad. These constituents are primarily aluminum oxide (Al2O3) and hydrochloric acid (HCl). During three launches of the space transportation system (STS-11, 13, and 14) up to 100 bulk deposition collectors, 83 mm in diameter containing 100 ml of deionized water, were deployed in a grid pattern covering 12.6 ha north of launch pad 39-A. Estimates of HCl and particulate deposition levels were made based on laboratory measurements of items entrained in the collectors. Captured particulates consisted of a variety of items including Al2O3, sand grains, sea shell fragments, paint chips, and other debris ablated from the launch pad surface by the initial thrust of the SRMs. Estimated ranges of HCl and particulate deposition in the study area were 0-127 g/m2 and 0-246 g/m2, respectively. Deposition patterns were highly influenced by wind speed and direction. These measurements indicate that, under certain meteorological conditions, up to 7.1 × 103 kg of particulates and 3.4 × 103 kg of HCl can be deposited to the near-field environment beyond the launch pad perimeter fence.

  9. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  10. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  11. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  12. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    Treesearch

    Gregory B. Lawrence; Walter C. Shortle; Mark B. David; Kevin T. Smith; Richard A. Warby; Andrei G. Lapenis

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in...

  13. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  14. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  15. Preparation of waxes and humic acids from brown coal from the Sergeevskoe deposit

    SciTech Connect

    L.P. Noskova; A.V. Rokhin; A.P. Sorokin

    2007-06-15

    The comparative extraction of coal with organic solvents was performed. Humic acids were separated from solid residues. The yields, particle-size distributions, and chemical compositions of the resulting products were analyzed. It was demonstrated that brown-coal wax and humic fertilizers can potentially be obtained using coal from the Sergeevskoe deposit.

  16. Do Uric Acid Deposits in Zooxanthellae Function as Eye-Spots?

    PubMed Central

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-01-01

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100–150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot. PMID:19609449

  17. Electrophoretic deposition of polyacrylic acid and composite films containing nanotubes and oxide particles.

    PubMed

    Wang, Y; Deen, I; Zhitomirsky, I

    2011-10-15

    Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.

  18. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    PubMed

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available.

  19. Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Wu, Pei-Ling

    2011-07-01

    Rainfall samples were collected over a period of 3 years and 8 months in subtropical East Asia. They are categorized into different rainfall types and analyzed to assess the ionic composition and its effect on the acidity of wet deposition in southern Taiwan. Only 4% of samples had a pH of <5.0, indicating that the study area is not impacted significantly by acid rain. The volume-weighted mean (VWM) pH by rainfall type was Spring Rain 5.74, Typhoon Rain 5.56, Summer Rain 5.46, Typhoon Outer Circulation (TOC) Rain 5.45, Plum Rain 5.32 and Autumn-Winter Rain 5.29. Dilution effects were important to the equivalent ionic concentration of different rainfall types. HCO 3-, SO 42- and Cl - were detected as major anions whereas NH 4+, Na + and Ca 2+ were major cations. CO 2-derived HCO 3- was the major ionic species in all but Typhoon Rain and Spring Rain, in which the major species were Na + and Cl - and Ca 2+, respectively. Excluding HCO 3-, the major species were NH 4+, Na + and Ca 2+ in Plum Rain, the secondary photochemical products SO 42-, NO 3- and NH 4+ in TOC Rain and Summer Rain, and Na + and Ca 2+ in Autumn-Winter Rain. Calculation of arithmetic means showed that dicarboxylic acids contributed between 0.25% and 0.53% of the total ionic concentration and of these, oxalic acid contributed the least (81.3% of the dicarboxylic acid) to TOC Rain and the most (96.1% of the dicarboxylic acid) to Spring Rain, suggestive of long-range transport in the latter. Differences in wet deposition composition were shown to be a result of differences in local emissions and long-range transport (hence of prevailing wind direction) during the period of rainfall and of the frequency and volume of rain that typifies each rainfall type. Principal component analysis (PCA) further revealed that traffic-related and industrial organic and inorganic pollutants, their secondary photochemical products, sea salts, and dust are important contributors to wet deposition. Moreover, the ratio of

  20. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  1. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Crowley, J. K.; Marion, G. M.; Kargel, J. S.; Michalski, J. L.; Thomson, B. J.; de Souza Filho, C. R.; Bridges, N. T.; Brown, A. J.

    2009-10-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation. Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines.

  2. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs

    PubMed Central

    Zhang, Shunhua; Shen, Linyuan; Xia, Yudong; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhu, Li

    2016-01-01

    Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF’s low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition. PMID:27721392

  3. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy B.; Howell, Graham; Jenkins, Meaghan E.

    2008-09-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO42- deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO42- consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO42- at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO42- may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO42- limitation had been lifted by the simulated acid rain S deposition.

  4. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  5. SPECTRAL REFLECTANCE METHOD TO MEASURE ACID DEPOSITION EFFECTS ON BUILDING STONE.

    USGS Publications Warehouse

    Kingston, Marguerite J.; Ager, Cathy M.

    1985-01-01

    As part of the National Acid Precipitation Assessment Program (NAPAP), the U. S. Geological Survey is cooperating with other agencies to test the effects of acid deposition on building stone. A 10-year test-site study has been organized for the purpose of correlating possible stone deterioration with environmental factors. In Summer 1984, slabs of building stone, 3 by 2 by 2 inches, were exposed to the atmosphere at four test sites where the pH of precipitation and other meteorological variables are continuously monitored. This paper examines the development of one experimental technique used in this study - the application of diffuse spectral reflectance methods for laboratory and in situ measurement of those properties of stone which may be affected by acid deposition.

  6. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  7. Comparison among model estimates of critical loads of acidic deposition using different sources and scales of input data

    Treesearch

    T.C. McDonnell; B.J. Cosby; T.J. Sullivan; S.G. McNulty; E.C. Cohen

    2010-01-01

    The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earth’s surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance...

  8. Climate Strategy Impact on Nitrogen Deposition in the USA ...

    EPA Pesticide Factsheets

    Nitrogen (N) leakage to the environment in the United States costs an estimated $210 billion per year, equivalent to 1-3% of the national GDP, in part due to atmospheric N pollution. Excess N deteriorates ecosystems via eutrophication in water bodies, causing fish kills and additional expense in water treatment (Sobota et al., 2015). To describe the nutrient threshold an ecosystem is able to withstand before its functionality is impaired, the Department of Agriculture developed critical loadings for ecoregions and vegetation types across the U.S. (Pardo et al., 2015). In present conditions, N deposition alone may cause sensitive ecosystems across the United States to exceed these values (Lee et al., 2015). Although the primary contributor to N deposition in the past has been in oxidized forms, or NOx, ammonia (NH3) is expected to be the predominant form in the future as air quality regulations reduce NOx emissions (Ellis et al., 2013). Climate change mitigation measures complicate N projections because many are expected to provide air quality co-benefits through NOx reductions. However, strategies that substitute biofuels for conventional petroleum could lead to an increase in NH3 emissions from fertilizer application. In evaluating climate mitigation strategies, it is imperative that we understand their effects on the N cycle to avoid economic, public health and ecological consequences. In this extended abstract, the author demonstrates how the emission outp

  9. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    lakes, researchers must consider the possibility that changes in ecology and hydrochemistry may have occurred many decades earlier in the 20th Century. Furthermore, detection of climate forcing of chemistry and aquatic ecosystems in western montane regions is made more difficult by human impacts on atmospheric deposition of acids and nutrients during the past 150 years.

  10. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    SciTech Connect

    Urstöger, Georg; Resel, Roland; Coclite, Anna Maria; Koller, Georg

    2016-04-07

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm{sup −1}. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  11. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    SciTech Connect

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-06-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development.

  12. Proceedings of the NAPAP (National Acid Precipitation Assessment Program) workshop on dry deposition

    SciTech Connect

    Hicks, B.B.; Wesely, M.L.; Lindberg, S.E.; Bromberg, S.M.

    1986-01-01

    Knowledge of dry deposition is limited by the inability to make the necessary measurements in other than special circumstances. The need to generate confidence in the available measurement techniques was emphasized. There is need for more frequent collocation of experiments and for more collaboration of researchers. Discussions among the specialist groups focused attention on the greatly dissimilar experimental constraints associated with different techniques. A summary of relevant considerations is given. Extreme difficulties arise when trying to conduct a side-by-side comparison of all of the available methods. In all cases there is need to improve measurement methods. This developmental effort is presently underway, but augmentation is required. The present focus on questions regarding so-called acidic deposition is too confining to permit a broad-based attack on the overall problem of air pollution in the context of energy and agricultural options. A program developed in response to questions concerning acidic deposition should not be expected to address questions arising in other contexts. The acid deposition concern is real and immediate, and if carefully arranged the research program generated to provide the most urgently desired answers could also constitute an entry into a longer-term investigation of broader issues. 34 refs., 3 tabs.

  13. Modelling of dispersal and deposition of impact glass spherules from the Cretaceous-Tertiary boundary deposit

    NASA Technical Reports Server (NTRS)

    Espindola, J. M.; Carey, S.; Sigurdsson, H.

    1993-01-01

    The dispersal of glass spherules or tektites from a bolide impact with the Earth is modelled as ballistic trajectories in standard atmosphere. Ballistic dispersal of Cretaceous-Tertiary boundary impact glass spherules found in Haiti and Mimbral, Mexico requires a fireball radius in excess of 50 km but less than 100 km to account for the observed distribution. Glass spherules from 1 and up to 8 mm in diameter have been found at the KT boundary at Beloc in Haiti, at Mimbral, Mexico, and at DSDP Sites 536 and 540 in the Gulf of Mexico corresponding to paleodistances of 600 to 1000 km from the Chicxulub crater. In Haiti the basal and major glass-bearing unit at the KT boundary is attributed to fallout on basis of sedimentologic features. When compared with theoretical and observed dispersal of volcanic ejecta, the grain size versus distance relationship of the KT boundary tektite fallout is extreme, and rules out a volcanic fallout origin. At a comparable distance from source, the KT impact glass spherules are more than an order of mangitude coarser than ejecta of the largest known volcanic events. We model the dispersal of KT boundary impact glass spherules as ballistic ejecta from a fireball generated by the impact of a 10 km diameter bolide. Mass of ejecta in the fireball is taken as twice the bolide mass. Melt droplets are accelerated by gas flow in the fireball cloud, and leave the fireball on ballistic trajectories within the atmosphere, subject to drag, depending on angle of ejection and altitude. The model for ballistic dispersal is based on equations of motion, drag and ablation for silicate spheres in standard atmosphere.

  14. Modelling of dispersal and deposition of impact glass spherules from the Cretaceous-Tertiary boundary deposit

    NASA Technical Reports Server (NTRS)

    Espindola, J. M.; Carey, S.; Sigurdsson, H.

    1993-01-01

    The dispersal of glass spherules or tektites from a bolide impact with the Earth is modelled as ballistic trajectories in standard atmosphere. Ballistic dispersal of Cretaceous-Tertiary boundary impact glass spherules found in Haiti and Mimbral, Mexico requires a fireball radius in excess of 50 km but less than 100 km to account for the observed distribution. Glass spherules from 1 and up to 8 mm in diameter have been found at the KT boundary at Beloc in Haiti, at Mimbral, Mexico, and at DSDP Sites 536 and 540 in the Gulf of Mexico corresponding to paleodistances of 600 to 1000 km from the Chicxulub crater. In Haiti the basal and major glass-bearing unit at the KT boundary is attributed to fallout on basis of sedimentologic features. When compared with theoretical and observed dispersal of volcanic ejecta, the grain size versus distance relationship of the KT boundary tektite fallout is extreme, and rules out a volcanic fallout origin. At a comparable distance from source, the KT impact glass spherules are more than an order of mangitude coarser than ejecta of the largest known volcanic events. We model the dispersal of KT boundary impact glass spherules as ballistic ejecta from a fireball generated by the impact of a 10 km diameter bolide. Mass of ejecta in the fireball is taken as twice the bolide mass. Melt droplets are accelerated by gas flow in the fireball cloud, and leave the fireball on ballistic trajectories within the atmosphere, subject to drag, depending on angle of ejection and altitude. The model for ballistic dispersal is based on equations of motion, drag and ablation for silicate spheres in standard atmosphere.

  15. Correlation analysis of tree growth, climate, and acid deposition in the Lake States. Forest Service research paper

    SciTech Connect

    Holdaway, M.R.

    1990-01-01

    The report describes research designed to detect subtle regional tree growth trends related to sulfate (SO{sub 4}) deposition in the Lake States. Correlation methods were used to analyze climatic and SO{sub 4} deposition. Effects of SO{sub 4} deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the strongest correlation to both climate and acid deposition.

  16. Effects of acid deposition on calcium nutrition and health of Southern Appalachian spruce fir forests

    SciTech Connect

    McLaughlin, S.B.; Wullschleger, S.; Stone, A.; Wimmer, R.; Joslin, J.D.

    1995-02-01

    The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an important component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.

  17. Chemical composition of acid deposition and its seasonal variation in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Wu, D.Y.; Chen, K.S.

    1997-12-31

    This study investigated the acidification of wet and dry depositions collected in Kaohsiung metropolitan area during the period of January to May in 1996. An acid deposition sampling network including six sampling stations was originally established for this particular study. Both wet and dry depositions were sampled by an automatic rainwater sampler at each station. Major cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup 2{minus}}) of acid deposition were determined at Air Pollution Laboratory in the Institute of Environmental Engineering at National Sun Yat-Sen University except that the pH value and conductivity of samples were measured in situ. During the period of investigation, the pH value of rainwater ranged from 3.45 to 7.36 with a mode of 4.4--4.8. The volume-weighted average pH value was 4.65. The probability of acid rain during investigation period was approximately 77.3%. The probability of acid rain in rainy season was much higher than that in dry season. A lower probability in dry season was mainly attributed to the fact that alkaline particles suspended in the atmosphere to be washed by rainwater droplets. Results from correlation analysis indicated that major chemical species (r > 0.85) in rainwater droplets were NaCl, NH{sub 4}NO{sub 3}, Na{sub 2}NO{sub 3}, and NaCl{sub 2}. Furthermore, the deposition of hydrogen ion in wet process was much higher than that in dry process.

  18. Impact of historical air pollution emissions reductions on nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Loughner, C.; Tzortziou, M.; Duffy, M.; Duncan, B. N.; Hains, J.; Pickering, K. E.; Yoshida, Y.; Follette-Cook, M. B.

    2013-12-01

    There have been significant NOx emissions reductions since 2002 in the eastern and central US through a combination of the Environmental Protection Agency (EPA) NOx State Implementation Plan (SIP) call, which required 22 states and the District of Columbia to regulate NOx emissions to mitigate ozone transport, the NOx Budget Trading Program, subsequent EPA rules, court-orders, and state regulations. As reported by the EPA's National Emissions Inventory (NEI), NOx emissions nationwide have been reduced by 37% between 2002 and 2011. The benefit of these emissions reductions on decreasing nitrogen deposition onto terrestrial and aquatic ecosystems will be presented by comparing CMAQ air quality model simulations for July 2011 from a 12 km domain over the eastern US and a 4 km domain over the Mid-Atlantic with anthropogenic emissions appropriate for 2002 and 2011. Previously we showed that the historical emissions reductions from 2002 to 2011 prevented 9 to 13 ozone standard exceedance days throughout much of the Ohio River Valley and 3 to 9 ozone exceedance days throughout the Baltimore-Washington metropolitan area for the month of July 2011. Here, we focus on how the historical emissions reductions decreased nitrogen deposition, subsequently benefiting terrestrial and aquatic ecosystems. The base case simulation with emissions appropriate for 2011 everywhere was evaluated with ground-, ship-, aircraft-, and satellite-based observations, which include measurements made during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) and GeoCAPE-CBODAQ (Geostationary Coastal and Air Pollution Events-Chesapeake Bay Oceanographic Campaign with DISCOVER-AQ) field campaigns.

  19. Acid deposition sensitivity map of the Southern Appalachian Assessment area; Virginia, North Carolina, South Carolina, Tennessee, Georgia, and Alabama

    USGS Publications Warehouse

    Pepper, John D.; Grosz, Andrew E.; Kress, Thomas H.; Collins, Thomas K.; Kappesser, Gary B.; Huber, Cindy M.; Webb, James R.

    1995-01-01

    Project Summary: The following digital product represents the Acid Deposition Sensitivity of the Southern Appalachian Assessment Area. Areas having various susceptibilities to acid deposition from air pollution are designated on a three tier ranking in the region of the Southern Appalachian Assessment (SAA). The assessment is being conducted by Federal agencies that are members of the Southern Appalachian Man and Biosphere (SAMAB) Cooperative. Sensitivities to acid deposition, ranked high, medium, and low are assigned on the basis of bedrock compositions and their associated soils, and their capacities to neutralize acid precipitation.

  20. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  1. Influence of alkaline suspended particles on the chemical composition of acid deposition in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Lin, Z.J.; Wu, M.Y.; Liu, J.I.; Yuan, C.

    1998-12-31

    This study investigated the influence of alkaline suspended particles on the chemical composition of acid deposition both temporally and spatially in Kaohsiung metropolitan area in Taiwan. During the period of January--December, 1996, both wet and dry deposition samples were collected by automatic acid precipitation samplers at six sampling sites which covered the entire metropolitan area. Major cations (NH{sub 4}{sup +}, K{sup +}, Na{sup +}, Ca{sup +2}, and Mg{sup +2}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup {minus}2}) of acid deposition samples were analyzed in a central laboratory, while the pH value and conductivity of rainwater samples were measured in situ. Results from chemical analysis indicated that Ca{sup +2} was the most abundant cation in acid deposition samples. Major cations were Ca{sup +2} and NH{sub 4}{sup +}, while major anions were SO{sub 4}{sup {minus}2} and NO{sub 3}{sup {minus}}. This study also revealed that the pH value, suspended solids, Ca{sup +2}, and NH{sub 4}{sup +} of rainwater decreased with rainy time in a sequential rainwater sampling process. It was estimated that approximately 80% of suspended particles could be washed out by rain droplets in the first hour of raining process. Therefore, alkaline suspended particles in the atmosphere played an very important role on the chemical composition of acid precipitation in Kaohsiung metropolitan area in Taiwan.

  2. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue

  3. Supersonic jet deposition of silver nanoparticle aerosols: Correlations of impact conditions and film morphologies

    SciTech Connect

    Huang, Chong; Nichols, William T.; O'Brien, Daniel T.; Becker, Michael F.; Kovar, Desiderio; Keto, John W.

    2007-03-15

    We describe experiments and modeling for the deposition of silver lines and films via the impaction of a silver nanoparticle aerosol delivered through a supersonic jet. The aerosol gas dynamics of the jet flow field, nanoparticle acceleration in the jet, and deposition by impaction onto the substrate were modeled for both a flat-plate nozzle and for a conical nozzle designed to obtain higher impaction velocities. We modeled nanoparticle dynamics for He, Ar, and N{sub 2} gasses, all initially at room temperature and 1 atm pressure, flowing through a 250 {mu}m orifice into vacuum with a pressure ratio of {approx}5000. Experiments were conducted to deposit silver nanoparticle aerosols under the same conditions as were modeled. The silver nanoparticles were generated by laser ablation of a flowing microparticle aerosol entrained in either He or Ar that produced nanoparticles 5-10 and 15-20 nm in diameter, respectively. Deposition was made onto an unheated substrate in vacuum. The morphology of the deposited films was determined by scanning electron microscope cross-section images and crystallite size was determined by x-ray diffraction analysis. The morphological features and crystallite size were correlated with the nanoparticle impaction velocity and impaction energy derived from the model. We found that, for a given gas type, the size of the grains and morphological features within the impacted films were similar to the size of the nanoparticles from which the films were formed. The density and the degree of consolidation of the films were highly dependent on the nanoparticle impaction velocity/energy and were highest for helium. Control of film morphology, grain size, and film density during supersonic impaction of nanoparticle aerosols are discussed in light of these results.

  4. Location and sampling of aqueous and hydrothermal deposits in martian impact craters.

    PubMed

    Newsom, H E; Hagerty, J J; Thorsos, I E

    2001-01-01

    Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.

  5. Impact of dust deposition on carbon budget: a tentative assessment from a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Ridame, C.; Pulido-Villena, E.; Bressac, M.; Desboeufs, K.; Dulac, F.

    2014-10-01

    By bringing new nutrients and particles to the surface ocean, atmospheric deposition impacts biogeochemical cycles. The extent to which those changes are modifying the carbon balance in oligotrophic environments such as the Mediterranean Sea that receives important Saharan dust fluxes is unknown. The DUNE (DUst experiment in a low Nutrient, low chlorophyll Ecosystem) project provides the first attempt to evaluate the changes induced in the carbon budget of a large body of oligotrophic waters after simulated Saharan dust wet or dry deposition events, allowing us to measure (1) the metabolic fluxes while the particles are sinking and (2) the particulate organic carbon export. Here we report the results for the three distinct artificial dust seeding experiments simulating wet or dry atmospheric deposition onto large mesocosms (52 m3) that were conducted in the oligotrophic waters of the Mediterranean Sea in the summers of 2008 and 2010. Although heterotrophic bacteria were found to be the key players in the response to dust deposition, net primary production increased about twice in case of simulated wet deposition (that includes anthropogenic nitrogen). The dust deposition did not produce a shift in the metabolic balance as the tested waters remained net heterotrophic (i.e., net primary production to bacteria respiration ratio <1) and in some cases the net heterotrophy was even enhanced by the dust deposition. The change induced by the dust addition on the total organic carbon pool inside the mesocosm over the 7 days of the experiments, was a carbon loss dominated by bacteria respiration that was at least 5-10 times higher than any other term involved in the budget. This loss of organic carbon from the system in all the experiments was particularly marked after the simulation of wet deposition. Changes in biomass were mostly due to an increase in phytoplankton biomass but when considering the whole particulate organic carbon pool it was dominated by the organic

  6. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  7. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition

    PubMed Central

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-01-01

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO2 concentration, and SO4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes. PMID:28393872

  8. The Impact of Iodide-Mediated Ozone Deposition and ...

    EPA Pesticide Factsheets

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and marine halogen chemistry accounted for in both the lateral boundary conditions and coastal waters surrounding the continental U.S. is examined using the Community Multiscale Air Quality (CMAQ) model. Several nested simulations are conducted in which these halogen processes are implemented separately in the continental U.S. and hemispheric CMAQ domains, the latter providing lateral boundary conditions for the former. Overall, it is the combination of these processes within both the continental U.S. domain and from lateral boundary conditions that lead to the largest reductions in modeled surface O3 concentrations. Predicted reductions in surface O3 concentrations occur mainly along the coast where CMAQ typically has large overpredictions. These results suggest that a realistic representation of halogen processes in marine regions can improve model prediction of O3 concentrations near the coast. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and

  9. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  10. Retrospective assessment of the Maryland Department of Natural Resources Acid Deposition Program

    SciTech Connect

    Janicki, A.; Anderson, G.

    1994-10-01

    The project has been undertaken to review the acid deposition program conducted by the Maryland Department of Natural Resources Power Plant Research Program (PPRP) and to provide a retrospective which, in simple terms, attempts to identify what the acid deposition program was supposed to do, what the program has accomplished, and what remains to be addressed or concluded. In the second chapter of this report these responsibilities and charges from this legislation are reviewed. In the third chapter of this report a chronological review of the major program outputs and their relationship to the mandates of HB-27 is presented. The major conclusions that can be drawn from these program outputs are reviewed in Chapter 4. A review of on-going research and monitoring projects is presented in Chapter 5. Lastly, in Chapter 6, the major issues which remain to be addressed are to be identified and discussed.

  11. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  12. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  13. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  14. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  15. Modeling the contribution of soil fauna to litter decomposition influenced by acidic deposition

    SciTech Connect

    Cai, B.; Loucks, O.L; Kuperman, R. Argonne National Lab., IL )

    1993-06-01

    The effect of acidic deposition on soil pH and therefore on soil invertebrates and litter decomposition is being investigated in oak-hickory forests across a three-state, midwest, pollution gradient. The role of soil invertebrates has been assessed previously through the use of feeding, assimilation and respiratory rates. These energetic parameters depend strongly on the form of the allometric equations which have been improved here by incorporating uncertainties in body and population size. Results show that changes in reproduction and turnover dynamics of soil invertebrates (particularly of earthworms) due to acid-induced changes in soil pH explains observed patterns in litter depth.

  16. Valuation of damages to recreational trout fishing in the Upper Northeast due to acidic deposition

    SciTech Connect

    Englin, J.E.; Cameron, T.A.; Mendelsohn, R.E.; Parsons, G.A.; Shankle, S.A.

    1991-04-01

    This report documents methods used to estimate economic models of changes in recreational fishing due to the acidic deposition. The analysis was conducted by Pacific Northwest Laboratory (PNL) and its subcontractors for the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE) in support of the National Acidic Precipitation Assessment Program (NAPAP). The primary data needed to estimate these models were collected in the 1989 Aquatic Based Recreation Survey (ABRS), which was jointly funded by the DOE and the EPA's Office of Policy Planning and Evaluation. 11 refs., 5 figs., 15 tabs.

  17. Effects of acidic deposition and other energy emissions on wildlife: a compendium

    SciTech Connect

    Newman, J.R.; Schreiber, R.K.

    1985-10-01

    Energy emissions, including acidic depositions, pose potential problems for wildlife populations. Historical and recent events show both direct, acute effects and indirect, chronic effects from a variety of airborne pollutants. Information on effects of selected gaseous and particulate energy emissions on domestic animals and livestock and on wildlife is compared. Our understanding of wildlife effects can be improved by the evaluation of veterinary toxicological information and research on the ecological equivalents of domestic and laboratory animals. 42 references.

  18. Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water.

    PubMed

    Ekström, Sara M; Kritzberg, Emma S; Kleja, Dan B; Larsson, Niklas; Nilsson, P Anders; Graneli, Wilhelm; Bergkvist, Bo

    2011-06-01

    The aim of this study was to explore how acid deposition may affect the concentration and quality of dissolved organic matter (DOM) in soil-water. This was done by a small-scale acidification experiment during two years where 0.5 × 0.5 m(2) plots were artificially irrigated with water with different sulfuric acid content, and soil-water was sampled using zero-tension lysimeters under the O-horizon. The DOM was characterized using absorbance, fluorescence, and size exclusion chromatography analyses. Our results showed lower mobility of DOM in the high acid treatment. At the same time, there was a significant change in the DOM quality. Soil-water in the high acid treatment exhibited DOM that was less colored, less hydrophobic, less aromatic, and of lower molecular weight, compared to the low acid treatment. This supports the hypothesis that reduction in sulfur deposition is an important driver behind the ongoing brownification of surface waters in many regions.

  19. Modeling wet deposition of acid substances over the PRD region in China

    NASA Astrophysics Data System (ADS)

    Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei

    2015-12-01

    The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.

  20. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Treesearch

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  1. SOM Stability under Long-term Recovery from Acidic Deposition in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Marinos, R.; Bernhardt, E. S.; Groffman, P. M.; Likens, G.; Rosi-Marshall, E. J.

    2016-12-01

    Forested ecosystems in the Northeast U.S.A. are currently recovering from decades of acidic deposition that decreased soil pH, leached base cations, and increased soluble aluminum (Al) in soils. Because most research examining SOM dynamics in these ecosystems has taken place against a background of acidic deposition, it remains poorly understood how SOM pools will change as a result of the long-term trajectory of recovery from acidic deposition throughout the region. These potential changes may alter soil fertility status as well as the chemistry of receiving freshwater bodies. Watershed-scale experiments that increase soil pH and base cation status may provide insight into how SOM pools in these recovering ecosystems will respond on timescales of decades to centuries, but results from these experiments have been equivocal. At Hubbard Brook Experimental Forest in New Hampshire, a watershed-scale acid remediation treatment of calcium silicate caused a 40% decline of SOM pools in the humic (Oa) soil horizon, in addition to increasing soil pH and base saturation. We sought to understand the mechanisms driving this substantial loss of SOM. We found that, in the Oa horizon of the treatment watershed, respiration and nitrogen (N) mineralization were significantly, positively correlated with exchangeable calcium (Ca) and uncorrelated with soil pH; in a linear regression, exchangeable Ca explained 76% of the variation in respiration and 74% of the variation in nitrogen mineralization in the treatment soils. These metrics were uncorrelated in soils from a nearby reference watershed, where Ca is uniformly low. This suggests that the rate and magnitude of soil Ca changes during recovery from acid deposition may provide an important long-term control on the stability of SOM in these ecosystems. Additionally, we found substantially enhanced in-stream biotic uptake of the inorganic N released from this enhanced SOM decomposition, with growing-season N flux from the treatment

  2. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  3. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    PubMed

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  4. Fuzzy techniques for environmental-impact assessment in the mineral deposit of Punta Gorda (Moa, Cuba).

    PubMed

    Duarte, O G; Requena, I; Rosario, Y

    2007-06-01

    An Environmental-Impact Assessment (EIA) makes it possible to determine whether or not a project is compatible with nature, and thus whether the project qualifies to be executed. The Environmental-Impact Assessment is intended to establish a balance between the development of human activities and the environment. In this work, an Environmental-Impact Assessment of the mineral deposit of Punta Gorda (Moa, Cuba) is made, using fuzzy techniques. Two previous works have been combined: an appropriate linguistic model built with fuzzy techniques, providing a framework for handling qualitative and quantitative variables, and an environmental-impact assessment carried out according to a classical methodology.

  5. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: Petrography, geochemistry, and depositional environment

    NASA Technical Reports Server (NTRS)

    Dressler, Burkhard O.; Sharpton, Virgil L.; Schwandt, Craig S.; Ames, Doreen

    2004-01-01

    The impact breccias encountered in drill hole Yaxcopoil-1 (Yax-1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine-grained top (unit 3; 23 m thick; nuee ardente) and a coarse breccia (unit 4; approx.15 m thick) below. As such, they consist of a melange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (approx.24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic-matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super-heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax-1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the IUT impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.

  6. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  7. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  8. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    PubMed

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  9. Economic impact of acid rain. [New York; Wisconsin; Canada; Scandinavia

    SciTech Connect

    Not Available

    1980-01-01

    The environmental and economic impact of acid rain is documented for the eastern United States (New York, Wisconsin) and Canada and Scandinavia. Damage to lakes and other water resources, fisheries, forests and agriculture is emphasized.

  10. An Experimental Model to Study the Impact of Lipid Oxidation on Contact Lens Deposition In Vitro.

    PubMed

    Schuett, Burkhardt S; Millar, Thomas J

    2017-09-01

    This study was to establish a controlled in vitro test system to study the effect of lipid oxidation on lipid deposition on contact lenses. Fatty acids with varying degree of unsaturation were oxidized using the Fenton reaction. The degree of lipid oxidation and the lipid moieties formed during the oxidation were identified and estimated by various lipid staining techniques following separation with thin-layer chromatography, and by measuring thiobarbituric acid reactive substances or peroxides in solution. Two different silicone hydrogel-based contact lenses (Balafilcon A and Senofilcon A) were incubated with fatty acids laced with radioactive tracer oxidized to varying degrees, and the amount of lipid deposition was measured using unoxidized lipid samples as controls. The Fenton reaction together with the analytical methods to analyze the lipid oxidation can be used to control oxidation of lipids to a desired amount. In general, saturated fatty acids are not oxidized, the monounsaturated oleic acid produced peroxides while poly-unsaturated lipids initially produced peroxides and then fragmented into reactive aldehydes. Incubation with mildly oxidized lipids (most likely lipid peroxides) resulted in increased lipid deposition on Balafilcon A lenses compared to unoxidized lipids, but this was not observed for Senofilcon A lenses. Further oxidation of the lipids (carbon chain breakup) on the other hand resulted in diminished lipid deposition for both contact lens types. This study provides a method for inducing and controlling lipid oxidation so that the effect of lipid oxidation on contact lens binding can be compared. It could be shown that the degree of lipid oxidation has different effects on the lipid deposition on different contact lens types.

  11. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  12. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid

    Treesearch

    Pamela E. Padgett; Sally D. Parry; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric...

  13. Influence of acidic atmospheric deposition on soil solution composition in the Daniel Boone National Forest, Kentucky, USA

    Treesearch

    C.D. Barton; A.D. Karathanasis; G. Chalfant

    2002-01-01

    Acid atmosperic depositoin may enter an environmental ecosystem in a variety of forms and pathways, but the most common components include sulfuric and nitric acids formed when rainwater interacts with sulfur (SO3) and nitrogen (NO3) emmissions. For many soils and watersheds sensitive to acid deposition, the predominant...

  14. Impacts of atmospheric pollution on the plant communities of British acid grasslands.

    PubMed

    Payne, Richard J; Stevens, Carly J; Dise, Nancy B; Gowing, David J; Pilkington, Michael G; Phoenix, Gareth K; Emmett, Bridget A; Ashmore, Michael R

    2011-10-01

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent.

  15. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  16. Characterization of dynamic droplet impaction and deposit formation on leaf surfaces

    USDA-ARS?s Scientific Manuscript database

    Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...

  17. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  18. Geochemistry of alpine soils in the Colorado Front Range, with special reference to acid deposition

    SciTech Connect

    Litaor, M.I.

    1986-01-01

    Various components of the soil in the Green Lakes Valley, Colorado Front Range, were studied to evaluate the capacity of the terrestrial system to buffer acid deposition. This investigation suggests that the soils in the study area are probably unaffected by the current loading rate of acid deposition. The existence of calcite in eolian dust and the substantial contribution of dissolved organic carbon (DOC) to the acid-neutralizing capacity maintain the pH values of the soil solutions near neutrality. Chemical and physical characteristics of the soils, such as acid neutralizing capacity (ANC), cation exchange capacity, bulk density, and water retention capacities, are highly dependent on organic carbon content. In order to determine the contribution of humic substances to the buffering capacity of a given soil, DOC and pH of the soil solutions were measured. The aluminium solubility in the soil interstitial waters is a complex phenomenon that is controlled by the concentrations of DOC, H/sub 2/SiO/sub 4/, and pH. The soil water pH and concentrations of SO/sub 4//sup 2 -/ do not correlate with aluminum concentrations. The chemical equilibria of aluminum are being controlled by amorphous aluminosilicate Al(HO)/sub 3(1-x)/SiO/sub 2x/. Studies of the mineralogy and soil water chemistry comprise a useful combination in evaluating and predicting the chemical processes of a given soil environment.

  19. RAINS-ASIA: An assessment model for acid deposition in Asia

    SciTech Connect

    Downing, R.J.; Ramankutty, R.; Shah, J.J.

    1997-08-31

    Asia`s rapid economic growth has fueled a growing appetite for commercial energy, which is satisfied by fossil fuels that emit pollutants. These pollutants are oxidized and transported into the atmosphere, creating acidic depositions known as acid rain that can damage foliage, soils, and surface waters. At current energy consumption growth rates, by the year 2000 sulfur dioxide emissions from Asia will surpass the emissions of North America and Europe combined. RAINS-ASIA is an assessment tool developed by the World Bank, the Asian Development Bank, and donors to study the implications of alternative energy development strategies for air pollution and acid rain and to help identify cost-effective abatement methods. This report provides an overview of the model and some results of analyses that have been conducted as part of the RAINS-ASIA program.

  20. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.

    PubMed

    Meunier, Cédric L; Gundale, Michael J; Sánchez, Irene S; Liess, Antonia

    2016-01-01

    Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning. © 2015 John Wiley & Sons Ltd.

  1. Modeling potential interactions of acid deposition and climate change at four watersheds in Shenandoah National Park, VA using the dynamic biogeochemical model PnET-BGC

    NASA Astrophysics Data System (ADS)

    Robison, A.; Scanlon, T. M.; Cosby, B. J.; Webb, J. R.; Hayhoe, K.; Galloway, J. N.

    2013-12-01

    The ecological threat imposed by acid deposition on watersheds in the eastern U.S. has, to a certain extent, been alleviated by the passage of the Clean Air Act and subsequent amendments. At the same time, as climate change continues to emerge as a global issue affecting temperature regimes and hydrological cycling among many other variables, new concerns are developing for these watershed ecosystems. Considering that climate change and acid deposition do not influence watersheds independently, there is an opportunity and need to examine both the potential interactions and the impacts of these two biogeochemical drivers. Long-term monitoring of four streams in Shenandoah National Park, VA has provided a favorable setting for analyzing this interaction. Deposition of both sulfur and nitrogen has significantly decreased over the past 30 years in the region. Meanwhile, all four streams have warmed significantly over the past 20-33 years at an average rate of 0.07 oC yr-1, a trend that is closely tied to atmospheric warming rather than changes in hydrology. We applied a dynamic biogeochemical model (PnET-BGC) to these four watersheds to a) investigate how climate change will affect watershed response to reduced acid deposition; b) identify the key processes through which this interaction will be manifested; and c) examine how differences in watershed characteristics (e.g. bedrock and soil properties) affect the response to these two biogeochemical drivers. Included in model application are statistically downscaled climate projections of temperature maximums and minimums, precipitation, and solar radiation. Results will be used to assess the relative impact of these climate variables in regulating stream acid-base status. This study will also provide insight into the future ecological health of these ecosystems, primarily through examination of aquatic habitat suitability based on temperature and acidity.

  2. Infrared studies of sulfuric acid and its impact on polar and global ozone

    NASA Astrophysics Data System (ADS)

    Iraci, Laura Tracy

    Sulfuric acid aerosols are present throughout the lower stratosphere and play an important role in both polar and global ozone depletion. In the polar regions, stratospheric sulfate aerosols (SSAs) act as nuclei for the growth of polar stratospheric clouds (PSCs). Heterogeneous reactions can occur on these PSCs, leading to chlorine activation and catalytic ozone destruction. This thesis addresses the issue of polar ozone depletion through laboratory studies which examine the nucleation of PSCs on sulfuric acid. In addition, chemistry which occurs directly on sulfate aerosols may impact ozone at midlatitudes, and studies describing one such reaction are presented as well. To study the growth of type I PSCs on sulfuric acid, thin H2SO4 films were exposed to water and nitric acid vapors at stratospheric temperatures. Fourier transform infrared spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films which condensed. Supercooled liquid sulfuric acid films showed uptake of HNO3 to form ternary solutions, followed by crystallization of nitric acid trihydrate (NAT). When crystalline sulfuric acid tetrahydrate (SAT) films were exposed to nitric acid and water, condensation of a supercooled HNO3/H2O layer was often observed. As predicted by theory, some of the SAT crystal then dissolved, creating a ternary H2SO4/HNO3/H2O solution. From this solution, NAT nearly always crystallized, halting the phase change of sulfuric acid. If a supercooled nitric acid layer did not condense on frozen sulfuric acid, crystalline NAT was not deposited from the gas phase when SNAT/leq41. At significantly higher supersaturations, NAT could be forced to condense on sulfuric acid, regardless of its phase. Calculations of the contact parameter from experimental data indicate that m<0.79 for NAT on SAT, predicting a significant barrier to nucleation of NAT from the gas phase. While PSCs can form only in the cold polar regions of the stratosphere, sulfuric

  3. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  4. Using Australian Acidic Playa Lakes as Analogs for Phyllosilicate and Sulfate Depositional Environments on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Michalski, J.; Kargel, J.; Hook, S.; Marion, G.; Crowley, J.; Bridges, N.; Brown, A.; Ribeiro da Luz, B.; de Souza Filho, C. R.; Thomson, B.

    2008-12-01

    Recent work on the origin of martian sulfates and their relationship to phyllosilicate deposits suggest that these deposits formed in different eras of Mars' history, under distinct environmental conditions. In southwestern Meridiani Planum phyllosilicates exist in close proximity to sulfate deposits. One possible explanation for this relationship is that it is an unconformable stratigraphic sequence, representing a significant change in aqueous geochemical conditions over time. Specifically, it may be interpreted to record a change in environment from neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to the Hesperian. On Earth, two different geochemical systems need not be evoked to explain such chemical variation. Acidic playa lakes in Western Australia have large pH differences separated by only a few tens of meters and demonstrate how highly variable chemistries can coexist over short distances in natural environments. Playa lakes on Earth tend to be dominated by lateral flow of water and salts leading to lateral chemical variation. Heterogeneity of playa mineralogy in Australia is due to the varied source rocks of brines and the mixing of dilute oxidizing brines and freshwater with the saturated evaporitic brines. This is evidenced by the ferricretes in the near-shore environment and more soluble phases in basin interiors. Playa lakes on Mars would be much larger than their terrestrial counterparts, leading to the prevalence of large-scale surface and crustal advection of water and salt rather than short-distance lateral flow, except at lake boundaries. Little or no influx of freshwater would preclude the formation of playa rim (e.g., crater rim) ferricretes and silcretes. Instead, we expect to see mainly vertical facies changes, and any diachronous lateral facies changes are expected to occur on very large spatial scales. Comparison of high spatial resolution, hyperspectral airborne data for Australian playa

  5. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  6. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.

  7. Effect of lipoxygenase oxidation on surface deposition of unsaturated fatty acids.

    PubMed

    Tayeb, Ali H; Hubbe, Martin Allen; Zhang, Yanxia; Rojas, Orlando J

    2017-04-14

    We studied the interactions of lipid molecules (linoleic acid, glycerol trilinoleate and a complex mixture of wood extractives) with hydrophilic and hydrophobic surfaces (cellulose nanofibrils, CNF, and polyethylene terephthalate, PET, respectively). The effect of lipoxygenase treatment to minimize the affinity of the lipids with the given surface was considered. Application of an electroacoustic sensing technique (QCM) allowed the monitoring of the kinetics of oxidation as well as dynamics of lipid deposition on CNF and PET. The effect of the lipoxygenase enzymes (LOX) was elucidated with regards to their ability to reduce the formation of soiling lipid layers. The results pointed to the fact that the rate of colloidal oxidation depended on the type of lipid substrate. The pre-treatment of the lipids with LOX reduced substantially their affinity to the surfaces, especially PET. Surface plasmon resonance (SPR) sensograms confirmed the effect of oxidation in decreasing the extent of deposition on the hydrophilic CNF. QCM energy dissipation analyses revealed the possible presence of a loosely adsorbed lipid layer on the PET surface. The morphology of the deposits accumulated on the solids was determined by atomic force microscopy and indicated important changes upon lipid treatment with LOX. The results highlighted the benefit of enzyme as a bio-based treatment to reduce hydrophobic interactions, thus providing a viable solution to the control of lipid deposition from aqueous media.

  8. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    PubMed Central

    Bagley, Heidi N.; Wang, Yan; Campbell, Michael S.; Yu, Xing; Lane, Robert H.; Joss-Moore, Lisa A.

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR. PMID:23533720

  9. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    USGS Publications Warehouse

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  10. Declining Acidic Deposition Begins Reversal of Forest-Soil Acidification in the Northeastern U.S. and Eastern Canada.

    PubMed

    Lawrence, Gregory B; Hazlett, Paul W; Fernandez, Ivan J; Ouimet, Rock; Bailey, Scott W; Shortle, Walter C; Smith, Kevin T; Antidormi, Michael R

    2015-11-17

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  11. Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces

    DTIC Science & Technology

    2012-03-01

    Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces Final...Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces Final Report on SERDP Project RC...TITLE AND SUBTITLE Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at

  12. Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats.

    PubMed

    Walker, F M; Horsup, A; Taylor, A C

    2009-05-01

    DNA sourced from faeces is notoriously less reliable than that from tissue. Hence, understanding whether faecal pellet quality varies within faecal piles may be important for sample selection. We hypothesized that the order in which faecal pellets are deposited may influence microsatellite polymerase chain reaction (PCR) amplification success from sampled faeces, more specifically, that first pellets deposited will have signatures of greater success than later ones. In a first test of the hypothesis, first and later-deposited pellets, as determined from the direction of footprints, were collected from fresh (overnight) faecal piles of northern hairy-nosed wombats (Lasiorhinus krefftii). DNA extracts were typed for seven microsatellite loci. We found that faecal deposition order significantly affected optical density of bands on autoradiographs (a measure of PCR amplification success) when the first faecal pellet was compared with the last one, but not when the first pellet was only distinguishable from later ones. The absence of a difference in amplification rate between first and later pellets is likely a reflection of the overall high amplification success in this study. That first pellets deposited yield more product suggests they contain more intestinal cells. Although further comparisons are needed, these results may inform sample selection in species for which success of microsatellite PCR amplification of faecal DNA is low. Deposition order may have more of an impact on amplification success and genotyping errors as faecal age increases.

  13. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites.

    PubMed

    Cooper, D M

    2005-09-01

    Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.

  14. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-05

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  15. Identification and Characterization of Well-Preserved Impact Ejecta Deposits Using THEMIS Global Infrared Mosaics

    NASA Astrophysics Data System (ADS)

    Hill, J. R.; Christensen, P. R.

    2014-12-01

    The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has been acquiring infrared observations of the Martian surface for nearly thirteen years. Daytime infrared images from the first twelve years of the mission have previously been used to generate a complete global mosaic, while nighttime infrared images have been used to generate a near-global mosaic between 60°N-60°S. A combined product has been generated by overlaying the daytime global mosaic with a colorized version of the nighttime global mosaic, resulting in a near-global map that can be used to more easily identify surface features with unique thermal characteristics.Well-preserved ejecta deposits associated with fresh impact craters are readily identifiable in the combined map by their characteristic nighttime temperature pattern, which is controlled by variations in the thermal inertia of the ejecta material. The pattern consists of relatively high thermal inertia material in and around the crater, an inner ejecta ring composed of intermediate thermal inertia material and an outer ejecta ring composed of low thermal inertia material.A near-global survey (60°N-60°S) of these well-preserved ejecta deposits has shown that the vast majority occur in a small region covering northern Terra Sirenum and eastern Daedalia Planum, with a smaller concentration present in Syria Planum. A comparison of THEMIS and Viking images has verified that the larger craters and ejecta deposits were present at the time of the Viking mission and are not the result of more recent impacts. The survey also identified similarly fresh impact craters across the planet that are lacking an outer ring of low thermal inertia ejecta material, possibly due to erosion of the original ejecta deposits. This suggests that local conditions in Terra Sirenum, Daedalia Planum and Syria Planum are favorable for the long-term preservation of the fine-grained component of fresh impact ejecta deposits.

  16. Sensitivity of stream basins in Shenandoah National Park to acid deposition

    USGS Publications Warehouse

    Lynch, D.D.; Dise, N.B.

    1985-01-01

    Six synoptic surveys of 56 streams that drain the Shenandoah National Park, Virginia, were conducted in cooperation with the University of Virginia to evaluate sensitivity of dilute headwater streams to acid deposition and to determine the degree of acidification of drainage basins. Flow-weighted alkalinity concentration of most streams is below 200 microequivalents per liter, which is considered the threshold of sensitivity. Streams draining resistant siliceous bedrocks have an extreme sensitivity (alkalinity below 20 microequivalents/L); those draining granite and granodiorite have a high degree of sensitivity (20 to 100 microequivalents/L); and streams draining metamorphosed volcanics have moderate to marginal sensitivity (100 to 200 microequivalents/L). A comparison of current stream water chemistry to that predicted by a model based on carbonic acid weathering reactions suggests that all basins in the Park shows signs of acidification by atmospheric deposition. Acidification is defined as a neutralization of stream water alkalinity and/or an increase in the base cation weathering rate. Acidification averages 50 microequivalents/L, which is fairly evenly distributed in the Park. However, the effects of acidification are most strongly felt in extremely sensitive basins, such as those underlain by the Antietam Formation, which have stream water pH values averaging 4.99 and a mineral acidity of 7 microequivalents/L. (USGS)

  17. Analytical techniques for measuring the effects of acid deposition on coatings on wood

    SciTech Connect

    Balik, C.M.; Fornes, R.E.; Gilbert, R.D.

    1988-11-01

    Preliminary experiments were carried out to characterize the potential deleterious effects of acidic deposition on three representative paints: an oil alkyd paint and two acrylic latex formulations. The base-polymer latex common to both latex paints was also studied individually. Free films of paint were exposed to relatively high levels of gaseous SO2 and ultraviolet light, and were immersed in aqueous SO2 at pH 2.0. Several analytical techniques were used to assess the resulting chemical and physical changes in the paint films, including sorption and diffusion measurements, attenuated total-reflectance infrared spectroscopy, dynamic mechanical analysis, sol-gel analysis, contact-angle measurements, differential scanning calorimetry, and electron spin resonance. All techniques show promise for characterizing the early stages of damage to paint films caused by acidic deposition. The major effects noted include leaching of acid-soluble extender components upon immersion in aqueous SO2, and enhanced degradation of the base polymer upon exposure to gaseous SO2, and ultraviolet light.

  18. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  19. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  20. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  1. Drop coating deposition Raman spectroscopy of proteinogenic amino acids compared with their solution and crystalline state

    NASA Astrophysics Data System (ADS)

    Pazderka, Tomáš; Kopecký, Vladimír

    2017-10-01

    The Raman spectra of 20 proteinogenic amino acids were recorded in the solution, glass phase (as drop coating deposition Raman (DCDR) samples) and crystalline forms in the wide spectral range of 200-3200 cm- 1. The most apparent spectral differences between the Raman spectra of the crystalline forms, glass phases and aqueous solutions of amino acids were briefly discussed and described in the frame of published works. The possible density dependencies of spectral bands were noted. In some cases, a strong influence of the sample density, as well as of the organization of the water envelope, was observed. The most apparent changes were observed for Ser and Thr. Nevertheless, for the majority of amino acids, the DCDR sample form is an intermediate between the solution and crystalline forms. In contrast, aromatic amino acids have only a small sensitivity to the form of the sample. Our reference set of Raman spectra is useful for revealing discrepancies between the SERS and solid/solution spectra of amino acids. We also found that some previously published Raman spectra of polycrystalline samples resemble glassy state rather than crystalline spectra. Therefore, this reference set of spectra will find application in every branch of Raman spectroscopy where the spectra of biomolecules are collected from coatings.

  2. Drop coating deposition Raman spectroscopy of proteinogenic amino acids compared with their solution and crystalline state.

    PubMed

    Pazderka, Tomáš; Kopecký, Vladimír

    2017-10-05

    The Raman spectra of 20 proteinogenic amino acids were recorded in the solution, glass phase (as drop coating deposition Raman (DCDR) samples) and crystalline forms in the wide spectral range of 200-3200cm(-1). The most apparent spectral differences between the Raman spectra of the crystalline forms, glass phases and aqueous solutions of amino acids were briefly discussed and described in the frame of published works. The possible density dependencies of spectral bands were noted. In some cases, a strong influence of the sample density, as well as of the organization of the water envelope, was observed. The most apparent changes were observed for Ser and Thr. Nevertheless, for the majority of amino acids, the DCDR sample form is an intermediate between the solution and crystalline forms. In contrast, aromatic amino acids have only a small sensitivity to the form of the sample. Our reference set of Raman spectra is useful for revealing discrepancies between the SERS and solid/solution spectra of amino acids. We also found that some previously published Raman spectra of polycrystalline samples resemble glassy state rather than crystalline spectra. Therefore, this reference set of spectra will find application in every branch of Raman spectroscopy where the spectra of biomolecules are collected from coatings. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Impact Ejecta Modeling of the Bunte Breccia Deposits of the Ries Impact Crater, Southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-03-01

    Here we present new impact ejecta modeling results of the paleo-surface and Bunte breccia ejecta outside the Ries impact crater that provide morphology and thickness variations of the Bunte breccia with increasing distance from the crater center.

  4. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects

    SciTech Connect

    Brezonik, P.L.; Hendry, C.D. Jr.; Edgerton, E.S.; Schulze, R.L.; Crisman, T.L.

    1983-06-01

    A monitoring network of 21 bulk and 4 wet/dry collectors located throughout Florida measured spatial and temporal trends during a one-year period from May 1978 to April 1979. The project summary notes that statewide deposition rates of nitrogen and phosphorus were below the loading rates associated with eutrophication, although nutrient concentrations were higher during the summer. Overall, pH appears to have relatively small effects (in the range 4.7-6.8) on community structure in soft-water Florida lakes. More dramatic effects could occur under more acidic conditions in the future. 4 references, 5 figures, 1 table.

  5. Chemical transport during formation and alteration of Martian impact and volcanic deposits

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.

  6. Chemical transport during formation and alteration of Martian impact and volcanic deposits

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.

  7. Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Triyoso, D. H.; Hegde, R. I.; Zollner, S.; Ramon, M. E.; Kalpat, S.; Gregory, R.; Wang, X.-D.; Jiang, J.; Raymond, M.; Rai, R.; Werho, D.; Roan, D.; White, B. E.; Tobin, P. J.

    2005-09-01

    The impact of 8-to 45-at. % Ti on physical and electrical characteristics of atomic-layer-deposited and annealed hafnium dioxide was studied using vacuum-ultraviolet spectroscopic ellipsometry, secondary ion mass spectroscopy, transmission electron microscopy, atomic force microscopy, x-ray diffraction, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and x-ray reflectometry. The role of Ti addition on the electrical performance is investigated using molybdenum (Mo)-gated capacitors. The film density decreases with increasing Ti addition. Ti addition stabilizes the amorphous phase of HfO2, resulting in amorphous films as deposited. After a high-temperature annealing, the films transition from an amorphous to a polycrystalline phase. Orthorhombic Hf-Ti-O peaks are detected in polycrystalline films containing 33-at. % or higher Ti content. As Ti content is decreased, monoclinic HfO2 becomes the predominant microstructure. No TiSi is formed at the dielectric/Si interface, indicating films with good thermal stability. The band gap of Hf-Ti-O was found to be lower than that of HfO2. Well-behaved capacitance-voltage and leakage current density-voltage characteristics were obtained for Hf-Ti-O. However, an increased leakage current density was observed with Ti addition. The data from capacitance-voltage stressing indicate a smaller flatband voltage (Vfb) shift in the HfO2 films with low Ti content when compared with the HfO2 films. This indicates less charge trapping with a small amount of Ti addition.

  8. Impact Crater Abundance of the Martian South Polar Layered Deposits from THEMIS Visible Imaging

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Christensen, P.; Koutnik, M.; Marsden, P.; Murray, B.

    2004-01-01

    The polar layered deposits (PLD) of Mars have attracted considerable attention since their identification in Mariner 9 images, largely due to the possibility that these finely layered, volatile-rich deposits hold a record of recent eras in Martian climate history. The PLD have been a target of imaging and other sensors in the last several decades, but only recently has it been possible to obtain a moderately high resolution image map, using the visible sensor on 2001 Mars Odyssey's Thermal Emission Imaging System (THEMIS). THEMIS has acquired a 36 meter/pixel contiguous single-band visible image data set of the south polar layered deposits (SPLD), during the southern spring in 2003. The data will undoubtedly be applied to many problems in Mars polar studies. We use these images to further characterize the population of impact craters on the SPLD, and the implications of the observed population for the age and evolution of the SPLD.

  9. Impact Crater Abundance of the Martian South Polar Layered Deposits from THEMIS Visible Imaging

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Christensen, P.; Koutnik, M.; Marsden, P.; Murray, B.

    2004-01-01

    The polar layered deposits (PLD) of Mars have attracted considerable attention since their identification in Mariner 9 images, largely due to the possibility that these finely layered, volatile-rich deposits hold a record of recent eras in Martian climate history. The PLD have been a target of imaging and other sensors in the last several decades, but only recently has it been possible to obtain a moderately high resolution image map, using the visible sensor on 2001 Mars Odyssey's Thermal Emission Imaging System (THEMIS). THEMIS has acquired a 36 meter/pixel contiguous single-band visible image data set of the south polar layered deposits (SPLD), during the southern spring in 2003. The data will undoubtedly be applied to many problems in Mars polar studies. We use these images to further characterize the population of impact craters on the SPLD, and the implications of the observed population for the age and evolution of the SPLD.

  10. Hydrofluoric Acid-Free Electroless Deposition of Metals on Silicon in Ionic Liquids and Its Enhanced Performance in Lithium Storage.

    PubMed

    Lahiri, Abhishek; Lu, Tianqi; Behrens, Niklas; Borisenko, Natalia; Li, Guozhu; Endres, Frank

    2017-04-05

    Metal nanoparticles such as Au, Ag, Pt, and so forth have been deposited on silicon by electroless deposition in the presence of hydrofluoric acid (HF) for applications such as oxygen reduction reaction, surface-enhanced Raman spectroscopy, as well as for lithium ion batteries. Here, we show an HF-free process wherein metals such as Sb and Ag could be deposited onto electrodeposited silicon in ionic liquids. We further show that, compared to electrodeposited silicon, Sb-modified Si demonstrates a better performance for lithium storage. The present study opens a new paradigm for the electroless deposition technique in ionic liquids for developing and modifying functional materials.

  11. The Vichada Impact Crater in Northwestern South America and its Potential for Economic Deposits

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; von Frese, R. R.

    2008-05-01

    A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4o30`N, -69o15`W) in the Vichada Department, Colombia, South America. The inferred large impact crater is nearly one third the size of the Chicxulub crater. It must have formed recently, in the last 30 m.a. because it controls the partially eroded and jungle-covered path of the Vichada River. No antipodal relationship has been detected. Thick sedimentary cover, erosional processes and dense vegetation greatly limit direct geological testing of the inferred impact basin. However, EGM-96 gravity data together with ground gravity and magnetic profiles support the interpretation of the impact crater structure. The impact extensively thinned and disrupted the Precambrian cratonic crust and may be associated with mineral and hydrocarbon deposits. A combined EM and magnetic airborne program is being developed to resolve additional crustal properties of the inferred Vichada impact basin Keywords: Impact crater, economic deposits, free-air gravity anomalies

  12. Assessing biogeographic patterns in the changes in soil invertebrate biodiversity due to acidic deposition

    SciTech Connect

    Sugg, P.M.; Kuperman, R.G.; Loucks, O.L. |

    1995-09-01

    We are studying the response of soil faunal communities to a gradient in acidic deposition across midwestern hardwood forests. We have documented a pattern of population decrease and species loss for soil invertebrates along the acidification gradient. We now ask the following question: When confronted with apparent diversity changes along a region-wide pollution gradient, how can one assess the possibility of natural biogeographic gradients accounting for the pattern? As a first approximation, we use published range maps from taxonomic monographs to determine the percent of the regional fauna with ranges encompassing each site. For staphylinid beetles, range data show no sign of a biogeographic gradient. Yet for soil staphylinids, a large decrease is seen in alpha diversity (as species richness) from low to high acid dose sites (from 20 species to 8). Staphylinid species turnover is greatest in the transition from low to intermediate dose sites.

  13. Selective electroless metal deposition using microcontact printing of phosphine-phosphonic acid inks.

    PubMed

    Carmichael, Tricia Breen; Vella, Sarah J; Afzali, Ali

    2004-06-22

    We report a low-cost approach to selectively deposit films of nickel and copper on glass substrates. Our approach uses microcontact printing of organic inks containing phosphonic acid groups to bind the ink to a glass substrate and phosphine groups to bind a colloidal catalyst that initiates electroless metallization. We demonstrate this procedure by fabricating patterned nickel and copper films with areas as large as 15 cm2 and minimum feature sizes of approximately 2 microm. We present studies on the use of two ink types, an oligomer and a bifunctional molecule, and demonstrate that pattern quality and adhesion of the metallized films depends on the molecular weight of the ink and the ratio of phosphine and phosphonic acid groups.

  14. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    at lower-latitudes (with a maximum of about 5%, considering upper bound estimates for transport). In the BAU and HiG scenarios, the total BC deposition averaged north of 60N from Arctic shipping remains small, increasing to only 0.4% and 0.7%, respectively. Several mitigation strategies confirmed that extra-Arctic sources other than shipping contribute significantly more to BC deposition than Arctic shipping, and that regulation solely aimed at the Arctic shipping industry is an insufficient control on high-latitude BC deposition. An exception is the impact of local shipping near the vulnerable Greenland ice-sheet. Over Greenland the deposited BC mass attributable to high-growth shipping emissions in 2050 is significantly higher (10-15%) than over Arctic sea-ice. The increase in local BC deposition over Greenland can be mitigated by a 10% decrease in North American BC emissions, but additional controls over distant stationary sources should be considered alongside international agreements controlling shipping emissions to achieve desired Arctic BC deposition reductions.

  15. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview.

    PubMed

    De Vries, W; Wamelink, G W W; Van Dobben, H; Kros, J; Reinds, G J; Mol-Dijkstra, J P; Smart, S M; Evans, C D; Rowe, E C; Belyazid, S; Sverdrup, H U; Van Hinsberg, A; Posch, M; Hettelingh, J-P; Spranger, T; Bobbink, R

    2010-01-01

    Field observations and experimental data of effects of nitrogen (N) deposition on plant species diversity have been used to derive empirical critical N loads for various ecosystems. The great advantage of such an approach is the inclusion of field evidence, but there are also restrictions, such as the absence of explicit criteria regarding significant effects on the vegetation, and the impossibility to predict future impacts when N deposition changes. Model approaches can account for this. In this paper, we review the possibilities of static and dynamic multispecies models in combination with dynamic soil-vegetation models to (1) predict plant species composition as a function of atmospheric N deposition and (2) calculate critical N loads in relation to a prescribed protection level of the species composition. The similarities between the models are presented, but also several important differences, including the use of different indicators for N and acidity and the prediction of individual plant species vs. plant communities. A summary of the strengths and weaknesses of the various models, including their validation status, is given. Furthermore, examples are given of critical load calculations with the model chains and their comparison with empirical critical N loads. We show that linked biogeochemistry-biodiversity models for N have potential for applications to support European policy to reduce N input, but the definition of damage thresholds for terrestrial biodiversity represents a major challenge. There is also a clear need for further testing and validation of the models against long-term monitoring or long-term experimental data sets and against large-scale survey data. This requires a focused data collection in Europe, combing vegetation descriptions with variables affecting the species diversity, such as soil acidity, nutrient status and water availability. Finally, there is a need for adaptation and upscaling of the models beyond the regions for which

  16. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  17. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Le Quéré, Corinne; Dentener, Frank; Nevison, Cynthia; Butler, James H.; Bange, Hermann W.; Forster, Grant

    2012-04-01

    Anthropogenically induced increases in nitrogen deposition to the ocean can stimulate marine productivity and oceanic emission of nitrous oxide. We present the first global ocean model assessment of the impact on marine N2O of increases in nitrogen deposition from the pre-industrial era to the present. We find significant regional increases in marine N2O production downwind of continental outflow, in coastal and inland seas (15-30%), and nitrogen limited regions of the North Atlantic and North Pacific (5-20%). The largest changes occur in the northern Indian Ocean (up to 50%) resulting from a combination of high deposition fluxes and enhanced N2O production pathways in local hypoxic zones. Oceanic regions relatively unaffected by anthropogenic nitrogen deposition indicate much smaller changes (<2%). The estimated change in oceanic N2O source on a global scale is modest (0.08-0.34 Tg N yr-1, ˜3-4% of the total ocean source), and consistent with the estimated impact on global export production (˜4%).

  18. A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2010-07-27

    Nanomaterials are exciting candidates for use in new optical and electronic devices ranging from solar cells to gas sensors. However, to reach their full potential, nanomaterials must be deposited as dense thin films on flexible substrates using inexpensive processing technologies such as roll-to-roll printing. We report a new, flexible technique for depositing aerosolized nanocrystals that lends itself to roll-to-roll processes. Germanium nanocrystals produced in a plasma are accelerated through a slit orifice by a supersonic gas jet and are impacted onto a translated substrate. A uniform nanocrystal film is quickly deposited over large areas, and features as small as 2 µm can then be patterned using conventional lift-off photolithography. The density of a deposited film depends on the pressures upstream and downstream of the orifice, their ratio, and the distance between the orifice and the substrate. Nanocrystal film densities exceeding 50% of the density of bulk germanium are routinely achieved with several sizes of nanocrystals, approaching the theoretical limit for randomly packed spheres. A simple model is presented that shows that the calculated nanocrystal velocity upon impaction is strongly correlated with the resulting film density.

  19. Impact of butyric acid on butanol formation by Clostridium pasteurianum.

    PubMed

    Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars

    2015-11-01

    The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of saltwater spray andsand deposition on the coastal annualTriplasis purpurea (Poaceae).

    PubMed

    Cheplick, G P; Demetri, H

    1999-05-01

    Pioneer coastal plants occur in areas where sand movement and airborne salt are common. The objectives of this study were to (1) quantify natural levels of salt and sand deposition in relation to distance from the shoreline of Staten Island, New York, and (2) experimentally determine the impact of saltwater sprays and partial sand burial on growth and reproduction of the native dunegrass Triplasis purpurea. This summer annual matures most seeds in cleistogamous spikelets on leaf sheath-enclosed axillary panicles along culm internodes. Levels of salt deposition onto T. purpurea shoots over 6 d were determined with a conductivity meter to be 175 μg/cm(2) at 39 m from shore in 1997, but declined rapidly with increasing distances to 90 m. Sand deposition over 1 mo in the summer averaged 30 mm at 72-90 m from shore. In a greenhouse factorial experiment, seedlings were unburied, buried to 50% height, or buried to 75% height and simultaneously subjected to no sprays, two sprays/wk, or six sprays/wk of seawater over the summer. Sand deposition increased plant size and seed production, but seawater sprays were mostly detrimental, reducing plant size, seed production, and seed mass. However, T. purpurea tolerated moderate levels of salt deposition. The stimulation of growth and reproduction in partially buried plants is adaptive on the sandy soils. Prolific seed production and tolerance to moderate levels of airborne salt allow this annual to maintain high population densities close to shore.

  1. Field comparison of methods for the measurement of gaseous and particulate contributors to acidic dry deposition

    SciTech Connect

    Sickles, J.E.; Hodson, L.L.; McClenny, W.A.; Paur, R.J.; Ellestad, T.G.

    1990-01-01

    A field study was conducted to compare methods for sampling and analysis of atmospheric constituents that are important contributors to acidic dry deposition. Three multicomponent samplers were used: the Canadian filter pack (FP), the annular denuder system (ADS), and the transition flow reactor (TFR). A tunable diode laser absorption spectrometer (TDLAS) provided continuous reference measurements of NO2 and HNO3. Nitrogen dioxide was also monitored with continuous luminol-based chemiluminescence monitors and with passive sampling devices (PSDs). The study was designed to provide a database for statistical comparison of the various methods with emphasis on the multicomponent samplers under consideration for use in a national dry deposition network. The study was conducted at the EPA dry deposition station in Research Triangle Park, NC between 29 September and 12 October, 1986. Daily averaging and/or sampling times were employed for the 13-day study; weekly samples were also collected, but results from these samples are not compared in the paper. Different measurements of ambient concentrations of the following constituents are compared: total particulate and gaseous NO3(-), HNO3, NO2, total particulate NH4(-), NH3, total particulate SO4(-), and SO2.

  2. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus

    PubMed Central

    Oikawa, Naoto; Matsubara, Teruhiko; Fukuda, Ryoto; Yasumori, Hanaki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sato, Toshinori; Suzuki, Akemi; Yanagisawa, Katsuhiko

    2015-01-01

    Amyloid deposition, a crucial event of Alzheimer’s disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition. PMID:25798597

  3. High elevation watersheds in the southern Appalachians: indicators of sensitivity to acidic deposition and the potential for restoration through liming

    Treesearch

    Jennifer D. Knoepp; James M. Vose; William A. Jackson; Katherine J. Elliott; Stan Zarnoch

    2016-01-01

    Southern Appalachian high elevation watersheds have deep rocky soils with high organic matter content, different vegetation communities, and receive greater inputs of acidic deposition compared to low elevation sites within the region. Since the implementation of the Clean Air Act Amendment in the 1990s, concentrations of acidic anions in rainfall have...

  4. Mechanisms of base-cation depletion by acid deposition in forest soils of the northeastern U.S.

    Treesearch

    Gregory B. Lawrence; Mark B. David; Walter C. Shortle; Scott W. Bailey; Gary M. Lovett

    1999-01-01

    Several studies have indicated a long-term decrease in exchangeable Ca in forest soils within the northeastern Unrted States, but the regional extent of these decreases and the importance of acid deposition as a cause has not been fully resolved. Results, from two recently completed studies have provided the opportunity to further investigate the role of acid...

  5. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  6. Growth and reproductive ecology of the eastern brook trout, Salvelinus fontinalis, in streams of differing vulnerability to acidic atmospheric deposition

    SciTech Connect

    Light, R.W.

    1983-01-01

    Three naturally infertile streams of differing vulnerability to acidic atmospheric deposition were studied to determine the status of their brook trout, Salvelinus fontinalis, populations and associated benthic communities. Of the three streams, Upper Three Runs was judged to be the least fertile, followed by Little Fishing Creek, with Roaring Run being the most fertile. The median weighted pH of acidic deposition impacting the watersheds was 3.8 for Upper Three Runs and 4.0 for Little Fishing Creek and Roaring Run. Brook trout from Roaring Run grew at a similar rate to those from Little Fishing Creek, with trout from Upper Three Runs showing the slowest growth. Roaring Run brook trout also had the highest relative condition of the three streams. Brook trout from Roaring Run and Little Fishing Creek generally matured one year later (age group II) than those from Upper Three Runs. Early maturity may be selected for in Upper Three Runs due to small annual increases in fecundity in higher age groups. Although the data were limited, there was a trend for brook trout from Upper Three Runs to produce fewer and larger ova. Roaring Run had higher volumes of benthos during fall and summer, and higher numbers during fall. Roaring Run and Little Fishing Creek had more, larger crayfish present, which added significantly to the volume of benthos in these streams. Qualitatively, Upper Three Runs had more shredders and fewer scrapers on a volume basis than the other two streams. On a per fish basis, the drift available to the fish in Roaring Run was always highest in volume, and highest in number during fall and spring. The brook trout from Roaring Run therefore had an advantage over those in the other two streams, by having a higher drift available per fish.

  7. Effect of acid deposition on potentially sensitive soil-plant systems at Vandenberg AFB, California. Final report, 1 September 1984-1 September 1987

    SciTech Connect

    Zedler, P.H.; Marion, G.

    1988-04-30

    The objectives of this study were to assess the impact of the acid deposition expected from rocket launches on natural coastal vegetation and soils. Interest was directed primarily toward the longer-term and more-subtle effects of acidity, and the degree of sensitivity of different soil-plant systems. A study area was established along a topographic chronosequence that ranged from stabilized dunes to residual soils over bedrock. Soils and plants were collected from this region and used in three main studies. A leaching study measured the changes in chemical properties of four soils subjected to repeated acid additions. A second study treated seeds of wide variety of native or spontaneous species with HC1 on the four soils to establish the sensitivity of the vegetation to deposition events during the fall to winter germination pulse characteristic of California coastal ecosystems. A third study examined the effect of acid treatments on the growth of and competition between two common woody plants -- Artemisia californica and Pinus muricata. A fourth study partially supported by this grant studied the invasion of an exotic species in a recently burned site on one of the four study soils. The studies collectively show that, although the soil-plant systems are well buffered against moderate and low inputs of acidity, the effect of acid additions differed among soil types and from species to species. Overall the hypothesis that acidic deposition could affect plant-plant and soil-plant interactions was supported, but some of these effects are subtle and not all appear to be deleterious.

  8. Small scale analogs of the Cayley Formation and Descarts Mountains in impact associated deposits, part C

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1972-01-01

    The exploration of the Cayley Formation and material of the Descartes Mountains and an understanding of the origin and evolution of these units were primary objectives of the Apollo 16 lunar mission. This section examines several areas associated with impact crater deposits that show small-scale features similar in morphology to the regional characteristics of the Cayley and Descartes units shown in the Apollo 16 photography.

  9. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  10. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  11. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  12. Use of Soil-Streamwater Relationships to Assess Regional Patterns of Recovery from Acidic Deposition Effects

    NASA Astrophysics Data System (ADS)

    Siemion, J.; Lawrence, G. B.; Murdoch, P. S.

    2012-12-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the Northeastern United States, but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in the Catskill region of New York, where acidic deposition levels are among the highest in the East. More than 40% of streams sampled in the southwestern Catskill Mountains were determined to be acidified with inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota and more than 80% likely to exceed this threshold during the highest flows, but less than 10% were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50-80% across the region, but median base saturation in the upper 10cm of the B horizon was less than 20% across the region and was only 2% in the southwestern area. Therefore, aluminum is likely to be interfering with calcium uptake in the mineral horizon by trees in half the watersheds where soils were collected. These results indicate stream chemistry over the Catskill region does not reflect the calcuim depletion of the B horizon that our sampling suggests is ubiquitous throughout the region.

  13. The distribution of common construction materials at risk to acid deposition in the United States

    NASA Astrophysics Data System (ADS)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  14. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends.

    PubMed

    Sawicka, K; Rowe, E C; Evans, C D; Monteith, D T; E I Vanguelova; Wade, A J; J M Clark

    2017-02-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilisation by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the "acid recovery DOC baseline" significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed

  15. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    PubMed

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation.

  16. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition.

    PubMed

    Slater, Matthew J; Carton, Alexander G

    2009-08-01

    Deposit-feeding holothurians are important processors of surface sediments in many coastal marine systems. The present study examined the effect of grazing by the sea cucumber Australostichopus mollis on sediment impacted by green-lipped mussel biodeposits (faeces and pseudofaeces) from coastal aquaculture activities. Grazing effects were investigated in a series of tank-based feeding experiments conducted over 1, 2, 4 and 8 week periods. Sediment quality indicators routinely applied to determine the impacts of coastal aquaculture were used to evaluate sediment health from grazed and ungrazed sediments. Sea cucumber grazing resulted in reductions in total organic carbon, chlorophyll a and phaeopigment, as well as chlorophyll a/phaeopigment ratio of impacted sediments. These results demonstrate that sea cucumber grazing significantly reduces the accumulation of both organic carbon and phytopigments associated with biodeposition from mussel farms. Sea cucumber grazing offers a means of constraining or reversing the pollutive impacts of coastal bivalve aquaculture.

  17. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters.

    PubMed

    Milazzo, Rachela G; Mio, Antonio M; D'Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  18. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    PubMed Central

    Mio, Antonio M; D’Arrigo, Giuseppe; Smecca, Emanuele; Alberti, Alessandra; Fisichella, Gabriele; Giannazzo, Filippo; Spinella, Corrado; Rimini, Emanuele

    2017-01-01

    The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D) clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices. PMID:28243555

  19. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  20. The impact of atmospheric deposition and climate on forest growth in Europe using two empirical modelling approaches

    NASA Astrophysics Data System (ADS)

    Dobbertin, M.; Solberg, S.; Laubhann, D.; Sterba, H.; Reinds, G. J.; de Vries, W.

    2009-04-01

    growth was then calculated as actual growth in % of expected growth. The site productivity was either taken from expert estimates or computed from for each species from three site index curves from northern, central and southern Europe. Requirements for plot selection were different for both methods, resulting in 382 plots selected for the tree-individual approach and 363 plots for the stand growth model approach. Using a mixed model approach, the individual tree-based models for all species showed a high goodness of fit with Pseudo-R2 between 0.33 and 0.44. Diameter at breast height and basal area of larger trees were highly influential variables in all models. Increasing temperature showed a positive effect on growth for all species except Norway spruce. Nitrogen deposition showed a positive impact on growth for all four species. This influence was significant with p < 0.05 for all species except common beech, where the effect was nearly significant (p = 0.077). An increase of 1 kg N ha-1 yr-1 corresponded to an increase in basal area increment between 1.20% and 1.49% depending on species. The stand-growth models explained between 18% and 40% of the variance in expected growth, mainly with a positive effect of site productivity and a negative effect of age. The various models and statistical approaches were fairly consistent, and indicated a fertilizing effect of nitrogen deposition on relative growth, with a slightly above 1 percent increase in volume increment per kg of nitrogen deposition per ha and year. This was most clear for spruce and pine, and most pronounced for plots having soil C/N ratios above 25 (i.e. low nitrogen availability). Also, we found a positive relationship between relative growth and summer temperature, i.e. May-August mean temperature deviation from the 1961-1990 means. Other influences were uncertain. Possibly, sulphur and acid deposition have effects on growth, but these effects are eventually outweighed by the positive effect of nitrogen

  1. Response of DOC in Acid-Sensitive Maine Lakes to Decreasing Sulfur Deposition (1993 - 2009)

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Sanclements, M.; McKnight, D. M.; Stoddard, J. L.

    2010-12-01

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, there has been a concurrent increase in dissolved organic carbon (DOC) concentrations in many lakes and streams which has been difficult to interpret. To assess the biogeochemical processes driving increasing DOC concentrations we analyzed archived samples from 9 acid-sensitive lakes in Maine collected between 1993 and 2009 using UV-Vis and fluorescence spectroscopy. The fluorescence index (FI) was calculated for all samples. The FI represents the ratio of the emission intensity at 450 nm to 550 nm at an excitation wavelength of 370 nm and provides information regarding the source of dissolved organic matter (DOM). This index has a value of approximately 1.9 for microbially derived fluvic acids and a value of approximately 1.4 for terrestrially (higher-plant) derived fluvic acids. All four lakes with increasing DOC trends had concomitant decreases in the FI index. Two of five lakes with no significant DOC trend also demonstrated no trend in FI values over time, while three lakes revealed a decrease in FI values. To confirm that the FI measured in whole water was primarily reflective of fulvic acids (FA), XAD-resin was used to isolate FA from a subset of samples. Analysis of the FA indicates that the FI values for the humic substances are slightly higher, yet well correlated with whole water samples. This suggests that despite prolonged storage in plastic, the FI trends are meaningful. The FI trends suggest a terrestrial source for the increasing DOC and may be driven by increased DOM production from soils experiencing decreased acid loading. Decreases in sulfate deposition can increase soil pH and soil organic matter solubility, as well as decrease the ionic strength of the soil solution, and

  2. Three decades after peak acid deposition: Environmental memories of legacy pollutant sulphate in the northern Czech Republic

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Sanda, Martin; Jankovec, Jakub; Oulehle, Filip; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2017-04-01

    A hydrological and physicochemical analysis was conducted in the granitic Uhlirska headwater catchment (1.78 km2) located in the Jizera Mountains in the northern Czech Republic. Due to its location in the Black Triangle (an area with excessive acid rain deposition in the 1980s) it received among the highest inputs of anthropogenic acid depositions in Europe. An analysis of sulphate distribution in deposition, soil water, stream water and groundwater compartments allowed to establish a sulphate mass-balance (deposition input minus surface water export) and helped to evaluate which changes occurred since the last evaluation of the catchment in 1997. The determined sulphate concentrations decreased in the following order: peatland groundwater > groundwater from 20 m below ground level (bgl) > groundwater from 30 m bgl > stream water > groundwater from 10 m bgl > hillslope soil water > peatland soil water > bulk deposition. Our results show that average deposition reductions of 62 % did not result in equal changes of the sulphate mass-balance, which changed by only 47 %. This difference indicates that sulphate must have been stored over decades in the catchment and still originates from internal sources such as the groundwater body and peatland soil. This suggests that the Uhlirska catchment is subject to delayed recovery from anthropogenic acid depositions and remains a net source of stored sulphur even after three decades of declining inputs. Elevated stream water sulphate concentrations after the unusually dry summer 2015 may imply importance of weather patterns for future recovery from acidification.

  3. Initial Results on the Extraterrestrial Component of New Sediment Cores Containing Deposits of the Eltanin Impact Event

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer

    2003-01-01

    Background The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits. Sediments of Eocene age and younger were ripped up and redeposited by the impact. The depositional sequence produced by the impact has three units: a chaotic assemblage of sediment fragments up to 50 cm, followed by laminated sands deposited as a turbulent flow, and finally silts and clays that accumulated from dispersed sediments in the water column. The meteoritic impact ejecta, which is composed of shock-melted asteroidal materials and unmelted meteorites, settled through the water column and concentrated near the top of the laminated sands.

  4. Initial Results on the Extraterrestrial Component of New Sediment Cores Containing Deposits of the Eltanin Impact Event

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer

    2003-01-01

    Background The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits. Sediments of Eocene age and younger were ripped up and redeposited by the impact. The depositional sequence produced by the impact has three units: a chaotic assemblage of sediment fragments up to 50 cm, followed by laminated sands deposited as a turbulent flow, and finally silts and clays that accumulated from dispersed sediments in the water column. The meteoritic impact ejecta, which is composed of shock-melted asteroidal materials and unmelted meteorites, settled through the water column and concentrated near the top of the laminated sands.

  5. Contrasting Response of Forest Watersheds in Glaciated and Unglaciated Regions of the Eastern U.S. to Reductions in Acid Deposition

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2016-12-01

    Atmospheric deposition of anthropogenic sulfur and nitrogen compounds (known as acid deposition) primarily originates from emissions from electric utilities, industrial processes, mobile sources and agricultural activities. Marked decline in emissions of acid compounds in recent decades have resulted in a concomitant decrease in the concentrations and fluxes of sulfate and nitrate in wet and dry acid deposition across the eastern U.S. In the Adirondacks, a glaciated region in northeastern U.S., long-term lake chemistry data indicate a correlation between decadal declines in acidic deposition and recovery of acid impaired lakes. However, in Great Smoky Mountains National Park (GRSM), an unglaciated region in southeastern U.S., stream recovery from elevated acid deposition is highly delayed. In this study, a biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric loads of sulfur and nitrogen to acid-base chemistry of water and soil and predict future response of forest watersheds to reductions in acid deposition. The model was calibrated using long-term surface water chemistry data. Our modeling indicates that in the Adirondacks controlling S deposition is much more effective in recovering acidic lakes than N deposition. In contrast to the watersheds in the Adirondacks which are near steady state with respect to S deposition (sulfate input is approximately equal to the sulfate output), watersheds in the GRSM retain a high proportion of sulfate atmospheric deposition due to the high sulfate adsorption capacity of soils, resulting in a delayed response to decreases in acid deposition. Our model calculations suggest that control on S and N deposition is more effective recovering the acid neutralizing capacity of streams in GRSM than equivalent decreases in S deposition. Therefore a national program to aggressively control both S and N emissions will be most effective to mitigate the effects of acid deposition broadly across the eastern U.S.

  6. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    SciTech Connect

    Kuperman, R.G.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  7. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future. Copyright © 2014. Published by Elsevier B.V.

  8. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

    NASA Astrophysics Data System (ADS)

    Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas

    2017-03-01

    Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of

  9. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    NASA Astrophysics Data System (ADS)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  10. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: eutrophication modeling

    NASA Astrophysics Data System (ADS)

    Sundarambal, P.; Tkalich, P.; Balasubramanian, R.

    2010-12-01

    Atmospheric deposition of nutrients (N and P species) can intensify anthropogenic eutrophication of coastal waters. It was found that the atmospheric wet and dry depositions of nutrients was remarkable in the Southeast Asian region during the course of smoke haze events, as discussed in a companion paper on field observations (Sundarambal et al., 2010b). The importance of atmospheric deposition of nutrients in terms of their biological responses in the coastal waters of the Singapore region was investigated during hazy days in relation to non-hazy days. The influence of atmospherically-derived, bio-available nutrients (both inorganic and organic nitrogen and phosphorus species) on the coastal water quality between hazy and non-hazy days was studied. A numerical modeling approach was employed to provide qualitative and quantitative understanding of the relative importance of atmospheric and ocean nutrient fluxes in this region. A 3-D eutrophication model, NEUTRO, was used with enhanced features to simulate the spatial distribution and temporal variations of nutrients, plankton and dissolved oxygen due to atmospheric nutrient loadings. The percentage increase of the concentration of coastal water nutrients relative to the baseline due to atmospheric deposition was estimated between hazy and non-hazy days. Model computations showed that atmospheric deposition fluxes of nutrients might account for up to 17 to 88% and 4 to 24% of total mass of nitrite + nitrate-nitrogen in the water column, during hazy days and non-hazy days, respectively. The results obtained from the modeling study could be used for a better understanding of the energy flow in the coastal zone system, exploring various possible scenarios concerning the atmospheric deposition of nutrients onto the coastal zone and studying their impacts on water quality.

  11. Impact of climate change on mercury concentrations and deposition in the eastern United States.

    PubMed

    Megaritis, Athanasios G; Murphy, Benjamin N; Racherla, Pavan N; Adams, Peter J; Pandis, Spyros N

    2014-07-15

    The global-regional climate-air pollution modeling system (GRE-CAPS) was applied over the eastern United States to study the impact of climate change on the concentration and deposition of atmospheric mercury. Summer and winter periods (300 days for each) were simulated, and the present-day model predictions (2000s) were compared to the future ones (2050s) assuming constant emissions. Climate change affects Hg(2+) concentrations in both periods. On average, atmospheric Hg(2+) levels are predicted to increase in the future by 3% in summer and 5% in winter respectively due to enhanced oxidation of Hg(0) under higher temperatures. The predicted concentration change of Hg(2+) was found to vary significantly in space due to regional-scale changes in precipitation, ranging from -30% to 30% during summer and -20% to 40% during winter. Particulate mercury, Hg(p) has a similar spatial response to climate change as Hg(2+), while Hg(0) levels are not predicted to change significantly. In both periods, the response of mercury deposition to climate change varies spatially with an average predicted increase of 6% during summer and 4% during winter. During summer, deposition increases are predicted mostly in the western parts of the domain while mercury deposition is predicted to decrease in the Northeast and also in many areas in the Midwest and Southeast. During winter mercury deposition is predicted to change from -30% to 50% mainly due to the changes in rainfall and the corresponding changes in wet deposition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  13. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  14. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  15. Acidification and recovery of a Spodosol BS horizon from acidic deposition

    SciTech Connect

    Dahlgren, R.A.; McAvoy, D.C.; Driscoll, C.T.

    1990-01-01

    A laboratory study was conducted to examine acidification and recovery of a Spodosol Bs horizon from acidic deposition in the Bear Brook Watershed (BBW) in central Maine. A mechanical vacuum extractor was used to draw solutions through a soil column at three treatments containing 40, 100, or 160 micromol/L SO4(2-). Following 44 d of leaching, all treatments were decreased to the 40 micromol/L SO4(2-) level to examine recovery from acidification. Acidic additions were initially neutralized by release of basic cations and sulfate adsorption. Following attainment of steady state conditions for basic cations and SO4(2-) with respect to the soil adsorption complex, Al dissolution was the primary neutralization mechanism. Aqueous Al activities appeared to be regulated by equilibrium with an Al(OH)3 mineral phase. Following decreases in acid loadings, recovery was rapid resulting in retention of basic cations, reversible release of SO4(2-) and a marked reduction in the concentrations of soluble Al.

  16. Granite weathering and the sensitivity of alpine lakes to acid deposition

    SciTech Connect

    Stauffer, R.E.

    1990-07-01

    Lake chemical data from the National Surface Water Survey (NSWS) were corrected for the effects of regional atmospheric deposition and then used to evaluate the role of weathering in supplying base cations, silica, sulfate, and alkalinity to surface waters in alpine vs. subalpine, and in glaciated vs. unglaciated granitic terrane of the western and southeastern US. Thermodynamic models, idealized reaction stoichiometry, and multivariate regression involving solutes and geographic variables indicate that irreversible weathering can largely account for lake chemistry. By contrast, relatively minor roles are played by reversible ion exchange in soils and sediments, terrestrial bioaccumulation, and transformation in lakes. The regional patterns in lake acidity components (NO{sub 3}, SO{sub 4}, DOC, CO{sub 2}), and statistical relationships between acidity and base cations demonstrate that rock weathering is limited by acid inputs in many alpine catchments prior to fall overturn. The empirical success of the Henriksen alkalinity model depends on a high Ca: Na weathering ration. The latter increase with increasing physical disturbance of the catchment (juvenility), hence under natural circumstances attains a maximum as a result of on-going or recent glaciation. The Henriksen model fails in geochemically old terrane, where cation losses accompanying silicate weathering attain steady state proportions.

  17. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  18. The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea

    NASA Astrophysics Data System (ADS)

    Quan, Qiwei; Chen, Ying; Ma, Qingwei; Wang, Fujiang; Meng, Xi; Wang, Bo

    2016-04-01

    Cadmium (Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem, affecting the phytoplankton community and primary productivity. In this study, we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea (ECS) through both laboratory and in situ mesocosm incubation experiments. The mesocosm experiment showed that Cd in low concentration (0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity. In high concentration (0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity. The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate, as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth. We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region. In our laboratory experiments, adding Cd, similar to aerosol deposition, stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu (dinoflagellate) and Skeletonema costatum (diatom). Adding Cd on a higher level inhibited the growth of both the species, but Skeletonema costatum seemed obviously more sensitive to toxicity. This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.

  19. Impact ejecta-induced melting of surface ice deposits on Mars

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2016-12-01

    Fluvial features present around impact craters on Mars can offer insight into the ancient martian climate and its relationship to the impact cratering process. The widespread spatial and temporal distribution of surface ice on Mars suggests that the interaction between impact cratering and surface ice could have been a relatively frequent occurrence. We explore the thermal and melting effects on regional surface ice sheets in this case, where an impact event occurs in regional surface ice deposits overlying a regolith/bedrock target. We provide an estimate for the post-impact temperature of martian ejecta as a function of crater diameter, and conduct thermal modeling to assess the degree to which contact melting of hot ejecta superposed on surface ice deposits can produce meltwater and carve fluvial features. We also evaluate whether fluvial features could form as a result of basal melting of the ice deposits in response to the thermal insulation provided by the overlying impact ejecta. Contact melting is predicted to occur immediately following ejecta emplacement over the course of hundreds of years to tens of kyr. Basal melting initiates when the 273 K isotherm rises through the crust and reaches the base of the ice sheet ∼0.1 to ∼1 Myr following the impact. We assess the range of crater diameters predicted to produce contact and basal melting of surface ice sheets, as well as the melt fluxes, volumes, timescales, predicted locations of melting (relative to the crater), and the associated hydraulic and hydrologic consequences. We find that the heat flux and surface temperature conditions required to produce contact melting are met throughout martian history, whereas the heat flux and surface temperature conditions to produce basal melting are met only under currently understood ancient martian thermal conditions. For an impact into a regional ice sheet, the contact and basal melting mechanisms are predicted to generate melt volumes between ∼10-1 and 105 km3

  20. Hurricane impact on lagoonal reefs - implications for recognition of ancient storm deposits

    SciTech Connect

    Bonem, R.M.

    1985-01-01

    During August 1080, Hurricane Allen passed along the north coast of Jamaica. Although several previous investigations have documented the effects of this hurricane on the fore reef and reef crest, this study presents the first detailed description of the storm impact on lagoonal patch reefs in Discovery Bay. In contrast to the damage described on the fore reef and reef crest, the patch reefs received only minor temporary damage to reef framework due to breakage and increased sedimentation. These effects could be recognized only by examination of bathymetric and zonal maps constructed during the last 10 years. However, hurricane impact on the sedimentologic record was readily observed in cores taken along transects of lagoonal patch reefs. Although in general, shallow reef zones had abnormally great amounts of fine sediment and deeper zones showed increased coarse material, other patterns could be documented and made recognition of storm deposits and distinction of these deposits from artificial disturbance relatively easy. Because lagoonal patch reefs may serve as models for many ancient bioherms, this study provides new evidence that may be used to recognize ancient storm deposits associated with bioherms in carbonate mud environments.

  1. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  2. Amino acid composition of proteins reduces deleterious impact of mutations

    PubMed Central

    Hormoz, Sahand

    2013-01-01

    The evolutionary origin of amino acid occurrence frequencies in proteins (composition) is not yet fully understood. We suggest that protein composition works alongside the genetic code to minimize impact of mutations on protein structure. First, we propose a novel method for estimating thermodynamic stability of proteins whose sequence is constrained to a fixed composition. Second, we quantify the average deleterious impact of substituting one amino acid with another. Natural proteome compositions are special in at least two ways: 1) Natural compositions do not generate more stable proteins than the average random composition, however, they result in proteins that are less susceptible to damage from mutations. 2) Natural proteome compositions that result in more stable proteins (i.e. those of thermophiles) are also tuned to have a higher tolerance for mutations. This is consistent with the observation that environmental factors selecting for more stable proteins also enhance the deleterious impact of mutations. PMID:24108121

  3. Mitigating Nitrogen Deposition Impacts on Biodiversity in California: Generating Funding for Weed Management

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2013-12-01

    The impacts of atmospheric nitrogen deposition on biodiversity are widespread and profound; N-inputs have far exceeded any historical range of variability and are altering ecosystem structure and function worldwide. Overwhelming scientific evidence documents acute threats to numerous California ecosystems and imperiled species through increased growth of invasive annual grasses and forbs, yet policy responses lag far behind the science. Since 2001, a confluence of several projects (gas-fired powerplants and highway improvements) in Santa Clara County set powerful precedents for mitigation of N-deposition impacts on ecosystems via the Endangered Species Act, with a focus on the Bay checkerspot butterfly. These projects have culminated in the Santa Clara Valley Habitat Plan, a 50-year $665,000,000 mitigation plan to conserve and manage habitat for 19 target species. Elsewhere, powerplants in San Diego and Contra Costa Counties have provided mitigation funds for habitat restoration and weed management. Building on these precedents, the California Invasive Plant Council, California Native Plant Society, and other groups are forming a coalition to extend this mitigation across California to generate money for weed management. Key elements of this incipient campaign include: 1) education of regulatory agencies, activists, and decision-makers about the threat; 2) generation of standard EIR comments with project specifics for developments that increase traffic or generate nitrogen emissions; 3) encouraging state and federal wildlife agencies to raise the issue in consultations and Habitat Conservation Plans; 4) policy and legal research to chart a course through the regulatory and political landscape; 5) collating research on impacts and development of tools to document those impacts; 6) media outreach, and 7) coalition building. The main mitigation strategy is funding for local weed management and stewardship groups through fees. There is a desperate need for stable long

  4. Impacts of nitrogen and sulfur deposition on the growth of red spruce and sugar maple in the United States

    Treesearch

    Jennifer N. Phelan; Paramita Sinha; George Van Houtven; Marion Deerhake; Randall G. Waite; Anne W. Rea; Ginger M. Tennant

    2012-01-01

    Total nitrogen (N) and sulfur (S) deposition in forest systems can have either positive or negative impacts on tree growth. The growth of many forests in North America is limited by N availability. Therefore, N fertilization is often a key component of forest management, and in areas of N deposition, tree growth may be stimulated. However, N additions can sometimes be...

  5. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  6. Comparison of acidic deposition to semi-natural ecosystems in Denmark—Coastal heath, inland heath and oak wood

    NASA Astrophysics Data System (ADS)

    Hansen, Birgitte; Nielsen, Knud Erik

    Acidic deposition to coastal heath, inland heath and oak wood in Denmark was determined from analysis of bulk precipitation and throughfall measurements for up to 3 yrs. The analysis aimed to determine the total annual sulphur and nitrogen deposition to the three different ecosystems. Total nitrogen deposition is especially difficult to assess due to uptake of nitrogen by the canopy, and difficulties in determining the dry deposition of each nitrogen species. An NH x-uptake estimation model is presented which assumes co-deposition of NH x+H + and SO x+NO y and exchange of NH x+H + for the leached Mg 2+, Ca 2+ and K + in the canopy. This approach makes it possible to estimate the dry deposition of reduced nitrogen (NH x). Dry deposited oxidized nitrogen (NO y) still remains unquantified with the throughfall method, and therefore this term is estimated from a generalized micro-meteorological model. Total annual nitrogen deposition was 29.0 kg ha -1 yr -1 for the oak wood, 18.3 kg ha -1 yr -1 for the inland heathland and 13.5 kg ha -1 yr -1 for the coastal heathland. The total annual acidic deposition (the sum of H +, SO x, NO y and NH x) was 3202 mol c ha -1 for the oak wood, 2228 mol c ha -1 for the inland heathland, and 2060 mol c ha -1 for the coastal heathland. However, this acid load has different effects on the ecosystems depending on the actual bio-geochemical reactions. The potential maximum acidification estimated for the oak wood (5512 mol c ha -1 yr -1) was almost twice as high as for the inland heathland (3815 mol c H + ha -1 yr -1) and for the coastal heathland (3383 mol cH + ha -1 yr -1).

  7. The Haughton Impact Structure as an Analogue to Mars: Polygons and the Nature of Their Depositional Environment

    NASA Astrophysics Data System (ADS)

    Godin, E.; Osinski, G. R.

    2016-09-01

    Thermal contraction polygons can differ in definition, aspect, shape, and size. Three types of deposits with respectively distinct polygons near Haughton Impact Structure (Devon Island, NU, Canada) were investigated as analogues to polygons on Mars.

  8. Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna

    2017-04-01

    Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence

  9. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    NASA Astrophysics Data System (ADS)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  10. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    SciTech Connect

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  11. Post-depositional migration and preservation of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, M.; Marchal, O.; Guo, W.; Das, S. B.; Evans, M. J.

    2015-12-01

    Methanesulfonic acid (MSA; CH3SO3-) in ice cores is a unique, high-resolution proxy of regional sea ice behavior, marine primary productivity, and synoptic climatology. Significant uncertainties remain, however, in both our understanding of the production and transfer of MSA to the ice sheet, as well as its preservation over time, compromising the paleoclimatological utility of the proxy. Here we apply a numerical modeling approach to quantitatively investigate the post-depositional processes affecting MSA migration and preservation within the firn and ice column, building on recent observational and theoretical studies. Our model allows us to evaluate the timing and magnitude of the vertical movement of MSA in response to varying influences, including the competing effects of 1) concentration gradients of sea-salts typically deposited asynchronously to MSA, 2) snow accumulation and densification rates, and 3) in situ temperature gradients. We first test the model against a recently collected ice core from a high accumulation site in coastal West Antarctica, where monthly-resolved MSA records show an abrupt shift from a summer-to-winter maximum in MSA at ~23m depth (ρ ≈ 650 kg/m3), near the firn-ice transition. We find our model to be a robust predictor of the observed migrational features in this record, capturing both (i) the abrupt shift in summer-to-winter maximal concentrations of MSA (steady state ≈ 3.2 yrs), and (ii) the depression of the seasonal amplitude at depth. Further, our modeling results suggest post-depositional effects can lead to substantial interannual alteration of the MSA signal, contrary to previous assumptions that MSA migration is confined within annual layers at high accumulation sites. Using a broad range of polar MSA records and their associated, site-specific environmental conditions, we will evaluate the fidelity of subannual to interannual variability of MSA records and systematically determine the factors conducive to its

  12. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores.

  13. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    USGS Publications Warehouse

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  14. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  15. Sulfate sorption in soils under acid deposition: Modeling field data from forest liming

    SciTech Connect

    Prenzel, J.; Meiwes, K.J.

    1994-11-01

    Sulfate sorption can modify the reaction of a soil to acid depositions. Different models of this process exist. In a preceeding paper the adsorption isotherm and the solubility product modeling approach have been compared and a solubility product model has been introduced. The latter model is tested using a forest liming experiment. Concentration data form canopy drip and seepage covering a 20-yr observation period are used as 3-yr moving averages. The model assumes a steady seepage flow and uses only one 1-m compartment. The model considers joint chemical equilibria for gibbsite, jurbanite, cation exchange, and complexation. The seepage pH and concentrations of Al and sulfate under the unlimed reference plot can be modeled if a reduced CEC and a free parameter function for alkalinity production are used. The sulfate desorption caused by liming can be explained by the model. It is concluded that sorbed sulfate contributes to the lime requirement of an acidified soil. 24 refs., 7 figs.

  16. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation.

    PubMed

    De Marco, Alessandra; Proietti, Chiara; Cionni, Irene; Fischer, Richard; Screpanti, Augusto; Vitale, Marcello

    2014-11-01

    Defoliation is an indicator for forest health in response to several stressors including air pollutants, and one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The study aims to estimate crown defoliation in 2030, under three climate and one nitrogen deposition scenarios, based on evaluation of the most important factors (meteorological, nitrogen deposition and chemical soil parameters) affecting defoliation of twelve European tree species. The combination of favourable climate and nitrogen fertilization in the more adaptive species induces a generalized decrease of defoliation. On the other hand, severe climate change and drought are main causes of increase in defoliation in Quercus ilex and Fagus sylvatica, especially in Mediterranean area. Our results provide information on regional distribution of future defoliation, an important knowledge for identifying policies to counteract negative impacts of climate change and air pollution.

  17. Serum uric acid and nigral iron deposition in Parkinson's disease: a pilot study.

    PubMed

    Kim, Tae-Hyoung; Lee, Jae-Hyeok

    2014-01-01

    Uric acid (UA) is an endogenous antioxidant which is known to reduce oxidative stress and also chelate iron ion. Recent studies have provided evidence that UA may play a neuroprotective role in Parkinson's disease (PD). However, it is unknown whether UA relates to nigral iron deposition, which is a characteristic pathophysiological alteration in PD. The aim of this study was to determine the potential relationship of these two markers in patients with PD. A total of 30 patients of PD and 25 age- and gender- matched healthy controls underwent 3-Tesla MRI and laboratory tests including serum UA levels. We assessed iron levels by measuring phase shift values using susceptibility-weighted image. Mean phase shift values of the substantia nigra (SN), red nucleus, head of the caudate nucleus, globus pallidus, putamen, thalamus, and frontal white matter were calculated and correlated with serum UA levels. Serum UA levels were significantly decreased in the PD patients than in the controls. Phase shift values in bilateral SN were significantly increased in the PD patients than in the controls. There was no significant correlation between serum UA levels and nigral phase shift values. As previous studies, low serum UA level and increased nigral iron content in the PD was reconfirmed in this study. However, we failed to find the relationship between these two markers. Our data suggest that serum UA may not be important determinant of nigral iron deposition in PD.

  18. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    experiments with mixed acidophiles at higher temperatures. Further depleted Fe(III) values coinciding with decreasing pH may point to precipitation of secondary phases (i.e. jarosite). This study revealed that the metals (Fe, Cu, Co and Zn) released during short term leaching of the ore (34 days) are generally caused by acid produced by dissolution reactions rather than oxidation. In the long term experiments a more complex biogeochemical reactions (oxidation and dissolution) take place in conjunction. Key words: Bioleaching, AMD, heavy metal release, environment, acidophilic bacteria, Küre copper ore deposits, volcanogenic massive sulfide deposits

  19. In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling.

    PubMed

    Wurm, Matthias C; Möst, Tobias; Bergauer, Bastian; Rietzel, Dominik; Neukam, Friedrich Wilhelm; Cifuentes, Sandra C; Wilmowsky, Cornelius von

    2017-01-01

    With additive manufacturing (AM) individual and biocompatible implants can be generated by using suitable materials. The aim of this study was to investigate the biological effects of polylactic acid (PLA) manufactured by Fused Deposition Modeling (FDM) on osteoblasts in vitro according to European Norm / International Organization for Standardization 10,993-5. Human osteoblasts (hFOB 1.19) were seeded onto PLA samples produced by FDM and investigated for cell viability by fluorescence staining after 24 h. Cell proliferation was measured after 1, 3, 7 and 10 days by cell-counting and cell morphology was evaluated by scanning electron microscopy. For control, we used titanium samples and polystyrene (PS). Cell viability showed higher viability on PLA (95,3% ± 2.1%) than in control (91,7% ±2,7%). Cell proliferation was highest in the control group (polystyrene) and higher on PLA samples compared to the titanium samples. Scanning electron microscopy revealed homogenous covering of sample surface with regularly spread cells on PLA as well as on titanium. The manufacturing of PLA discs from polylactic acid using FDM was successful. The in vitro investigation with human fetal osteoblasts showed no cytotoxic effects. Furthermore, FDM does not seem to alter biocompatibility of PLA. Nonetheless osteoblasts showed reduced growth on PLA compared to the polystyrene control within the cell experiments. This could be attributed to surface roughness and possible release of residual monomers. Those influences could be investigated in further studies and thus lead to improvement in the additive manufacturing process. In addition, further research focused on the effect of PLA on bone growth should follow. In summary, PLA processed in Fused Deposition Modelling seems to be an attractive material and method for reconstructive surgery because of their biocompatibility and the possibility to produce individually shaped scaffolds.

  20. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  1. Impact of hydrotalcite deposition on biogeochemical processes in a shallow tropical bay.

    PubMed

    Alongi, Daniel M; McKinnon, A David

    2011-03-01

    The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH₄+ and PO₄³⁻ accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Cloud diagnosis impact on deposition modelling applied to the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne

    2017-04-01

    The accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011 resulted in the release of several hundred PBq of activity into the environment. Most of the radioactivity was released in a time period of about 40 days. Radioactivity was dispersed in the atmosphere and the ocean and subsequently traces of radionuclides were detected all over Japan. At the Fukushima airport for instance, a deposit as large as 36 kBq/m2 of Cs-137 was measured resulting of an atmospheric deposition of the plume. Both dry and wet deposition were probably involved since a raining event occurred on the 15th of March when the plume was passing nearby. The accident scenario have given rise to a number of scientific investigations. Atmospheric deposition, for example, was studied by utilizing atmospheric transport models. In atmospheric transport models, some parameters, such as cloud diagnosis, are derived from meteorological data. This cloud diagnosis is a key issue for wet deposition modelling since it allows to distinguish between two processes: in-cloud scavenging which corresponds to the collection of radioactive particles into the cloud and below-cloud scavenging consequent to the removal of radioactive material due to the falling drops. Several parametrizations of cloud diagnosis exist in the literature, using different input data: relative humidity, liquid water content, also. All these diagnosis return a large range of cloud base heights and cloud top heights. In this study, computed cloud diagnostics are compared to the observations at the Fukushima airport. Atmospheric dispersion simulations at Japan scale are then performed utilizing the most reliable ones. Impact on results are discussed.

  3. Impact Crater Landing Sites for the 2003 Mars Explorer Rovers: Accessing Lacustrine and Hydrothermal Deposits

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.

    2001-01-01

    Five craters larger than 100 km diameter, including Gale with its spectacular lake deposits, have been identified as possible landing sites for the Mars Explorer Rovers (MER) 2003 missions. These craters are important locations where lacustrine, fluvial, and hydrothermal processes occurred on Mars, they have exciting landscapes, and these missions represent the first chance to visit a large crater on another planet. Lakes probably formed in these craters, with water supplied from aquifers or surface sources resulting in deposition of water-lain sediments and evaporites. Lake waters derived from broad regional aquifers, can potentially collect biological material from a wide region and provide environments for possible life forms to flourish. Hydrothermal systems, which formed in the craters due to heat from impact melt and uplifted basement, are highly sought after targets because terrestrial life probably originated in such systems. Studying hydrothermal and aqueous processes in large craters on Mars will allow us to: Identify and characterize environments for the origin and evolution of life on Mars. Understand the history of water at the Martian surface, including hydrothermal systems, lake formation, and the nature of ancient climates. Study the contributions to the Martian soil from hydrothermal and evaporite processes. The location of fluvial and lacustrine deposits are often evident from geomorphic evidence, such as layering and delta structures, but the location of hydrothermal deposits is less obvious. However, continuing research including study of MGS MOC imagery, hydrothermal modeling, and terrestrial analogue studies provide strong guidance on where such deposits can be found, and on the processes that may have exposed or delivered this material to the landing sites.

  4. The impact of deposition site on vaccination efficiency of a live bacterial poultry vaccine.

    PubMed

    Evans, J D; Leigh, S A; Purswell, J L; Collier, S D; Kim, E J; Boykin, D L; Branton, S L

    2015-08-01

    Vaccines are utilized within the poultry industry to minimize disease-associated losses and spray vaccination is a commonly utilized means for the mass application of poultry vaccines. During this process, vaccine-laden particles are deposited upon target areas (e.g., eyes, nares, and oral cavity) resulting in the direct internalization of the vaccine. However, particles are also deposited on nontarget areas such as the exterior of the subject and its surrounding environment. To better determine the fate of particles deposited upon nontarget areas and the impact of deposition site on the efficiency of vaccine application, a live bacterial poultry vaccine (AviPro(®) MG F) was applied via spray using a spray cabinet with a slotted partition allowing for head-only, body-only, and whole-bird spray application. At 11 wk age, Hy-Line(®) W-36 pullets (n = 280) were allocated equally among 7 treatments including: nonvaccinated controls, pullets spray-vaccinated at the manufacturer's recommended dose (1X) in a site-specific manner (head-only, body-only, and whole-bird), pullets spray-vaccinated at 5X the recommended level (body-only), pullets vaccinated by manual eye-drop application (1X), and pullets eye-drop vaccinated at a level approximating that achieved during the spray vaccination process (1/700X). At 6 to 7 wk postvaccination, vaccination efficiency was assessed via serological-based assays [serum plate agglutination (SPA) and ELISA] and the detection of vaccine-derived in vivo populations. Results indicate an additive contribution of the vaccine deposited on the body to the overall vaccination efficiency of this live bacterial live poultry vaccine. © 2015 Poultry Science Association Inc.

  5. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York.

    PubMed

    Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A

    2013-11-19

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  6. Climate change impacts on forest soil critical acid loads and exceedances at a national scale

    Treesearch

    Steven G. McNulty; Erika C. Cohen; Jennifer A. Moore Myers

    2013-01-01

    Federal agencies are currently developing guidelines for forest soil critical acid loads across the United States. A critical acid load is defined as the amount of acid deposition (usually expressed on an annual basis) that an ecosystem can absorb. Traditionally, an ecosystem is considered to be at risk for health impairment when the critical acid load exceeds a level...

  7. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    NASA Astrophysics Data System (ADS)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  8. Geochemical characterization of acidic mine waters in Darrehzar copper deposit, Kerman province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Shahabpour, J.; Naseh, R.

    2009-04-01

    Darrehzar porphyry copper deposit is located in the south of Sar Cheshmeh copper mine. There are varieties of geological factors which control the composition of mine drainage waters. Surface samples were collected from the Darrehzar locality for chemical measurements. The measured quantities are: Cl-, Ca, Mg, Na, K, SO42-, Al. Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, Sb, Mo, HCO3-, EC, pH and Eh. Phyllic alteration has the highest influence on the production of acid mine drainage. Mineralogical studies and analysis of water samples indicate a good correlation between sulfide minerals and acid mine drainage. Analysis of water samples showed that samples with low pH values have high concentration of sulfate and heavy metals. Correlation coefficients between different quantities were calculated and binary diagram prepared. Heavy metals increase with a decrease in pH except for Mo. Sulfate and heavy metals are positively related in mine water. The high positive correlation between Fe and Mn with respect to heavy metals indicates their adsorption on Fe and Mn oxides and hydroxides.

  9. Acid deposition in the Athabasca Oil Sands Region: a policy perspective.

    PubMed

    Whitfield, Colin J; Watmough, Shaun A

    2015-12-01

    Industrial emissions of sulphur (S) and nitrogen (N) to the atmosphere associated with the oil sands industry in north-eastern Alberta are of interest as they represent the largest localized source in Canada (with potential for future growth) and the region features acid-sensitive upland terrain. Existing emission management policy for the Regional Municipality of Wood Buffalo, where the industry is located, is based on a time-to-effect approach that relies on dynamic model simulations of temporal changes in chemistry and features highly protective chemical criteria. In practice, the policy is difficult to implement and it is unlikely that a scientifically defensible estimate of acidification risk can be put forward due to the limitations primarily associated with issues of scale, chemical endpoint designation (selection of chemical limit for ecosystem protection from acidification) and data availability. A more implementable approach would use a steady-state critical load (CL) assessment approach to identify at-risk areas. The CL assessment would consider areas of elevated acid deposition associated with oil sands emissions rather than targeted political jurisdictions. Dynamic models should only be (strategically) used where acidification risk is identified via CL analysis, in order to characterize the potential for acidification-induced changes that can be detrimental to sensitive biota within the lifespan of the industry.

  10. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  11. Impact of atmospheric deposition on algal growth in Lake Tahoe, CA

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Mackey, K. R.; Jiang, Y.; Liston, A.; Allen, B.; Schladow, S. G.

    2010-12-01

    Lake Tahoe’s clarity has been declining over the past decades and it is important to understand the causes and consequences of this decline. Lake Tahoe’s clarity is determined by fine sediment particles and by nutrients. Nutrients affect lake clarity by promoting algae growth. Indeed primary productivity, the rate at which algae produce biomass through photosynthesis, has been increasing since 1959. Offshore, algae make the water greenish and less clear. The two nutrients that most affect algal growth in this system are nitrogen and phosphorus. Atmospheric deposition is an important source of nutrients to the lake contributing 55% of the nitrogen load and 15% of the phosphate load (State of the Lake Report - http://terc.ucdavis.edu/stateofthelake/StateOfTheLake2009.pdf). To evaluate if and how atmospheric deposition impacts phytoplankton growth and abundance we have preformed bioassay experiments with inorganic nutrient and aerosol additions during the summer of 2010. Our results indicate that, as expected for this season, nitrogen or combined nitrogen and phosphate induce growth. Our aerosol additions also induced growth and suggest that nutrients originating from aerosols are bio-available and can stimulate phytoplankton production. Atmospheric deposition can therefore affect lake clarity and should be monitored to ensure that the state of the lake does not deteriorate further.

  12. Shallow drilling in the 'Bunte Breccia' impact deposits, Ries Crater, Germany

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Gall, H.; Huettner, R.; Oberbeck, V. R.

    1977-01-01

    The paper is a field report concerning a shallow core drilling program in the multicolored breccia deposits which constitute 90% of all the impact breccias beyond the outer rim of the Ries, a 26-km-diam impact crater. About 480 m of core was recovered from 11 locations with radial ranges between 16.5 and 35 km from the crater center. The cores consist of breccias, whose components are derived from the crater itself and the terrain outside the crater. The local components dominate the breccias at the larger ranges, and possibly constitute more than 90% of the breccia volume at the greatest distances investigated. The great depth of the Bunte Breccia (84 m at 27 km range), together with the preponderance of local components, necessitates an emplacement mechanism that ploughed up and mixed the crater surroundings to depths greater than 50 m.

  13. Nitrogen (N) Deposition Impacts Seedling Growth of Pinus massoniana via N:P Ratio Effects and the Modulation of Adaptive Responses to Low P (Phosphorus)

    PubMed Central

    Zhang, Yi; Zhou, Zhichun; Yang, Qing

    2013-01-01

    Background In forest ecosystems with phosphorus (P) deficiency, the impact of atmospheric nitrogen (N) deposition on nutritional traits related to P uptake and P use potentially determines plant growth and vegetation productivity. Methodology/Principal Findings Two N deposition simulations were combined with three soil P conditions (homogeneous P deficiency with evenly low P; heterogeneous P deficiency with low subsoil P and high topsoil P; high P) using four full-sib families of Masson pine (Pinus massoniana). Under homogeneous P deficiency, N had a low effect on growth due to higher N:P ratios, whereas N-sensitive genotypes had lower N:P ratios and greater N sensitivity. The N effect increased under higher P conditions due to increased P concentration and balanced N:P ratios. An N:P threshold of 12.0–15.0 was detected, and growth was increased by N with an N:P ratio ≤ 12.0 and increased by P with an N:P ratio ≥ 15.0. Under homogeneous P deficiency, increased P use efficiency by N deposition improved growth. Under heterogeneous P deficiency, a greater P deficiency under N deposition due to increased N:P ratios induced greater adaptive responses to low P (root acid phosphatase secretion and topsoil root proliferation) and improved P acquisition and growth. Conclusions/Significance N deposition diversely affected seedling growth across different P conditions and genotypes via N:P ratio effects and the modulation of adaptive responses to low P. The positive impact of N on growth was genotype-specific and increased by soil P addition due to balanced N:P ratios. These results indicate the significance of breeding N-sensitive tree genotypes and improving forest soil P status to compensate for increasing N deposition. PMID:24205376

  14. The distribution of trace elements in a range of deep-sea sulphide ore deposits and their impact on seafloor mining

    NASA Astrophysics Data System (ADS)

    Fallon, E. K.; Scott, T. B.; Brooker, R. A.

    2015-12-01

    Acid rock drainage is a natural weathering process that is often exacerbated by mining activities, common in onshore sulphide ore deposits, that can lead to considerable environmental impact. A similar 'weathering process' occurs at seafloor massive sulphide (SMS) ore deposits. In contrast to the onshore situation, the expected consequence in the marine environment is often considered to be oxide formation, negligible metal release and minimal net acid generation due to the high buffering capacity of seawater and low solubility of iron at near neutral pH. However, no dissolution studies exist that emulate the true composition of sulphide ore deposits that either sit passively on the seafloor or are actively mined in this colder, more saline, and alkaline environment. In particular, these deposits will include a variety of minerals, and it is the interaction of these minerals and inclusions in regards to galvanic cells that can subsequently increase the dissolution of metals into the water column. Any heavy metal release that is not balanced by subsequent oxidation and precipitation, has the potential to produce toxicity for benthic ecosystems, bioaccumulation and dispersal through currents. The present work has sought to provide a pilot investigation on the deep sea weathering of sulphide minerals, by identifying the mineral phases, trace elements and potential galvanic couples that may arise in sulphide mineral samples collected from various tectonic settings. Samples have been analysed using EMPA and LA-ICPMS in order to identify the range of trace elements and toxins that may be contributed to the water column, especially heavy metals and environmental toxins (e.g. Fe, Cu, Zn, Pb, Co, Ni, Cd, As, Sb, Sn, Hg). Our observations raise important questions about which ore deposits could have more or less environmental impact during any mining activity. These observations will be used to design oxidative dissolution experiments at deep-sea conditions utilising the

  15. Subsurface Structure in the Martian Polar Layered Deposits: The Deep Space 2 Impact Accelerometry Experiment

    NASA Technical Reports Server (NTRS)

    Moersch, J. E.; Lorenz, R. D.

    1998-01-01

    While primarily a technology demonstration mission, the New Millenium Mars Microprobes (also known as Deep Space 2, or simply DS2)will also provide the first in situ science measurements of the martian subsurface. The DS2 impact accelerometry experiment will provide both engineering data about the depth of probe emplacement and science data about the physical nature of the subsurface at the probes' landing sites. Little is known about the detailed physical properties or small-scale vertical structure of the subsurface at the DS2 landing site in the southern martian polar layered deposits. Imaging data from the Viking Orbiters and Mars Global Surveyor reveal alternating bands of light and dark material in this region with thicknesses at least as small as the limit of resolution, about 10 m. The overall composition of these layers is poorly constrained, but generally thought to be a mixture of dust and ice with the layers being caused by variations in the dust/ice ratio, or perhaps by dust deposits of different densities. Low thermal inertias in the region suggest that the top few centimeters of the surface are composed of a mantling of fine-grained dust. However, 3.5-cm radar returns indicate that the maximum depth of this dust is not greater than a few tens of centimeters. Thermal models generally agree that, while the layered deposits do provide a potential near-surface reservoir for ice, the uppermost few centimeters to meters in these regions are likely to be ice-free because of sublimation losses. Finally, while it is generally agreed that the layered deposits are the product of variations in the martian climate, no direct correlation has been made between band sequences and specific climate changes. Our intention is to shed light on some of these questions about the martian polar layered deposits by using the DS2 accelerometry experiment to determine the physical nature of the layered deposits, and to detect the presence of any subsurface layering of dust, ice

  16. Subsurface Structure in the Martian Polar Layered Deposits: The Deep Space 2 Impact Accelerometry Experiment

    NASA Technical Reports Server (NTRS)

    Moersch, J. E.; Lorenz, R. D.

    1998-01-01

    While primarily a technology demonstration mission, the New Millenium Mars Microprobes (also known as Deep Space 2, or simply DS2)will also provide the first in situ science measurements of the martian subsurface. The DS2 impact accelerometry experiment will provide both engineering data about the depth of probe emplacement and science data about the physical nature of the subsurface at the probes' landing sites. Little is known about the detailed physical properties or small-scale vertical structure of the subsurface at the DS2 landing site in the southern martian polar layered deposits. Imaging data from the Viking Orbiters and Mars Global Surveyor reveal alternating bands of light and dark material in this region with thicknesses at least as small as the limit of resolution, about 10 m. The overall composition of these layers is poorly constrained, but generally thought to be a mixture of dust and ice with the layers being caused by variations in the dust/ice ratio, or perhaps by dust deposits of different densities. Low thermal inertias in the region suggest that the top few centimeters of the surface are composed of a mantling of fine-grained dust. However, 3.5-cm radar returns indicate that the maximum depth of this dust is not greater than a few tens of centimeters. Thermal models generally agree that, while the layered deposits do provide a potential near-surface reservoir for ice, the uppermost few centimeters to meters in these regions are likely to be ice-free because of sublimation losses. Finally, while it is generally agreed that the layered deposits are the product of variations in the martian climate, no direct correlation has been made between band sequences and specific climate changes. Our intention is to shed light on some of these questions about the martian polar layered deposits by using the DS2 accelerometry experiment to determine the physical nature of the layered deposits, and to detect the presence of any subsurface layering of dust, ice

  17. Cloud Acidity and Acidic Deposition in the Lower Troposphere and Ozone Depletion in the Antarctic Stratosphere: Modeling and Data Analysis Regarding the Role of Atmospheric Aerosol.

    NASA Astrophysics Data System (ADS)

    Lin, Neng-Huei

    This study is focused on the role of atmospheric aerosols in determining the cloud acidity and acidic deposition in the lower troposphere and the ozone depletion in the Antarctic stratosphere. For the former, a cloud chemistry model is developed to study the in-cloud chemistry and acidity in cloud droplets. The cloud chemistry model includes the absorption of trace gases, the oxidation of aqueous phase SO_2, and the scavenging of atmospheric aerosols. A new scheme is developed to differentiate the acidity and chemical composition distributing in individual cloud droplets. The above cloud chemistry model is incorporated into a two-layer flow model in order to investigate the effects of mountain waves on the cloud acidity. Using the three-year (1986-1988) database acquired at Mt. Mitchell site, the in-cloud chemistry and acidic deposition through dry, wet and cloud deposition pathways are investigated. The in-cloud scavenging of submicron aerosols such as sulfates and nitrates is parameterized as a function of cloud deposition rate. The deposition fluxes of sulfur (S) compounds are found primarily contributed by cloud capture mechanism (60%) followed by incident precipitation (25%) and dry deposition (15%). A comparison of deposition estimates at Mt. Mitchell with those at other sites shows that the sulfate deposition at sites exceeding 1,200 m MSL in elevation in Bavaria (Germany) and eastern USA is almost identical within error limits. The features of the Antarctic stratospheric aerosols during the ozone depletion episode of October 1987 are investigated based on the SAGE II (Stratospheric Aerosol and Gas Experiment II) data. The study focuses on (1) inferring the aerosol size spectrum using a modified randomized minimization-search-technique (RMST), and (2) investigating the vertical, zonal and columnar averages of aerosol properties, together with the ozone concentration. The aerosol size distribution is found to be bimodal in several instances. An enhanced

  18. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  19. Morphological changes due to tsunami impact: Numerical modelling of sediments transport and deposit at Tangier - Morocco

    NASA Astrophysics Data System (ADS)

    Ramalho, Inês; Omira, Rachid; Baptista, Maria Ana; El Moussaoui, Said; Najib Zaghloul, Mohamed

    2016-04-01

    Coastal areas in the North of Morocco are at risk of tsunami inundation. Overland tsunami propagation leads to widespread and dramatic changes in coastal morphology due to sediments erosion, transport and deposition processes. Tsunami sediments transport and morphological changes must take into consideration bed-load and suspended load transport of non-cohesive sediments and suspended load of cohesive sediments. Numerical calculation of suspended sediment transport/deposition is performed by solving the advection-diffusion equations for the suspended sediment, where the velocities are obtained from the hydrodynamic modelling. In this study, we assess the morphological changes under tsunami impact at the Bay of Tangier-Morocco. We use a coupled hydrodynamic and morpho-dynamic numerical code, based on two open sources codes: COMCOT and Xbeach, to simulate the tsunami impact and the associated sediments transport and deposition. COMCOT solves the shallow water equations to calculate the inundation characteristics (flow depth and velocity), while Xbeach allows solving the advection-diffusion equations to determine the amount of sediments eroded, transported and deposed. The results of this study are presented in terms of maps displaying the amount of sediments eroded, transported and deposed at the bay of Tangier following a tsunami similar to the 1755 Lisbon event. We find that the bay of Tangier is vulnerable to morphological changes under tsunami threat coming from SW Iberia margin. This work is supported by the EU project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe, Grant 603839, 7th FP (ENV.2013,6.4-3).

  20. Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

    Treesearch

    T. J. Sullivan; G. B. Lawrence; S. W. Bailey; T. C. McDonnell; C. M. Beier; K. C. Weathers; G. T. McPherson; D. A. Bishop

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been...

  1. Incidence of twolined chestnut borer and Hypoxylon atropunctatum on dead oaks along an acidic deposition gradient from Arkansas to Ohio

    Treesearch

    R.A. Haack; R.W. Blank

    1991-01-01

    The incidence of twolined chestnut borer (TLCB), Agrilus bilineatus (Weber), and the canker fungus Hypoxylon atropunctatum (Schw. ex Fr.) Cke. was recoreded on dead oak (Quercus) trees !Y7 cm diameter at breast height (DBH) along an acidic deposition gradient from Arkansas to Ohio in 1989 and 1990. Approximately...

  2. Detecting and monitoring acidic deposition effects on soil chemistry and forest growth on the Monongahela National Forest

    Treesearch

    Patricia Elias; James Burger; Stephanie Connolly; Mary Beth. Adams

    2010-01-01

    The Monongahela National Forest (MNF) lies downwind from many sources of acid deposition (AD) pollution. Therefore, managers are concerned about the possible deleterious effects of AD on the forest ecosystem. To address the needs of MNF managers, we used Forest Inventory and Analysis (FIA) sites to evaluate forest growth patterns on the MNF to determine the...

  3. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios. © 2013.

  4. Modeling methanesulfonic acid (MSA) deposition on Antarctica to understand the MSA-sea ice link

    NASA Astrophysics Data System (ADS)

    Hezel, P. J.; Alexander, B.; Steig, E. J.; Bitz, C. M.

    2010-12-01

    Sea ice plays a large role in global energy balance and climate. Much research has focused on methanesulfonic acid (MSA) as measured in Antarctic ice cores as a proxy for sea ice extent, but observations suggest that even the sign of the relationship between sea ice and MSA varies by region. The proxy is predicated on assumptions that dimethyl sulfide (DMS) emitted from the sea ice zone, for which MSA is an oxidation product, varies sufficiently from the open ocean across the ice edge to imprint a signal in MSA deposition, though just how DMS emissions in sea ice differ from open water DMS emissions has yet to be fully understood. Expansive winter sea ice cover followed by a sharp reduction in summer may stimulate biological productivity and hence DMS emissions; Diatoms within sea ice may release DMS at high enough rates to equal or exceed emissions from open water; and the sea-to-air gas flux parameterization may be fundamentally different in the stratified waters of melting sea ice. We have modified surface DMS concentrations in sea ice in a series of global chemical transport model (GEOS-Chem) simulations driven by reanalysis meteorological data, in an effort to mimic different plausible scenarios of DMS emissions from within sea ice. We show that variability in MSA deposition on Antarctica is primarily driven by wind speeds that govern the DMS fluxes from the ocean, as determined by the sea-to-air gas flux parameterization; Interannual variability in ice extent insufficiently modulates DMS emissions above this wind-driven variability. We also show that one-third to two-thirds of MSA deposition on Antarctica originates from north of the sea ice zone (i.e., North of 60 S), though the fraction is strongly dependent on the assumed seasonal concentrations of DMS within the sea ice zone. Given the limitations of the model processes and scenarios, we also demonstrate where a MSA signal associated with sea ice might be found on Antarctica.

  5. Post-depositional migration and signal reconstruction of methanesulfonic acid (MSA) in polar ice cores

    NASA Astrophysics Data System (ADS)

    Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.

    2017-04-01

    Methanesulfonic acid (MSA; CH3SO3H) in polar ice cores is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea ice behavior. However, MSA can be unstable within the ice column, leading to uncertainties surrounding the integrity of its paleoclimatic signal. Here, we use ice core records coupled with forward and inverse numerical models to investigate the post-depositional processes affecting the migration of MSA within the firn and ice column, and attempt to reconstruct the original signal in the ice column. The forward model, detailing the vertical diffusive transport of soluble impurities through supercooled liquid pathways, allows us to systematically assess the contribution of varying influences on the post-depositional migration of MSA. Our results show that two site-specific variables in particular, i) snow accumulation rate, and ii) seasonal concentration gradients of Na+(typically the highest concentration sea salt), may be sufficient to reasonably predict the timing and magnitude of MSA migration within the ice column. However, at present the temporal accuracy of the forward MSA migration model remains limited by inadequate constraints on the diffusion coefficient of MSA, DMS-. Specifically, we find that previous estimates of DMS-are unable to reproduce, within significant uncertainty, the progressive phase alignment of the MSA and Na+signals observed in real Antarctic ice cores. To attempt to correct for the effects of post-depositional migration, we combine recent high-resolution West Antarctic MSA data using sequential methods from optimal control theory (a Kalman filter and a related fixed-interval smoother) to reconstruct and provide uncertainty estimates on the original, pre-migrated MSA profile. We find that although the reconstructed MSA profile provides a reasonable estimate of the original MSA signal, the large uncertainties associated with this reconstructed signal cannot be objectively discriminated

  6. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Variation of Atmospheric Deposition of Acid Species and Yellow Sand Particles From 1987 to 1999 Through Modeling Studies and Observations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Uno, I.; Zhang, M.; Akimoto, H.

    2002-05-01

    Acid deposition is of serious environmental concern in East Asia. Wet and dry deposition monitoring datasets have been collected for long enough to understand the deposition distribution and its variation in time and space in this region Field observations indicate that acid precipitation often occurs in the southern part of China, even though emissions of the precursors are stronger in the north, where such high levels of strong acids in precipitation have not been widely. The acidity of rainwater is heavily influenced and modified by natural soil dust from desert and semi-arid areas. This soil aerosol, or _gKOSA", is lifted from Asian deserts and the Loess plateau, and then carried by the prevailing wind over East Asia. A comprehensive Air Quality Prediction Modeling System (AQPMS) is used to perform year-long, quantitative simulation of rainwater pH in East Asia for 1987 and 1999, respectively with emissions of Akimoto et al.(1987) and Street et al.(2000), to discuss the variation of deposition of acid species and yellow sand particles due to the emission change in the past dozen years. Monitoring data at 17 sites of EANET (the Acid Deposition Monitoring Network in East Asia) in addition to the field observation data of SEPA(State Environmental Protection Agency) of China are used to evaluate the model, and a reasonable agreement is obtained. Emission in Sichuan province has decreased and emission in central China including Hubei province and Hunan province has increased. Model simulation shows the change of emission pattern caused the serious acid-rain-hit area moving southeastward as observed. In the west part of Sichuan province, the pH value increased, this is partly due to the success of countermeasures against acid rain in China since 1996, which reduce the emission in Sichuan area much more than expected. The variations of annual distribution of rain pH, sulfate, nitrite and yellow sand particles deposition are also discussed in detail, so do the

  8. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  9. Selective depositions on polyelectrolyte multilayers: self-assembled monolayers of m-dPEG acid as molecular template.

    PubMed

    Kidambi, Srivatsan; Chan, Christina; Lee, Ilsoon

    2004-04-14

    This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of consecutive poly(anion)/poly(cation) pairs of charged particles result in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. In this study, we illustrate nonlithographic methods of patterning and controlling 3-D PEM architectures and selective particle depositions. We investigated the effect of variables--the choice of solvent, concentration, pH, substrate pretreatment, and stamp contact times--on microcontact printing of m-dPEG acid molecules onto PEM films to determine the optimal conditions for these parameters to achieve efficient transfer of m-dPEG acid patterns onto PEMs. Among the variables, the pH of the m-dPEG acid ink solution played the most important role in the transfer efficiency of the patterns onto the multilayer films. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM).

  10. Correlation analysis of tree growth, climate, and acid deposition in the Lake States.

    Treesearch

    Margaret R. Holdaway

    1990-01-01

    Describes research designed to detect subtle regional tree growth trends related to sulfate (SO4) deposition in the Lake States. Correlation methods were used to analyze climatic and SO4 deposition. Effects of SO4 deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the...

  11. Geology-based method of assessing sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1991-01-01

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.

  12. Nitric acid dry deposition to conifer forests: Niwot Ridge spruce-fir-pine study

    USGS Publications Warehouse

    Sievering, H.; Kelly, T.; McConville, G.; Seibold, C.; Turnipseed, A.

    2001-01-01

    The dry deposition velocity of nitric acid, Vd(HNO3), over a 12-m (mean height) spruce-fir forest at Niwot Ridge, Colorado was estimated during 13 daytime periods using the flux-gradient approach. Turbulence intensity at this site is high (mean u* of 0.65ms-1 with u of 2.9ms-1) and contributed to the large observed Vd(HNO3). The overriding contributor is identified to be the small aerodynamic needle width of the conifer trees. Two cases had inflated Vd(HNO3) due to height-differentiated nitric acid loss to soil-derived particle surfaces. Not considering these cases, the mean Vd(HNO3) was 7.6cms-1. The mean laminar boundary layer resistance (Rb) was found to be 7.8sm-1 (of similar magnitude to that of the aerodynamic resistance, 8.5sm-1). The data-determined Rb is bracketed by two theoretical estimates of the mean Rb, 5.9 and 8.6sm-1, that include consideration of the small canopy length scale (aerodynamic needle width), 1mm or less, at this conifer forest. However, the poor correlation of data-determined Rb values with both sets of theoretical estimates indicates that measurement error needs to be reduced and/or improved formulations of theoretical Rb values are in order. The large observed Vd(HNO3) at this conifer forest site is attributed to high turbulence intensity, and, especially, to small aerodynamic needle width. Copyright ?? 2001 Elsevier Science Ltd.

  13. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers

    PubMed Central

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming

    2016-01-01

    Nicotinic acid (NA) acting as the precursor of NAD+/NADH and NADP+/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  14. Impacts of 3D Topography and BC Deposition on Climate Change Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Takano, Y.; Chen, F.

    2016-12-01

    We present a number of time-lapse images and satellite observations of regional climate change over mountain-snow areas in terms of snow albedo reductions for decadal and seasonal timescales. For seasonal variation critically important for hydrology and water resources, we illustrate based on the 12-year MODIS satellite dataset analysis that the snow albedo reduction from March to April over the Southern Tibetan Plateau is caused in part by the deposition of absorbing aerosols associated with an increase in aerosol optical depth. In addition to global warming, the reduction of mountain snow cover must be related to interactions of 3D topography and incoming solar radiation as well as the deposition of black carbon (BC) and dust particles.We describe the 3D solar radiative transfer over inhomogeneous and complex topography by means of Monte Carlo photon tracing calculations and its correlation parameterization using a number of key parameters defined by the position vector with reference to the sun over a mountain slope in terms of direct and diffuse fluxes, including mountain to mountain interactions. This is followed by a brief discussion of parameterization of the spectral light absorption and scattering by BC/snow system in terms of the optical properties for snow grains contaminated by BCs during their aging processes in the atmosphere. For multiple BC internal mixing, we have innovated a stochastic process to place coated BCs of various sizes within the 3D snow grain domain using BC mass as input in view of the fact that physical equations to define internal mixing do not exist.On the 3D topography effect, we employed CCSM4, a global model with a resolution of 0.9ox1.25o, for a 20-year climate run to investigate the 3D radiative transfer impact on cloud, snowmelt, runoff, temperature, and circulation patterns over the Tibetan Plateau in winter and summer. We then modified WRF-Chem to include both BC deposition and 3D topography coupled with widely-used Noah

  15. Effect of Grain Scale Properties on Bulk Deformation of Granular Deposits Due to High Speed Projectile Impact

    DTIC Science & Technology

    2012-09-16

    to measure the deceleration of projectile after penetrating into sand layer. The observed results together with simple one-dimensional model with...at better understanding and modeling the whole process of projectile impact to the granular deposit using experimental and numerical tools. First, we... projectile impact, we perform some experiments and grain-scale numerical simulations. In the high-speed impact experiment, we adopted a new technology

  16. Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model

    Treesearch

    Glenn D. Shaw; Ricardo Cisneros; Donald Schweizer; James O. Sickman; Mark E. Fenn

    2014-01-01

    Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (...

  17. An Assessment of Student Knowledge in Fourth, Eighth and Eleventh Grades of Science and Natural Resource Concepts Related to Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    This study assessed the level of scientific and natural resource knowledge that 4th, 8th, and 11th grade students in Maine possessed concerning acidic deposition. A representative sample of public school students (n=175) was interviewed on 12 concept principles considered critical to a full understanding of the acidic deposition problem. These…

  18. Dendrochemical evidence for soil recovery from acidic deposition in forests of the northeastern U.S. with comparisons to the southeastern U.S. and Russia

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Andrei G. Lapenis

    2017-01-01

    A soil resampling approach has detected an early stage of recovery in the cation chemistry of spruce forest soil due to reductions in acid deposition. That approach is limited by the lack of soil data and archived soil samples prior to major increases in acid deposition during the latter half of the 20th century. An alternative approach is the dendrochemical analysis...

  19. Environmental impacts of Tl related to mined Dajiangping pyrite deposit in west Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, J.; Chen, Y. H.; Qi, J. Y.; Wang, C. L.

    2009-04-01

    This study focuses on the accumulation of Tl in Dajiangping pyrite deposit area in west Guangdong province, China, as a case study for environmental impacts of Tl due to natural processes and human activities. The pyrite deposit is one of the largest in Asia and has been mined on large scale since 1970s. Results show that Tl and other trace elements in local ecosystems, such as rocks/ores, soils, surface and ground waters, water sediments, plants and crops in Dajiangping near the pyrite ore deposit are enriched, characterized by high concentrations. The range of Tl concentrations is from 13.7 to 43.0 mg/kg in chunk concentrated ore, from 31.0 to 56.4 mg/kg in powdery concentrated ore and 49.7 to 51.6 mg/kg in pyrite tailing. Tl concentrations range from 15.0 to 21.0 mg/kg in soils of mineralized area, from 7.4 to 30.5 mg/kg in alluvial deposits and from 1.2 to 2.0 mg/kg in undisturbed background soil. Elevated concentrations of Tl have been observed in surface water from upstream( 2.2 µg/L) to downstream(102.6 µg/L) sections. Tl concentrations are comparatively high in the groundwater in mineralized area ( 7.8 µg/L). Tl concentrations in the edible parts of plants and crops range from 0.02 to 22.03 mg/kg (dry weight). Tl uptake shows characteristics of species-dependent, more in vegetables (around 90 mg/kg) than crops (0.3-8.1 mg/kg). For each individual plant, Tl concentrated more in roots than leaves and stems. The enrichment of Tl in the local ecosystem might come from the weathering, leaching and dissolving of Tl pyrite minerals. All this work adds new knowledge to understand Tl behaviour in mined Tl-pyrite deposits, and also benefits to the study on local environmental protection and mineral resources exploitation in the future.

  20. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  1. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  2. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  3. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate.

    PubMed

    Carmichael, Gregory R; Streets, David G; Calori, Giuseppe; Amann, Markus; Jacobson, Mark Z; Hansen, James; Ueda, Hiromasa

    2002-11-15

    In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.

  4. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  5. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  6. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  7. Cometary impact and amino acid survival - Chemical kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2006-01-01

    The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.

  8. Changes in stream chemistry and biology in response to reduced levels of acid deposition during 1987-2003 in the Neversink River Basin, Catskill Mountains

    USGS Publications Warehouse

    Burns, Douglas A.; Riva-Murray, K.; Bode, R.W.; Passy, S.

    2008-01-01

    Atmospheric acid deposition has decreased in the northeastern United States since the 1970s, resulting in modest increases in pH, acid-neutralizing capacity (ANC), and decreases in inorganic monomeric aluminum (AlIM) concentrations since stream chemistry monitoring began in the 1980s in the acid-sensitive upper Neversink River basin in the Catskill Mountains of New York. Stream pH has increased by 0.01 units/year during 1987-2003 at three sites in the Neversink basin as determined by Seasonal Kendall trend analysis. In light of this observed decrease in stream acidity, we sampled 12 stream sites within the Neversink River watershed for water chemistry, macroinvertebrates, fish, and periphytic diatoms in 2003 to compare with a similar data set collected in 1987. Metrics and indices that reflect sensitivity to stream acidity were developed with these biological data to determine whether changes in stream biota over the intervening 16 years parallel those of stream chemistry. Statistical comparisons of data on stream chemistry and an acid biological assessment profile (Acid BAP) derived from invertebrate data showed no significant differences between the two years. For pH and ANC, however, values in 2003 were generally lower than those in 1987; this difference likely resulted from higher streamflow in summer 2003. Despite these likely flow-induced changes in summer 2003, an ordination and cluster analysis of macroinvertebrate taxa based on the Acid BAP indicated that the most acidic sites in the upstream half of the East Branch Neversink River form a statistically significant separate cluster consistent with less acidic stream conditions. This analysis is consistent with limited recovery of invertebrate species in the most acidic reaches of the river, but will require additional improvement in stream chemistry before a stronger conclusion can be drawn. Data on the fish and periphytic diatom communities in 2003 indicate that slimy sculpin had not extended their habitat

  9. Effect of Grain Scale Properties on Bulk Deformation of Granular Deposits Due to High Speed Projectile Impact

    DTIC Science & Technology

    2013-04-08

    projectile after penetrating into sand layer. The observed results together with simple one-dimensional model with Rankine-Hugoniot equations suggests... modeling the whole process of projectile impact to granular deposit using experimental and numerical tools. First, we present some results of...relations for different and )/log( 0sKPe  sS 0e 7. One dimensional model of projectile penetration into sand deposit: In this section we

  10. Microtektites on Mars: Volume and Texture of Distal Impact Ejecta Deposits

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2000-04-01

    Microtektites, small blobs of ejecta formed in the shock melt and vapor plume of an impact, can be dispersed far from the source crater only if the impact is violent enough for the ejecta plume to pierce the atmosphere; they are therefore formed in far smaller (and more numerous) impact events on Mars than on Venus and Earth, which have thicker atmospheres. Microtektite abundances from the Chicxulub and Bosumtwi craters on Earth suggest that the volume of this material is ˜5 × 10 -5Dc3.74 km 3, with Dc the crater diameter in kilometers, similar to the observed volumes of the dark parabolic ejecta deposits on Venus. Corresponding volumes on Mars are ˜2.5 × smaller, but even so this result implies that even only a 15-km crater can produce a layer of microtektites with a global average thickness on Mars of 40 microtektites per square centimeter. I use a trajectory code and a thermal model to show that these particles are easily dispersed globally on Mars and that micrometeoroids of the same size will be unmelted by reentry heating. The uniform size and glassy texture of microtektites may allow such ejecta layers to be identified by the remote arm cameras on Mars landers, particularly in the polar layered terrain where they may be preserved against abrasion.

  11. Reinterpreting the Impact Craters of the North Polar Layered Deposits, Mars

    NASA Astrophysics Data System (ADS)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2014-11-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been proposed to contain a record of eccentricity- and obliquity-forced climatic variations. Obtaining the age of the surface of the overlying residual cap will allow for more stringent constraints on overall NPLD age and accumulation rates. This work utilizes a crater population previously identified on the NPLD (Banks et al. 2010). We expanded the High Resolution Imaging Science Experiment (HiRISE) image coverage of these impact craters to refine their diameter measurements and use the new crater production function reported by Daubar et al. (2013) to interpret their population statistics. Eighty-five impact sites have been measured in our study, which represents a statistically complete catalog of craters >30m in diameter on the North Pole residual cap. The largest crater in the region of interest is ~350m in diameter. These craters exhibit a range of degradation states, from having a depth/diameter ratio typical of fresh simple craters and a well defined to rim to “ghost” craters where only a degraded rim remains, leading us to conclude that they are predominantly primary impacts. Several impact sites are comprised of clusters of impact craters, identified because all the impact structures were within a few crater diameters of each other. These were included in the population statistics as a single impact with an effective diameter of (ΣD3)1/3). Using a differential size-frequency distribution plot, we found the isochron from Daubar et al. (2013) that best fit the data was ~900yr, a significant revision downward from the Banks et al. (2010) interpretation of a maximum age of ~20Kyr. The diameters of small impact craters on Mars are affected by the material strength of the target material, and this icy target differs from regolith or bedrock. To evaluate the resulting difference between observed NPLD craters and the craters used to calculate the production function, we

  12. Genotoxic effect of ethacrynic acid and impact of antioxidants

    SciTech Connect

    Ward, William M.; Hoffman, Jared D.; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  13. Acid fog Deposition of Crusts on Basaltic Tephra Deposits in the Sand Wash Region of Kilauea Volcano: A Possible Mechanism for Siliceous-Sulfatic Crusts on Mars

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Zierenberg, R.; Marks, N.; Bishop, J. L.

    2004-12-01

    Although the presence of sulfate minerals in martian outcrops may imply the prior existence of standing bodies of surface water, in terrestrial volcanic settings, sulfatic alteration may also occur above the water table within the vadose zone. On the summit of Kilauea volcano, sulfur dioxide, which is continuously emitted from Halemaumau crater and rapidly sequestered into sulfuric acid-rich aerosol entrained in the prevailing trade winds, is subsequently precipitated as acid-fog immediately downwind from the caldera in the Kau Desert. The characteristic pH of surface tephra deposits is < 4.0 in Sand Wash, a region of continuous, acidic aerosol fall-out immediately SW of the caldera. The upper portion of the Keanakakoi Ash tephra in Sand Wash, deposited in the late 18th century, has a ubiquitous, 0.1-0.2 mm-thick coating of amorphous silica. Conversely, vertical walls of unconsolidated tephra, exposed within small, dry gullies eroded into the ca. 3-4 m-thick Keanakakoi section at Sand Wash, are coated with ca. 0.5-1.0 mm-thick, mixed amorphous silica and jarosite-bearing crusts. Since these crusts are denuded from their outcrops during ephemeral, but probably annual flooding events in Sand Wash, we believe that they must accumulate rapidly. These crusts are apparently formed via an evaporative mechanism whereby acidic pore fluids, circulating in the upper few m's within the highly porous tephra, are wicked towards the walls of the gullies. Geochemical modeling of the crust-forming process implies that the sulfate formation via evaporation occurs subsequent to minimal interaction of acidic pore fluids with the basaltic tephra. This also suggests that the cycle from acid-fog fall-out to precipitation of the siliceous-sulfatic crusts must occur quite rapidly. Production of siliceous-sulfatic crusts via acid-fog alteration may also be occurring on Mars. The occurrence of evaporitic sulfate and silica at Sand Wash in Kilauea may serve as an example of how the jarosite

  14. Pathological findings of saccular cerebral aneurysms-impact of subintimal fibrin deposition on aneurysm rupture.

    PubMed

    Hokari, Masaaki; Nakayama, Naoki; Nishihara, Hiroshi; Houkin, Kiyohiro

    2015-07-01

    Although several studies have suggested that aneurysmal wall inflammation and laminar thrombus are associated with the rupture of saccular aneurysms, the mechanisms leading to the rupture remain obscure. We performed full exposure of aneurysms before clip application and attempted to keep the fibrin cap on the rupture point. Using these specimens in a nearly original state before surgery, we conducted a pathological analysis and studied the differences between ruptured and unruptured aneurysms to clarify the mechanism of aneurysmal wall degeneration. This study included ruptured (n = 28) and unruptured (n = 12) saccular aneurysms resected after clipping. All of the ruptured aneurysms were obtained within 24 h of onset. Immunostainings for markers of inflammatory cells (CD68) and classical histological staining techniques were performed. Clinical variables and pathological findings from ruptured and unruptured aneurysms were compared. Patients with ruptured or unruptured aneurysms did not differ by age, gender, size, location, and risk factors, such as hypertension, smoking, and hyperlipidemia. The absence or fragmentation of the internal elastica lamina, the myointimal hyperplasia, and the thinning of the aneurysmal wall were generally observed in both aneurysms. The existence of subintimal fibrin deposition, organized laminar thrombus, intramural hemorrhage, neovascularization, and monocyte infiltration are more frequently observed in ruptured aneurysms. Multivariate logistic regression analysis showed that ruptured aneurysm was associated with presence of subintimal fibrin deposition and monocyte infiltration. These findings suggest that subintimal fibrin deposition and chronic inflammation have a strong impact on degeneration of the aneurysmal wall leading to their rupture, and this finding may be caused by endothelial dysfunction.

  15. Synthesis of recent advances in critical loads research on impacts from atmospheric nitrogen deposition on terrestrial plant communities.

    NASA Astrophysics Data System (ADS)

    Clark, C.; Horn, K. J.; Thomas, R. Q.; Simkin, S.; Pardo, L. H.; Blett, T.; Lawrence, G. B.; Belyazid, S.; Phelan, J.

    2015-12-01

    Nitrogen (N) deposition is one of the primary threats to plant biodiversity world-wide after habitat destruction and climate change. As a primary limiting nutrient and contributor to soil acidification, N inputs have the capacity to alter ecosystems through several mechanisms. Up until now, there was very little detailed information on the impacts from this stressor at the species level, or how climate and edaphic factors could alter ecosystem sensitivity. Here we summarize and synthesize four major efforts, funded by EPA, USGS, USFS, and the NPS, which greatly advance our understanding of this stressor. These include (1) a national analysis of sensitivity to N deposition for 114 tree species, (2) a national analysis of impacts from N deposition on herbaceous species and how climate and soil factors modify that sensitivity, (3) a regional dynamic modeling study of impacts and recovery from N and S deposition for a dominant northeastern forest type under a range of future climate and deposition scenarios, and (4) a large assessment of impacts to streams, soils, and vegetation along the 2000+ mile stretch of the Appalachian Trail. Here we show many responses to this stressor for all taxonomic groups, with some species decreasing, some increasing, and some unaffected by N deposition. However, dozens of tree and herb species are negatively affected and are of particular concern for conservation purposes, with vulnerability being greatly affected by regional climate and local edaphic factors. Dynamic modeling suggests that, at least in some northeastern forests, recovery across a broad range of climate change and management scenarios is unlikely by 2100. The study along the Appalachian Trail, a beloved national recreation trail, echoes these findings, with stream, soils, and vegetation impacted across large percentages of sites, and only moderate capacity for recovery by 2100. In total, this work highlights several recent advances in the area of critical loads research

  16. The impact of gallic acid on iron gall ink corrosion

    NASA Astrophysics Data System (ADS)

    Rouchon-Quillet, V.; Remazeilles, C.; Bernard, J.; Wattiaux, A.; Fournes, L.

    Many old manuscripts suffer from iron-gall ink corrosion, threatening our graphic heritage. Corroded papers become brown and brittle with age. The chemical reactions involved in this corrosion are relatively well known: they include both acidic hydrolysis and oxidation catalysed by free iron(II). Yet, a great variety of iron-gall ink recipes, including a wide range of constituents can be found in the literature and the visual aspect of old inks, can be very different from one inscription to another, even if they have been written on the same sheet of paper. This suggests that even if the free iron(II) plays a dominant role in the paper alteration, the contribution of other ingredients should not be neglected. For this reason, we explored the impact gallic acid may have on the corrosion mechanisms and in particular on the oxidation reactions. These investigations were carried out on laboratory probes prepared with paper sheets immersed in different solutions, all containing the same amount of iron sulphate, and different gallic acid concentrations. These probes were then artificially aged and their degradation state was evaluated by bursting strength measurements, FTIR spectrometry and Mössbauer spectrometry. All these analyses lead us to conclude that gallic acid has an influence on the iron(III)/iron(II) ratio, probably because of its reducing properties.

  17. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  18. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    PubMed

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  19. Numerical Simulations of the High-Velocity Impact of a Single Polymer Particle During Cold-Spray Deposition

    NASA Astrophysics Data System (ADS)

    Shah, Sagar; Lee, Jonghyun; Rothstein, Jonathan P.

    2017-06-01

    In this paper, deposition of polymer powders was studied numerically for the cold-spray deposition technique. In cold spray, a solid particle is impacted on a substrate at high velocity. The deformation and heating upon impact have been shown to be enough to result in particle deposition and adhesion even without melting the particle. Here, a systematic analysis of a single high-density polyethylene particle impacting a semi-infinite high-density polyethylene substrate was carried out for initial velocities ranging between 150 and 250 m/s using the finite element analysis software ABAQUS Explicit. A series of numerical simulations were performed to study the effect of a number of key parameters on the particle impact dynamics. These key parameters include particle impact velocity, particle temperature, particle diameter, composition of the polyethylene particle, surface composition and the thickness of a polyethylene film on a hard metal substrate. The effect of these parameter variations on the particle impact dynamics were quantified by tracking the particle temperature, deformation, plastic strain and rebound kinetic energy. The trends observed through variation of these parameters provided physical insight into the experimentally observed window of deposition where cold-sprayed particles are mostly likely to adhere to a substrate.

  20. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-08-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  1. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    NASA Technical Reports Server (NTRS)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  2. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  3. Ground deposition impact of aerially applied fenthion on the fiddler crabs, Uca pugilator.

    PubMed

    Zhong, He; Dukes, James; Greer, Mike; Hester, Phil; Shirley, Michael; Anderson, Beverly

    2003-03-01

    Caged fiddler crabs, Uca pugilator, were exposed to field ULV applications to measure the impact of fenthion. Two nozzle systems, conventional flat-fan nozzles (Tee Jet 8002SS) and high-pressure hydraulic nozzles (1/8 MIS), were compared using single spray swaths. Fenthion residues were detected throughout the 4.83-km test zone for both systems. Heavy ground deposits (650-1,670 microg/m2) of fenthion were found within 1 km using the flat-fan nozzle systems, which resulted in 80% fiddler crab mortality. Less than 100 microg/m2 fenthion ground deposits were detected during the high-pressure nozzle trials. No fiddler crab mortality was observed within the first 1-km zone following 3 single swath applications repeated during 3 consecutive nights. We found also that when the fiddler crabs were exposed to 700-800 microg/m2 fenthion, mortality occurred. Significant crab mortality (>50%) was observed when residues exceeded 1,000 microg/m2.

  4. Flood deposits penecontemporaneous with ˜0.8 Ma tektite fall in NE Thailand: impact-induced environmental effects?

    NASA Astrophysics Data System (ADS)

    Haines, Peter W.; Howard, Kieren T.; Ali, Jason R.; Burrett, Clive F.; Bunopas, Sangad

    2004-08-01

    Although a crater is not yet identified, the Australasian tektite strewn field provides evidence that a major impact cratering event took place in the Southeast Asian region at ˜0.8 Ma, just prior to the Brunhes/Matuyama geomagnetic polarity reversal. Paleomagnetic evidence including reversed polarity in mud lens closely associated with in situ tektites suggests that tektite-bearing flood deposits near Ban Ta Chang and Chum Phuang in northeast Thailand are penecontemporaneous with the impact event. The deposits include abundant organic debris, including whole tree trunks and mammal bones, that preserved due to reducing conditions, which are also responsible for the presence of abundant iron sulphides. Sedimentological observations suggest a series of major flood events that are out of character with the modern meandering river system to which they are related. The deposits are consistent with the effects of regional deforestation, increased run off and erosion, and other environmental disruptions expected in the aftermath of a major impact event.

  5. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland.

    PubMed

    Arróniz-Crespo, María; Leake, Jonathan R; Horton, Peter; Phoenix, Gareth K

    2008-01-01

    Atmospheric nitrogen deposition can cause major declines in bryophyte abundance yet the physiological basis for such declines is not fully understood. Bryophyte physiological responses may also be sensitive bioindicators of both the impacts of, and recovery from, N deposition. Here, responses of tissue nutrients (nitrogen (N), phosphorus (P) and potassium (K): NPK), N and P metabolism enzymes (nitrate reductase and phosphomonoesterase), photosynthetic pigments, chlorophyll fluorescence, sclerophylly and percentage cover of two common bryophytes (Pseudoscleropodium purum and Rhytidiadelphus squarrosus) to long-term (11 yr) enhanced N deposition (+3.5 and +14 g N m(-2) yr(-1)) are reported in factorial combination with P addition. Recovery of responses 22 months after treatment cessation were also assessed. Enhanced N deposition caused up to 90% loss of bryophyte cover but no recovery was observed. Phosphomonoesterase activity and tissue N:P ratios increased up to threefold in response to N loading and showed clear recovery, particularly in P. purum. Smaller responses and recovery were also seen in all chlorophyll fluorescence measurements and altered photosynthetic pigment composition. The P limitation of growth appears to be a key mechanism driving bryophyte loss along with damage to photosystem II. Physiological measurements are more sensitive than measurements of abundance as bioindicators of N deposition impact and of recovery in particular.

  6. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Cappellari, Paula S.; García, Gonzalo; Florez-Montaño, Jonathan; Barbero, Cesar A.; Pastor, Elena; Planes, Gabriel A.

    2015-11-01

    Formic acid and adsorbed carbon monoxide electrooxidation on polycrystalline Pt and Au-modified Pt surfaces were studied by cyclic voltammetry, lineal sweep voltammetry and in-situ Fourier transform infrared spectroscopy techniques. With this purpose, a polycrystalline Pt electrode was modified by spontaneous deposition of gold atoms, achieving a gold surface coverage (θ) in the range of 0 ≤ θ ≤ 0.47. Results indicate the existence of two main pathways during the formic acid oxidation reaction, i.e. dehydration and dehydrogenation routes. At higher potentials than 0.5 V the dehydrogenation pathway appears to be the operative at both Pt and Au electrodes. Meanwhile, the dehydration reaction is the main pathway for Pt at lower potentials than 0.5 V. It was found that reaction routes are easily tuned by Au deposition on the Pt sites responsible for the formic acid dehydration reaction, and hence for the catalytic formation of adsorbed carbon monoxide. Gold deposition on these Pt open sites produces an enhanced activity toward the HCOOH oxidation reaction. In general terms, the surface inhibition of the reaction by adsorbed intermediates (indirect pathway) is almost absent at gold-modified Pt electrodes, and therefore the direct pathway appears as the main route during the formic acid electrooxidation reaction.

  7. Responses of soil N-fixing bacteria communities to invasive plant species under different types of simulated acid deposition

    NASA Astrophysics Data System (ADS)

    Wang, Congyan; Zhou, Jiawei; Jiang, Kun; Liu, Jun; Du, Daolin

    2017-06-01

    Biological invasions have incurred serious threats to native ecosystems in China, and soil N-fixing bacteria communities (SNB) may play a vital role in the successful plant invasion. Meanwhile, anthropogenic acid deposition is increasing in China, which may modify or upgrade the effects that invasive plant species can cause on SNB. We analyzed the structure and diversity of SNB by means of new generation sequencing technology in soils with different simulated acid deposition (SAD), i.e., different SO4 2- to NO3 - ratios, and where the invasive ( Amaranthus retroflexus L.) and the native species ( Amaranthus tricolor L.) grew mixed or isolated for 3 months. A. retroflexus itself did not exert significant effects on the diversity and richness of SNB but did it under certain SO4 2- to NO3 - ratios. Compared to soils where the native species grew isolated, the soils where the invasive A. retroflexus grew isolated showed lower relative abundance of some SNB classes under certain SAD treatments. Some types of SAD can alter soil nutrient content which in turn could affect SNB diversity and abundance. Specifically, greater SO4 2- to NO3 - ratios tended to have more toxic effects on SNB likely due to the higher exchange capacity of hydroxyl groups (OH-) between SO4 2- and NO3 -. As a conclusion, it can be expected a change in the structure of SNB after A. retroflexus invasion under acid deposition rich in sulfuric acid. This change may create a plant soil feedback favoring future A. retroflexus invasions.

  8. Proximal ejecta deposits of the K-Pg Chixulub impact: The case for carbonate impact melt spherules

    NASA Astrophysics Data System (ADS)

    Deutsch, Alex; Schulte, Peter

    2010-05-01

    When 65.5 million yrs. ago an about ~10 km-sized asteroid hit Earth (Chicxulub impact event), ejecta was distributed world-wide to form the Cretaceous-Paleogene (K-Pg) event bed. Continuous sections across this K-Pg boundary document unambiguously that the 'K-T' mass extinction was triggered by the Chicxulub event, not only because of the projectile's size but particularly by the specific composition of the target, namely a 3-km- (in the West) to about 4.5-km-thick (in the Gulf area) layer of volatile-rich carbonate and sulfate platform sediments on top of the crystalline basement (Schulte et al., 2010). Modeling, petrographic and geochemical studies on natural samples as well as experimental results show that shock pressure and high post-shock temperatures yield irreversible deformations and transformations on carbonate and sulfate target lithologies which are also expected to occur in the context of the Chicxulub event. Twofold devastating effects on life are predicted (i) dissociation of carbonates and sulfates with nearly instantaneous release of vast quantities of CO2, and of about 100 to 500 Gt sulfur triggering severe climate effects, and (ii) deposition of carbonate and sulfate melts together with silicate melts, causing short-term disruption of the thermal conditions proximal to the crater. Silicate impact glasses with high CaO contents occur, for example, as spherules in the K-Pg event bed at Haiti and in melt lithologies from drill cores (e.g., Yucatan-6, Chicxulub-1, Yaxcopoil-1). Carbonate melt glasses have not been reported so far in K-Pg event beds. Hence, the following question was answered so far: Where are the huge amounts of carbonates that suffered impact metamorphism and were ejected in the Chicxulub event? The Chicxulub ejecta deposits in the Gulf of Mexico area contain up to 80 wt% carbonates which, however, have been interpreted as precipitation product during diagenesis. In consequence, the abundant mm-sized ejecta spherules consisting of a

  9. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations

    NASA Astrophysics Data System (ADS)

    Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J.

    2010-12-01

    Atmospheric nutrients have recently gained considerable attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric macro nutrients on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episodes in Southeast Asia (SEA) that resulted from uncontrolled forest and peat fires in Sumatra and Borneo blanketed large parts of the region. In this work, we determined the chemical composition of nutrients in aerosols and rainwater during hazy and non-hazy days to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between hazy and non-hazy days. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The estimated mean dry and wet atmospheric fluxes (mg/m2/day) of total nitrogen (TN) were 12.72 ± 2.12 and 2.49 ± 1.29 during non-hazy days and 132.86 ± 38.39 and 29.43 ± 10.75 during hazy days; the uncertainty estimates are represented as 1 standard deviation (1σ) here and throughout the text. The estimated mean dry and wet deposition fluxes (mg/m2/day) of total phosphorous (TP) were 0.82 ± 0.23 and 0.13 ± 0.03 for non-hazy days and 7.89 ± 0.80 and 1.56 ± 0.65 for hazy days. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.

  10. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    NASA Astrophysics Data System (ADS)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  11. Genotoxic effect of ethacrynic acid and impact of antioxidants.

    PubMed

    Ward, William M; Hoffman, Jared D; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants.

  12. The Influence of Iodide Adsorption on Copper Underpotential Deposition on Polycrystalline Palladium Electrodes in Mildly Acidic Solutions.

    PubMed

    Zinola; Castro Luna AM

    1999-01-15

    The effects of I- adsorption on the electrodeposition (under and overpotential deposition) of Cu on polycrystalline Pd electrodes were studied in dilute perchloric acid solutions at 18 degreesC. It had been found that Cu underpotential deposition on polycrystalline Pd exhibits different potentiodynamic features, which are characteristic of defined crystallographic planes of Pd. However, these features varied when the voltammograms were performed in the presence of strongly adsorbable anions, such as I-. In spite of having found a partial inhibition of the Cu voltammetric features in the presence of I-, we calculated integer numbers in the electron transfer to Cu2+ and I- ions. The change in the values of Cu massive