Science.gov

Sample records for acid dha levels

  1. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  2. Soy-based infant formula supplemented with DHA and ARA supports growth and increases circulating levels of these fatty acids in infants.

    PubMed

    Hoffman, Dennis; Ziegler, Ekhard; Mitmesser, Susan H; Harris, Cheryl L; Diersen-Schade, Deborah A

    2008-01-01

    Healthy term infants (n = 244) were randomized to receive: (1) control, soy-based formula without supplementation or (2) docosahexaenoic acid-arachidonic acid (DHA + ARA), soy-based formula supplemented with at least 17 mg DHA/100 kcal (from algal oil) and 34 mg ARA/100 kcal (from fungal oil) in a double-blind, parallel group trial to evaluate safety, benefits, and growth from 14 to 120 days of age. Anthropometric measurements were taken at 14, 30, 60, 90, and 120 days of age and 24-h dietary and tolerance recall were recorded at 30, 60, 90, and 120 days of age. Adverse events were recorded throughout the study. Blood samples were drawn from subsets of 25 infants in each group. Capillary column gas chromatography was used to analyze the percentages of fatty acids in red blood cell (RBC) lipids and plasma phospholipids. Compared with the control group, percentages of fatty acids such as DHA and ARA in total RBC and plasma phospholipids were significantly higher in infants in the DHA + ARA group at 120 days of age (P < 0.001). Growth rates did not differ significantly between feeding groups at any assessed time point. Supplementation did not affect the tolerance of formula or the incidence of adverse events. Feeding healthy term infants soy-based formula supplemented with DHA and ARA from single cell oil sources at concentrations similar to human milk significantly increased circulating levels of DHA and ARA when compared with the control group. Both formulas supported normal growth and were well tolerated.

  3. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).

    PubMed

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-02-08

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week).

  4. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA.

    PubMed

    Doughman, Scott D; Krupanidhi, Srirama; Sanjeevi, Carani B

    2007-08-01

    Long-chain EPA/DHA omega-3 fatty acid supplementation can be co-preventative and co-therapeutic. Current research suggests increasing accumulated long chain omega-3s for health benefits and as natural medicine in several major diseases. But many believe plant omega-3 sources are nutritionally and therapeutically equivalent to the EPA/DHA omega-3 in fish oil. Although healthy, precursor ALA bio-conversion to EPA is inefficient and production of DHA is nearly absent, limiting the protective value of ALA supplementation from flax-oil, for example. Along with pollutants certain fish acquire high levels of EPA/DHA as predatory species. However, the origin of EPA/DHA in aquatic ecosystems is algae. Certain microalgae produce high levels of EPA or DHA. Now, organically produced DHA-rich microalgae oil is available. Clinical trials with DHA-rich oil indicate comparable efficacies to fish oil for protection from cardiovascular risk factors by lowering plasma triglycerides and oxidative stress. This review discusses 1) omega-3 fatty acids in nutrition and medicine; 2) omega-3s in physiology and gene regulation; 3) possible protective mechanisms of EPA/DHA in major diseases such as coronary heart disease, atherosclerosis, cancer and type 2 diabetes; 4) EPA and DHA requirements considering fish oil safety; and 5) microalgae EPA and DHA-rich oils and recent clinical results.

  5. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    PubMed

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-(14)C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-(14)C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  6. Exploration of the perceived and actual benefits of omega-3 fatty acids and the impact of FADS1 and FADS2 genetic information on dietary intake and blood levels of EPA and DHA.

    PubMed

    Roke, Kaitlin

    2017-03-01

    From a global health perspective, increased intake of omega-3 fatty acids (FAs), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for human health. However, the consumption of EPA- and DHA-rich foods such as fatty fish is low in the Western diet. Therefore, finding new ways to motivate people to increase their consumption of omega-3 FAs is essential. To find effective ways to motivate individuals, understanding people's awareness of omega-3 FAs and how they obtain their knowledge about nutrition and health is critical. Consequently, we developed an online survey to assess awareness and self-reported intake of omega-3 FAs and supplements in young adults. EPA and DHA are also produced endogenously to a limited extent through a pathway regulated by fatty acid desaturase 1 and 2 (FADS1 and FADS2) genes. Of relevance, single nucleotide polymorphisms (SNPs) in the FADS genes influence levels of omega-3 FAs, where minor allele carriers have lower levels compared with major allele carriers. Accordingly, we conducted a clinical trial to investigate FA levels in response to dietary EPA and DHA supplementation in young adults stratified by SNPs in FADS1 and FADS2. The level of reported awareness of omega-3 terminology varied depending on an individual's field of study and thus providing all participants with the same set of nutrition information could be an effective tool to increase knowledge and motivate behaviour change. Additionally, the variation in FA levels in accordance to SNPs in FADS1 and FADS2 could be used to create tailored nutritional recommendations which may improve lifestyle habits. The results discovered in the first 2 studies regarding awareness of omega-3 FAs and genetic variation were subsequently used to design a nutrigenetics intervention in young adults. Individuals who received their FADS1 genetic information were more aware of different omega-3 FAs and reported fewer barriers to their consumption by the end of

  7. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  8. Chemopreventive and renal protective effects for docosahexaenoic acid (DHA): implications of CRP and lipid peroxides

    PubMed Central

    El-Mesery, ME; Al-Gayyar, MM; Salem, HA; Darweish, MM; El-Mowafy, AM

    2009-01-01

    Background The fish oil-derived ω-3 fatty acids, like docosahexanoic (DHA), claim a plethora of health benefits. We currently evaluated the antitumor effects of DHA, alone or in combination with cisplatin (CP) in the EAC solid tumor mice model, and monitored concomitant changes in serum levels of C-reactive protein (CRP), lipid peroxidation (measured as malondialdehyde; MDA) and leukocytic count (LC). Further, we verified the capacity of DHA to ameliorate the lethal, CP-induced nephrotoxicity in rats and the molecular mechanisms involved therein. Results EAC-bearing mice exhibited markedly elevated LC (2-fold), CRP (11-fold) and MDA levels (2.7-fold). DHA (125, 250 mg/kg) elicited significant, dose-dependent reductions in tumor size (38%, 79%; respectively), as well as in LC, CRP and MDA levels. These effects for CP were appreciably lower than those of DHA (250 mg/kg). Interestingly, DHA (125 mg/kg) markedly enhanced the chemopreventive effects of CP and boosted its ability to reduce serum CRP and MDA levels. Correlation studies revealed a high degree of positive association between tumor growth and each of CRP (r = 0.85) and leukocytosis (r = 0.89), thus attesting to a diagnostic/prognostic role for CRP. On the other hand, a single CP dose (10 mg/kg) induced nephrotoxicity in rats that was evidenced by proteinuria, deterioration of glomerular filtration rate (GFR, -4-fold), a rise in serum creatinine/urea levels (2–5-fold) after 4 days, and globally-induced animal fatalities after 7 days. Kidney-homogenates from CP-treated rats displayed significantly elevated MDA- and TNF-α-, but reduced GSH-, levels. Rats treated with DHA (250 mg/kg, but not 125 mg/kg) survived the lethal effects of CP, and showed a significant recovery of GFR; while their homogenates had markedly-reduced MDA- and TNF-α-, but -increased GSH-levels. Significant association was detected between creatinine level and those of MDA (r = 0.81), TNF-α ) r = 0.92) and GSH (r = -0.82); implying

  9. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?

    PubMed

    Mozaffarian, Dariush; Wu, Jason H Y

    2012-03-01

    Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially

  10. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts.

    PubMed

    Sprague, M; Walton, J; Campbell, P J; Strachan, F; Dick, J R; Bell, J G

    2015-10-15

    The replacement of fish oil (FO) with a DHA-rich Schizochytrium sp. algal meal (AM) at two inclusion levels (11% and 5.5% of diet) was tested in Atlantic salmon post-smolts compared to fish fed a FO diet of northern (NFO) or southern hemisphere (SFO) origin. Fish were preconditioned prior to the 19-week experimental feeding period to reduce long-chain polyunsaturated fatty acid (LC-PUFA) and persistent organic pollutant levels (POPs). Dietary POP levels differed significantly between treatments in the order of NFO>SFO>11 AM/5.5 AM and were subsequently reflected in the flesh. Fish fed the 11 AM diet contained similar DHA levels (g 100 g(-1) flesh) to FO-fed fish, despite percentage differences. However, the low levels of EPA in the diets and flesh of algal-fed fish compromised the overall nutritional value to the final consumer. Nevertheless, further developments in microalgae culture offer a promising alternative lipid source of LC-PUFA to FO in salmon feeds that warrants further investigation.

  11. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    PubMed

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  12. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    PubMed Central

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K.; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% lower than those fed a control diet containing adequate α-linolenic acid. Decreased brain DHA produced a significant main effect of decreased density of ventral striatal D2-like receptors. Virgin females with decreased DHA also exhibited higher density of D1-like receptors in the caudate nucleus than virgin females with normal DHA. These receptor alterations are similar to those found in several rodent models of depression, and are consistent with the proposed hypodopaminergic basis for anhedonia and motivational deficits in depression. PMID:20670471

  13. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.

  14. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  15. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    PubMed

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2016-11-10

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  16. Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain

    PubMed Central

    Bradbury, Joanne

    2011-01-01

    Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation. PMID:22254110

  17. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro.

    PubMed

    Paschoal, V A; Vinolo, M A R; Crisma, A R; Magdalon, J; Curi, R

    2013-02-01

    Fish oils are used as therapeutic agents in chronic inflammatory diseases. The omega-3 fatty acids (FA) found in these oils are mainly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. The anti-inflammatory properties of fish oils are attributed to both omega-3 fatty acids. However, it is unknown whether such effects are due to either EPA or DHA. In this study, the effects of EPA and DHA on rat neutrophil function in vitro were compared. Both EPA and DHA increased the production of H₂O₂ when cells were stimulated or not with lipopolysaccharides (LPS). However, EPA was more potent than DHA in triggering an increase in superoxide release by cells in the basal condition or when stimulated with phorbol myristate acetate (PMA) or zymosan. Only DHA increased the phagocytic capacity and fungicidal activity of neutrophils. Both FA increased the release of tumor necrosis factor-α (TNF-α) in nonstimulated cells, but only EPA increased the production of cytokine-inducing neutrophil chemoattractant-2 (CINC-2) in the absence or presence of LPS, whereas production of interleukin-1 beta (IL-1β) was only increased by DHA in the presence of LPS. In addition, there was no alteration in the production of nitric oxide. In conclusion, we show herein that EPA and DHA can differently modulate aspects of the neutrophil response, which may be relevant for the development of therapies rich in one or other FA depending on the effect required.

  18. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer.

    PubMed

    Molfino, Alessio; Amabile, Maria Ida; Monti, Massimo; Arcieri, Stefano; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2016-04-05

    Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.

  19. Determinants of DHA incorporation into tumor tissue during dietary DHA supplementation

    PubMed Central

    Hajjaji, Nawale; Schubnel, Valérie; Bougnoux, Philippe

    2011-01-01

    Docosahexaenoic acid (DHA), upon incorporation into tumor tissue, has the potential to sensitize tumors to the effects of chemotherapy or radiation therapy. Although DHA has usually been supplied to tumor tissue in the diet, appropriate dietary conditions required to obtain optimal tumor levels have not been established. Hence, we studied mammary tumor tissue responses in rats fed various durations and doses of DHA. Rats fed a palm-oil enriched diet (diet 0) were switched to diets providing either 0.8 g DHA/d (diet 1) or 1.5 g DHA/d (diet 2). Tumor tissue fatty acid composition was analysed at baseline (diet 0), at weeks 1, 4 and 9 during diet 1 and at week 4 during diet 2. Dietary DHA supplementation differentially increased DHA within phospholipids (PL) and triacylglycerol (TAG) fractions in tumors. DHA level equilibrated between 2 and 4 weeks in PL while DHA increase was more progressive in TAG and did not reach a steady state. A higher dose of DHA further increased DHA content in tumor PL and TAG (P = 0.018 and P < 0.001 respectively). DHA concentration in plasma PL was positively correlated with DHA in tumor PL (r = 0.72; P = 0.0003) and TAG (r = 0.64; P = 0.003). We conclude that dietary DHA supplementation enhances tumor content of DHA in a time- and dose-dependent manner, and that DHA level in plasma PL could be used as a proxy for tumor DHA. These findings have implications for dietary DHA supplementations in cancer patients. PMID:21638063

  20. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour.

    PubMed

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats.

  1. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases.

    PubMed

    Sun, Grace Y; Simonyi, Agnes; Fritsche, Kevin L; Chuang, Dennis Y; Hannink, Mark; Gu, Zezong; Greenlief, C Michael; Yao, Jeffrey K; Lee, James C; Beversdorf, David Q

    2017-03-10

    Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca(2+)-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.

  2. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA.

    PubMed

    Patterson, Ashley C; Chalil, Alan; Aristizabal Henao, Juan J; Streit, Isaac T; Stark, Ken D

    2015-12-01

    Blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been related to coronary heart disease risk. Understanding the response of EPA + DHA in blood to dietary intake of EPA + DHA would facilitate the use of blood measures as markers of adherence and enable the development of dietary recommendations. The objective of this study is examine the blood response to intakes of EPA + DHA ≤1 g/d with an intervention designed for dietary adherence. It was hypothesized this relationship would be linear and that intakes of EPA + DHA <1 g/d would result in blood levels below those associated with the highest level of protection for cardiovascular events. Background EPA + DHA intake of men and women (n = 20) was determined by food frequency questionnaire and adherence was monitored by weekly fingertip blood sampling for fatty acid determinations. Participants consumed nutraceuticals to achieve intakes of 0.25 g/d and 0.5 g/d EPA + DHA for successive four-week periods. A subgroup (n = 5) had intakes of 1.0 g/d EPA + DHA for an additional 4 weeks. Fatty acid composition of whole blood, erythrocytes, and plasma phospholipids were determined at each time point. Blood levels of EPA and DHA increased linearly in these pools. A comprehensive review of the literature was used to verify the blood-intake relationship. Blood levels of long chain omega-3 polyunsaturated fatty acids reached blood levels associated with the highest levels of primary cardiac arrest reduction and sudden cardiac death risk only with intakes of 1.0 g/d of EPA + DHA. The blood biomarker response to intakes of EPA + DHA ≤1 g/d is linear in a small but highly adherent study sample and this information can assist in determining adherence in clinical studies and help identify dietary intake targets from associations between blood and disease.

  3. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA

    PubMed Central

    Dyall, Simon C.

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined. PMID:25954194

  4. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.

    PubMed

    Dyall, Simon C

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer's disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.

  5. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  6. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  7. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Anandan, R.; Paul, B. N.; Sarma, Debajit; Syama Dayal, J.; Venkateshwarlu, G.; Mathew, Suseela; Karunakaran, D.; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P.; Sridhar, N.

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  8. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  9. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity.

    PubMed

    Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Romarheim, Odd Helge; Hatlen, Bjarne; Leeuwis, Robin; Venegas, Claudia; Ruyter, Bente

    2017-01-01

    Farmed salmon feeds have changed from purely marine-based diets with high levels of EPA and DHA in the 1990s to the current 70 % plant-based diets with low levels of these fatty acids (FA). The aim of this study was to establish the impacts of low dietary EPA and DHA levels on performance and tissue integrity of Atlantic salmon (Salmo salar). Atlantic salmon (50 g) in seawater were fed fourteen experimental diets, containing five levels (0, 0·5, 1·0, 1·5 and 2·0 %) of EPA, DHA or a 1:1 EPA+DHA plus control close to a commercial diet, to a final weight of 400 g. Lack of EPA and DHA did not influence mortality, but the n-3-deficient group exhibited moderately slower growth than those fed levels above 0·5 %. The heart and brain conserved EPA and DHA levels better than skeletal muscle, liver, skin and intestine. Decreased EPA and DHA favoured deposition of pro-inflammatory 20 : 4n-6 and 20 : 3n-6 FA in membrane phospholipids in all tissues. When DHA was excluded from diets, 18 : 3n-3 and EPA were to a large extent converted to DHA. Liver, skeletal and cardiac muscle morphology was normal in all groups, with the exception of cytoplasm packed with large or foamy vacuoles and sometimes swollen enterocytes of intestine in both deficient and EPA groups. DHA supplementation supported normal intestinal structure, and 2·0 % EPA+DHA alleviated deficiency symptoms. Thus, EPA and DHA dietary requirements cannot be based exclusively on growth; tissue integrity and fish health also need to be considered.

  10. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    PubMed

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  11. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids[S

    PubMed Central

    Lin, Lauren E.; Chen, Chuck T.; Hildebrand, Kayla D.; Liu, Zhen; Hopperton, Kathryn E.; Bazinet, Richard P.

    2015-01-01

    To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of 3H-ARA or 3H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (Jout). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the Jout was decreased. In the deprived versus adequate n-6 PUFA rats, the Jout of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism. PMID:25477531

  12. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-03-31

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans.

  13. Lipid Profiling following Intake of the Omega 3 Fatty Acid DHA Identifies the Peroxidized Metabolites F4-Neuroprostanes as the Best Predictors of Atherosclerosis Prevention

    PubMed Central

    Gladine, Cécile; Newman, John W.; Durand, Thierry; Pedersen, Theresa L.; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine

    2014-01-01

    Abstract The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA

  14. Effect of flaxseed oil and microalgae DHA on the production performance, fatty acids and total lipids of egg yolk and plasma in laying hens.

    PubMed

    Neijat, M; Ojekudo, O; House, J D

    2016-12-01

    The incorporation of omega-3 polyunsaturated fatty acids (PUFA) in the egg is dependent on both the transfer efficiency of preformed dietary omega-3 fatty acids to the eggs as well as endogenous PUFA metabolism and deposition. Employing an experimental design consisting of 70 Lohmann LSL-Classic hens (n=10/treatment) in a 6-week feeding trial, we examined the impact of graded levels of either flaxseed oil (alpha-linolenic acid, ALA) or algal DHA (preformed docosahexaenoic acid, DHA), each supplying 0.20%, 0.40% and 0.60% total omega-3s. The control diet was practically low in omega-3s. Study parameters included monitoring the changes of fatty acid contents in yolk, measures of hen performance, eggshell quality, total lipids and fatty acid contents of plasma. Data were analysed as a complete randomized design using Proc Mixed procedure of SAS. No significant differences were observed between treatments with respect to hen performance, eggshell quality and cholesterol content in plasma and egg yolk. Individual and total omega-3 PUFA in the yolk and plasma increased (P<0.0001) linearly as a function of total omega-3 PUFA intake. At the highest inclusion levels, DHA-fed hens incorporated 3-fold more DHA in eggs compared with ALA-fed hens (179±5.55 vs. 66.7±2.25mg/yolk, respectively). In both treatment groups, maximal enrichment of total n-3 PUFA was observed by week-2, declined by week-4 and leveled thereafter. In addition, accumulation of DHA in egg yolk showed linear (P<0.0001) and quadratic (P<0.05) effects for flaxseed oil (R(2)=0.89) and algal DHA (R(2)=0.95). The current data, based on defined level of total omega-3s in the background diet, provides evidence to suggest that exogenous as well as endogenous synthesis of DHA may be subject to a similar basis of regulation, and serve to highlight potential regulatory aspects explaining the limitations in the deposition of endogenously produced omega-3 LCPUFA.

  15. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA

    PubMed Central

    Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J. Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A

    2015-01-01

    Aspirin’s prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin’s effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6 g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a “V”-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu. PMID:25555354

  16. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA.

    PubMed

    Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A

    2015-05-01

    Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu.

  17. Dietary supplementation with docosahexanoic acid (DHA) increases red blood cell membrane flexibility in mice with sickle cell disease.

    PubMed

    Wandersee, Nancy J; Maciaszek, Jamie L; Giger, Katie M; Hanson, Madelyn S; Zheng, Suilan; Guo, YiHe; Mickelson, Barbara; Hillery, Cheryl A; Lykotrafitis, George; Low, Philip S; Hogg, Neil

    2015-02-01

    Humans and mice with sickle cell disease (SCD) have rigid red blood cells (RBCs). Omega-3 fatty acids, such as docosahexanoic acid (DHA), may influence RBC deformability via incorporation into the RBC membrane. In this study, sickle cell (SS) mice were fed natural ingredient rodent diets supplemented with 3% DHA (DHA diet) or a control diet matched in total fat (CTRL diet). After 8weeks of feeding, we examined the RBCs for: 1) stiffness, as measured by atomic force microscopy; 2) deformability, as measured by ektacytometry; and 3) percent irreversibly sickled RBCs on peripheral blood smears. Using atomic force microscopy, it is found that stiffness is increased and deformability decreased in RBCs from SS mice fed CTRL diet compared to wild-type mice. In contrast, RBCs from SS mice fed DHA diet had markedly decreased stiffness and increased deformability compared to RBCs from SS mice fed CTRL diet. Furthermore, examination of peripheral blood smears revealed less irreversibly sickled RBCs in SS mice fed DHA diet as compared to CTRL diet. In summary, our findings indicate that DHA supplementation improves RBC flexibility and reduces irreversibly sickled cells by 40% in SS mice. These results point to potential therapeutic benefits of dietary omega-3 fatty acids in SCD.

  18. EPA or DHA supplementation increases triacylglycerol, but not phospholipid, levels in isolated rat cardiomyocytes.

    PubMed

    Righi, Valeria; Di Nunzio, Mattia; Danesi, Francesca; Schenetti, Luisa; Mucci, Adele; Boschetti, Elisa; Biagi, Pierluigi; Bonora, Sergio; Tugnoli, Vitaliano; Bordoni, Alessandra

    2011-07-01

    It is well recognized that a high dietary intake of long-chain polyunsaturated fatty acids (LC-PUFA) has profound benefits on health and prevention of chronic diseases. In particular, in recent years there has been a dramatic surge of interest in the health effects of n-3 LC-PUFA derived from fish, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Notwithstanding, the metabolic fate and the effects of these fatty acids once inside the cell has seldom been comprehensively investigated. Using cultured neonatal rat cardiomyocytes as model system we have investigated for the first time, by means of high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy in combination with gas chromatography (GC), the modification occurring in the cell lipid environment after EPA and DHA supplementation. The most important difference between control and n-3 LC-PUFA-supplemented cardiomyocytes highlighted by HR-MAS NMR spectroscopy is the increase of signals from mobile lipids, identified as triacylglycerols (TAG). The observed increase of mobile TAG is a metabolic response to n-3 LC-PUFA supplementation, which leads to an increased lipid storage. The sequestration of mobile lipids in lipid bodies provides a deposit of stored energy that can be accessed in a regulated fashion according to metabolic need. Interestingly, while n-3 LC-PUFA supplementation to neonatal rat cardiomyocytes causes a huge variation in the cell lipid environment, it does not induce detectable modifications in water-soluble metabolites, suggesting negligible interference with normal metabolic processes.

  19. Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH.

    PubMed

    Kwak, Suryang; Park, Yong-Cheol; Seo, Jin-Ho

    2013-05-01

    3-Hydroxypropionic acid (3-HP) is a value-added chemical for polymer synthesis. For biosynthesis of 3-HP from glycerol, two dhaB and dhaR clusters encoding glycerol dehydratase and its reactivating factor, respectively, were cloned from Lactobacillus brevis KCTC33069 and expressed in Escherichia coli. Coexpression of dhaB and dhaR allowed the recombinant E. coli to convert glycerol to 3-hydroxypropionaldehyde, an intermediate of 3-HP biosynthesis. To produce 3-HP from glycerol, fed-batch fermentation with a two-step feeding strategy was designed to separate the cell growth from the 3-HP production stages. Finally, E. coli JHS00947 expressing L .brevis dhaB and dhaR, and E. coli aldH produced 14.3g/L 3-HP with 0.26 g/L-h productivity, which were 14.6 and 8.53 times higher than those of the batch culture. In conclusion, overexpression of L. brevis dhaB and dhaR clusters and E. coli aldH, and implementation of the two-step feeding strategy enabled recombinant E. coli to convert glycerol to 3-HP efficiently.

  20. Developmental and reproductive toxicological evaluation of arachidonic acid (ARA)-Rich oil and docosahexaenoic acid (DHA)-Rich oil.

    PubMed

    Falk, Michael C; Zheng, Xiaohui; Chen, Dieling; Jiang, Yue; Liu, Zeshen; Lewis, Kara D

    2017-03-08

    The purpose of this study was to investigate the reproductive and developmental toxicity of dietary exposure to DHA-rich oil from Schizochytrium sp. and ARA-rich oil from Mortierella alpina. In a developmental toxicity study, pregnant Wistar rats were untreated (control) or administered corn oil (vehicle control), 1,000, 2,500, or 5000 mg/kg bw/day of DHA-rich oil or ARA-rich oil via gavage from gestation days 6 through day 20. In the reproductive toxicity study, male and female Wistar rats were administered vehicle control (corn oil), or 1,000, 2,500, or 5000 mg/kg bw/day of DHA- or ARA-rich oil via gavage throughout the mating period, pregnancy, and the nursing and lactation period. Differences in the number of fetuses, fetal skeletal malformations, and external and visceral anomalies in the developmental study and mortality, clinical signs, fertility indices, physical observations, gross necropsy findings, and gestation period length in the reproductive toxicity study were not dose-related or significantly different from control groups, and were not considered to be treatment related. The no observed adverse effect level (NOAEL) for maternal toxicity and embryo/fetal development and for paternal or maternal treatment-related reproductive toxicity for the DHA-rich oil and ARA-rich oil administered by gavage, was 5000 mg/kg bw/day.

  1. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    PubMed

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process.

  2. Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer

    PubMed Central

    Manzi, Laura; Costantini, Lara; Molinari, Romina; Merendino, Nicolò

    2015-01-01

    The omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are a class of lipids that has been shown to have beneficial effects on some chronic degenerative diseases such as cardiovascular diseases, rheumatoid arthritis, inflammatory disorders, diabetes, and cancer. Among ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) has received particular attention for its antiproliferative, proapoptotic, antiangiogenetic, anti-invasion, and antimetastatic properties, even though the involved molecular mechanisms are not well understood. Recently, some in vitro studies showed that DHA promotes the inhibition of glycolytic enzymes and the Warburg phenotype. For example, it was shown that in breast cancer cell lines the modulation of bioenergetic functions is due to the capacity of DHA to activate the AMPK signalling and negatively regulate the HIF-1α functions. Taking into account these considerations, this review is focused on current knowledge concerning the role of DHA in interfering with cancer cell metabolism; this could be considered a further mechanism by which DHA inhibits cancer cell survival and progression. PMID:26339588

  3. Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer.

    PubMed

    Manzi, Laura; Costantini, Lara; Molinari, Romina; Merendino, Nicolò

    2015-01-01

    The omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are a class of lipids that has been shown to have beneficial effects on some chronic degenerative diseases such as cardiovascular diseases, rheumatoid arthritis, inflammatory disorders, diabetes, and cancer. Among ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) has received particular attention for its antiproliferative, proapoptotic, antiangiogenetic, anti-invasion, and antimetastatic properties, even though the involved molecular mechanisms are not well understood. Recently, some in vitro studies showed that DHA promotes the inhibition of glycolytic enzymes and the Warburg phenotype. For example, it was shown that in breast cancer cell lines the modulation of bioenergetic functions is due to the capacity of DHA to activate the AMPK signalling and negatively regulate the HIF-1α functions. Taking into account these considerations, this review is focused on current knowledge concerning the role of DHA in interfering with cancer cell metabolism; this could be considered a further mechanism by which DHA inhibits cancer cell survival and progression.

  4. Heterogeneity in cord blood DHA concentration: towards an explanation.

    PubMed

    Muhlhausler, B S; Gibson, R A; Yelland, L N; Makrides, M

    2014-10-01

    This paper aimed to identify the dietary and non-dietary determinants of docosahexaenoic acid (DHA) levels in umbilical cord blood at delivery. DHA was measured in cord blood plasma phospholipids of 1571 participants from the DOMInO (DHA to Optimize Mother Infant Outcome) randomized controlled trial. Socioeconomic, lifestyle and clinical data relating to the mother and current pregnancy were obtained from all women and their relationships with cord blood DHA assessed. DHA concentrations in the cord plasma phospholipids at delivery covered a 3-4 fold range in both control and DHA groups. The total number of DHA-rich intervention supplement capsules consumed over the course of pregnancy and gestational age at delivery individually explained 21% and 16% respectively of the variation in DHA abundance in the cord blood plasma phospholipids at delivery, but no other clinical or life-style factors explored in this study could account for >2% of the variation. Indeed, more than 65% of the variation remained unaccounted for even when all factors were included in the analysis. These data suggest that factors other than maternal DHA intake have an important role in determining cord blood DHA concentrations at delivery, and may at least partially explain the variation in the response of infants to maternal DHA supplementation reported in published trials.

  5. Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp. SD116.

    PubMed

    Gao, Mang; Song, Xiaojin; Feng, Yingang; Li, Wenli; Cui, Qiu

    2013-01-01

    A heterotrophic microalga, strain SD116, with the ability to produce high concentrations of docosahexaenoic acid (DHA, C22:6n-3) was isolated from Shuidong Bay, Guangdong Province, China. Nucleotide sequence analysis of the 18S rDNA of SD116 showed that the strain has a close phylogenetic relationship to Aurantiochytrium species. The highest rates for growth and DHA accumulation for SD116 were obtained in 6.0% glucose, 2.0% yeast extract, and 50% artificial seawater (ASW) at a pH of 7 at 28°C. The maximum total lipid content reached 56.3% of the dry cell weight (DCW), and the maximum DHA content accounted for 50.9% of the total fatty acid (TFA) content. It was further found that urea may be a potential nitrogen source for industrial fermentation because of its cheap price and ability to induce a relatively high biomass and lipid production capacity. Using 5 L fermenters, the DCW, total lipid content, and DHA yield were found to be 70.43 g L(-1), 71.09% of the DCW, and 17.42 g L(-1) (34.79% of the TFA), respectively. The results show that Aurantiochytrium sp. SD116 is a promising candidate for commercial DHA production and could be useful for the synthesis of biomass-related products.

  6. The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression.

    PubMed

    Jans, Linda A W; Giltay, Erik J; Van der Does, A J Willem

    2010-12-01

    Depressive symptoms are common during pregnancy and the post-partum period. Although essential n-3 PUFA may have beneficial effects on depression, it remains unclear whether they are also effective for perinatal depression. The purpose of the present study was to assess the efficacy of n-3 supplementation for perinatal depression, by performing a meta-analysis on currently available data. After a thorough literature search, we included seven randomised controlled trials in the meta-analysis, all with EPA and/or DHA supplementation. Most studies were judged to be of low-to-moderate quality, mainly due to small sample sizes and failure to adhere to Consolidated Standards of Reporting Trials guidelines. Some studies were not primarily designed to address perinatal depression. A total of 309 women on n-3 fatty acid supplementation were compared with 303 women on placebo treatment. n-3 Supplementation was not found to be significantly more effective than placebo at post-treatment with a pooled effect size (Hedges's g) of - 0.03 (95 % CI - 0.18, 0.13; P = 0.76) using a fixed-effects model. Heterogeneity was low-to-moderate (I2 = 30 %). In a subgroup analysis of three small studies of pregnant women with major depression, there was some indication of effectiveness (effect size 0.17; 95 % CI - 0.21, 0.55). In conclusion, the question of whether EPA and DHA administration is effective in the prevention or treatment of perinatal depression cannot be answered yet. Future research should focus on women who are clinically depressed (or at risk). The quality of research in this area needs to improve.

  7. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs.

  8. Altered essential fatty acid metabolism and composition in rat liver, plasma, heart and brain after microalgal DHA addition to the diet.

    PubMed

    Lin, Yu Hong; Shah, Samit; Salem, Norman

    2011-08-01

    To investigate the effect of docosahexaenoic acid (DHA) without other highly unsaturated fatty acids (HUFA) on n-3 and n-6 essential fatty acid (EFA) metabolism and fatty acid composition in mammals, a stable isotope tracer technique was used in adult rats fed diets with or without 1.3% of algal DHA in a base diet containing 15% of linoleic acid and 3% of alpha-linolenic acid over 8 weeks. The rats were administered orally a mixed oil containing 48 mg/kg body weight of deuterated linoleic and alpha-linolenic acids and euthanized at 4, 8, 24, 96, 168, 240, 360 and 600 h after administration of the isotopes. Fatty acid compositions and the concentrations of deuterated precursors and their respective metabolites were determined in rat liver, plasma, heart and brain as a function of time. DHA, docosapentaenoic acid and eicosapentaenoic acid in the n-3 EFA family were significantly increased in all organs tested in the DHA-fed group, ranging from 5% to 200% greater in comparison with the control group. The accumulation of the metabolites, deuterated-DHA and deuterated-docosapentaenoic acid n-6 was greatly decreased by 1.5- to 2.5-fold in the dietary DHA group. In summary, feeding preformed DHA led to a marked increase in n-3 HUFA content of rat organs at the expense of n-6 HUFA and also prevented the accumulation of newly synthesized deuterated end products. This is the first study which has isolated the effects of DHA on the de novo metabolism on both the n-6 and n-3 EFA pathways.

  9. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    PubMed

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.

  10. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  11. Impact of DHA on Metabolic Diseases from Womb to Tomb

    PubMed Central

    Arnoldussen, Ilse A. C.; Kiliaan, Amanda J.

    2014-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and, in addition, beneficial in cognitive processes throughout life. We review the impact of DHA on societal relevant metabolic diseases such as cardiovascular diseases, obesity, and diabetes mellitus type 2 (T2DM). All of these are risk factors for cognitive decline and dementia in later life. DHA supplementation is associated with a reduced incidence of both stroke and atherosclerosis, lower bodyweight and decreased T2DM prevalence. These findings are discussed in the light of different stages in the human life cycle: childhood, adolescence, adulthood and in later life. From this review, it can be concluded that DHA supplementation is able to inhibit pathologies like obesity and cardiovascular disease. DHA could be a dietary protector against these metabolic diseases during a person’s entire lifespan. However, supplementation of DHA in combination with other dietary factors is also effective. The efficacy of DHA depends on its dose as well as on the duration of supplementation, sex, and age. PMID:25528960

  12. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies.

    PubMed

    Lopez-Huertas, Eduardo

    2010-03-01

    Substitution of dietary saturated fat by oleic acid and/or polyunsaturated fatty acids (PUFA) has been described to reduce the cardiovascular risk by reducing blood lipids, mainly cholesterol. Additional benefits have been described for long chain omega-3 PUFA (eicosapentaenoic acid-EPA and docosahexaenoic acid-DHA) from fish oils. In recent years, food technology has been used to produce dairy drinks with a reduced content of saturated fat in favour of those fatty acids, most of them claiming cardiovascular benefits. This review summarises all the scientific evidence regarding the effects of milks enriched with long chain omega-3 PUFA (EPA+DHA) and/or oleic acid on cardiovascular health. Nine controlled intervention studies with enriched milks have reported effects on healthy volunteers, subjects with increased risk factors and cardiovascular patients. The main effects observed were reductions of blood lipids, mainly cholesterol, LDL-cholesterol and triglycerides.

  13. EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4.

    PubMed

    Eclov, Julie A; Qian, Qingwen; Redetzke, Rebecca; Chen, Quanhai; Wu, Steven C; Healy, Chastity L; Ortmeier, Steven B; Harmon, Erin; Shearer, Gregory C; O'Connell, Timothy D

    2015-12-01

    Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor β1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.

  14. Maternal DHA and the Development of Attention in Infancy and Toddlerhood

    ERIC Educational Resources Information Center

    Colombo, John; Kannass, Kathleen N.; Jill Shaddy, D.; Kundurthi, Shashi; Maikranz, Julie M.; Anderson, Christa J.; Blaga, Otilia M.; Carlson, Susan E.

    2004-01-01

    Infants were followed longitudinally to document the relationship between docosahexaenoic acid (DHA) levels and the development of attention. Erythrocyte (red-blood cell; RBC) phospholipid DHA (percentage of total fatty acids) was measured from infants and mothers at delivery. Infants were assessed in infant-control habituation at 4, 6, and 8…

  15. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions.

    PubMed

    Walker, Celia G; West, Annette L; Browning, Lucy M; Madden, Jackie; Gambell, Joanna M; Jebb, Susan A; Calder, Philip C

    2015-08-03

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0-4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%-64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.

  16. Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids.

    PubMed

    Clayton, Edward H; Lamb, Tracy A; Refshauge, Gordon; Kerr, Matthew J; Bailes, Kristy L; Ponnampalam, Eric N; Friend, Michael A; Hopkins, David L

    2014-08-01

    Algae high in docosahexaenoic acid (DHA) may provide a source of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) for inclusion in the diet of lambs to improve the LCn-3PUFA status of meat. The effect of background LCn-3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA-Gold™ algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n-3 or n-6 around conception. LCn-3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p < 0.001) lower when lambs received the ration for 14 days compared with pre-feeding concentrations. The concentrations of EPA and DHA were also significantly (p < 0.001) higher when lambs consumed the Algae ration compared with the control ration for 42 days. The increase in EPA and DHA was, however, significantly (p < 0.05) lower if lamb dams had previously been fed a diet high in n-6 at conception. Assessing the previous nutrition and n-3 status of lambs may allow producers to more accurately predict the likely response to supplements high in LCn-3PUFA, particularly, DHA.

  17. The Effects of EPA+DHA and Aspirin on Inflammatory Cytokines and Angiogenesis Factors.

    PubMed

    Block, Robert C; Dier, Usawadee; Calderonartero, Pedro; Shearer, Gregory C; Kakinami, Lisa; Larson, Mark K; Harris, William S; Georas, Steve; Mousa, Shaker A

    2012-01-01

    OBJECTIVE: In a recent study, we showed that the combination of aspirin plus the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) synergistically inhibited platelet function. As aspirin, EPA, and DHA have demonstrated anti-inflammatory properties, we hypothesized that the ingestion of EPA and DHA, with and without aspirin, would reduce plasma levels of inflammatory cytokines and angiogenesis factors more than aspirin alone and before aspirin was ingested. METHODS: Using multiplex technology, we investigated the effects of aspirin (single-dose 650 mg on day 1), EPA+DHA (3.4 g/d for days 2-29), and aspirin with EPA+DHA (day 30) on plasma levels of inflammatory cytokines and angiogenesis factors in healthy adults. RESULTS: Aspirin alone had no effect on any factor versus baseline, but EPA+DHA, with and without aspirin, significantly reduced concentrations of 8 of 9 factors. Although EPA+DHA plus aspirin reduced concentrations of a subset of the factors compared to baseline, neither aspirin alone nor the combination significantly reduced the level of any analyte more robustly than EPA+DHA alone. CONCLUSIONS: These data suggest that EPA+DHA has more pronounced down-regulatory effects on inflammation and angiogenesis than aspirin. The implications of these findings for the use of combined therapy for cardiovascular disease remain to be clarified.

  18. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  19. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  20. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)

    SciTech Connect

    Matsunaga, A.; Cottam, G.L.

    1987-05-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

  1. Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone.

    PubMed

    Emery, James A; Norambuena, Fernando; Trushenski, Jesse; Turchini, Giovanni M

    2016-04-01

    Due to the scarcity of marine fish oil resources, the aquaculture industry is developing more efficient strategies for the utilization of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). A better understanding of how fish utilize EPA and DHA, typically provided by fish oil, is needed. However, EPA and DHA have different physiological functions, may be metabolized and incorporated into tissues differently, and may vary in terms of their importance in meeting the fatty acid requirements of fish. To address these questions, Atlantic salmon were fed experimental diets containing, as the sole added dietary lipid source, fish oil (positive control), tallow (negative control), or tallow supplemented with EPA, DHA, or both fatty acids to ~50 or 100% of their respective levels in the positive control diet. Following 14 weeks of feeding, the negative control diet yielded optimum growth performance. Though surprising, these results support the notion that Atlantic salmon requirements for n-3 LC-PUFA are quite low. EPA was largely β-oxidized and inefficiently deposited in tissues, and increasing dietary levels were associated with potential negative effects on growth. Conversely, DHA was completely spared from catabolism and very efficiently deposited into flesh. EPA bioconversion to DHA was largely influenced by substrate availability, with the presence of preformed DHA having little inhibitory effect. These results clearly indicate EPA and DHA are metabolized differently by Atlantic salmon, and suggest that the n-3 LC-PUFA dietary requirements of Atlantic salmon may be lower than reported and different, if originating primarily from EPA or DHA.

  2. The importance of dietary DHA and ARA in early life: a public health perspective.

    PubMed

    Forsyth, Stewart; Gautier, Sheila; Salem, Norman

    2017-03-13

    Although the literature on the contribution of DHA and arachidonic acid (ARA) to fundamental metabolic functions in brain, immune and cardiovascular systems is extensive, there is a lack of consensus on the need for explicit recommendations on dietary intake for both DHA and ARA during the early years of life. This review takes a public health perspective with the objective of ensuring that recommendations protect the most vulnerable children worldwide. Most studies on the effects of DHA and ARA in early life have been undertaken in high-income countries and this is reflected in policy recommendations. Although breast milk is considered the gold standard and always contains DHA and ARA, there are proposals that infant formulas, especially follow-on formulas, do not need to be supplemented with these fatty acids. Complementary foods frequently have low concentrations of ARA and DHA and this is most significant in low-income countries where availability is also limited. Recent evidence shows that in developing countries, intakes of DHA and ARA during the age period 6-36 months are low and this relates to low national income. It is concluded that a continuum of DHA and ARA intake needs to be maintained during early life, a critical period of infant growth and development. For both infant and follow-on formulas, DHA and ARA should be mandatory at levels that are equivalent to breast milk. An optional recommendation may be limited to countries that can demonstrate evidence of adequate intakes of DHA and ARA during early life.

  3. Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders

    PubMed Central

    Wu, Aiguo; Noble, Emily E.; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-01-01

    Dietary deficiency of docosahexaenoic acid (C22: 6n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18: 3n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissue. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. PMID:25550171

  4. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders.

    PubMed

    Wu, Aiguo; Noble, Emily E; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-05-01

    Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders.

  5. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content?

    PubMed

    Gurzell, Eric A; Wiesinger, Jason A; Morkam, Christina; Hemmrich, Sophia; Harris, William S; Fenton, Jenifer I

    2014-09-01

    Despite numerous studies investigating n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation and inflammatory bowel diseases (IBD), the extent to which dietary n-3 LCPUFAs incorporate in gastrointestinal (GI) tissues and correlate with red blood cell (RBC) n-3 LCPUFA content is unknown. In this study, mice were fed three diets with increasing percent of energy (%en) derived from eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA). Dietary levels reflected recommended intakes of fish/fish oil by the American Heart Association. We analyzed the FA composition of phospholipids extracted from RBCs, plasma, and GI tissues. We observed that the 0.1%en EPA+DHA diet was sufficient to significantly increase the omega-3 index (RBC EPA+DHA) after 5 week feeding. The baseline EPA levels were 0.2-0.6% across all tissues increasing to 1.6-4.3% in the highest EPA+DHA diet; these changes resulted in absolute increases of 1.4-3.9% EPA across tissues. The baseline DHA levels were 2.2-5.9% across all tissues increasing to 5.8-10.5% in the highest EPA+DHA diet; these changes resulted in absolute increases of 3.2-5.7% DHA across tissues. These increases in EPA and DHA across all tissues resulted in strong (r>0.91) and significant (P<0.001) linear correlations between the omega-3 index and plasma/GI tissue EPA+DHA content, suggesting that the omega-3 index reflects the relative amounts of EPA+DHA in GI tissues. These data demonstrate that the GI tissues are highly responsive to dietary LCPUFA supplementation and that the omega-3 index can serve as a valid biomarker for assessing dietary EPA+DHA incorporation into GI tissues.

  6. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level.

    PubMed

    Chi, Zhanyou; Liu, Yan; Frear, Craig; Chen, Shulin

    2009-01-01

    The culture protocol of Schizochytrium limacinum SR 21, a known docosahexaenoic acid (DHA) producing marine algae was modified in this study to better fit fermentation parameters, particularly control of dissolved oxygen (DO) to the known reproductive and growth biology of the microorganism. The cultures controlled at 50% DO saturation produced a cell density of 181 million cells/ml, whereas cultures with 10% DO produced only 98.4 million cells/ml. A fixed-agitation rate of 150 rpm resulted in an even lower density of 22.5 million cells/ml. Fifty percent DO saturation level led to a decreased pH, as well as a negative correlation with lipid accumulation, while low oxygen concentration was obligatory for lipid accumulation. This study indicated that high DO was preferred for the cells' reproduction via release of zoospores. Thus, the culture of S. limacinum SR21 should be best divided into two stages: (1) a cell-number-increasing stage in which cell reproduction and cell number increase with little increase in the size and weight of each cell; and (2) a cell-size-increasing stage in which cells stop reproduction but cell size enlarges due to lipids accumulation. With such a protocol, the production of algae biomass and DHA was improved to levels of 37.9 g/L and 6.56 g/L, respectively. The two-stage culture process could be potentially used not only for omega-3 PUFA production, but also in other single cell oil (SCO)-producing processes, including biodiesel production from algae.

  7. On the potential application of polar and temperate marine microalgae for EPA and DHA production

    PubMed Central

    2013-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid membrane functioning. The cellular content of EPA and DHA may therefore be enhanced at low temperature and irradiance conditions. As a result, polar and cold temperate marine microalgal species might potentially be suitable candidates for commercial EPA and DHA production, given their adaptation to low temperature and irradiance habitats. In the present study we investigated inter- and intraspecific EPA and DHA variability in five polar and (cold) temperate microalgae. Intraspecific EPA and DHA content did not vary significantly in an Antarctic (Chaetoceros brevis) and a temperate (Thalassiosira weissflogii) centric diatom after acclimation to a range of irradiance levels at two temperatures. Interspecific variability was investigated for two Antarctic (Chaetoceros brevis and Pyramimonas sp. (Prasinophyceae)) and three cold-temperate species (Thalassiosira weissflogii, Emiliania huxleyi (Prymnesiophyceae) and Fibrocapsa japonica (Raphidophyceae)) during exponential growth. Interspecific variability was shown to be much more important than intraspecific variability. Highest relative and absolute levels of DHA were measured in the prymnesiophyte E. huxleyi and the prasinophyte Pyramimonas sp., while levels of EPA were high in the raphidophyte F. japonica and the diatoms C. brevis and T. weissflogii. Yet, no significant differences in LC-PUFA content were found between polar and cold-temperate species. Also, EPA and DHA production rates varied strongly between species. Highest EPA production rate (174 μg L-1 day-1) was found in the Antarctic diatom Chaetoceros brevis, while DHA production was highest in the cold-temperate prymnesiophyte Emiliania huxleyi (164 μg L-1 day-1). We

  8. On the potential application of polar and temperate marine microalgae for EPA and DHA production.

    PubMed

    Boelen, Peter; van Dijk, Roechama; Sinninghe Damsté, Jaap S; Rijpstra, W Irene C; Buma, Anita Gj

    2013-05-14

    Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid membrane functioning. The cellular content of EPA and DHA may therefore be enhanced at low temperature and irradiance conditions. As a result, polar and cold temperate marine microalgal species might potentially be suitable candidates for commercial EPA and DHA production, given their adaptation to low temperature and irradiance habitats.In the present study we investigated inter- and intraspecific EPA and DHA variability in five polar and (cold) temperate microalgae. Intraspecific EPA and DHA content did not vary significantly in an Antarctic (Chaetoceros brevis) and a temperate (Thalassiosira weissflogii) centric diatom after acclimation to a range of irradiance levels at two temperatures. Interspecific variability was investigated for two Antarctic (Chaetoceros brevis and Pyramimonas sp. (Prasinophyceae)) and three cold-temperate species (Thalassiosira weissflogii, Emiliania huxleyi (Prymnesiophyceae) and Fibrocapsa japonica (Raphidophyceae)) during exponential growth. Interspecific variability was shown to be much more important than intraspecific variability. Highest relative and absolute levels of DHA were measured in the prymnesiophyte E. huxleyi and the prasinophyte Pyramimonas sp., while levels of EPA were high in the raphidophyte F. japonica and the diatoms C. brevis and T. weissflogii. Yet, no significant differences in LC-PUFA content were found between polar and cold-temperate species. Also, EPA and DHA production rates varied strongly between species. Highest EPA production rate (174 μg L-1 day-1) was found in the Antarctic diatom Chaetoceros brevis, while DHA production was highest in the cold-temperate prymnesiophyte Emiliania huxleyi (164 μg L-1 day-1). We

  9. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.

    PubMed

    Sun, Dongzhe; Zhang, Zhao; Mao, Xuemei; Wu, Tao; Jiang, Yue; Liu, Jin; Chen, Feng

    2017-03-01

    In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg(-1) dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition.

  10. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    PubMed Central

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  11. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial.

    PubMed

    Sinn, Natalie; Milte, Catherine M; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Petkov, John; Howe, Peter R C

    2012-06-01

    Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA + 0·16 g DHA/d; n 17), DHA (1·55 g DHA + 0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P=0·04) and DHA (P=0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P=0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P=0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.

  12. DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling

    PubMed Central

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture. PMID:26940787

  13. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids.

    PubMed

    Decsi, Tamás; Boehm, Günther; Tjoonk, H M Ria; Molnár, Szilárd; Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Martini, Ingrid A; Muskiet, Frits A J; Boersma, E Rudy

    2002-10-01

    Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1-15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7 +/- 1.2 wk, birth weight: 3528 +/- 429 g, mean +/- SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13) % w/w in umbilical artery and 0.16 (0.10) % w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r = -0.38, P < 0.01, and r = -0.20, P < 0.01) and vein (r = -0.36, P < 0.01, and -0.17, P < 0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r = +0.35, P < 0.01) and vein (r = +0.31, P< 0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth.

  14. The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids.

    PubMed

    Hsieh, Andrea T; Anthony, Joshua C; Diersen-Schade, Deborah A; Rumsey, Steven C; Lawrence, Peter; Li, Cun; Nathanielsz, Peter W; Brenna, J Thomas

    2007-05-01

    Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are now common ingredients in commercial infant formulas, however, the optimal levels have not been established. Our previous data showed that the current amount of DHA in U.S. term formulas, 0.3%w/w, is insufficient to normalize cerebral cortex DHA to levels in breastfed baboon neonate controls (Diau et al.: BMC Medicine 3: 11, 2005). Here, we report on the influence of higher formula DHA levels on 12-wk-old full-term baboon CNS and visceral organs. Fourteen nursery-reared baboons were randomized to one of three diets: control (C, no DHA-ARA); moderate LCPUFA (L, 0.33%DHA-0.67%ARA); high LCPUFA (L3, 1.00%DHA-0.67%ARA). DHA increased significantly in liver, heart, and plasma (all C < L < L3), RBC (C < L, L3), and CNS regions: precentral gyrus (C < L < L3), frontal cortex, inferior and superior colliculi, globus pallidus, and caudate (all C < L, L3). These data extend previous observations indicating that 1) tissue DHA is more sensitive to diet than ARA; 2) cerebral cortex DHA increases with higher levels of DHA than in present commercial formulas; and 3) basal ganglia and limbic system DHA saturate with levels of DHA currently available in formulas. These results imply that higher levels of DHA are necessary to normalize cortex DHA to those found in breastfed animals.

  15. Maternal Docosahexaenoic Acid Intake Levels during Pregnancy and Infant Performance on a Novel Object Search Task at 22 Months

    ERIC Educational Resources Information Center

    Rees, Alison; Sirois, Sylvain; Wearden, Alison

    2014-01-01

    This study investigated maternal prenatal docosahexaenoic acid (DHA) intake and infant cognitive development at 22 months. Estimates for second- and third-trimester maternal DHA intake levels were obtained using a comprehensive Food Frequency Questionnaire. Infants (n = 67) were assessed at 22 months on a novel object search task. Mothers'…

  16. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma.

    PubMed

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando

    2011-10-01

    The pathology of traumatic brain injury (TBI) is characterized by the decreased capacity of neurons to metabolize energy and sustain synaptic function, likely resulting in cognitive and emotional disorders. Based on the broad nature of the pathology, we have assessed the potential of the omega-3 fatty acid docosahexaenoic acid (DHA) to counteract the effects of concussive injury on important aspects of neuronal function and cognition. Fluid percussion injury (FPI) or sham injury was performed, and rats were then maintained on a diet high in DHA (1.2% DHA) for 12 days. We found that DHA supplementation, which elevates brain DHA content, normalized levels of brain-derived neurotrophic factor (BDNF), synapsin I (Syn-1), cAMP-responsive element-binding protein (CREB), and calcium/calmodulin-dependent kinase II (CaMKII), and improved learning ability in FPI rats. It is known that BDNF facilitates synaptic transmission and learning ability by modulating Syn-I, CREB, and CaMKII signaling. The DHA diet also counteracted the FPI-reduced manganese superoxide dismutase (SOD) and Sir2 (a NAD+-dependent deacetylase). Given the involvement of SOD and Sir2 in promoting metabolic homeostasis, DHA may help the injured brain by providing resistance to oxidative stress. Furthermore, DHA normalized levels of calcium-independent phospholipase A2 (iPLA2) and syntaxin-3, which may help preserve membrane homeostasis and function after FPI. The overall results emphasize the potential of dietary DHA to counteract broad and fundamental aspects of TBI pathology that may translate into preserved cognitive capacity.

  17. Membrane Level of Omega-3 Docosahexaenoic Acid Is Associated with Severity of Obstructive Sleep Apnea

    PubMed Central

    Ladesich, James B.; Pottala, James V.; Romaker, Ann; Harris, William S.

    2011-01-01

    Background: Patients with obstructive sleep apnea (OSA) are at increased risk of cardiovascular disease (CVD). The omega-3 fatty acid docosahexaenoic acid (DHA) is a major component of neural tissues, and supplementation with fish oils improves autonomic tone and reduces risk for CVD. A link between low DHA status and less mature sleep patterns was observed in newborns. Methods: We investigated the relations between red blood cell (RBC) levels of DHA and OSA severity in 350 sequential patients undergoing sleep studies. Severity categories were defined as none/mild, moderate, and severe, based on apnea hypopnea index (AHI) scores of 0 to 14, 15 to 34, and > 34, respectively. Results: After controlling for age, sex, race, smoking, BMI, alcohol intake, fish intake, and omega-3 supplementation, RBC DHA was inversely related with OSA severity. For each 1-SD increase in DHA levels, a patient was about 50% less likely to be classified with severe OSA. The odds ratios (95% CI) were 0.47 (0.28 to 0.80) and 0.55 (0.31 to 0.99) for being in the severe group versus the none/mild or moderate groups, respectively. Conclusion: These findings suggest that disordered membrane fatty acid patterns may play a causal role in OSA and that the assessment of RBC DHA levels might help in the diagnosis of OSA. The effects of DHA supplementation on OSA should be explored. Citation: Ladesich JB; Pottala JV; Romaker A; Harris WS. Membrane level of omega-3 docosahexaenoic acid is associated with severity of obstructive sleep apnea. J Clin Sleep Med 2011;7(4):391-396. PMID:21897776

  18. A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia.

    PubMed

    Maki, Kevin C; Yurko-Mauro, Karin; Dicklin, Mary R; Schild, Arianne L; Geohas, Jeffrey G

    2014-10-01

    In this double-blind, parallel trial, 93 healthy adults with hypertriglyceridemia (triacylglycerols [TAG] 150-499 mg/dL) were randomized to receive either a nutritional oil derived from marine algae (DHA-O; 2.4 g/day docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA] in a 2.7:1 ratio), fish oil (FO; 2.0 g/day DHA and EPA in a 0.7:1 ratio), or a corn oil/soy oil control as 4-1g softgel capsules/day with meals for 14 weeks; and were instructed to maintain their habitual diet. Percent changes from baseline for DHA-O, FO, and control, respectively, were TAG (-18.9, -22.9, 3.5; p<0.001 DHA-O and FO vs. control), low-density lipoprotein cholesterol (4.6, 6.8, -0.6; p<0.05 DHA-O and FO vs. control), and high-density lipoprotein cholesterol (4.3, 6.9, 0.6; p<0.05 FO vs. control). This study demonstrated that ingestion of microalgal DHA-O providing 2.4 g/day DHA+EPA lowered TAG levels to a degree that was not different from that of a standard fish oil product, and that was significantly more than for a corn oil/soy oil control.

  19. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems.

    PubMed

    Ponnampalam, Eric N; Butler, Kym L; Jacob, Robin H; Pethick, David W; Ball, Alex J; Edwards, Janelle E Hocking; Geesink, Geert; Hopkins, David L

    2014-02-01

    The variation in levels of the health claimable long chain omega-3 fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) plus docosahexaenoic acid (DHA, 22:6n-3) across production regions of Australia was studied in 5726 lambs over 3 years completed in 87 slaughter groups. The median level of EPA plus DHA differed dramatically between locations and sometimes between slaughters from the same location. The ratio of EPA plus DHA from lambs with high values (97.5% quantile) to lambs with low values (2.5% quantile) also differed dramatically between locations, and between slaughters from the same location. Consistency between years, at a location, was less for the high to low value ratio of EPA plus DHA than for the median value of EPA plus DHA. To consistently obtain high levels of omega-3 fatty acids in Australian lamb, there must be a focus on lamb finishing diets which are likely to need a supply of α-linolenic acid (18:3n-3), the precursor for EPA and DHA.

  20. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  1. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    PubMed

    Sprague, M; Dick, J R; Tocher, D R

    2016-02-22

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids.

  2. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    NASA Astrophysics Data System (ADS)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  3. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels.

    PubMed

    Barceló-Coblijn, Gwendolyn; Murphy, Eric J

    2009-11-01

    There is little doubt regarding the essential nature of alpha-linolenic acid (ALA), yet the capacity of dietary ALA to maintain adequate tissue levels of long chain n-3 fatty acids remains quite controversial. This simple point remains highly debated despite evidence that removal of dietary ALA promotes n-3 fatty acid inadequacy, including that of docosahexaenoic acid (DHA), and that many experiments demonstrate that dietary inclusion of ALA raises n-3 tissue fatty acid content, including DHA. Herein we propose, based upon our previous work and that of others, that ALA is elongated and desaturated in a tissue-dependent manner. One important concept is to recognize that ALA, like many other fatty acids, rapidly undergoes beta-oxidation and that the carbons are conserved and reused for synthesis of other products including cholesterol and fatty acids. This process and the differences between utilization of dietary DHA or liver-derived DHA as compared to ALA have led to the dogma that ALA is not a useful fatty acid for maintaining tissue long chain n-3 fatty acids, including DHA. Herein, we propose that indeed dietary ALA is a crucial dietary source of n-3 fatty acids and its dietary inclusion is critical for maintaining tissue long chain n-3 levels.

  4. Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline.

    PubMed

    Hennebelle, Marie; Plourde, Mélanie; Chouinard-Watkins, Raphaël; Castellano, Christian-Alexandre; Barberger-Gateau, Pascale; Cunnane, Stephen C

    2014-02-01

    Epidemiological studies fairly convincingly suggest that higher intakes of fatty fish and n-3 fatty acids are associated with reduced risk of Alzheimer's disease (AD). DHA in plasma is normally positively associated with DHA intake. However, despite being associated with lower fish and DHA intake, unexpectedly, plasma (or brain) DHA is frequently not lower in AD. This review will highlight some metabolic and physiological factors such as ageing and apoE polymorphism that influence DHA homeostasis. Compared with young adults, blood DHA is often slightly but significantly higher in older adults without any age-related cognitive decline. Higher plasma DHA in older adults could be a sign that their fish or DHA intake is higher. However, our supplementation and carbon-13 tracer studies also show that DHA metabolism, e.g. transit through the plasma, apparent retroconversion and β-oxidation, is altered in healthy older compared with healthy young adults. ApoE4 increases the risk of AD, possibly in part because it too changes DHA homeostasis. Therefore, independent of differences in fish intake, changing DHA homeostasis may tend to obscure the relationship between DHA intake and plasma DHA which, in turn, may contribute to making older adults more susceptible to cognitive decline despite older adults having similar or sometimes higher plasma DHA than in younger adults. In conclusion, recent development of new tools such as isotopically labelled DHA to study DHA metabolism in human subjects highlights some promising avenues to evaluate how and why DHA metabolism changes during ageing and AD.

  5. DHA attenuates postprandial hyperlipidemia via activating PPARα in intestinal epithelial cells[S

    PubMed Central

    Kimura, Rino; Takahashi, Nobuyuki; Lin, Shan; Goto, Tsuyoshi; Murota, Kaeko; Nakata, Rieko; Inoue, Hiroyasu; Kawada, Teruo

    2013-01-01

    It is known that peroxisome proliferator-activated receptor (PPAR)α, whose activation reduces hyperlipidemia, is highly expressed in intestinal epithelial cells. Docosahexaenoic acid (DHA) could improve postprandial hyperlipidemia, however, its relationship with intestinal PPARα activation is not revealed. In this study, we investigated whether DHA can affect postprandial hyperlipidemia by activating intestinal PPARα using Caco-2 cells and C57BL/6 mice. The genes involved in fatty acid (FA) oxidation and oxygen consumption rate were increased, and the secretion of triacylglyceride (TG) and apolipoprotein B (apoB) was decreased in DHA-treated Caco-2 cells. Additionally, intestinal FA oxidation was induced, and TG and apoB secretion from intestinal epithelial cells was reduced, resulting in the attenuation of plasma TG and apoB levels after oral administration of olive oil in DHA-rich oil-fed mice compared with controls. However, no increase in genes involved in FA oxidation was observed in the liver. Furthermore, the effects of DHA on intestinal lipid secretion and postprandial hyperlipidemia were abolished in PPARα knockout mice. In conclusion, the present work suggests that DHA can inhibit the secretion of TG from intestinal epithelial cells via PPARα activation, which attenuates postprandial hyperlipidemia. PMID:24133194

  6. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function.

  7. Effect of DHA supplementation in a very low-calorie ketogenic diet in the treatment of obesity: a randomized clinical trial.

    PubMed

    de Luis, Daniel; Domingo, Joan Carles; Izaola, Olatz; Casanueva, Felipe F; Bellido, Diego; Sajoux, Ignacio

    2016-10-01

    A VLCK diet supplemented with DHA, commercially available, was tested against an isocaloric VLCK diet without DHA. The main purpose of this study was to compare the effect of DHA supplementation in classic cardiovascular risk factors, adipokine levels, and inflammation-resolving eicosanoids. A total of obese patients were randomized into two groups: a group supplemented with DHA (n = 14) (PnK-DHA group) versus a group with an isocaloric diet free of supplementation (n = 15) (control group). The follow-up period was 6 months. The average weight loss after 6 months of treatment was 20.36 ± 5.02 kg in control group and 19.74 ± 5.10 kg in PnK-DHA group, without statistical differences between both groups. The VLCK diets induced a significant change in some of the biological parameters, such as insulin, HOMA-IR, triglycerides, LDL cholesterol, C-reactive protein, resistin, TNF alpha, and leptin. Following DHA supplementation, the DHA-derived oxylipins were significantly increased in the intervention group. The ratio of proresolution/proinflammatory lipid markers was increased in plasma of the intervention group over the entire study. Similarly, the mean ratios of AA/EPA and AA/DHA in erythrocyte membranes were dramatically reduced in the PnK-DHA group and the anti-inflammatory fatty acid index (AIFAI) was consistently increased after the DHA treatment (p < 0.05). The present study demonstrated that a very low-calorie ketogenic diet supplemented with DHA was significantly superior in the anti-inflammatory effect, without statistical differences in weight loss and metabolic improvement.

  8. A comparative study: In vitro effects of EPA and DHA on immune functions of head-kidney macrophages isolated from large yellow croaker (Larmichthys crocea).

    PubMed

    Li, Qingfei; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Zheng, Yuefu

    2013-09-01

    Comparative effects of different concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on immune responses of head-kidney macrophages isolated from large yellow croaker were studied in vitro. After exposing to serum-free medium for 1 day, cultured cells were incubated in medium supplemented with graded levels of EPA or DHA (0, 5, 25, 100, 200 and 1000 μM, respectively) in the form of fatty acid bovine serum albumin (FA-BSA) complex for 12 h, 24 h and 36 h, respectively. Control samples were incubated in the absence of EPA or DHA (2% bovine serum albumin, BSA). Following stimulation, cell viability, lipid peroxidation, secretary phopholipase A2 (sPLA2) and prostaglandin E2 (PGE2) production as well as some immune parameters including phagocytosis, respiratory burst activity and interleukin 1β (IL-1β) production were determined. Results showed that EPA and DHA affected cell viability in dose-dependent and time-dependent manners. In particular, cell viability was significantly decreased after 24 h and 36 h incubation with 1000 μM EPA or DHA (P < 0.05). Higher levels of EPA (200 and 1000 μM) caused a significant increase in the production of malondialdehyde (MDA) (P < 0.05), while DHA did not significantly affect the MDA production. EPA significantly increased the intracellular superoxide anion synthesis which, on the contrary, was significantly reduced by DHA. Phagocytosis percentage (PP) values were significantly higher in treatments with 5 μM DHA (P < 0.05), but significantly decreased by 200 and 1000 μM EPA and DHA compared to the control group (P < 0.05). Decreased PGE2 production was produced by cells treated with relatively low doses of EPA or DHA. When high levels of stimulants (1000 μM EPA or DHA) were used, PGE2 levels were elevated and reached a significant level (P < 0.05). Both EPA and DHA significantly inhibited the production of sPLA2, where DHA exerted the more potent inhibitory effects than EPA. No pronounced effect was

  9. Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence?

    PubMed

    Cunnane, Stephen C; Chouinard-Watkins, Raphael; Castellano, Christian A; Barberger-Gateau, Pascale

    2013-01-01

    A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.

  10. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N

    2013-12-01

    Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production.

  11. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids.

    PubMed

    Kidd, Parris M

    2007-09-01

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are orthomolecular, conditionally essential nutrients that enhance quality of life and lower the risk of premature death. They function exclusively via cell membranes, in which they are anchored by phospholipid molecules. DHA is proven essential to pre- and postnatal brain development, whereas EPA seems more influential on behavior and mood. Both DHA and EPA generate neuroprotective metabolites. In double-blind, randomized, controlled trials, DHA and EPA combinations have been shown to benefit attention deficit/hyperactivity disorder (AD/HD), autism, dyspraxia, dyslexia, and aggression. For the affective disorders, meta-analyses confirm benefits in major depressive disorder (MDD) and bipolar disorder, with promising results in schizophrenia and initial benefit for borderline personality disorder. Accelerated cognitive decline and mild cognitive impairment (MCI) correlate with lowered tissue levels of DHA/EPA, and supplementation has improved cognitive function. Huntington disease has responded to EPA. Omega-3 phospholipid supplements that combine DHA/EPA and phospholipids into the same molecule have shown marked promise in early clinical trials. Phosphatidylserine with DHA/EPA attached (Omega-3 PS) has been shown to alleviate AD/HD symptoms. Krill omega-3 phospholipids, containing mostly phosphatidylcholine (PC) with DHA/EPA attached, markedly outperformed conventional fish oil DHA/EPA triglycerides in double-blind trials for premenstrual syndrome/dysmenorrhea and for normalizing blood lipid profiles. Krill omega-3 phospholipids demonstrated anti-inflammatory activity, lowering C-reactive protein (CRP) levels in a double-blind trial. Utilizing DHA and EPA together with phospholipids and membrane antioxidants to achieve a triple cell membrane synergy may further diversify their currently wide range of clinical applications.

  12. 17-oxo-DHA displays additive anti-inflammatory effects with fluticasone propionate and inhibits the NLRP3 inflammasome

    PubMed Central

    Cipollina, Chiara; Di Vincenzo, Serena; Siena, Liboria; Di Sano, Caterina; Gjomarkaj, Mark; Pace, Elisabetta

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function associated with increased local and systemic inflammatory markers, such as TNFα and IL-1β. Glucocorticoids are used to treat this chronic disease, however their efficacy is low and new drugs are very much required. 17-oxo-DHA is a cyclooxygenase-2-dependent, electrophilic, α,β-unsaturated keto-derivative of docosahexaenoic acid with anti-inflammatory properties. We evaluated the action of 17-oxo-DHA alone or in combination with the steroid fluticasone propionate (FP) in peripheral blood mononuclear cells (PBMCs) from COPD patients and healthy individuals exposed to lipopolysaccharide. We show that PBMCs from COPD patients released higher levels of TNFα and IL-1β compared to controls. 17-oxo-DHA displayed strong anti-inflammatory effects. The addition of 17-oxo-DHA in combination with FP showed enhanced anti-inflammatory effects through the modulation of transcriptional and post-transcriptional mechanisms. 17-oxo-DHA, but not FP, was able to suppress the release of mature IL-1β through inhibition of the NLRP3 inflammasome. Furthermore, 17-oxo-DHA inhibited inflammasome-dependent degradation of the glucocorticoid receptor (GR). Our findings suggest that 17-oxo-DHA in combination with FP or other steroids might achieve higher therapeutic efficacy than steroids alone. Combined treatment might be particularly relevant in those conditions where increased inflammasome activation may lead to GR degradation and steroid-unresponsive inflammation. PMID:27883019

  13. DHA sensitizes FaO cells to tert-BHP-induced oxidative effects. Protective role of EGCG.

    PubMed

    Fernández-Iglesias, Anabel; Quesada, Helena; Díaz, Sabina; Pajuelo, David; Bladé, Cinta; Arola, Lluís; Josepa Salvadó, M; Mulero, Miquel

    2013-12-01

    The excessive production of reactive oxygen species has been implicated in several pathologies, such as atherosclerosis, obesity, hypertension and insulin resistance. Docosahexaenoic acid (DHA) may protect against the above mentioned diseases, but paradoxically the main DHA treated pathologies are also associated with increased ROS levels. Therefore, the aim of this study was to explore if in vitro DHA supplementation may increase the sensitivity of cells to tert-BHP induced oxidative stress, and if the green tea polyphenol epigallocatechin-3-gallate (EGCG) is able to correct such detrimental effect. We found that DHA-enriched cells exacerbate ROS generation, decrease cell viability and increase Nrf2 nuclear translocation and HO-1 expression. Interestingly, cellular EGCG is able to counteract oxidative damage from either tert-BHP or DHA-enriched cells. In consequence, our results suggest that in a ROS enriched environment DHA could not always be beneficial for cells and can be considered a double-edged sword in terms of its benefits vs. risks. In this sense, our results propose that the supplementation with potent antioxidant molecules could be an appropriate strategy to reduce the risks related with the DHA supplementation in an oxidative stress-associated condition.

  14. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations.

    PubMed

    Lassek, William Day; Gaulin, Steven J C

    2015-10-01

    Convergent evidence from neuronal biology and hominin brain hypertrophy suggests that omega-3 fatty acids are a limiting resource for neural and cognitive development in Homo sapiens, and therefore that children from populations with higher omega-3 availability should display superior cognitive performance. Using multiple regression, we tested this prediction in a sample of 28 countries, with Programme for International Student Assessment (PISA) math scores in 2009 as an index of cognitive performance, and country-specific breast milk levels of omega-3 docosahexaenoic acid (DHA) as an index of omega-3 availability. Breast milk DHA makes a highly significant contribution to math scores (β = 0.462, P = 0.006), greater in magnitude than the control variables of per capita Gross Domestic Product (PCGDP) and educational expenditures per pupil. Together, dietary fish (positively) and total fat (negatively) explain 61% of the variance in maternal milk DHA in a larger sample of 39 countries.

  15. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    PubMed

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  16. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition.

    PubMed

    Brenna, J Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long-chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration in cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.

  17. The Influence of Dietary Docosahexaenoic Acid and Arachidonic Acid on Central Nervous System Polyunsaturated Fatty Acid Composition

    PubMed Central

    Brenna, J. Thomas; Diau, Guan-Yeu

    2007-01-01

    Numerous studies on perinatal long chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism. PMID:18023566

  18. Mercury and docosahexaenoic acid levels in maternal and cord blood in relation to segmental maternal hair mercury concentrations at parturition.

    PubMed

    Sakamoto, Mineshi; Chan, Hing Man; Domingo, José L; Kawakami, Shoichi; Murata, Katsuyuki

    2012-09-01

    Fish is a major source of harmful methylmercury (MeHg) and beneficial docosahexaenoic acid (DHA) in the developing brain. In this study, we investigated the correlations among maternal and umbilical cord (cord) MeHg and DHA levels at parturition, and mercury (Hg) concentration in 1-cm incremental segments hair samples which grew during gestation representing monthly MeHg exposure levels throughout the period. Whole blood Hg and plasma DHA levels were measured in blood sample pairs collected from 54 mothers at early gestation and parturition, and in cord blood. Maternal hair samples were collected at parturition, and Hg concentrations were measured in 1-cm incremental segments. Hg level in mothers at parturition was slightly lower than that at early gestation and the level in cord blood were approximately 1.9 times higher than that in mothers at parturition. On the other hand, DHA level in mothers at parturition was approximately 2.3 and 1.6 times higher than those in mothers at early gestation and in cord plasma, respectively. These results indicate that kinetics of these chemicals in mothers during gestation and placental transfer are completely different. However, Hg and DHA levels had significant positive correlation in fetal circulation. The cord blood Hg showed the strongest correlation with maternal hair Hg in the first 1-cm segment from the scalp at parturition (r=0.87), indicating that fetal MeHg level reflects maternal MeHg burden at late gestation. In contrast, maternal and cord plasma DHA concentrations at parturition showed the highest correlation coefficients with Hg in the fifth (r=0.43) and fourth (r=0.38) 1-cm hair segments, suggesting that maternal and fetal DHA levels reflects maternal fish intake during mid-gestation.

  19. Polyunsaturated Fatty Acid Levels in Maternal Erythrocytes of Japanese Women during Pregnancy and after Childbirth

    PubMed Central

    Kawabata, Terue; Kagawa, Yasuo; Kimura, Fumiko; Miyazawa, Teruo; Saito, Shoji; Arima, Takahiro; Nakai, Kunihiko; Yaegashi, Nobuo

    2017-01-01

    Background: The transport of polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), to the fetus from maternal stores increases depending on the fetal requirements for PUFA during the last trimester of pregnancy. Therefore, maternal blood PUFA changes physiologically with gestational age. However, the changes in PUFA levels in maternal blood erythrocytes during pregnancy and after childbirth have not been fully investigated in a fish-eating population. Objective: To examine the changes of ARA and DHA levels in maternal erythrocytes with the progress of pregnancy and the relationship between maternal and umbilical cord erythrocyte PUFA levels in pregnant Japanese women who habitually eat fish and shellfish. Design: This study was performed as a part of the adjunct study of the Japan Environment and Children’s Study (JECS). The participants were 74 pregnant women. The maternal blood samples were collected at 27, 30, and 36 weeks of pregnancy, and 2 days and 1 month after delivery, and umbilical cord blood was collected at delivery. The fatty acid levels of erythrocytes in these blood samples were determined. Results: ARA and DHA levels in maternal erythrocytes tended to decrease with the progress of pregnancy. While the DHA level decreased further after delivery, the ARA level returned to the value at 27 weeks of pregnancy within 1 month after delivery. The n-3 and n-6 PUFA levels in maternal erythrocytes at 27, 30, and 36 weeks of pregnancy were significantly positively correlated with the corresponding fatty acid levels in umbilical cord erythrocytes. Conclusion: The present findings showed a significant change in erythrocyte PUFA levels during pregnancy and after childbirth in a fish-eating population. The PUFA levels of maternal blood after the second trimester may be a reliable marker for predicting PUFA levels in infants’ circulating blood. PMID:28272345

  20. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice.

    PubMed

    Liu, Liang; Hu, Qinling; Wu, Huihui; Xue, Yihong; Cai, Liang; Fang, Min; Liu, Zhiguo; Yao, Ping; Wu, Yongning; Gong, Zhiyong

    2016-06-01

    The effects of n3 polyunsaturated fatty acids (PUFA) on cardiovascular disease are controversial. We currently explored the effects of various ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on high-fat-induced atherosclerosis. In model apoE(-/-) mice, high-fat diets (HFD) were partially replaced with fish and algal oils (DHA/EPA 2:1, 1:1 and 1:2) and/or plant oils enriched in linoleic and alpha-linolenic acids with an n6/n3 ratio of 4:1. PUFA supplementation significantly reduced the atherosclerotic plaque area, serum lipid profile, inflammatory response, aortic ROS production, proinflammatory factors and scavenger receptor expression as compared to those in the HFD group. However, plant oils did not have a significant effect on the following: serum HDL-C level; aortic ABCA1, ABCG1 and LAL mRNA expression; and CD36 and LOX-1 protein expression. Compared to the plant-oil-treated group, the DHA/EPA 1:1 group had a smaller atherosclerotic plaque area, higher serum HDL-C levels and lesser CD36 and MSR-1 mRNA expression; the DHA/EPA 2:1 group had lower serum TC, LDL-C and TNF-α levels and lower aortic ROS levels. Our study suggested that n3 PUFA from animals had more potent atheroprotective effects than that from plants. Supplementation involving higher DHA/EPA ratios and an n6/n3 ratio of 4:1 was beneficial for reducing serum "bad cholesterol" and a 1:1 DHA/EPA ratio with an n6/n3 ratio of 4:1 was beneficial for improving serum "good cholesterol" and inhibiting ox-LDL uptake. Our results suggest that achieving an n6/n3 ratio of 4:1 in the diet is also important in addition to having an optimal DHA/EPA ratio.

  1. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system

    PubMed Central

    Diau, Guan-Yeu; Hsieh, Andrea T; Sarkadi-Nagy, Eszter A; Wijendran, Vasuki; Nathanielsz, Peter W; Brenna, J Thomas

    2005-01-01

    Background Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. Methods Baboons were randomized into a breastfed (B) and four formula-fed groups: term, no DHA/ARA (T-); term, DHA/ARA supplemented (T+); preterm, no DHA/ARA (P-); preterm and DHA/ARA supplemented (P+). At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. Results DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. Conclusion 1) DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2) DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3) supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA. PMID:15975147

  2. Comparison of the Effects of Eicosapentaenoic Acid With Docosahexaenoic Acid on the Level of Serum Lipoproteins in Helicobacter pylori: A Randomized Clinical Trial

    PubMed Central

    Agah, Shahram; Shidfar, Farzad; Khandouzi, Nafiseh; Baghestani, Ahmad Reza; Hosseini, Sharieh

    2014-01-01

    Background: Helicobacter pylori infection is the most common chronic bacterial infection around the world and an important cause of gastrointestinal disorders, which might be involved in the pathogenesis of some extragastrointestinal disturbances as well as changes in serum lipid profile. Hypolipemic properties of omega-3 fatty acids have been studied in several studies. Objectives: The present study aimed to compare the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation on the level of serum lipoproteins in H. pylori. Patients and Methods: In a randomized, double-blinded, placebo-controlled clinical trial in Iran, 105 Helicobacter pylori were randomly allocated to receive 2 g of daily EPA (35 patients), DHA (35 patients), or medium-chain triglyceride (MCT) oil as placebo (33 patients) along with conventional tetra-drug H. pylori eradication regimen for 12 weeks. Results: From 105 included patients, 97 (31 in EPA, 33 in DHA, and 33 in control groups) completed the study and were included in final analysis. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and the ratios of TG/HDL-C, TC/HDL-C, and LDL-C/HDL-C were not significantly different among the three groups, while the level of triglyceride (TG) was statistically different. DHA (-16.6 ± 30.34) and control (+ 15.32 ± 56.47) groups were statistically different with regard to changes in TG levels (P = 0.000). Conclusions: There was no difference between the effects of 2 g of EPA or DHA supplementation for 12 weeks on the levels of total cholesterol, LDL-C, HDL-C, TC/HDL-C, TG/HDL-C, and LDL-C/HDL-C; however, it had a desirable effect on the level of TG in a way that the effect of DHA was clearer. PMID:25763259

  3. Treatment with DHA/EPA ameliorates atopic dermatitis-like skin disease by blocking LTB4 production.

    PubMed

    Yoshida, Shinya; Yasutomo, Koji; Watanabe, Toshiyuki

    2016-01-01

    Atopic dermatitis (AD) is caused by both dysregulated immune responses and an impaired skin barrier. Although leukotriene B4 (LTB4) is involved in tissue inflammation that occurs in several disorders, including AD, therapeutic strategies based on LTB4 inhibition have not been explored. Here we demonstrate that progression of an AD-like skin disease in NC/Nga mice is inhibited when docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) is administered together with FK506. Treatment with DHA/EPA and FK506 decreases the clinical score of dermatitis in NC/Nga mice and lowers local LTB4 concentrations. The treatment also suppressed the infiltration of T cells, B cells, eosinophils and neutrophils, and promoted reduced serum IgE levels. Secretion of IL-13 and IL-17A in CD4(+) T cells was lower in DHA/EPA- and FK506-treated mice than in mice treated with FK506 alone. The inhibition of disease progression induced by DHA/EPA was reversed by local injection of LTB4, suggesting that the therapeutic effect of DHA/EPA is LTB4-dependent. Our results demonstrate that treatment of AD with DHA/EPA is effective for allergic skin inflammation and acts by suppressing LTB4 production. J. Med. Invest. 63: 187-191, August, 2016.

  4. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development.

    PubMed

    Brenna, J Thomas; Carlson, Susan E

    2014-12-01

    Humans evolved a uniquely large brain among terrestrial mammals. Brain and nervous tissue is rich in the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). Docosahexaenoic acid is required for lower and high order functions in humans because of understood and emerging molecular mechanisms. Among brain components that depend on dietary components, DHA is limiting because its synthesis from terrestrial plant food precursors is low but its utilization when consumed in diet is very efficient. Negligible DHA is found in terrestrial plants, but in contrast, DHA is plentiful at the shoreline where it is made by single-celled organisms and plants, and in the seas supports development of very large marine mammal brains. Modern human brains accumulate DHA up to age 18, most aggressively from about half-way through gestation to about two years of age. Studies in modern humans and non-human primates show that modern infants consuming infant formulas that include only DHA precursors have lower DHA levels than for those with a source of preformed DHA. Functional measures show that infants consuming preformed DHA have improved visual and cognitive function. Dietary preformed DHA in the breast milk of modern mothers supports many-fold greater breast milk DHA than is found in the breast milk of vegans, a phenomenon linked to consumption of shore-based foods. Most current evidence suggests that the DHA-rich human brain required an ample and sustained source of dietary DHA to reach its full potential.

  5. Modulation of blood cell gene expression by DHA supplementation in hypertriglyceridemic men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for CVD, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we pe...

  6. Fatty acid status and its relationship to cognitive decline and homocysteine levels in the elderly.

    PubMed

    Baierle, Marília; Vencato, Patrícia H; Oldenburg, Luiza; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M; Duarte, Marta M M F; Veit, Juliana C; Somacal, Sabrina; Emanuelli, Tatiana; Grune, Tilman; Breusing, Nicolle; Garcia, Solange C

    2014-09-12

    Polyunsaturated fatty acids (PUFAs), especially the n-3 series, are known for their protective effects. Considering that cardiovascular diseases are risk factors for dementia, which is common at aging, the aim of this study was to evaluate whether fatty acid status in the elderly was associated with cognitive function and cardiovascular risk. Forty-five elderly persons (age ≥ 60 years) were included and divided into two groups based on their Mini-Mental Status Examination score adjusted for educational level: the case group (n = 12) and the control group (n = 33). Serum fatty acid composition, homocysteine (Hcy), hs-CRP, lipid profile and different cognitive domains were evaluated. The case group, characterized by reduced cognitive performance, showed higher levels of 14:0, 16:0, 16:1n-7 fatty acids and lower levels of 22:0, 24:1n-9, 22:6n-3 (DHA) and total PUFAs compared to the control group (p < 0.05). The n-6/n-3 ratio was elevated in both study groups, whereas alterations in Hcy, hs-CRP and lipid profile were observed in the case group. Cognitive function was positively associated with the 24:1n-9, DHA and total n-3 PUFAs, while 14:0, 16:0 and 16:1n-7 fatty acids, the n-6/n-3 ratio and Hcy were inversely associated. In addition, n-3 PUFAs, particularly DHA, were inversely associated with cardiovascular risk, assessed by Hcy levels in the elderly.

  7. The percentage of DHA in erythrocytes can detect non-adherence to advice to increase EPA and DHA intakes.

    PubMed

    Patterson, Ashley C; Metherel, Adam H; Hanning, Rhona M; Stark, Ken D

    2014-01-28

    Characterisation of long-term adherence to EPA and DHA intakes through biomarkers and dietary assessments has implications for interpreting the findings of long-term intervention studies. Adherence to dietary advice targeting an EPA+DHA intake of 1 g/d was examined over 1 year. Men and women (n 45) received dietary advice to increase EPA and DHA intakes from seafood, nutraceutical (fish oil) or functional food sources, while a fourth group received combined advice. Blood biomarkers and dietary intakes of EPA and DHA were evaluated at baseline and post-intervention at weeks 4, 8, 12, 24 and 52. Assessment by 3 d diet records indicated that EPA+DHA intakes increased relative to baseline in weeks 4-52 following the seafood, nutraceutical and combined advice (advice group × time effect, P= 0·03). The percentage of DHA in plasma and whole blood and the percentage of EPA in erythrocytes, plasma and whole blood were higher in weeks 4-52 when compared with the corresponding baseline measurement. In contrast, the percentage of DHA in erythrocytes increased to a maximum at week 12 and returned to baseline levels in weeks 24 and 52 (time effect, P< 0·01). Measurement of the percentage of DHA in erythrocytes indicates that adherence was sustained during the first 12 weeks following the dietary advice, while other blood measurements of the percentage of EPA and DHA and dietary assessment suggest short-term increases in EPA+DHA intakes immediately before weeks 24 and 52. The percentage of DHA in erythrocytes characterises adherence to EPA and DHA intakes in long-term interventions.

  8. Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes.

    PubMed

    Minihane, Anne Marie

    2016-03-02

    At a population level, cardioprotective and cognitive actions of the fish oil (FO) derived long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been extensively demonstrated. In addition to dietary intake, which is limited for many individuals, EPA and DHA status is dependent on the efficiency of their biosynthesis from α-linolenic acid. Gender and common gene variants have been identified as influencing the rate-limiting desaturase and elongase enzymes. Response to a particular intake or status is also highly heterogeneous and likely influenced by genetic variants which impact on EPA and DHA metabolism and tissue partitioning, transcription factor activity, or physiological end-point regulation. Here, available literature relating genotype to tissue LC n-3 PUFA status and response to FO intervention is considered. It is concluded that the available evidence is relatively limited, with much of the variability unexplained, though APOE and FADS genotypes are emerging as being important. Although genotype × LC n-3 PUFA interactions have been described for a number of phenotypes, few have been confirmed in independent studies. A more comprehensive understanding of the genetic, physiological and behavioural modulators of EPA and DHA status and response to intervention is needed to allow refinement of current dietary LC n-3 PUFA recommendations and stratification of advice to "vulnerable" and responsive subgroups.

  9. DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils

    PubMed Central

    Kitessa, Soressa M.; Abeywardena, Mahinda; Wijesundera, Chakra; Nichols, Peter D.

    2014-01-01

    Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA. PMID:24858407

  10. Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat; Agdul, Haqu; Shido, Osamu

    2005-12-30

    We investigated the effects of dietary administration of docosahexaenoic acid (DHA; C22:6n-3) on the levels of amyloid beta (A beta) peptide (1-40) and cholesterol in the nonionic detergent Triton 100 x-insoluble membrane fractions (DIFs) of the cerebral cortex and, also, on learning-related memory in an animal model of Alzheimer's disease (AD) rats infused with A beta peptide (1-40) into the cerebral ventricle. The infusion increased the levels of A beta peptide and cholesterol in the DIFs concurrently with a significant increase in reference memory errors (measured by eight-arm radial-maze tasks) compared with those of vehicle rats. Conversely, the dietary administration of DHA to AD-model rats decreased the levels of A beta peptide and cholesterol in the DIFs, with the decrease being more prominent in the DHA-administered rats. Regression analysis revealed a significant positive correlation between A beta peptide and each of cholesterol, palmitic acid and stearic acid, and between the number of reference memory errors and each of cholesterol, palmitic, stearic and oleic acid; moreover, a significant negative correlation was observed between the number of reference memory errors and the molar ratio of DHA to palmitic plus stearic acid. These results suggest that DHA-induced protection of memory deficits in AD-model rats is related to the interactions of cholesterol, palmitic acid or stearic acid with A beta peptides in DIFs where DHA ameliorates these interactions.

  11. Effects of dietary docosahexaenoic acid connecting phospholipids on the learning ability and fatty acid composition of the brain.

    PubMed

    Hiratsuka, Seiichi; Koizumi, Kyoko; Ooba, Tomoko; Yokogoshi, Hidehiko

    2009-08-01

    The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the F(1) generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy-PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.

  12. DHA Improves Cognition and Prevents Dysfunction of Entorhinal Cortex Neurons in 3xTg-AD Mice

    PubMed Central

    Arsenault, Dany; Julien, Carl; Tremblay, Cyntia; Calon, Frédéric

    2011-01-01

    Defects in neuronal activity of the entorhinal cortex (EC) are suspected to underlie the symptoms of Alzheimer's disease (AD). Whereas neuroprotective effects of docosahexaenoic acid (DHA) have been described, the effects of DHA on the physiology of EC neurons remain unexplored in animal models of AD. Here, we show that DHA consumption improved object recognition (↑12%), preventing deficits observed in old 3xTg-AD mice (↓12%). Moreover, 3xTg-AD mice displayed seizure-like akinetic episodes, not detected in NonTg littermates and partly prevented by DHA (↓50%). Patch-clamp recording revealed that 3xTg-AD EC neurons displayed (i) loss of cell capacitance (CC), suggesting reduced membrane surface area; (ii) increase of firing rate versus injected current (F-I) curve associated with modified action potentials, and (iii) overactivation of glutamatergic synapses, without changes in synaptophysin levels. DHA consumption increased CC (↑12%) and decreased F-I slopes (↓21%), thereby preventing the opposite alterations observed in 3xTg-AD mice. Our results indicate that cognitive performance and basic physiology of EC neurons depend on DHA intake in a mouse model of AD. PMID:21383850

  13. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel

    PubMed Central

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  14. Interrelationships between maternal DHA in erythrocytes, milk and adipose tissue. Is 1 wt% DHA the optimal human milk content? Data from four Tanzanian tribes differing in lifetime stable intakes of fish.

    PubMed

    Luxwolda, Martine F; Kuipers, Remko S; Koops, Jan-Hein; Muller, Stefan; de Graaf, Deti; Dijck-Brouwer, D A Janneke; Muskiet, Frits A J

    2014-03-14

    Little is known about the interrelationships between maternal and infant erythrocyte-DHA, milk-DHA and maternal adipose tissue (AT)-DHA contents. We studied these relationships in four tribes in Tanzania (Maasai, Pare, Sengerema and Ukerewe) differing in their lifetime intakes of fish. Cross-sectional samples were collected at delivery and after 3 d and 3 months of exclusive breast-feeding. We found that intra-uterine biomagnification is a sign of low maternal DHA status, that genuine biomagnification occurs during lactation, that lactating mothers with low DHA status cannot augment their infants' DHA status, and that lactating mothers lose DHA independent of their DHA status. A maternal erythrocyte-DHA content of 8 wt% was found to correspond with a mature milk-DHA content of 1·0 wt% and with subcutaneous and abdominal (omentum) AT-DHA contents of about 0·39 and 0·52 wt%, respectively. Consequently, 1 wt% DHA might be a target for Western human milk and infant formula that has milk arachidonic acid, EPA and linoleic acid contents of 0·55, 0·22 and 9·32 wt%, respectively. With increasing DHA status, the erythrocyte-DHA content reaches a plateau of about 9 wt%, and it plateaus more readily than milk-DHA and AT-DHA contents. Compared with the average Tanzanian-Ukerewe woman, the average US woman has four times lower AT-DHA content (0·4 v. 0·1 wt%) and five times lower mature milk-DHA output (301 v. 60 mg/d), which contrasts with her estimated 1·8-2·6 times lower mobilisable AT-DHA content (19 v. 35-50 g).

  15. Effects of maternal docosahexaenoic acid (DHA) supplementation on neuropsychological and visual status of former breast-fed infants at five years of age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: DHA, a major component of the structural phospholipids of brain and retinal cell membranes, is thought by some to be an essential nutrient for infants. Indeed, some studies suggest that low dietary intake during infancy is associated with short-term adverse effects on visual and neural d...

  16. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver.

    PubMed

    Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo

    2011-04-27

    Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.

  17. EPA and DHA status of South Asian and white Canadians living in the National Capital Region of Canada.

    PubMed

    Nagasaka, Reiko; Gagnon, Claude; Swist, Eleonora; Rondeau, Isabelle; Massarelli, Isabelle; Cheung, Winnie; Ratnayake, Walisundera M N

    2014-10-01

    To minimize the risk of cardiovascular disease (CVD), most dietary guidelines have recommended consuming 500 mg/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) or two servings of oily fish/week. The sum of percent EPA and DHA in red blood cell (RBC) total fatty acids-termed the omega-3 index-has been proposed as a biomarker for assessing the risk of death from CVD. The omega-3 indices of ≤4, >4 to <8 and ≥8 % have been proposed to be associated with high, intermediate and low CVD risks, respectively. In this study, we determined the EPA + DHA intake level and the omega-3 index of South Asian Canadians (SAC; n = 308) and white Canadians (WC; n = 341) age 20-79 years living in the National Capital Region of Canada. The mean EPA + DHA intake levels were 569 ± 571 mg/day for SAC and 684 ± 865 mg/day for WC and 46 % of SAC and 43 % of WC met the recommended EPA + DHA intake level of 500 mg/day. The mean omega-3 indices were 6.6 and 5.9 % for SAC and WC respectively. The suggested cardio-protective target level for the omega-3 index of ≥8 % was observed only in 19.8 % of SAC and in 9.4 % of WC subjects. The majority of the participants (74.4 % of SAC and 82.7 % of WC) were in the >4 to <8 % range. These results suggest that although study participants' dietary intake of EPA + DHA is adequate, this intake was not sufficient to provide an omega-3 index that is considered cardio-protective.

  18. Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice

    PubMed Central

    Kim, J; Carlson, M E; Kuchel, G A; Newman, J W; Watkins, B A

    2016-01-01

    Objectives: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type 2 diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids (ECs) derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid (AA) occur in obese and diabetic patients. Here we investigate whether the n-3 PUFA docosahexaenoic acid (DHA) in the diet can reduce ECS overactivation (that is, action of ligands, receptors and enzymes of EC synthesis and degradation) to influence glycemic control. This study targets the ECS tonal regulation of circulating glucose uptake by skeletal muscle as its primary end point. Design: Male C57BL/6J mice were fed a semipurified diet containing DHA or the control lipid. Serum, skeletal muscle, epididymal fat pads and liver were collected after 62 and 118 days of feeding. Metabolites, genes and gene products associated with the ECS, glucose uptake and metabolism and inflammatory status were measured. Results: Dietary DHA enrichment reduced epididymal fat pad mass and increased ECS-related genes, whereas it reduced downstream ECS activation markers, indicating that ECS activation was diminished. The mRNA of glucose-related genes and proteins elevated in mice fed the DHA diet with increases in DHA-derived and reductions in AA-derived EC and EC-like compounds. In addition, DHA feeding reduced plasma levels of various inflammatory cytokines, 5-lipoxygenase-dependent inflammatory mediators and the vasoconstrictive 20-HETE. Conclusions: This study provides evidence that DHA feeding altered ECS gene expression to reduce CB1 activation and reduce fat accretion. Furthermore, the DHA diet led to higher expression of genes associated with glucose use by muscle in mice, and reduced those associated with systemic inflammatory status. PMID:26219414

  19. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition.

    PubMed

    Wu, A; Ying, Z; Gomez-Pinilla, F

    2008-08-26

    Omega-3 fatty acids (i.e. docosahexaenoic acid; DHA), similar to exercise, improve cognitive function, promote neuroplasticity, and protect against neurological lesion. In this study, we investigated a possible synergistic action between DHA dietary supplementation and voluntary exercise on modulating synaptic plasticity and cognition. Rats received DHA dietary supplementation (1.25% DHA) with or without voluntary exercise for 12 days. We found that the DHA-enriched diet significantly increased spatial learning ability, and these effects were enhanced by exercise. The DHA-enriched diet increased levels of pro-brain-derived neurotrophic factor (BDNF) and mature BDNF, whereas the additional application of exercise boosted the levels of both. Furthermore, the levels of the activated forms of CREB and synapsin I were incremented by the DHA-enriched diet with greater elevation by the concurrent application of exercise. While the DHA diet reduced hippocampal oxidized protein levels, a combination of a DHA diet and exercise resulted in a greater reduction rate. The levels of activated forms of hippocampal Akt and CaMKII were increased by the DHA-enriched diet, and with even greater elevation by a combination of diet and exercise. Akt and CaMKII signaling are crucial step by which BDNF exerts its action on synaptic plasticity and learning and memory. These results indicate that the DHA diet enhanced the effects of exercise on cognition and BDNF-related synaptic plasticity, a capacity that may be used to promote mental health and reduce risk of neurological disorders.

  20. DHA Supplementation: Current Implications in Pregnancy and Childhood

    PubMed Central

    Rogers, Lynette K.; Valentine, Christina J.; Keim, Sarah A.

    2013-01-01

    Dietary supplementation with (ω)-3 long chain fatty acids including docosahexaenoic acid (DHA) has increased in popularity in recent years and adequate DHA supplementation during pregnancy and early childhood is of clinical importance. Some evidence has been built for the neuro-cognitive benefits of supplementation with long chain polyunsaturated fatty acids (LCPUFA) such as DHA during pregnancy; however, recent data indicate that the anti-inflammatory properties may be of at least equal significance. Adequate DHA availability in the fetus/infant optimizes brain and retinal maturation in part by influencing neurotransmitter pathways. The anti-inflammatory properties of LCPUFA are largely mediated through modulation of signaling either directly through binding to receptors or through changes in lipid raft formation and receptor presentation. Our goal is to review the current findings on DHA supplementation, specifically in pregnancy and infant neurodevelopment, as a pharmacologic agent with both preventative and therapeutic value. Given the overall benefits of DHA, maternal and infant supplementation may improve neurological outcomes especially in vulernable populations. However, optimal composition of the supplement and dosing and treatment strategies still need to be determined to lend support for routine supplementation. PMID:23266567

  1. Tumor targeting by conjugation of DHA to paclitaxel.

    PubMed

    Bradley, M O; Swindell, C S; Anthony, F H; Witman, P A; Devanesan, P; Webb, N L; Baker, S D; Wolff, A C; Donehower, R C

    2001-07-06

    Targeting an anti-cancer drug to tumors should increase the Area Under the drug concentration-time Curve (AUC) in tumors while decreasing the AUC in normal cells and should therefore increase the therapeutic index of that drug. Anti-tumor drugs typically have half-lives far shorter than the cell cycle transit times of most tumor cells. Tumor targeting, with concomitant long tumor exposure times, will increase the proportion of cells that move into cycle when the drug concentration is high, which should result in more tumor cell killing. In an effort to test that hypothesis, we conjugated a natural fatty acid, docosahexaenoic acid (DHA), through an ester bond to the paclitaxel 2'-oxygen. The resulting paclitaxel fatty acid conjugate (DHA-paclitaxel) does not assemble microtubules and is non-toxic. In the M109 mouse tumor model, DHA-paclitaxel is less toxic than paclitaxel and cures 10/10 tumored animals, whereas paclitaxel cures 0/10. One explanation for the conjugate's greater therapeutic index is that the fatty acid alters the pharmacokinetics of the drug to increase its AUC in tumors and decrease its AUC in normal cells. To test that possibility, we compared the pharmacokinetics of DHA-paclitaxel with paclitaxel in CD2F1 mice bearing approximately 125 mg sc M109 tumors. The mice were injected at zero time with a bolus of either DHA-paclitaxel or paclitaxel formulated in 10% cremophor/10% ethanol/80% saline. Animals were sacrificed as a function of time out to 14 days. Tumors and plasma were frozen and stored. The concentrations of paclitaxel and DHA-paclitaxel were analyzed by LC/MS/MS. The results show that DHA targets paclitaxel to tumors: tumor AUCs are 61-fold higher for DHA-paclitaxel than for paclitaxel at equitoxic doses and eight-fold higher at equimolar doses. Likewise, at equi-toxic doses, the tumor AUCs of paclitaxel derived from i.v. DHA-paclitaxel are 6.1-fold higher than for paclitaxel derived from i.v. paclitaxel. The tumor concentration of

  2. Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study.

    PubMed

    Iglesia, I; Huybrechts, I; González-Gross, M; Mouratidou, T; Santabárbara, J; Chajès, V; González-Gil, E M; Park, J Y; Bel-Serrat, S; Cuenca-García, M; Castillo, M; Kersting, M; Widhalm, K; De Henauw, S; Sjöström, M; Gottrand, F; Molnár, D; Manios, Y; Kafatos, A; Ferrari, M; Stehle, P; Marcos, A; Sánchez-Muniz, F J; Moreno, L A

    2017-01-01

    This study aimed to examine the association between vitamin B6, folate and vitamin B12 biomarkers and plasma fatty acids in European adolescents. A subsample from the Healthy Lifestyle in Europe by Nutrition in Adolescence study with valid data on B-vitamins and fatty acid blood parameters, and all the other covariates used in the analyses such as BMI, Diet Quality Index, education of the mother and physical activity assessed by a questionnaire, was selected resulting in 674 cases (43 % males). B-vitamin biomarkers were measured by chromatography and immunoassay and fatty acids by enzymatic analyses. Linear mixed models elucidated the association between B-vitamins and fatty acid blood parameters (changes in fatty acid profiles according to change in 10 units of vitamin B biomarkers). DHA, EPA) and n-3 fatty acids showed positive associations with B-vitamin biomarkers, mainly with those corresponding to folate and vitamin B12. Contrarily, negative associations were found with n-6:n-3 ratio, trans-fatty acids and oleic:stearic ratio. With total homocysteine (tHcy), all the associations found with these parameters were opposite (for instance, an increase of 10 nmol/l in red blood cell folate or holotranscobalamin in females produces an increase of 15·85 µmol/l of EPA (P value <0·01), whereas an increase of 10 nmol/l of tHcy in males produces a decrease of 2·06 µmol/l of DHA (P value <0·05). Positive associations between B-vitamins and specific fatty acids might suggest underlying mechanisms between B-vitamins and CVD and it is worth the attention of public health policies.

  3. Associations between serum omega-3 fatty acid levels and cognitive functions among community-dwelling octogenarians in Okinawa, Japan: The KOCOA study

    PubMed Central

    Nishihira, Junko; Tokashiki, Takashi; Higashiuesato, Yasushi; Willcox, Donald Craig; Mattek, Nora; Shinto, Lynne; Ohya, Yusuke; Dodge, Hiroko H.

    2016-01-01

    Background Epidemiological studies have found frequent consumption of fatty fish is protective against cognitive decline. However, the association between circulating omega-3 polyunsaturated fatty acid (PUFA) levels and cognitive functions among the oldest old is not well known. Objective To examine the association between serum PUFA levels and cognitive function among community-dwelling, non-demented elderly aged over 80 years old. Methods The data came from the Keys to Optimal Cognitive Aging (KOCOA) study; an ongoing cohort of relatively healthy volunteers aged over 80 years old, living in Okinawa, Japan. One hundred eighty five participants (mean age 84.1 ± 3.4 years) assessed in 2011 who were free from frank dementia (defined as Clinical Dementia Rating < 1.0) were used for the current cross-sectional study. We examined whether serum omega-3 PUFAs (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]), arachidonic acid (AA), EPA/AA ratio, DHA/AA ratio and DHA+EPA are associated with (1) age and (2) global cognitive function (Japanese MMSE) and executive function (Verbal Fluency Letters). Data was analyzed univariately by t-test and multivariately by cumulative logistic regression models controlling for age, gender, years of education, obesity, hypertension, diabetes, and dyslipidemia. Results Serum DHA levels decreased with increasing age (p = 0.04). Higher global cognitive function was associated with higher levels of serum EPA (p = 0.03) and DHA + EPA (p = 0.03) after controlling for confounders. Conclusions Higher serum EPA and DHA + EPA levels were independently associated with better scores on global cognitive function among the oldest old, free from dementia. Longitudinal follow-up studies are warranted. PMID:26890763

  4. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions

    PubMed Central

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-01-01

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200

  5. Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke.

    PubMed

    Park, Yongsoon; Nam, Somyoung; Yi, Hyeong-Joong; Hong, Hyun-Jong; Lee, Myoungsook

    2009-11-01

    Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition-93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P < .05) greater in the 1% EPA + DHA-fed rats than in other rats. Magnetic resonance imaging consistently showed that edema and bleeding were visible in only the rats fed 1% EPA + DHA. Levels of superoxide dismutase and glutathione were significantly (P < .05) lower in rats fed 0.5% and 1% EPA + DHA than those fed 0% EPA + DHA. Thiobarbituric acid-reactive substance content was significantly (P < .05) higher in 1% EPA + DHA-fed rats than in 0% and 0.5% EPA + DHA-fed rats. The level of 8-hydroxydeoxyguanosine was significantly (P < .05) higher in ICH rats with all diets than in sham surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.

  6. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.

  7. Hyperactivity in the rat is associated with spontaneous low level of n-3 polyunsaturated fatty acids in the frontal cortex.

    PubMed

    Vancassel, S; Blondeau, C; Lallemand, S; Cador, M; Linard, A; Lavialle, M; Dellu-Hagedorn, F

    2007-06-18

    Inattention, hyperactivity and impulsiveness are the main symptoms of the heterogeneous attention-deficit/hyperactivity disorder (ADHD). It has been suggested that ADHD is associated with an imbalance in polyunsaturated fatty acid (PUFA) composition, with abnormal low levels of the main n-3 PUFA, DHA (22: 6n-3). DHA is highly accumulated in nervous tissue membranes and is implicated in neural function. Animal studies have shown that diet-induced lack of DHA in the brain leads to alterations in cognitive processes, but the relationship between DHA and hyperactivity is unclear. We examined the membrane phospholipid fatty acid profile in frontal cortex of rats characterized for attention, impulsiveness and motricity in various environmental contexts to determine the relationship between brain PUFA composition and the symptoms of ADHD. The amounts of n-3 PUFA in the PE were significantly correlated with nocturnal locomotor activity and the locomotor response to novelty: hyperactive individuals had less n-3 PUFA than hypoactive ones. We conclude that spontaneous hyperactivity in rats is the symptom of ADHD that best predicts the n-3 PUFA content of the frontal cortex. This differential model in rats should help to better understand the role of PUFA in several psychopathologies in which PUFA composition is modified.

  8. A Correlation Study of DHA Dietary Intake and Plasma, Erythrocyte and Breast Milk DHA Concentrations in Lactating Women from Coastland, Lakeland, and Inland Areas of China

    PubMed Central

    Liu, Meng-Jiao; Li, Hong-Tian; Yu, Li-Xia; Xu, Gao-Sheng; Ge, Hua; Wang, Lin-Lin; Zhang, Ya-Li; Zhou, Yu-Bo; Li, You; Bai, Man-Xi; Liu, Jian-Meng

    2016-01-01

    We aimed to assess the correlation between docosahexaenoic acid (DHA) dietary intake and the plasma, erythrocyte and breast milk DHA concentrations in lactating women residing in the coastland, lakeland and inland areas of China. A total of 408 healthy lactating women (42 ± 7 days postpartum) were recruited from four hospitals located in Weihai (coastland), Yueyang (lakeland) and Baotou (inland) city. The categories of food containing DHA, the average amount consumed per time and the frequency of consumption in the past month were assessed by a tailored DHA food frequency questionnaire, the DHA Intake Evaluation Tool (DIET). DHA dietary intake (mg/day) was calculated according to the Chinese Food Composition Table (Version 2009). In addition, fasting venous blood (5 mL) and breast milk (10 mL) were collected from lactating women. DHA concentrations in plasma, erythrocyte and breast milk were measured using capillary gas chromatography, and were reported as absolute concentration (μg/mL) and relative concentration (weight percent of total fatty acids, wt. %). Spearman correlation coefficients were used to assess the correlation between intakes of DHA and its concentrations in biological specimens. The study showed that the breast milk, plasma and erythrocyte DHA concentrations were positively correlated with DHA dietary intake; corresponding correlation coefficients were 0.36, 0.36 and 0.24 for relative concentration and 0.33, 0.32, and 0.18 for absolute concentration (p < 0.05). The median DHA dietary intake varied significantly across areas (p < 0.05), which was highest in the coastland (24.32 mg/day), followed by lakeland (13.69 mg/day), and lowest in the inland (8.84 mg/day). The overall relative and absolute DHA concentrations in breast milk were 0.36% ± 0.23% and 141.49 ± 107.41 μg/mL; the concentrations were significantly lower in inland women than those from coastland and lakeland. We conclude that DHA dietary intake is positively correlated with DHA

  9. A Correlation Study of DHA Dietary Intake and Plasma, Erythrocyte and Breast Milk DHA Concentrations in Lactating Women from Coastland, Lakeland, and Inland Areas of China.

    PubMed

    Liu, Meng-Jiao; Li, Hong-Tian; Yu, Li-Xia; Xu, Gao-Sheng; Ge, Hua; Wang, Lin-Lin; Zhang, Ya-Li; Zhou, Yu-Bo; Li, You; Bai, Man-Xi; Liu, Jian-Meng

    2016-05-20

    We aimed to assess the correlation between docosahexaenoic acid (DHA) dietary intake and the plasma, erythrocyte and breast milk DHA concentrations in lactating women residing in the coastland, lakeland and inland areas of China. A total of 408 healthy lactating women (42 ± 7 days postpartum) were recruited from four hospitals located in Weihai (coastland), Yueyang (lakeland) and Baotou (inland) city. The categories of food containing DHA, the average amount consumed per time and the frequency of consumption in the past month were assessed by a tailored DHA food frequency questionnaire, the DHA Intake Evaluation Tool (DIET). DHA dietary intake (mg/day) was calculated according to the Chinese Food Composition Table (Version 2009). In addition, fasting venous blood (5 mL) and breast milk (10 mL) were collected from lactating women. DHA concentrations in plasma, erythrocyte and breast milk were measured using capillary gas chromatography, and were reported as absolute concentration (μg/mL) and relative concentration (weight percent of total fatty acids, wt. %). Spearman correlation coefficients were used to assess the correlation between intakes of DHA and its concentrations in biological specimens. The study showed that the breast milk, plasma and erythrocyte DHA concentrations were positively correlated with DHA dietary intake; corresponding correlation coefficients were 0.36, 0.36 and 0.24 for relative concentration and 0.33, 0.32, and 0.18 for absolute concentration (p < 0.05). The median DHA dietary intake varied significantly across areas (p < 0.05), which was highest in the coastland (24.32 mg/day), followed by lakeland (13.69 mg/day), and lowest in the inland (8.84 mg/day). The overall relative and absolute DHA concentrations in breast milk were 0.36% ± 0.23% and 141.49 ± 107.41 μg/mL; the concentrations were significantly lower in inland women than those from coastland and lakeland. We conclude that DHA dietary intake is positively correlated with DHA

  10. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism.

    PubMed

    Skender, Belma; Hofmanová, Jiřina; Slavík, Josef; Jelínková, Iva; Machala, Miroslav; Moyer, Mary Pat; Kozubík, Alois; Hyršlová Vaculová, Alena

    2014-09-01

    Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.

  11. Co-supplementation of healthy women with fish oil and evening primrose oil increases plasma docosahexaenoic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid levels without reducing arachidonic acid concentrations.

    PubMed

    Geppert, Julia; Demmelmair, Hans; Hornstra, Gerard; Koletzko, Berthold

    2008-02-01

    Fish oil supplementation during pregnancy not only improves maternal and neonatal DHA status, but often reduces gamma-linolenic acid (GLA), dihomo-GLA (DGLA), and arachidonic acid (ARA) levels also, which may compromise foetal and infant development. The present study investigated the effects of a fish oil/evening primrose oil (FSO/EPO) blend (456 mg DHA/d and 353 mg GLA/d) compared to a placebo (mixture of habitual dietary fatty acids) on the plasma fatty acid (FA) composition in two groups of twenty non-pregnant women using a randomised, double-blind, placebo-controlled parallel design. FA were quantified in plasma total lipids, phospholipids, cholesterol esters, and TAG at weeks 0, 4, 6 and 8. After 8 weeks of intervention, percentage changes from baseline values of plasma total lipid FA were significantly different between FSO/EPO and placebo for GLA (+49.9 % v. +2.1 %, means), DGLA (+13.8 % v. +0.7 %) and DHA (+59.6 % v. +5.5 %), while there was no significant difference for ARA ( - 2.2 % v. - 5.9 %). FA changes were largely comparable between plasma lipid fractions. In both groups three subjects reported mild adverse effects. As compared with placebo, FSO/EPO supplementation did not result in any physiologically relevant changes of safety parameters (blood cell count, liver enzymes). In women of childbearing age the tested FSO/EPO blend was well tolerated and appears safe. It increases plasma GLA, DGLA, and DHA levels without impairing ARA status. These data provide a basis for testing this FSO/EPO blend in pregnant women for its effects on maternal and neonatal FA status and infant development.

  12. Incorporation of lutein and docosahexaenoic acid from dietary microalgae into the retina in quail.

    PubMed

    Schnebelen-Berthier, Coralie; Acar, Niyazi; Pouillart, Philippe; Thabuis, Clementine; Rodriguez, Bertrand; Depeint, Flore; Clerc, Elise; Mathiaud, Adeline; Bourdillon, Anne; Baert, Blandine; Bretillon, Lionel; Lecerf, Jean-Michel

    2015-03-01

    Lutein and docosahexaenoic acid (DHA) are associated with the prevention of age-related macular degeneration (AMD). Since microalgae are potent natural sources of these nutrients, their nutritional value should be evaluated based on the bioavailability of lutein and DHA for the retina via the plasmatic compartment. In this study, quail were fed for 5 months either with a diet supplemented or deprived with microalgae rich in lutein and DHA. In the microalgae-fed group, the retinal concentrations of lutein and zeaxanthin gradually increased whereas in plasma, these compounds started to increase from the first month of supplementation. We also observed a significant increase in retinal and plasmatic levels of DHA in the microalgae-fed group. In conclusion, the plasmatic and retinal contents of lutein and DHA were significantly increased in quail fed with lutein- and DHA-rich microalgae. Food fortification with microalgae may be an innovative way to increase lutein and DHA consumption in humans.

  13. DHA in Pregnant and Lactating Women from Coastland, Lakeland, and Inland Areas of China: Results of a DHA Evaluation in Women (DEW) Study

    PubMed Central

    Li, You; Li, Hong-tian; Trasande, Leonardo; Ge, Hua; Yu, Li-xia; Xu, Gao-sheng; Bai, Man-xi; Liu, Jian-meng

    2015-01-01

    Few studies have examined docosahexaenoic acid (DHA) in pregnant and lactating women in developing countries like China, where DHA-enriched supplements are increasingly popular. We aimed to assess the DHA status among Chinese pregnant and lactating women residing areas differing in the availability of aquatic products. In total, 1211 women in mid-pregnancy (17 ± 2 weeks), late pregnancy (39 ± 2 weeks), or lactation (42 ± 7 days) were enrolled from Weihai (coastland), Yueyang (lakeland), and Baotou (inland) city, with approximately 135 women in each participant group by region. DHA concentrations were measured using capillary gas chromatography, and are reported as weight percent of total fatty acids. Mean plasma DHA concentrations were higher in coastland (mid-pregnancy 3.19%, late pregnancy 2.54%, lactation 2.24%) and lakeland women (2.45%, 1.95%, 2.26%) than inland women (2.25%, 1.67%, 1.68%) (p values < 0.001). Similar differences were observed for erythrocyte DHA. We conclude that DHA concentrations of Chinese pregnant and lactating women are higher in coastland and lakeland regions than in inland areas. DHA status in the study population appears to be stronger than populations from other countries studied to date. PMID:26506380

  14. Vitamin C enhances vitamin E status and reduces oxidative stress indicators in sea bass larvae fed high DHA microdiets.

    PubMed

    Betancor, Mónica B; Caballero, Ma José; Terova, Genciana; Corà, Samuela; Saleh, Reda; Benítez-Santana, Tibiábin; Bell, J Gordon; Hernández-Cruz, Carmen María; Izquierdo, Marisol

    2012-12-01

    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5% DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1% DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets.

  15. Docosahexaenoic Acid Sensitizes Leukemia Lymphocytes to Barasertib and Everolimus by ROS-dependent Mechanism Without Affecting the Level of ROS and Viability of Normal Lymphocytes.

    PubMed

    Zhelev, Zhivko; Ivanova, Donika; Lazarova, Desislava; Aoki, Ichio; Bakalova, Rumiana; Saga, Tsuneo

    2016-04-01

    The aim of the present study was: (i) to investigate the possibility of sensitizing leukemia lymphocytes to anticancer drugs using docosahexaenoic acid (DHA); (ii) to find combinations with synergistic cytotoxic effect on leukemia lymphocytes, without or with only very low cytotoxicity towards normal lymphocytes; (iii) and to clarify the role of reactive oxygen species (ROS) in the induction of apoptosis and cytotoxicity by such combinations. The study covered 15 anticancer drugs, conventional and new-generation. Well-expressed synergistic cytotoxic effects were observed after treatment of leukemia lymphocytes (Jurkat) with DHA in combination with: barasertib, lonafarnib, everolimus, and palbociclib. We selected two synergistic combinations, DHA with everolimus or barasertib, and investigated their effects on viability of normal lymphocytes, as well as on the production of ROS and induction of apoptosis in both cell lines (leukemia and normal). At the selected concentrations, DHA, everolimus and barasertib (applied separately) were cytotoxic towards leukemia lymphocytes, but not normal lymphocytes. In leukemia cells, the cytotoxicity of combinations was accompanied by strong induction of apoptosis and production of ROS. In normal lymphocytes, drugs alone and in combination with DHA did not affect the level of ROS and did not induce apoptosis. To our knowledge, the present study is the first to report synergistic ROS-dependent cytotoxicity between DHA and new-generation anticancer drugs, such as everolimus and barasertib, that is cancer cell-specific (particularly for acute lymphoblastic leukemia cells Jurkat). These combinations are harmless to normal lymphocytes and do not induce abnormal production of ROS in these cells. The data suggest that DHA could be used as a supplementary component in anticancer chemotherapy, allowing therapeutic doses of everolimus and barasertib to be reduced, minimizing their side-effects.

  16. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans

    PubMed Central

    Walker, Celia G.; Browning, Lucy M.; Mander, Adrian P.; Madden, Jackie; West, Annette L.; Calder, Philip C.; Jebb, Susan A.

    2015-01-01

    The aims of this study were to determine whether age and sex influence both the status and the incorporation of EPA and DHA into blood plasma, cells and tissues. The study was a double-blind, randomised, controlled intervention, providing EPA+DHA equivalent to 0, 1, 2 or 4 portions of oily fish per week, for 12 months. Participants were stratified by age and sex. A linear regression model was used to analyse baseline outcomes, with covariates for age or sex groups, and adjusting for BMI. The change from baseline to 12 months in outcome was analysed with additional adjusting of treatment and average compliance. Fatty acid profiles were determined in plasma phosphatidylcholine (PC), cholesteryl esters (CE), NEFA and TAG, mononuclear cells (MNC), erythrocyte membranes (RBC), platelets (PLAT), buccal cells (BU) and adipose tissue (AT). At baseline, EPA concentration in plasma NEFA and DHA concentration in MNC, BU and AT was higher in females than males (all P<0.05). EPA in AT (P=0.003) and DHA in plasma TAG (P<0.01) and AT (P<0.001) were higher with increasing age. Following 12 months supplementation with EPA+DHA, adjusted mean difference for change in EPA in plasma TAG was significantly higher in females than males (P<0.05) and was greater with increasing age (P=0.02). Adjusted mean difference for change in DHA in AT was significantly smaller with increasing age (P=0.02). Although small differences in incorporation with age and sex were identified, these were not of sufficient magnitude to warrant a move away from population-level diet recommendations for n-3 PUFA. PMID:24063767

  17. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans.

    PubMed

    Walker, Celia G; Browning, Lucy M; Mander, Adrian P; Madden, Jackie; West, Annette L; Calder, Philip C; Jebb, Susan A

    2014-02-01

    The aim of the present study was to determine whether age and sex influence both the status and incorporation of EPA and DHA into blood plasma, cells and tissues. The study was a double-blind, randomised, controlled intervention trial, providing EPA plus DHA equivalent to 0, 1, 2 or 4 portions of oily fish per week for 12 months. The participants were stratified by age and sex. A linear regression model was used to analyse baseline outcomes, with covariates for age or sex groups and by adjusting for BMI. The change in outcomes from baseline to 12 months was analysed with additional adjustment for treatment and average compliance. Fatty acid profiles in plasma phosphatidylcholine, cholesteryl esters, NEFA and TAG, mononuclear cells (MNC), erythrocyte membranes, platelets, buccal cells (BU) and adipose tissue (AT) were determined. At baseline, EPA concentrations in plasma NEFA and DHA concentrations in MNC, BU and AT were higher in females than in males (all P< 0·05). The concentrations of EPA in AT (P= 0·003) and those of DHA in plasma TAG (P< 0·01) and AT (P< 0·001) were higher with increasing age. Following 12-month supplementation with EPA plus DHA, adjusted mean difference for change in EPA concentrations in plasma TAG was significantly higher in females than in males (P< 0·05) and was greater with increasing age (P= 0·02). Adjusted mean difference for change in DHA concentrations in AT was significantly smaller with increasing age (P= 0·02). Although small differences in incorporation with age and sex were identified, these were not of sufficient magnitude to warrant a move away from population-level diet recommendations for n-3 PUFA.

  18. Docosahexaenoic Acid and Cognition throughout the Lifespan

    PubMed Central

    Weiser, Michael J.; Butt, Christopher M.; Mohajeri, M. Hasan

    2016-01-01

    Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action. PMID:26901223

  19. Formula feeding potentiates docosahexaenoic and arachidonic acid biosynthesis in term and preterm baboon neonates.

    PubMed

    Sarkadi-Nagy, Eszter; Wijendran, Vasuki; Diau, Guan Yeu; Chao, Angela Chueh; Hsieh, Andrea T; Turpeinen, Anu; Lawrence, Peter; Nathanielsz, Peter W; Brenna, J Thomas

    2004-01-01

    Infant formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA) are now available in the United States; however, little is known about the factors that affect biosynthesis. Baboon neonates were assigned to one of four treatments: term, breast-fed; term, formula-fed; preterm (155 of 182 days gestation), formula-fed; and preterm, formula+DHA/ARA-fed. Standard formula had no DHA/ARA; supplemented formula had 0.61%wt DHA (0.3% of calories) and 1.21%wt ARA (0.6% of calories), and baboon breast milk contained 0.68 +/- 0.22%wt DHA and 0.62 +/- 0.12%wt ARA. At 14 days adjusted age, neonates received a combined oral dose of [U-13C]alpha-linolenic acid (LNA*) and [U-13C]linoleic acid (LA*), and tissues were analyzed 14 days after dose. Brain accretion of linolenic acid-derived DHA was approximately 3-fold greater for the formula groups than for the breast-fed group, and dietary DHA partially attenuated excess DHA synthesis among preterms. A similar, significant pattern was found in other organs. Brain linoleic acid-derived ARA accretion was significantly greater in the unsupplemented term group but not in the preterm groups compared with the breast-fed group. These data show that formula potentiates the biosynthesis/accretion of DHA/ARA in term and preterm neonates compared with breast-fed neonates and that the inclusion of DHA/ARA in preterm formula partially restores DHA/ARA biosynthesis to lower, breast-fed levels. Current formula DHA concentrations are inadequate to normalize long-chain polyunsaturated fatty acids synthesis to that of breast-fed levels.

  20. Dietary arachidonic acid in perinatal nutrition: a commentary.

    PubMed

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar levels in breast milk throughout the world, whereas the level of DHA is highly diet dependent. Autopsy studies show similar diet-dependent variation in brain DHA, whereas AA is little affected by intake. Early intake of DHA has been shown to affect visual development, but the effect of LCPUFA on neurodevelopment remains to be established. Few studies have found any functional difference between infants supplemented with DHA alone compared to DHA+AA, but some studies show neurodevelopmental advantages in breast-fed infants of mothers supplemented with n-3 LCPUFA alone. It also remains to be established whether the AA/DHA balance could affect allergic and inflammatory outcomes later in life. Disentangling effects of genetic variability and dietary intake on AA and DHA-status and on functional outcomes may be an important step in the process of determining whether AA-intake is of any physiological or clinical importance. However, based on the current evidence we hypothesize that dietary AA plays a minor role on growth and development relative to the impact of dietary DHA.

  1. Omega-3 polyunsaturated fatty acids and vegetarian diets.

    PubMed

    Saunders, Angela V; Davis, Brenda C; Garg, Manohar L

    2013-08-19

    While intakes of the omega-3 fatty acid α-linolenic acid (ALA) are similar in vegetarians and non-vegetarians, intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low in vegetarians and virtually absent in vegans. Plasma, blood and tissue levels of EPA and DHA are lower in vegetarians than in non-vegetarians, although the clinical significance of this is unknown. Vegetarians do not exhibit clinical signs of DHA deficiency, but further research is required to ascertain whether levels observed in vegetarians are sufficient to support optimal health. ALA is endogenously converted to EPA and DHA, but the process is slow and inefficient and is affected by genetics, sex, age and dietary composition. Vegetarians can take practical steps to optimise conversion of ALA to EPA and DHA, including reducing intake of linoleic acid. There are no official separate recommendations for intake of fatty acids by vegetarians. However, we suggest that vegetarians double the current adequate intake of ALA if no direct sources of EPA and DHA are consumed. Vegetarians with increased needs or reduced conversion ability may receive some advantage from DHA and EPA supplements derived from microalgae. A supplement of 200-300 mg/day of DHA and EPA is suggested for those with increased needs, such as pregnant and lactating women, and those with reduced conversion ability, such as older people or those who have chronic disease (eg, diabetes).

  2. Improvement of major depression is associated with increased erythrocyte DHA.

    PubMed

    Meyer, Barbara J; Grenyer, Brin F S; Crowe, Trevor; Owen, Alice J; Grigonis-Deane, Elizabeth M; Howe, Peter R C

    2013-09-01

    The aim of this study was to determine if changes in omega-3 polyunsaturated fatty acid status following tuna oil supplementation correlated with changes in scores of depression. A total of 95 volunteers receiving treatment for major depression were randomised to consume 8 × 1 g capsules per day of HiDHA (2 g DHA, 0.6 g EPA and 10 mg Vitamin E) or olive oil (placebo) for 16 weeks, whilst undergoing weekly counseling sessions by trained clinical psychologists using a standard empirically validated psychotherapy. Depression status was assessed using the 17 item Hamilton rating scale for depression and the Beck Depression Inventory by a psychodiagnostician who was blind to the treatment. Blood was taken at baseline and 16 weeks (n = 48) for measurement of erythrocyte fatty acids. With HiDHA supplementation, erythrocyte DHA content rose from 4.1 ± 0.2 to 7.9 ± 0.4 % (mean ± SEM, p < 0.001) of total fatty acids but did not change (4.0 ± 0.2 to 4.1 ± 0.2 %) in the olive oil group. The mean changes in scores of depression did not differ significantly between the two groups (-12.2 ± 2.1 for tuna oil and -14.4 ± 2.3 for olive oil). However, analysis of covariance showed that in the fish oil group there was a significant correlation (r = -0.51) between the change in erythrocyte DHA and the change in scores of depression (p < 0.05). Further study of the relationship between DHA and depression is warranted.

  3. Maternal characteristics influence response to DHA during pregnancy.

    PubMed

    Gould, J F; Anderson, A J; Yelland, L N; Gibson, R A; Makrides, M

    2016-05-01

    We explored the degree to which maternal and offspring outcomes resulting from consuming prenatal docosahexaenoic acid (DHA, 800mg/day) in a clinical trial were influenced by maternal characteristics. Among non-smokers, women who received DHA had heavier babies (adjusted mean difference (MD)=99g 95% CI 45-153, p<0.01; interaction p=0.01) and fewer low birth weight babies than control women (adjusted relative risk=0.43 95% CI 0.25-0.74, p<0.01; interaction p=0.01). From women who had not completed further education, children in the DHA group had higher cognitive scores at 18 months compared with control children (adjusted MD=3.15 95% CI 0.93-5.37, p=0.01; interaction p<0.01). Conversely, the children of women who completed further education in the DHA group had lower language scores than control children (adjusted MD -2.82 95% CI -4.90 to -0.73, p=0.01; interaction p=0.04). Our results support the notion that responsiveness to prenatal DHA may depend on the characteristics of specific population subgroups.

  4. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Levels and Correlations with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autistic Spectrum Disorder and Typically Developing Controls

    PubMed Central

    Niyonsenga, Theophile; Duff, Jacques

    2016-01-01

    Background There is evidence that children with Attention Deficit Hyperactivity Disorder (ADHD) and Autistic Spectrum Disorder (ASD) have lower omega-3 polyunsaturated fatty acid (n-3 PUFA) levels compared with controls and conflicting evidence regarding omega-6 (n-6) PUFA levels. Objectives This study investigated whether erythrocyte n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were lower and n-6 PUFA arachidonic acid (AA) higher in children with ADHD, ASD and controls, and whether lower n-3 and higher n-6 PUFAs correlated with poorer scores on the Australian Twin Behaviour Rating Scale (ATBRS; ADHD symptoms) and Test of Variable Attention (TOVA) in children with ADHD, and Childhood Autism Rating Scale (CARS) in children with ASD. Methods Assessments and blood samples of 565 children aged 3–17 years with ADHD (n = 401), ASD (n = 85) or controls (n = 79) were analysed. One-way ANOVAs with Tukey’s post-hoc analysis investigated differences in PUFA levels between groups and Pearson’s correlations investigated correlations between PUFA levels and ATBRS, TOVA and CARS scores. Results Children with ADHD and ASD had lower DHA, EPA and AA, higher AA/EPA ratio and lower n-3/n-6 than controls (P<0.001 except AA between ADHD and controls: P = 0.047). Children with ASD had lower DHA, EPA and AA than children with ADHD (P<0.001 for all comparisons). ATBRS scores correlated negatively with EPA (r = -.294, P<0.001), DHA (r = -.424, P<0.001), n-3/n-6 (r = -.477, P<0.001) and positively with AA/EPA (r = .222, P <.01). TOVA scores correlated positively with DHA (r = .610, P<0.001), EPA (r = .418, P<0.001) AA (r = .199, P<0.001), and n-3/n-6 (r = .509, P<0.001) and negatively with AA/EPA (r = -.243, P<0.001). CARS scores correlated significantly with DHA (r = .328, P = 0.002), EPA (r = -.225, P = 0.038) and AA (r = .251, P = 0.021). Conclusions Children with ADHD and ASD had low levels of EPA, DHA and AA and high ratio of n-6/n-3 PUFAs and these

  5. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    PubMed

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients.

  6. Safety assessment of DHA-rich microalgae from Schizochytrium sp.

    PubMed

    Hammond, B G; Mayhew, D A; Robinson, K; Mast, R W; Sander, W J

    2001-06-01

    Schizochytrium sp. dried microalgae (DRM) contains oil rich in highly unsaturated fatty acids (PUFAs). Docosahexaenoic acid (DHA n-3) is the most abundant PUFA component of the oil. DHA-rich oil extracted from Schizochytrium sp. is intended for use as a nutritional ingredient in foods. As part of a comprehensive safety assessment program, the reproductive toxicity of DRM was examined in Sprague-Dawley-derived rats Crl:CD(SD)BR (30/sex/group) provided DRM in the diet at concentrations of 0, 0.6, 6.0, and 30%. These dietary levels corresponded to overall average dosages of approximately 400, 3900, and 17,800 mg/kg/day for F0 males (premating) and 480, 4600, and 20,700 mg/kg/day for F0 females, respectively. Prior to mating, males and females of the F0 generation were treated for 10 and 2 weeks, respectively. Treatment of males continued throughout mating and until termination (approximately 3 weeks after mating). Treatment of the females was continued throughout gestation and through lactation day 21. The females were killed after raising their young to weaning at 21 days of age. Food consumption was measured weekly throughout the study (except during mating) and body weights were recorded at least weekly during premating, gestation, and lactation. Reproductive parameters including estrus cycle duration, mating performance, fertility, gestation length, parturition, and gestation index were evaluated. Litter size and offspring body weights were recorded, offspring viability indices were calculated, and physical development (vaginal opening and preputial separation) was assessed for the F1 generation. All adult F0 and F1 animals were subjected to a detailed necropsy. DRM treatment had no effect on estrus cycles or reproductive performance including mating performance, fertility, gestation length, parturition, or gestation index. Litter size, sex ratio, and offspring viability indices were similarly unaffected and there were no effects of DRM treatment on the physical

  7. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers.

    PubMed

    Ulven, Stine M; Kirkhus, Bente; Lamglait, Amandine; Basu, Samar; Elind, Elisabeth; Haider, Trond; Berge, Kjetil; Vik, Hogne; Pedersen, Jan I

    2011-01-01

    The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil.

  8. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept.

    PubMed

    Nguyen, H T T; Nevoigt, E

    2009-11-01

    Dihydroxyacetone (DHA) has numerous industrial applications. In this work, we pursue the idea to produce DHA from sugars in the yeast Saccharomyces cerevisiae, via glycerol as an intermediate. Firstly, three glycerol dehydrogenase (GDH) genes from different microbial sources were expressed in yeast. Among them, the NAD(+)-dependent GDH of Hansenula polymorpha showed the highest glycerol-oxidizing activity. DHA concentration in shake-flask experiments was roughly 100mg/lDHA from 20g/l glucose, i.e. five times the wild-type level. This level was achieved only when cultures were subjected to osmotic stress, known to enhance glycerol production and accumulation in S. cerevisiae. Secondly, DHA kinase activity was abolished to prevent conversion of DHA to dihydroxyacetone phosphate (DHAP). The dak1Deltadak2Delta double-deletion mutant overexpressing H. polymorpha gdh produced 700mg/l DHA under the same conditions. Although current DHA yield and titer still need to be optimized, our approach provides the proof of concept for producing DHA from sugars in yeast.

  9. Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*

    PubMed Central

    Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907

  10. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy.

  11. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Ward, Leigh C; Brown, Lindsay

    2013-06-01

    We compared the cardiovascular, hepatic and metabolic responses to individual dietary n-3 fatty acids (α-linolenic acid, ALA; eicosapentaenoic acid, EPA; and docosahexaenoic acid, DHA) in a high-carbohydrate, high-fat diet-induced model of metabolic syndrome in rats. Additionally, we measured fatty acid composition of plasma, adipose tissue, liver, heart and skeletal muscle in these rats. The same dosages of ALA and EPA/DHA produced different physiological responses to decrease the risk factors for metabolic syndrome. ALA did not reduce total body fat but induced lipid redistribution away from the abdominal area and favorably improved glucose tolerance, insulin sensitivity, dyslipidemia, hypertension and left ventricular dimensions, contractility, volumes and stiffness. EPA and DHA increased sympathetic activation, reduced the abdominal adiposity and total body fat and attenuated insulin sensitivity, dyslipidemia, hypertension and left ventricular stiffness but not glucose tolerance. However, ALA, EPA and DHA all reduced inflammation in both the heart and the liver, cardiac fibrosis and hepatic steatosis. These effects were associated with complete suppression of stearoyl-CoA desaturase 1 activity. Since the physiological responses to EPA and DHA were similar, it is likely that the effects are mediated by DHA with EPA serving as a precursor. Also, ALA supplementation increased DHA concentrations but induced different physiological responses to EPA and DHA. This result strongly suggests that ALA has independent effects in metabolic syndrome, not relying on its metabolism to DHA.

  12. Brain docosahexaenoic acid status and learning in young rats submitted to dietary long-chain polyunsaturated fatty acid deficiency and supplementation limited to lactation.

    PubMed

    García-Calatayud, Salvador; Redondo, Carlos; Martín, Eva; Ruiz, José Ignacio; García-Fuentes, Miguel; Sanjurjo, Pablo

    2005-05-01

    N-3 fatty acid deficiency has been related to decreased docosahexaenoic acid (DHA) and increased docosapentaenoic acid (DPA) levels in brain and to learning disadvantages. The influence of n-3 deficiency and supplementation on brain fatty acids and learning were investigated in young rats. Newborn Wistar rats were assigned to three groups of cross-foster mothers. The control group (C) was nursed by mothers that received essential fatty acids during pregnancy and lactation, and the deficient group (D) was nursed by mothers that did not receive those fatty acids. The supplemental group (S) had the same conditions as D, receiving an additional DHA and arachidonic acid supplement during lactation. Cerebral cortex and hippocampus fatty acid composition was examined using thin-layer and capillary column gas chromatography, and learning was measured by passive-avoidance procedure. D brains showed low DHA and high DPA levels, but S brain composition was similar to C. Learning in the S group was unaffected, but in the D group, it was poorer than C. Learning was directly correlated with DHA levels and inversely with DPA levels in brain. Low DHA and high DPA brain levels both were correlated with poor learning. DPA seems not to be a suitable brain functional analogue of DHA, and DHA supplementation reversed both biochemical and learning adverse effects observed in n-3 deficiency.

  13. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation

    PubMed Central

    Ali, Mehboob; Heyob, Kathryn M.; Velten, Markus; Tipple, Trent E.

    2015-01-01

    We have previously shown that an adverse perinatal environment significantly alters lung growth and development and results in persistently altered cardiopulmonary physiology in adulthood. Our model of maternal LPS treatment followed by 14 days of neonatal hyperoxia exposure causes severe pulmonary disease characterized by permanent decreases in alveolarization and diffuse interstitial fibrosis. The current investigations tested the hypothesis that dysregulation of Notch signaling pathways contributes to the permanently altered lung phenotype in our model and that the improvements we have observed previously with maternal docosahexaenoic acid (DHA) supplementation are mediated through normalization of Notch-related protein expression. Results indicated that inflammation (IL-6 levels) and oxidation (F2a-isoprostanes) persisted through 8 wk of life in mice exposed to LPS/O2 perinatally. These changes were attenuated by maternal DHA supplementation. Modest but inconsistent differences were observed in Notch-pathway proteins Jagged 1, DLL 1, PEN2, and presenilin-2. We detected substantial increases in markers of apoptosis including PARP-1, APAF-1, caspase-9, BCL2, and HMGB1, and these increases were attenuated in mice that were nursed by DHA-supplemented dams during the perinatal period. Although Notch signaling is not significantly altered at 8 wk of age in mice with perinatal exposure to LPS/O2, our findings indicate that persistent apoptosis continues to occur at 8 wk of age. We speculate that ongoing apoptosis may contribute to persistently altered lung development and may further enhance susceptibility to additional pulmonary disease. Finally, we found that maternal DHA supplementation prevented sustained inflammation, oxidation, and apoptosis in our model. PMID:26138643

  14. Dissociable effects of dorsal and ventral hippocampal DHA content on spatial learning and anxiety-like behavior.

    PubMed

    Jašarević, Eldin; Hecht, Patrick M; Fritsche, Kevin L; Beversdorf, David Q; Geary, David C

    2014-12-01

    Chronic deficiency of dietary docosahexaenoic acid (DHA) during critical developmental windows results in severe deficits in spatial learning, anxiety and hippocampal neuroplasticity that parallel a variety of neuropsychiatric disorders. However, little is known regarding the influence of long-term, multigenerational exposure to dietary DHA enrichment on these same traits. To characterize the potential benefits of multigenerational DHA enrichment, mice were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 0.1% preformed DHA/kg feed weight or 1.0% preformed DHA/kg feed weight through three generations. General locomotor activity, spatial learning, and anxiety-like behavior were assessed in adult male offspring of the third generation. Following behavioral assessments, ventral and dorsal hippocampus was collected for DHA and arachidonic acid (AA) analysis. Animals consuming the 0.1% and 1.0% DHA diet did not differ from control animals for locomotor activity or on performance during acquisition learning, but made fewer errors and showed more stable across-day performance during reversal learning on the spatial task and showed less anxiety-like behavior. Consumption of the DHA-enriched diets increased DHA content in the ventral and dorsal hippocampus in a region-specific manner. DHA content in the dorsal hippocampus predicted performance on the reversal training task. DHA content in the ventral hippocampus was correlated with anxiety-like behavior, but AA content in the dorsal hippocampus was a stronger predictor of this behavior. These results suggest that long-term, multigenerational DHA administration improves performance on some aspects of complex spatial learning, decreases anxiety-like behavior, and that modulation of DHA content in sub-regions of the hippocampus predicts which behaviors are likely to be affected.

  15. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria.

    PubMed

    Fiorani, Mara; Azzolini, Catia; Guidarelli, Andrea; Cerioni, Liana; Scotti, Maddalena; Cantoni, Orazio

    2015-09-01

    Exposure of U937 cells to low concentrations of L-ascorbic acid (AA) is associated with a prompt cellular uptake and a further mitochondrial accumulation of the vitamin. Under the same conditions, dehydroascorbic acid (DHA) uptake was followed by rapid reduction and accumulation of identical intracellular levels of AA, however, in the absence of significant mitochondrial uptake. This event was instead observed after exposure to remarkably greater concentrations of DHA. Furthermore, experiments performed in isolated mitochondria revealed that DHA transport through hexose transporters and Na(+) -dependent transport of AA were very similar. These results suggest that the different subcellular compartmentalization of the vitamin is mediated by events promoting inhibition of mitochondrial AA transport, possibly triggered by low levels of DHA. We obtained results in line with this notion in intact cells, and more direct evidence in isolated mitochondria. This inhibitory effect was promptly reversible after DHA removal and comparable with that mediated by established inhibitors, as quercetin. The results presented collectively indicate that low intracellular concentrations of DHA, because of its rapid reduction back to AA, are a poor substrate for direct mitochondrial uptake. DHA concentrations, however, appear sufficiently high to mediate inhibition of mitochondrial transport of AA/DHA-derived AA.

  16. Quantitative Profiling of Hydroxy Lipid Metabolites in Mouse Organs Reveals Distinct Lipidomic Profiles and Modifications Due to Elevated n-3 Fatty Acid Levels

    PubMed Central

    Chiu, Cheng-Ying; Smyl, Christopher; Dogan, Inci; Rothe, Michael; Weylandt, Karsten-H.

    2017-01-01

    Polyunsaturated fatty acids (PUFA) are precursors of bioactive metabolites and mediators. In this study, the profile of hydroxyeicosatetraenoic (HETE), hydroxyeicosapentaenoic (HEPE) and hydroxydocosahexaenoic (HDHA) acids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in colon, liver, lung, spleen, muscle, heart and kidney tissue of healthy wildtype mice were characterized, and compared to profiles in organs from transgenic fat-1 mice engineered to express the Caenorhabditis elegans fat-1 gene encoding an n-3 desaturase and thereby with endogenously elevated n-3 PUFA levels. PUFAs were measured using gas chromatography. The lipid metabolites were assayed using LC-MS/MS. AA and DHA were the prominent PUFAs in wildtype and fat-1 mice. EPA levels were low in both groups even though there was a significant increase in fat-1 organs with an up to 12-fold increase in fat-1 spleen and kidney. DHA levels increased by approximately 1.5-fold in fat-1 as compared to wildtype mice. While HETEs remained the same or decreased moderately and HDHAs increased 1- to 3-fold, HEPE formation in fat-1 tissues increased from 8- (muscle) to 44-fold (spleen). These findings indicate distinct profiles of monohydroxy lipid metabolites in different organs and strong utilization of EPA for HEPE formation, by which moderate EPA supplementation might trigger formation of biologically active EPA-derived resolvins. PMID:28165385

  17. Increasing Levels of Dietary Hempseed Products Leads to Differential Responses in the Fatty Acid Profiles of Egg Yolk, Liver and Plasma of Laying Hens.

    PubMed

    Neijat, M; Suh, M; Neufeld, J; House, J D

    2016-05-01

    The limited efficiency with which dietary alpha-linolenic acid (ALA) is converted by hens into docosahexaenoic acid (DHA) for egg deposition is not clearly understood. In this study, dietary ALA levels were increased via the inclusion of hempseed (HS) and hempseed oil (HO) in hen diets, with the goal of assessing the effects on the fatty acid (FA) profiles of total lipids and lipid classes in yolk, liver and plasma. Forty-eight hens were individually caged and fed one of six diets containing either HS:10, 20 or 30, HO:4.5 or 9.0 (%, diet) or a control (containing corn oil), providing a range (0.1-1.28 %, diet) of ALA. Fatty acid methyl esters of total lipids and lipid classes, including phosphatidyl choline (PtdCho) and ethanolamine (PtdEtn) in yolk, plasma and liver were then determined. Levels of n-3 FAs in both total lipids and lipid classes increased in all tissues. ALA and eicosapentaenoic acid (EPA) increased linearly, while docosapentaenoic acid and DHA increased quadratically. The FA profiles of yolk closely reflected levels in both plasma and liver. While ALA was highly concentrated in the triacylglycerol, it was low but equally distributed between PtdCho and PtdEtn in all tissues; however, the net accumulation was lower (P < 0.0001) in liver compared to yolk and plasma. Levels of EPA and ALA in yolk-PtdEtn were linearly (P < 0.0001; R (2) = 0.93) associated, and reflected those in liver-PtdEtn (P < 0.0001; R (2) = 0.90). In the liver, a strong inverse correlation (P < 0.0001; r = -0.94) between PL-DHA and ALA-to-EPA ratio in PtdEtn supports theories of low substrate availability, possibly limiting the conversion of ALA into DHA for egg enrichment.

  18. Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation.

    PubMed

    Dasilva, Gabriel; Pazos, Manuel; García-Egido, Eduardo; Gallardo, Jose Manuel; Rodríguez, Isaac; Cela, Rafael; Medina, Isabel

    2015-11-01

    Dietary intervention with ω-3 marine fatty acids may potentially modulate inflammation and oxidative stress markers related with CVD, metabolic syndrome and cancer. The aim of this study was to evaluate whether different proportions of ω-3 EPA and DHA intake provoke a modulation of the production of lipid mediators and then, an influence on different indexes of inflammation and oxidative stress in a controlled dietary animal experiment using Wistar rats. For such scope, a lipidomic SPE-LC-ESI-MS/MS approach previously developed was applied to determine lipid mediators profile in plasma samples. The effect of ω-3 fatty acids associated to different ratios EPA:DHA was compared with the effect exerted by ω-3 ALA supplementation from linseed oil and ω-6 LA from soybean oil. CRP showed a tendency to greater inflammatory status in all ω-3-fed animals. Interestingly, ratios 1:1 and 2:1 EPA:DHA evidenced a noteworthy healthy effect generating a less oxidative environment and modulating LOX and COX activities toward a decrease in the production of proinflammatory ARA eicosanoids and oxidative stress biomarkers from EPA and DHA. In addition, the ability of 1:1 and 2:1 fish oil diets to reduce lipid mediator levels was in concurrence with the protective effect exerted by decreasing inflammatory markers as ω-6/ω-3 ratio in plasma and membranes. It was also highlighted the effect of a higher DHA amount in the diet reducing the healthy benefits described in terms of inflammation and oxidative stress. Results support the antiinflammatory and antioxidative role of fish oils and, particularly, the effect of adequate proportions EPA:DHA.

  19. Reversal of IL-13-induced inflammation and Ca(2+) sensitivity by resolvin and MAG-DHA in association with ASA in human bronchi.

    PubMed

    Khaddaj-Mallat, Rayan; Sirois, Chantal; Sirois, Marco; Rizcallah, Edmond; Morin, Caroline; Rousseau, Éric

    2015-09-01

    The aim of this study was to investigate the effects of resolvin D1 (RvD1), as well as the combined treatment of docosahexaenoic acid monoglyceride (MAG-DHA) and acetylsalicylic acid (ASA), on the resolution of inflammation markers and Ca(2+) sensitivity in IL-13-pretreated human bronchi (HB). Tension measurements performed with 300 nM RvD1 largely abolished (50%) the over-reactivity triggered by 10 ng/ml IL-13 pretreatment and reversed hyper Ca(2+) sensitivity. Addition of 300 nM 17(S)-HpDoHE, the metabolic intermediate between DHA and RvD1, displayed similar effects. In the presence of 100 μM ASA (a COX inhibitor), the inhibitory effect of 1 μM MAG-DHA on muscarinic tone was further amplified, but not in the presence of Ibuprofen. Western blot analysis revealed that the combined treatment of MAG-DHA and ASA upregulated GPR-32 expression and downregulated cytosolic TNFα detection, hence preventing IκBα degradation and p65-NFκB phosphorylation. The Ca(2+) sensitivity of HB was also quantified on β-escin permeabilized preparations. The presence of ASA potentiated the inhibitory effects of MAG-DHA in reducing the Ca(2+) hypersensitivity triggered by IL-13 by decreasing the phosphorylation levels of the PKC-potentiated inhibitor protein-17 regulatory protein (CPI-17). In summary, MAG-DHA combined with ASA, as well as exogenously added RvD1, may represent valuable assets against critical AHR disorder.

  20. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters.

    PubMed

    Bandarra, Narcisa M; Lopes, Paula A; Martins, Susana V; Ferreira, Júlia; Alfaia, Cristina M; Rolo, Eva A; Correia, Jorge J; Pinto, Rui M A; Ramos-Bueno, Rebeca P; Batista, Irineu; Prates, José A M; Guil-Guerrero, José L

    2016-05-01

    In this study, we hypothesized that the incorporation of docosahexaenoic acid (DHA) in tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position, which enhances efficacy and health benefits of dietary DHA n-3 supplementation. Ten-week-old Golden Syrian male hamsters were randomly allocated into 4 dietary groups with 10 animals in each: linseed oil (LSO; control group), fish oil (FO), fish oil ethyl esters (FO-EE), and structured DHA at the sn-2 position of TAG (DHA-SL). After 12 weeks, there were no variations in the hamsters' body composition parameters across dietary groups. The DHA-SL diet had the lowest values of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total lipids, and aspartate aminotransferase activity, whereas the inverse was observed for the FO diet. Glucose was increased in the LSO diet without affecting insulin and insulin resistance markers. Whereas n-3 polyunsaturated fatty acid was increased in the brain of hamsters fed the DHA-SL diet, higher levels of n-6 polyunsaturated fatty acid were observed in the liver and erythrocytes of the LSO. The highest omega-3 index was obtained with the DHA-SL diet. The principal component analyses discriminated DHA from other metabolites and set apart 4 clusters matching the 4 diets. Similarly, liver, erythrocytes, and brain were separated from each other, pointing toward an individual signature on fatty acid deposition. The structured sn-2 position DHA-containing TAG ameliorated blood lipids and fatty acid incorporation, in particular eicosapentaenoic acid and DHA in liver, erythrocytes, and brain, relative to commercially FOs, thus improving the health benefits of DHA due to its higher bioavailability.

  1. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption.

    PubMed

    Taipale, S J; Vuorio, K; Strandberg, U; Kahilainen, K K; Järvinen, M; Hiltunen, M; Peltomaa, E; Kankaala, P

    2016-11-01

    Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mgHUFAg(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r=0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r=0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r=0.74) and chrysophytes (r=0.70). Accordingly, the EPA+DHA content of perch muscle decreased with increasing total phosphorus (r(2)=0.80) and dissolved organic carbon concentration (r(2)=0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish

  2. Influence of feeding graded levels of canned sardines on the inflammatory markers and tissue fatty acid composition of Wistar rats.

    PubMed

    Rodrigues, Pedro O; Martins, Susana V; Lopes, Paula A; Ramos, Cristina; Miguéis, Samuel; Alfaia, Cristina M; Pinto, Rui M A; Rolo, Eva A; Bispo, Paulo; Batista, Irineu; Bandarra, Narcisa M; Prates, José A M

    2014-08-14

    Canned sardines are a ready-to-use fish product with excellent nutritional properties owing to its high n-3 long-chain PUFA content, mainly EPA (20 : 5n-3) and DHA (22 : 6n-3). The present study aimed to assess the effect of two dosages of canned sardines, recommended for the primary and secondary prevention of human CVD, on the inflammatory marker concentrations and fatty acid composition of erythrocytes and key metabolic tissues (liver, muscle, adipose tissue and brain) in the rat model. Wistar rats were fed a diet containing 11 % (w/w) of canned sardines (low-sardine (LS) diet) and a diet containing 22 % (w/w) of canned sardines (high-sardine (HS) diet) for 10 weeks. Daily food intake, weight gain, and organ and final body weights were not affected by the dietary treatments. The concentrations of total cholesterol, HDL-cholesterol and LDL-cholesterol decreased in both the LS and HS groups, while those of alanine aminotransferase and adiponectin increased. The concentrations of IL-1β increased only with the highest dosage of sardine. The dose-dependent influence of the graded levels of EPA+DHA was tissue specific. Compared with that of other tissues and erythrocytes, the fatty acid composition of the brain was less affected by the canned sardine-supplemented diets. In contrast, the retroperitoneal adipose tissue was highly responsive. The deposition ratios of EPA and DHA indicated that the LS diet was optimal for DHA deposition across the tissues, except in the retroperitoneal adipose tissue. Taken together, our findings indicate that a LS diet positively affects plasma lipid profiles and inflammatory mediators, whereas a HS diet has contradictory effects on IL-1β, which, in turn, is not associated with variations in the concentrations of other pro-inflammatory cytokines. This finding requires further investigation and pathophysiological understanding.

  3. Cardiac mortality is associated with low levels of omega-3 and omega-6 fatty acids in the heart of cadavers with a history of coronary heart disease.

    PubMed

    Chattipakorn, Nipon; Settakorn, Jongkolnee; Petsophonsakul, Petnoi; Suwannahoi, Padiphat; Mahakranukrauh, Pasuk; Srichairatanakool, Somdet; Chattipakorn, Siriporn C

    2009-10-01

    The benefits of omega-3 (ie, eicosapentaenoic acid and docosahexaenoic acid [DHA]) and omega-6 (ie, linoleic acid and arachidonic acid [AA]) fatty acids on reducing cardiac mortality are still debated. In this study, we tested the hypothesis that high levels of omega-3 and omega-6 fatty acids in heart tissues are associated with low cardiac mortality in Thai cadavers. One hundred fresh cadavers were examined in this study. The cause of death, history of coronary heart disease (CHD), and fish consumption habits were obtained from death certificates, cadaver medical record profiles, and a questionnaire to a person who lived with the subject before death. In each cadaver, biopsies of cardiac tissues were taken from the interventricular septum for measurement of fatty acid. Of the 100 cadavers (average age, 69 +/- 13 years), 60 were men. The frequency of fish consumption was directly associated with omega-3 and omega-6 fatty acids in heart tissues (P < .01). History of CHD and cause of death (cardiac vs noncardiac) were not significantly associated with levels of omega-3 or omega-6 fatty acids. However, in cadavers with a history of CHD, high levels of omega-3 and omega-6, particularly DHA and AA, were associated with low cardiac mortality (P < .05). Fish consumption is associated with levels of omega-3 and omega-6 fatty acids in heart tissues. Although omega-3 and omega-6 fatty acids are not associated with cardiac mortality in the overall studied population, their low levels (especially DHA and AA) in heart tissues are associated with high cardiac mortality in cadavers with a history of CHD.

  4. Prescription n-3 fatty acids, but not eicosapentaenoic acid alone, improve reference memory-related learning ability by increasing brain-derived neurotrophic factor levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Tanabe, Yoko; Hossain, Shahdat; Tsuchikura, Satoru; Shido, Osamu

    2013-10-01

    Metabolic syndrome is implicated in the decline of cognitive ability. We investigated whether the prescription n-3 fatty acid administration improves cognitive learning ability in SHR.Cg-Lepr(cp)/NDmcr (SHR-cp) rats, a metabolic syndrome model, in comparison with administration of eicosapentaenoic acid (EPA, C20:5, n-3) alone. Administration of TAK-085 [highly purified and concentrated n-3 fatty acid formulation containing EPA ethyl ester and docosahexaenoic acid (DHA, C22:6, n-3) ethyl ester] at 300 mg/kg body weight per day for 13 weeks reduced the number of reference memory-related errors in SHR-cp rats, but EPA alone had no effect, suggesting that long-term TAK-085 administration improves cognitive learning ability in a rat model of metabolic syndrome. However, the working memory-related errors were not affected in either of the rat groups. TAK-085 and EPA administration increased plasma EPA and DHA levels of SHR-cp rats, associating with an increase in EPA and DHA in the cerebral cortex. The TAK-085 administration decreased the lipid peroxide levels and reactive oxygen species in the cerebral cortex and hippocampus of SHR-cp rats, suggesting that TAK-085 increases antioxidative defenses. Its administration also increased the brain-derived neurotrophic factor levels in the cortical and hippocampal tissues of TAK-085-administered rats. The present study suggests that long-term TAK-085 administration is a possible therapeutic strategy for protecting against metabolic syndrome-induced learning decline.

  5. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    PubMed

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-08-21

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  6. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    PubMed Central

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome. PMID:26307979

  7. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-07

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  8. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  9. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar).

    PubMed

    Arnemo, Marianne; Kavaliauskis, Arturas; Andresen, Adriana Magalhaes Santos; Bou, Marta; Berge, Gerd Marit; Ruyter, Bente; Gjøen, Tor

    2017-03-09

    The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.

  10. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10.

    PubMed

    Chaung, Kai-Chuang; Chu, Chun-Yao; Su, Yu-Ming; Chen, Yi-Min

    2012-08-10

    This study explored the influence of various culture conditions on the biomass, lipid content, production of docosahexaenoic acid (DHA), and fatty acid composition of Aurantiochytrium mangrovei strain BL10. The variables examined in this study include the species and concentration of salt, the concentrations of the two substrates glucose and yeast extract, the level of dissolved oxygen, the cerulenin treatment, and the stages of BL10 growth. Our results demonstrate that BL10 culture produces maximum biomass when salinity levels are between 0.2 and 3.0%. Decreasing salinity to 0.1% resulted in a considerable decrease in the biomass, lipid content, DHA production, and DHA to palmitic acid (PA) (DHA/PA) ratio, signifying deterioration in the quality of the oil produced. The addition of 0.9% sodium sulfate to replenish salinity from 0.1% to 1.0% successfully recovered biomass, lipid content and DHA production levels; however, this also led to a decrease in DHA/PA ratio. An increase in oxygen and cerulenin levels resulted in a concomitant decrease in the DHA to docosapentaenoic acid (DPA) (DHA/DPA) ratio in BL10 oil. Furthermore, the DHA/DPA and DHA/PA ratios varied considerably before and after the termination of cell division, which occurred around the 24 hour mark. These results could serve as a foundation for elucidating the biochemistry underlying the accumulation of lipids, and a definition of the extrinsic (environmental or nutritional) and intrinsic (cell growth stage) factors that influence lipid quality and the production of DHA by BL10.

  11. Effect of Docosahexaenoic Acid on Apoptosis and Proliferation in the Placenta: Preliminary Report

    PubMed Central

    Wietrak, Ewa; Kamiński, Krzysztof; Leszczyńska-Gorzelak, Bożena; Oleszczuk, Jan

    2015-01-01

    Introduction. Observational studies confirm a higher incidence of preeclampsia in patients with low erythrocyte concentrations of omega-3 fatty acids. Observations point to an association of disorders of pregnancy, such as intrauterine growth restriction (IUGR) and preeclampsia, with excessive apoptosis. One potential mechanism of action of docosahexaenoic acid (DHA) promoting a reduction in the risk of pathological pregnancy may be by influencing these processes in the placenta. Materials and Methods. We investigated 28 pregnant women supplemented with a fish oil product containing 300 mg DHA starting from pregnancy week 20 until delivery (DHA group). The control group consisted of 50 women who did not receive such supplementation (control group). We determined the expression of Ki-67 and p21 as markers of proliferation and caspase 3 activity as a marker of apoptosis and DHA levels in umbilical cord blood. Results. Caspase 3 activity was significantly lower in the DHA group in comparison to the control group. Umbilical cord blood DHA concentration was higher in the DHA group. The expression of the proteins p21 and Ki-67 did not differ significantly between the groups. Conclusions. We observed an association between DHA supplementation and inhibition of placental apoptosis. We did not find an association between DHA and proliferation process in the placenta. PMID:26339616

  12. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria

    PubMed Central

    Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia

    2016-01-01

    The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea. PMID:27649078

  13. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).

  14. Dihydroartemisinin loaded nanostructured lipid carriers (DHA-NLC): evaluation of pharmacokinetics and tissue distribution after intravenous administration to rats.

    PubMed

    Zhang, Xiaoyun; Qiao, Hua; Liu, Jianping; Dong, Haijun; Shen, Chenlin; Ni, Jingman; Shi, Yanbin; Xu, Ying

    2010-09-01

    A simple and rapid LC-MS/MS method was established for the determination of dihydroartemisinin (DHA) in plasma and tissues of rats. Sample preparation was achieved by liquid-liquid extraction with aether and analysis was performed on LC-MS/MS in positive ion mode using electrospray ionization (ESI) as an interface. Target compounds were quantified in a single ion-monitoring (SIM) mode. DHA was monitored at m/z 267.1 and the internal standard finasteride at m/z 305.2. Chromatography was carried out using a Synergi fusion RP 80 column with a mixture of ethanol and 0.1% formic acid mixture (75:25) as the mobile phase. The pharmacokinetics and tissue distribution after intravenous administration of DHA in nanostructured lipid carrier (NLC) and in solution were then compared. The mean residence times (MRT) of the DHA-NLC was much longer than that of the DHA solution. In the tested organs, the AUC values of the DHA-NLC were higher than that of the DHA solution in liver, spleen, lung, brain and muscle, and lower than the DHA solution in heart and kidney. DHA-NLC prepared in this study is a promising sustained-release and drug-targeting system for antitumor drugs. It may also allow a reduction in dosage and a decrease in systemic toxicity.

  15. Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes

    PubMed Central

    Ghini, Veronica; Di Nunzio, Mattia; Tenori, Leonardo; Valli, Veronica; Danesi, Francesca; Capozzi, Francesco; Luchinat, Claudio; Bordoni, Alessandra

    2017-01-01

    Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA) supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR) in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering effect—propionic acid (PRO) and protocatechuic acid (PCA)—has also been evaluated in the context of possible synergism. NMR analysis of the cell lipid extracts showed that DHA supplementation, alone or in combination with PCA or PRO, strongly altered the cell lipid profile. The perfect discrimination between cells receiving DHA (alone or in combination) and the other cells reinforced the idea of a global rearrangement of the lipid environment induced by DHA. Notably, gas chromatography and fluorimetric analyses confirmed the strong discrimination obtained by NMR. The DHA signature was evidenced not only in the cell lipidome, but also in the metabolome. Results reported herein indicate that NMR, combined with other techniques, represents a fundamental approach to studying the effect of bioactive supplementation, particularly in the case of molecules with a broad spectrum of mechanisms of action. PMID:28208746

  16. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice.

    PubMed

    Schuster, Gertrud U; Bratt, Jennifer M; Jiang, Xiaowen; Pedersen, Theresa L; Grapov, Dmitry; Adkins, Yuriko; Kelley, Darshan S; Newman, John W; Kenyon, Nicholas J; Stephensen, Charles B

    2014-03-01

    Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid-derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma.

  17. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp.

    PubMed

    Fedorova-Dahms, I; Marone, P A; Bauter, M; Ryan, A S

    2011-12-01

    The safety of DHA-rich Algal Oil from Schizochytrium sp. containing 40-45 wt% DHA and up to 10 wt% EPA was evaluated by testing for gene mutations, clastogenicity and aneugenicity, and in a subchronic 90-day Sprague-Dawley rat dietary study with in utero exposure, followed by a 4-week recovery phase. The results of all genotoxicity tests were negative. In the 90-day study, DHA-rich Algal Oil was administered at dietary levels of 0.5, 1.5, and 5 wt% along with two control diets: a standard low-fat basal diet and a basal diet supplemented with 5 wt% of concentrated Fish Oil. There were no treatment-related effects of DHA-rich Algal Oil on clinical observations, body weight, food consumption, behavior, hematology, clinical chemistry, coagulation, or urinalysis. Increases in absolute and relative weights of the liver, kidney, spleen and adrenals (adrenals and spleen with histological correlates) were observed in both the Fish Oil- and the high-dose of DHA-rich Algal Oil-treated females and were not considered to be adverse. The no observed adverse effect level (NOAEL) for DHA-rich Algal Oil under the conditions of this study was 5 wt% in the diet, equivalent to an overall average DHA-rich Algal Oil intake of 4260 mg/kg bw/day for male and female rats.

  18. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    PubMed

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  19. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    PubMed Central

    Brigandi, Sarah A.; Shao, Hong; Qian, Steven Y.; Shen, Yiping; Wu, Bai-Lin; Kang, Jing X.

    2015-01-01

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (p < 0.001). In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2) were higher in a subset of the autistic participants (n = 20) compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism. PMID:25946342

  20. Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-A(y) mice.

    PubMed

    Shida, Takayuki; Kamei, Noriyasu; Takeda-Morishita, Mariko; Isowa, Koichi; Takayama, Kozo

    2013-06-25

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates the insulin secretion depending on blood glucose level. Recent studies show that the unsaturated fatty acids can promote GLP-1 secretion from intestinal L-cells. We have shown previously that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) administered into a mouse closed intestinal loop, especially into the colonic segment, stimulate GLP-1 and insulin secretion and have a hypoglycemic effect, suggesting that DHA and EPA have potential as antidiabetic agents. The present study examined the antidiabetic effect of DHA following long-term in vivo delivery to the colon using normal ddY and diabetic KK-A(y) mice. The plasma GLP-1 concentration of KK-A(y) mice increased after long-term DHA administration, and this had a significant hypoglycemic effect. In contrast, although GLP-1 secretion in ddY mice tended to increase after DHA administration, blood glucose concentration did not differ between vehicle- and DHA-treated ddY mice. Immunostaining of the pancreas after long-term DHA administration showed that continuous DHA treatment stimulated β-cell apoptosis and accordingly suppressed islet cell growth in KK-A(y) mice. Colon targeting of DHA may provide a new strategy for improving impaired glucose tolerance in type 2 diabetes mellitus by stimulating GLP-1 secretion, which may subsequently suppress the compensatory hyperplasia of pancreatic islets.

  1. Differences in Transcriptional Activation by the Two Allelic (L162V Polymorphic) Variants of PPARα after Omega-3 Fatty Acids Treatment

    PubMed Central

    Rudkowska, Iwona; Verreault, Mélanie; Barbier, Olivier; Vohl, Marie-Claude

    2009-01-01

    Omega-3 fatty acids (FAs) have the potential to regulate gene expression via the peroxisome proliferator-activated receptor α (PPARα); therefore, genetic variations in this gene may impact its transcriptional activity on target genes. It is hypothesized that the transcriptional activity by wild-type L162-PPARα is enhanced to a greater extent than the mutated variant (V162-PPARα) in the presence of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or a mixture of EPA:DHA. To examine the functional difference of the two allelic variants on receptor activity, transient co-transfections were performed in human hepatoma HepG2 cells activated with EPA, DHA and EPA:DHA mixtures. Results indicate that the addition of EPA or DHA demonstrate potential to increase the transcriptional activity by PPARα with respect to basal level in both variants. Yet, the EPA:DHA mixtures enhanced the transcriptional activity to a greater extent than individual FAs indicating possible additive effects of EPA and DHA. Additionally, the V162 allelic form of PPARα demonstrated consistently lower transcriptional activation when incubated with EPA, DHA or EPA:DHA mixtures than, the wild-type variant. In conclusion, both allelic variants of the PPARα L162V are activated by omega-3 FAs; however, the V162 allelic form displays a lower transcriptional activity than the wild-type variant. PMID:19266045

  2. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  3. Effect of dietary Lorenzo's oil and docosahexaenoic acid treatment for Zellweger syndrome.

    PubMed

    Arai, Yasuhiro; Kitamura, Yohei; Hayashi, Masaharu; Oshida, Kyoichi; Shimizu, Toshiaki; Yamashiro, Yuichiro

    2008-12-01

    We investigated the possible therapeutic effect of decreasing plasma levels of very-long-chain fatty acids (C26:0) with a synthetic oil containing trioleate and trielucate (Lorenzo's oil) as well as increasing docosahexaenoic acid (DHA) in red blood cells (RBC) with DHA ethyl ester in four patients with Zellweger syndrome. We investigated serial changes of plasma C26:0 levels and DHA levels in RBC membranes by gas-liquid chromatography/mass spectrometry (GC/MS). After death, the fatty acid composition of each patient's cerebrum and liver was studied. Dietary administration of Lorenzo's oil diminished plasma C26:0 levels. Earlier administration of Lorenzo's oil was more effective and the response did not depend on the duration of administration. DHA was incorporated into RBC membrane lipids when administrated orally, and its level increased for several months. The final DHA level was correlated with the duration of administration and was not related to the timing of initiation of treatment. DHA levels in the brains and livers of treated patients were higher than in untreated patients. Early initiation of Lorenzo's oil and the long-term administration of DHA may be useful for patients with Zellweger syndrome.

  4. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model.

    PubMed

    Gao, Jingquan; Wang, Xuelai; Sun, Hongli; Cao, Yonggang; Liang, Shuang; Wang, Han; Wang, Yanming; Yang, Feng; Zhang, Fengyu; Wu, Lijie

    2016-04-01

    Prenatal exposure to valproic acid (VPA) in rat offspring is capable of inducing experimental autism with neurobehavioral aberrations. This study investigated the effect of docosahexaenoic acid (DHA) on hippocampal cell death, learning and memory alteration in an experimental rat autism model. We found that DHA supplementation (75, 150 or 300 mg/kg/day, 21 days) rescued the VPA (600 mg/kg) induced DHA reduction in plasma and hippocampus in a dose-dependent manner, increased the levels of hippocampal p-CaMKII and p-CREB without affecting total protein level, and altered BDNF-AKT-Bcl-2 signaling pathway, as well as inhibited the activity of caspase-3. DHA also influenced the content of malondialdehyde (MDA) and the activities of antioxidant enzymes in the VPA-treated offspring. Consistent with the previous results, we also observed that 300 mg/kg DHA supplementation markedly increased the cell survival, decreased the cell apoptosis, and increased mature neuronal cell in the hippocampus in VPA-treated offspring. Utilizing the Morris water maze test, we found that DHA prevented cognitive impairment in offspring of VPA-treated rats. The data suggested that DHA may play a neuroprotective role in hippocampal neuronal cell and ameliorates dysfunctions in learning and memory in this rat autism model. Thus, DHA could be used as treatment intervention for mitigating behavioral dysfunctions in autism spectrum disorder (ASD).

  5. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA.

    PubMed

    Rahman, Md Mizanur; Veigas, Jyothi Maria; Williams, Paul J; Fernandes, Gabriel

    2013-10-01

    Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil, rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA-treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA-treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA-treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA-treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA-treated mice as compared to EPA-treated mice. Finally, doxorubicin-resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin-treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone resorption.

  6. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction.

    PubMed

    Morin, Caroline; Rousseau, Eric; Blier, Pierre U; Fortin, Samuel

    2015-07-01

    ω-3 Fatty acid supplementation has been associated with lower blood pressure. Cardiovascular diseases are also known to be linked directly to an increase in ω-6 and a reduction in ω-3 fatty acid levels in blood circulation and tissues. To determine the effect of docosahexaenoic acid monoglycerides (MAG-DHA) on blood pressure, lipid profiles, and vascular remodeling in rats fed a high-fat/high-carbohydrate (HFHC) diet. Studies were performed in male rats subjected to 8 wk of HFHC diet supplemented or not with 3 g/day MAG-DHA. After 8 wk of daily MAG-DHA treatment, rats in the HFHC + MAG-DHA group had lower arterial blood pressure and heart rate compared with the HFHC group. Moreover, MAG-DHA prevented the increase aortic wall thickness, whereas lipid analysis of aortic tissues revealed an increase in DHA/AA ratio correlated with the production of resolvin D2 and D3 metabolites. Histological analysis revealed that MAG-DHA prevented the development of LVH in the HFHC group. Serum lipid profile analysis further showed a decrease in total cholesterol (TC) and LDL, including very low-density lipoprotein (VLDL) and triglyceride (TG) levels, together with an increase in HDL levels after 8 wk of MAG-DHA treatment compared with the HFHC group. Furthermore, daily MAG-DHA treatment resulted in reduced proinflammatory marker levels such as CRP, IL-6, TNFα, and IL-1β. Altogether, these findings revealed that per os administration of MAG-DHA prevents HFHC-diet induced hypertension and LVH in rats.

  7. Enzymatic production of bioactive docosahexaenoic acid phenolic ester.

    PubMed

    Roby, Mohamed H; Allouche, Ahmad; Dahdou, Layal; De Castro, Vanessa C; da Silva, Paulo H Alves; Targino, Brenda N; Huguet, Marion; Paris, Cédric; Chrétien, Françoise; Guéant, Rosa-Maria; Desobry, Stéphane; Oster, Thierry; Humeau, Catherine

    2015-03-15

    Docosahexaenoic acid (DHA) is increasingly considered for its health benefits. However, its use as functional food ingredient is still limited by its instability. In this work, we developed an efficient and solvent-free bioprocess for the synthesis of a phenolic ester of DHA. A fed-batch process catalyzed by Candida antarctica lipase B was optimised, leading to the production of 440 g/L vanillyl ester (DHA-VE). Structural characterisation of the purified product indicated acylation of the primary OH group of vanillyl alcohol. DHA-VE exhibited a high radical scavenging activity in acellular systems. In vivo experiments showed increased DHA levels in erythrocytes and brain tissues of mice fed DHA-VE-supplemented diet. Moreover, in vitro neuroprotective properties of DHA-VE were demonstrated in rat primary neurons exposed to amyloid-β oligomers. In conclusion, DHA-VE synergized the main beneficial effects of two common natural biomolecules and therefore appears a promising functional ingredient for food applications.

  8. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  9. Analysis of EPA and DHA in the viscera of marine fish using gas chromatography.

    PubMed

    Zhang, De-Yong; Xu, Xiao-Lu; Shen, Xiu-Ying; Mei, Yu; Xu, Hui-Ying

    2016-03-01

    The viscera of 10 kinds of marine fishes were collected for fish oil extraction and detection of DHA and EPA, two most important polyunsaturated fatty acids. The fish oil extraction ratio for the evaluated fishes varied from 0.95% to 10.18% (wt%). Pseudosciaena crocea presented the highest fish oil yield, followed by Mustelus manazo, Hippoglossus and Sciaenopsocellatus. A gas chromatography method was then established for analysis of EPA/DHA. The EPA concentration (in methyl ester form) in the fish oil varied from 1.39 to 10.65(mg/g). Epinephelus awoara presented the highest EPA concentration (p<0.05), followed by Epinephelussp, Sciaenopsocellatus and Hippoglossus. The DHA concentration (in methyl ester form) in the fish oil varied from 0.58 to 37.02 (mg/g). Epinephelus awoara presented the highest DHA concentration (p<0.05), followed by Sciaenopsocellatus, Pseudosciaena crocea and Hippoglossus. No strict positive correlation between the EPA/DHA concentration and the sea depth where the fish live was observed. The fishes living in middle depth presented highest EPA/DHA concentration.

  10. DHA-supplemented diet increases the survival of rats following asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Shinozaki, Koichiro; Lampe, Joshua W.; Becker, Lance B.

    2016-01-01

    Accumulating evidence illustrates the beneficial effects of dietary docosahexaenoic acid (DHA) on cardiovascular diseases. However, its effects on cardiac arrest (CA) remain controversial in epidemiological studies and have not been reported in controlled animal studies. Here, we examined whether dietary DHA can improve survival, the most important endpoint in CA. Male Sprague-Dawley rats were randomized into two groups and received either a control diet or a DHA-supplemented diet for 7–8 weeks. Rats were then subjected to 20 min asphyxia-induced cardiac arrest followed by 30 min cardiopulmonary bypass resuscitation. Rat survival was monitored for additional 3.5 h following resuscitation. In the control group, 1 of 9 rats survived for 4 h, whereas 6 of 9 rats survived in the DHA-treated group. Surviving rats in the DHA-treated group displayed moderately improved hemodynamics compared to rats in the control group 1 h after the start of resuscitation. Rats in the control group showed no sign of brain function whereas rats in the DHA-treated group had recurrent seizures and spontaneous respiration, suggesting dietary DHA also protects the brain. Overall, our study shows that dietary DHA significantly improves rat survival following 20 min of severe CA. PMID:27811958

  11. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults.

    PubMed

    Stark, Ken D; Van Elswyk, Mary E; Higgins, M Roberta; Weatherford, Charli A; Salem, Norman

    2016-07-01

    Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA+DHA in erythrocyte equivalents. Regions with high EPA+DHA blood levels (>8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA+DHA and the very low to low range of blood EPA+DHA for most of the world may increase global risk for chronic disease.

  12. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid

    PubMed Central

    Taha, Ameer Y.; Chang, Lisa; Chen, Mei

    2016-01-01

    Background This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) sufficient to maintain brain 14C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. Methods 18–21 day male Fischer-344 (CDF) rats were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% (“n-3 adequate”), 3.6%, 2.7%, 0.9% or 0.2% (“n-3 deficient”) α-LNA for 15 weeks. Rats were intravenously infused with 14C-DHA to steady state for 5 minutes, serial blood samples collected to obtain plasma and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, Jin. Results Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (Jin) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. Conclusion Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low. PMID:26869088

  13. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  14. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts.

    PubMed

    Gruber, Florian; Ornelas, Cayo Mecking; Karner, Susanne; Narzt, Marie-Sophie; Nagelreiter, Ionela Mariana; Gschwandtner, Maria; Bochkov, Valery; Tschachler, Erwin

    2015-11-01

    Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected

  15. Safety assessment of DHA-rich microalgae from Schizochytrium sp.

    PubMed

    Hammond, Bruce G; Mayhew, Dale A; Kier, Larry D; Mast, Richard W; Sander, Wayne J

    2002-04-01

    The purpose of this series of studies was to assess the genotoxic potential of docosahexaenoic acid-rich microalgae from Schizochytrium sp. (DRM). DRM contains oil rich in highly unsaturated fatty acids (PUFAs). Docosahexaenoic acid (DHA n-3) is the most abundant PUFA component of the oil ( approximately 29% w/w of total fatty acid content). DHA-rich extracted oil from Schizochytrium sp. is intended for use as a nutritional ingredient in foods. All in vitro assays were conducted with and without mammalian metabolic activation. DRM was not mutagenic in the Ames reverse mutation assay using five different Salmonella histidine auxotroph tester strains. Mouse lymphoma suspension assay methodology was found to be inappropriate for this test material because precipitating test material could not be removed by washing after the intended exposure period and the precipitate interfered with cell counting. The AS52/XPRT assay methodology was not subject to these problems and DRM was tested and found not to be mutagenic in the CHO AS52/XPRT gene mutation assay. DRM was not clastogenic to human peripheral blood lymphocytes in culture. Additionally, DRM did not induce micronucleus formation in mouse bone marrow in vivo further supporting its lack of any chromosomal effects. Overall, the results of this series of mutagenicity assays support the conclusion that DRM does not have any genotoxic potential.

  16. Personalized Medicine Enrichment Design for DHA Supplementation Clinical Trial.

    PubMed

    Lei, Yang; Mayo, Matthew S; Carlson, Susan E; Gajewski, Byron J

    2017-03-01

    Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level of confirmation in identifying and making treatment recommendations for subgroups, when the risk levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a DHA (docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational age<37 weeks) rate. We performed a meta-analysis to obtain informative prior distributions and simulated operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different models: independent, hierarchical, and dynamic linear models. We performed simulations and sensitivity analysis to examine the subgroup power of models and compared results to a chi-square test. We performed simulations under two hypotheses: a large overall treatment effect and a small overall treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat, dynamic linear model appeared to be the most powerful method to identify the subgroups with a treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall treatment effect is small, hierarchical model and chi-square test did better. Compared to independent and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the control arm has ordinal risk subgroups.

  17. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  18. Effects of dietary DHA and α-tocopherol on bone development, early mineralisation and oxidative stress in Sparus aurata (Linnaeus, 1758) larvae.

    PubMed

    Izquierdo, M S; Scolamacchia, M; Betancor, M; Roo, J; Caballero, M J; Terova, G; Witten, P E

    2013-05-28

    DHA deficiency has been related to skeletal malformations in fish, but high DHA levels have produced controversial results that could relate to the oxidative status of fish tissues in the different reports. In the present study, gilthead seabream (Sparus aurata) larvae were fed deficient, adequate or high DHA levels, or high DHA levels supplemented with the antioxidant α-tocopherol. Larvae fed deficient DHA levels tended to be smaller, and showed the highest incidence of urinary bladder calculi, lordosis and kyphosis and the lowest number of mineralised vertebrae for any given size class. Elevation of dietary DHA increased larval growth and significantly enhanced the expression of the insulin-like growth factor 1 (IGF-1) gene. However, a DHA level increase up to 5 % raised the degree of lipid oxidation in larval tissues and deformities in cranial endochondral bones and in axial skeletal haemal and neural arches. The increase in dietary α-tocopherol supplementation in high-DHA feeds reduced again the occurrence of skeletal deformities. Moreover, the expression of genes coding for specific antioxidants such as catalase, superoxide dismutase or glutathione peroxidase, which neutralised reactive oxygen substances formed by increased dietary DHA, was significantly decreased in larvae fed high α-tocopherol levels. These results denoted the importance of DHA for early bone formation and mineralisation. Low dietary DHA levels delay early mineralisation and increase the risk of cranial and axial skeletal deformities. Excessive DHA levels, without an adequate balance of antioxidant nutrients, increase the production of free radicals damaging cartilaginous structures before bone formation.

  19. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    PubMed

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  20. Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates.

    PubMed

    Hsieh, Andrea T; Brenna, J Thomas

    2009-01-01

    The influence of dietary docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) on infant central nervous system (CNS) composition has implications for neural development, including vision, cognition, and motor function. We consider here combined results of three published studies of DHA/AA-containing formulas and breastfeeding to evaluate the CNS tissue response of baboon neonates with varied concentration and duration of DHA/AA consumption [G.Y. Diau, A.T. Hsieh, E.A. Sarkadi-Nagy, V. Wijendran, P.W. Nathanielsz, J.T. Brenna, The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system, BMC Med. 3 (2005) 11; A.T. Hsieh, J.C. Anthony, D.A. Diersen-Schade, et al., The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids, Pediatr. Res. 61 (2007) 537-45; E. Sarkadi-Nagy, V. Wijendran, G.Y. Diau, et al., The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues, Pediatr. Res. 54 (2003) 244-252]. A total of 43 neonates born spontaneously at term, or preterm by Cesarean section, consumed diets with DHA-AA (%w/w) at several levels: none (0,0), moderate (0.3, 0.6), or high (>0.6, 0.67 or 1.2). CNS fatty acids were analyzed at 4 and 12 weeks postpartum for term baboons and 7.5 weeks for preterm neonates. CNS DHA was consistently greater by 5-30% in neonates consuming DHA and nearer 30% for cortex. In contrast, CNS AA was unaffected by dietary AA and decreased in all structures with age. Dietary DHA consistently supports greater CNS DHA and maintenance of cortex DHA concentration with feeding duration, while CNS AA is not related to dietary supply. These data on structure-specific LCPUFA accretion may provide insight into neural mechanisms responsible for suboptimal functional outcomes in infants consuming diets that do not

  1. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  2. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice.

    PubMed

    Rogers, Lynette K; Valentine, Christina J; Pennell, Michael; Velten, Markus; Britt, Rodney D; Dingess, Kelly; Zhao, Xuilan; Welty, Stephen E; Tipple, Trent E

    2011-02-01

    DHA is a long-chain fatty acid that has potent antiinflammatory properties. Whereas maternal DHA dietary supplementation has been shown to improve cognitive development in infants fed DHA-supplemented milk, the antiinflammatory effects of maternal DHA supplementation on the developing fetus and neonate have not been extensively explored. Pregnant C3H/HeN dams were fed purified control or DHA-supplemented diets (~0.25% of total fat) at embryonic d 16 and consumed these diets throughout the study. At birth, the nursing mouse pups were placed in room air (RA; 21% O(2)) or >95% O(2) (hyperoxia) for up to 7 d. These studies tested the hypothesis that maternal DHA supplementation would decrease inflammation and improve alveolarization in the lungs of newborn mouse pups exposed to hyperoxia. Survival, inflammatory responses, and lung growth were compared among control diet/RA, DHA/RA, control/O(2), and DHA/O(2) pups. There were fewer neutrophils and macrophages in lung tissues from pups nursed by DHA-supplemented dams than in those nursed by dams fed the control diet at 7 d of hyperoxia exposure (P < 0.015). Although differences due to hyperoxia exposure were observed, maternal diet did not affect keratinocyte-derived chemokine, macrophage inflammatory protein-2, IL-1β, or TNFα mRNA levels in pup tissues. Hyperoxia also induced NF-κB activity, but maternal diet did not affect NF-κB or PPARγ activities. In mice, DHA supplementation decreases leukocyte infiltration in the offspring exposed to hyperoxia, suggesting a potential role for DHA supplementation as a therapy to reduce inflammation in preterm infants.

  3. Effect of dietary canola oil on long-chain omega-3 fatty acid content in broiler hearts.

    PubMed

    Gregory, M K; Geier, M S; Gibson, R A; James, M J

    2014-04-01

    Young and healthy broilers are susceptible to sudden death syndrome (SDS), which is caused by cardiac arrhythmia. The long-chain 'fish-type' omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have cardioprotective anti-arrhythmic effects in animals and humans. Raising the cardiac level of EPA and DHA in chickens may protect against SDS. However, fish oil as a source of EPA and DHA in poultry feed is costly and introduces undesirable properties to the meat. Whilst omega-3 vegetable oils, such as canola oil, are cheaper and do not have a strong odour, they contain the short-chain fatty acid α-linolenic acid, which requires conversion to EPA and DHA after ingestion. We investigated the capacity for dietary canola oil to elevate cardiac EPA and DHA in broilers. Broilers were fed with diets containing either 3% canola oil or tallow, which is currently used in some commercial feeds. Upon completion of a 42 day feeding trial, canola oil significantly increased EPA and EPA + DHA in heart phospholipids relative to tallow. The elevation in cardiac EPA and EPA + DHA may provide anti-arrhythmic effects and protect against SDS in poultry. This proof-of-concept biochemical study suggests that a larger study to assess the clinical outcome of SDS may be warranted.

  4. A new method for the study of essential fatty acid requirements in fish larvae.

    PubMed

    Morais, Sofia; Conceição, Luís E C

    2009-05-01

    This study describes a methodology with potential application in the estimation of essential fatty acid (EFA) requirements of fish larvae. Senegalese sole (Solea senegalensis) larvae were fed, from 16 days after hatching (DAH), on Artemia enriched with different oils, inducing graded dietary concentrations of DHA: (1) soyabean oil, containing no measurable amounts of DHA (NDHA); (2) fish oil, inducing a medium DHA level (MDHA, 3 g DHA/100 g fatty acids); and (3) a mixture of Easy DHA Selco and Microfeed, resulting in high DHA content (HDHA, 8 g/100 g). At 28 DAH a metabolic trial was conducted where larvae were tube fed [1-(14) C]DHA, in order to determine its absorption, retention in the gut and body tissues, as well as its oxidation. At 23 DAH the HDHA treatment induced a significantly higher larval growth, while at 32 DAH significant differences were only found between the NDHA and HDHA treatments. The absorption of tube-fed [1-(14) C]DHA was extremely high (94-95 %) and independent of feeding regime. However, in larvae fed NDHA Artemia, a significantly higher amount of label was retained in the gut compartment and a concurrently lower retention was measured in the body. A significantly higher proportion of the absorbed DHA label was oxidized in larvae fed HDHA, compared to NDHA. Based on these results, we suggest that increasing dietary supply of DHA above the larval requirement level results in its increased oxidation for energy purposes and we propose potential applications of the tube feeding methodology using radiolabelled EFA in conjunction with dose-response studies.

  5. Effects of docosahexaenoic acid on learning and memory impairment induced by repeated propofol anesthesia in young rats

    PubMed Central

    TIAN, MING; LI, ZHI; WANG, GAO; PAN, WEIZHONG; LI, KEZHONG

    2016-01-01

    The aim of the present study was to investigate the effects of docosahexaenoic acid (DHA) on the learning and memory ability of young rats exposed to propofol, and its underlying mechanisms. Sprague Dawley rats (n=60) were randomly divided into six groups: Control group (group A); solvent control group (group B); propofol group (group C); low-dose DHA + propofol group (group D); medium dose DHA + propofol group (group E); and high-dose DHA + propofol group (group F). The Morris water maze (MWM) test was performed to evaluate the rats' learning and memory ability, and tissue samples from the hippocampi of the rats were obtained for biochemical analysis. The results of the MWM test revealed that DHA supplementation administered to young rats led to an evident decrease in the latency to find the maze platform, and a significant increase in the number of platform crossings in groups E and F compared with group C (P<0.05). High-performance liquid chromatography indicated that glutamate concentration levels were significantly lower and γ-aminobutyric acid concentration levels were significantly higher in the hippocampi of group E and F rats treated with DHA compared with group C rats (P<0.05). Furthermore, DHA treatment alleviated the decrease in brain-derived neurotrophic factor levels (P<0.05), and superoxide dismutase (P<0.05) and glutathione peroxidase (P<0.05) activities induced by the administration of propofol. Additionally, DHA treatment decreased malondialdehyde levels in the hippocampi of rats (P<0.05). The aforementioned findings demonstrate that DHA was able to effectively improve learning and memory dysfunction induced by repeated propofol-induced anesthesia in young rats. This data suggests that DHA may be a potential candidate for further preclinical studies aimed at treating postoperative cognitive dysfunction. PMID:27073471

  6. Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

    PubMed Central

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.

    2014-01-01

    Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540

  7. Decreased serum levels of polyunsaturated fatty acids and folate, but not brain-derived neurotrophic factor, in childhood and adolescent females with depression.

    PubMed

    Tsuchimine, Shoko; Saito, Manabu; Kaneko, Sunao; Yasui-Furukori, Norio

    2015-01-30

    Evidence from observational studies suggests that there is an association among depression and brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs), and folate; however, this association has yet to be examined in childhood and adolescent depression. The objective was to determine whether the BDNF, PUFAs, and folate in serum differ between first-episode childhood and adolescent depressed patients and healthy controls. We measured the serum levels of BDNF, PUFAs, and folate of cases admitted to the hospital for depression (n=24) and compared it to that of controls (n=26). Subjects and their parents were informed about the nature and the purpose of this study, and a consent form was signed by parents. The ethics committee of Hirosaki University Graduate School of Medicine approved the study protocol. There were significant differences in the docosahexanoic acid (DHA), arachidonic acid (AA), and folate levels between cases and controls. Serum levels of DHA, AA, and folate levels in the patients group were statistically lower than those in the control group, while serum levels of BDNF were not different between cases and controls. These results are in line with findings of previous studies involving adult and elderly subjects, demonstrating lower levels of PUFAs and folate in patients with depression than healthy controls. However, further studies using larger sample size are warranted.

  8. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  9. Associations Between Whole Blood and Dietary Omega-3 Polyunsaturated Fatty Acid Levels in Collegiate Athletes.

    PubMed

    Wilson, Patrick B; Madrigal, Leilani A

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have important physiological functions and may offer select benefits for athletic performance and recovery. The purpose of this investigation was to assess dietary and whole blood omega-3 PUFAs among collegiate athletes. In addition, a brief questionnaire was evaluated as a valid tool for quantifying omega-3 PUFA intake. Fifty-eight athletes (9 males, 49 females) completed a 21-item questionnaire developed to assess omega-3 PUFA intake and provided dried whole blood samples to quantify α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the HS-Omega-3 Index. Geometric means (95% confidence intervals) for the HS-Omega-3 Index were 4.79% (4.37-5.25%) and 4.75% (4.50-5.01%) for males and females, respectively. Median dietary intakes of ALA, EPA, and DHA were all below 100 mg. Among females, several dietary omega-3 PUFA variables were positively associated with whole blood EPA, with total EPA (rho = 0.67, p < .001) and total DHA (rho = 0.69, p < .001) intakes showing the strongest correlations. Whole blood DHA among females showed positive associations with dietary intakes, with total EPA (rho = 0.62, p < .001) and total DHA (rho = 0.64, p < .001) intakes demonstrating the strongest correlations. The HS-Omega-3 Index in females was positively correlated with all dietary variables except ALA. Among males, the only significant correlation was between food and whole blood EPA (rho = 0.83, p < .01). Collegiate athletes had relatively low intakes of omega-3 PUFAs. A 21-item questionnaire may be useful for screening female athletes for poor omega-3 PUFA status.

  10. The Association of Fatty Acid Levels and Gleason Grade among Men Undergoing Radical Prostatectomy

    PubMed Central

    Zhao, Zhiguo; Reinstatler, Lael; Klaassen, Zachary; Xu, Yi; Yang, Xiaoyu; Madi, Rabii; Terris, Martha K.; Qian, Steven Y.; Kelavkar, Uddhav; Moses, Kelvin A.

    2016-01-01

    Background Epidemiological data suggest that omega-6 (ω-6) fatty acids (FAs) may be associated with cancer incidence and/or cancer mortality, whereas ω-3 FAs are potentially protective. We examined the association of the ratio of ω-6 to ω-3 FA (ω-6:ω-3) and individual FA components with pathological results among men with prostate cancer (PCa) undergoing radical prostatectomy. Methods Sixty-nine men were included in the study. Components of ω-6 (linoleic acid (LA), arachidonic acid (AA), and dihomo-γ-linolenic acid (DGLA)) and ω-3 (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) were analyzed by liquid chromatography/mass selective detector separation. Logistic regression analysis was performed to determine association of FA with pathological high grade (Gleason ≥4+3) disease. Results The were 35 men with low grade disease (Gleason ≤3+4) and 34 men with high grade disease. Men with low grade disease were significantly younger (58y vs 61y, p = 0.012) and had lower D’Amico clinical classification (p = 0.001) compared to men with high grade disease. There was no significant association of ω-6:ω-3 with high grade disease (OR 0.93, p = 0.78), however overall ω-6, ω-3, and individual components of ω-6 and ω-3 FAs except EPA were significantly associated with high grade disease (ω-6: OR 3.37, 95% CI: 1.27,8.98; LA: OR 3.33, 95% CI:1.24,8.94; AA: OR 2.93, 95% CI:1.24,6.94; DGLA: OR 3.21, 95% CI:1.28,8.04; ω-3: OR 3.47, 95% CI:1.22,9.83; DHA: OR 3.13, 95% CI:1.26,7.74). ω-6 and ω-3 FA components were highly correlated (Spearman ρ = 0.77). Conclusion Higher levels of individual components of ω-6 and ω-3FAs may be associated with higher-grade PCa. Impact Studies into the causative factors/pathways regarding FAs and prostate carcinogenesis may prove a potential association with PCa aggressiveness. PMID:27880795

  11. Docosahexaenoic Acid Status in Pregnancy Determines the Maternal Docosahexaenoic Acid Status 3-, 6- and 12 Months Postpartum. Results from a Longitudinal Observational Study

    PubMed Central

    Markhus, Maria Wik; Rasinger, Josef Daniel; Malde, Marian Kjellevold; Frøyland, Livar; Skotheim, Siv; Braarud, Hanne Cecilie; Stormark, Kjell Morten; Graff, Ingvild Eide

    2015-01-01

    Background Essential fatty acid status as well as docosahexaenoic acid (DHA, 22:6n-3) declines during pregnancy and lactation. As a result, the DHA status may not be optimal for child development and may increase the risk for maternal postpartum depression. The objective of this study was to assess changes in the maternal fatty acid status from pregnancy to 12 months postpartum, and to study the impact of seafood consumption on the individual fatty acid status. Methods Blood samples and seafood consumption habits (gestation week 28, and three-, six- and 12 months postpartum) were collected in a longitudinal observational study of pregnant and postpartum women (n = 118). Multilevel linear modeling was used to assess both changes over time in the fatty acid status of red blood cells (RBC), and in the seafood consumption. Results Six fatty acids varied the most (>80%) across the four time points analyzed, including the derivative of the essential α-linoleic acid (ALA, 18:3n-3), DHA; the essential linoleic acid (LA, 18:2 n-6); and the LA derivative, arachidonic acid (AA, 20:4n-6). Over all, a large variation in individuals’ DHA- and AA status was observed; however, over the 15-month study period only small inter-individual differences in the longitudinal trajectory of DHA- and AA abundance in the RBC were detected. The median intake of seafood was lower than recommended. Regardless, the total weekly frequency of seafood and eicosapentaenoic acid (EPA, 20:5n-3)/DHA-supplement intake predicted the maternal level of DHA (μg/g RBC). Conclusion The period of depletion of the maternal DHA status during pregnancy and lactation, seem to turn to repletion from about six months postpartum towards one year after childbirth, irrespective of RBC concentration of DHA during pregnancy. Seafood and EPA/DHA-supplement intake predicted the DHA levels over time. Trial Registration www.helseforskning.etikkom.no 2009/570/REC, project number: 083.09 PMID:26331947

  12. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA

    PubMed Central

    Sengupta, Namrata; Litoff, Elizabeth J.; Baldwin, William S.

    2015-01-01

    HR96 is a CAR/PXR/VDR ortholog in invertebrates, and a promiscuous endo- and xenobiotic nuclear receptor involved in acclimation to toxicants. Daphnia HR96 is activated by chemicals such as atrazine and linoleic acid (LA) (n-6 fatty acid), and inhibited by triclosan and docosahexaenoic acid (DHA)(n-3 fatty acid). We hypothesized that inhibitors of HR96 may block the protective responses of HR96 based on previously performed luciferase assays. Therefore, we performed acute toxicity tests with two-chemical mixtures containing a HR96 inhibitor (DHA or triclosan) and a HR96 activator (LA or atrazine). Surprisingly, results demonstrate that triclosan and DHA are less toxic when co-treated with 20–80 μM atrazine. Atrazine provides concentration-dependent protection as lower concentrations have no effect and higher concentrations cause toxicity. LA, a weaker HR96 activator, did not provide protection from triclosan or DHA. Atrazine’s protective effects are presumably due to its ability to activate HR96 or other toxicologically relevant transcription factors and induce protective enzymes. Atrazine did not significantly induce glucosyltransferase, a crucial enzyme in triclosan detoxification. However, atrazine did increase antioxidant activities, crucial pathways in triclosan’s toxicity, as measured through GST activity and the TROLOX equivalence assay. The increase in antioxidant capacity is consistent with atrazine providing protection from a wide range of toxicants that induce ROS, including triclosan and unsaturated fatty acids predisposed to lipid peroxidation. PMID:25747156

  13. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA.

    PubMed

    Sengupta, Namrata; Litoff, Elizabeth J; Baldwin, William S

    2015-06-01

    HR96 is a CAR/PXR/VDR ortholog in invertebrates, and a promiscuous endo- and xenobiotic nuclear receptor involved in acclimation to toxicants. Daphnia HR96 is activated by chemicals such as atrazine and linoleic acid (LA) (n-6 fatty acid), and inhibited by triclosan and docosahexaenoic acid (DHA) (n-3 fatty acid). We hypothesized that inhibitors of HR96 may block the protective responses of HR96 based on previously performed luciferase assays. Therefore, we performed acute toxicity tests with two-chemical mixtures containing a HR96 inhibitor (DHA or triclosan) and a HR96 activator (LA or atrazine). Surprisingly, results demonstrate that triclosan and DHA are less toxic when co-treated with 20-80 μM atrazine. Atrazine provides concentration-dependent protection as lower concentrations have no effect and higher concentrations cause toxicity. LA, a weaker HR96 activator, did not provide protection from triclosan or DHA. Atrazine's protective effects are presumably due to its ability to activate HR96 or other toxicologically relevant transcription factors and induce protective enzymes. Atrazine did not significantly induce glucosyltransferase, a crucial enzyme in triclosan detoxification. However, atrazine did increase antioxidant activities, crucial pathways in triclosan's toxicity, as measured through GST activity and the TROLOX equivalence assay. The increase in antioxidant capacity is consistent with atrazine providing protection from a wide range of toxicants that induce ROS, including triclosan and unsaturated fatty acids predisposed to lipid peroxidation.

  14. Omega-3 polyunsaturated fatty acids in the treatment of hypertriglyceridaemia.

    PubMed

    Pirillo, Angela; Catapano, Alberico Luigi

    2013-12-20

    Hypertriglyceridaemia (HTG) is an independent risk factor for cardiovascular disease; high-risk patients with HTG, such as those with metabolic syndrome or diabetes, may benefit from hypolipidaemic therapies. Several lipid-lowering drugs act by reducing triglyceride (TG) levels, including fibrates, nicotinic acid and omega-3 fatty acids. The omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dose-dependently reduce plasma TG levels; the effect tends to be greater in patients with higher TG levels at baseline. Evidence from clinical trials suggests that EPA+DHA doses of ≥ 2 g/day are required to achieve significant effects. The optimal TG-lowering doses of EPA+DHA are 3-4 g/day, with little evidence to support lipid-altering efficacy of doses of EPA and DHA <1g/day. Predicted changes in fasting serum TG levels at the recommended dietary intakes of EPA and/or DHA of 200-500 mg/day are -3.1% to -7.2%. Reductions of plasma TG levels at the optimal doses are from 25-35% up to 45% in the presence of severely elevated TG levels (≥ 500 mg/dl; ≥ 5.65 mmol/l), along with a reduction in non-high-density lipoprotein-cholesterol (non-HDL-C) and an increase in HDL-C. This observation has also been confirmed in statin-treated patients.

  15. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain.

    PubMed

    Chaung, Hso-Chi; Chang, Chin-Dong; Chen, Pi-Hang; Chang, Chia-Jung; Liu, Shyh-Hwa; Chen, Chih-Cheng

    2013-05-01

    Fish oil during early postnatal period may modulate the impact of oxidative stress in the developing brain and thus improve memory and cognitive behaviour. This study investigated the impacts of docosahexaenoic acid (DHA, C22:6, n-3) and/or phosphatidylserine (PS) on antioxidant activities in vitro, and the beneficial effects of feeding with DHA and/or PS on antioxidant activities in brain and liver tissues and on the cognitive functions of the developing brain. Results indicated that DHA and/or PS significantly enhanced antioxidant activities and increased cell viabilities in vitro. Feeding with DHA and/or PS supplementation not only significantly improved escape latency of animals, but it also improved the oxidative parameters in the brain, enhanced glutathione peroxidase activity as well as reduced nitric mono-oxide levels in the liver. DHA and PS may serve to protect cells from oxidative stress and further improve learning and memory ability in vivo.

  16. Hippocampal Lipid Homeostasis in APP/PS1 Mice is Modulated by a Complex Interplay Between Dietary DHA and Estrogens: Relevance for Alzheimer's Disease.

    PubMed

    Díaz, Mario; Fabelo, Noemí; Casañas-Sánchez, Verónica; Marin, Raquel; Gómez, Tomás; Quinto-Alemany, David; Pérez, José A

    2016-01-01

    Current evidence suggests that lipid homeostasis in the hippocampus is affected by different genetic, dietary, and hormonal factors, and that its deregulation may be associated with the onset and progression of Alzheimer's disease (AD). However, the precise levels of influence of each of these factors and their potential interactions remain largely unknown, particularly during neurodegenerative processes. In the present study, we have performed multifactorial analyses of the combined effects of diets containing different doses of docosahexaenoic acid (DHA), estrogen status (ovariectomized animals receiving vehicle or 17β-estradiol), and genotype (wild-type or transgenic APP/PS1 mice) in hippocampal lipid profiles. We have observed that the three factors affect lipid classes and fatty acid composition to different extents, and that strong interactions between these factors exist. The most aberrant lipid profiles were observed in APP/PS1 animals receiving DHA-poor diets and deprived of estrogens. Conversely, wild-type animals under a high-DHA diet and receiving estradiol exhibited a lipid profile that closely resembled that of the hippocampus of control animals. Interestingly, though the lipid signatures of APP/PS1 hippocampi markedly differed from wild-type, administration of a high-DHA diet in the presence of estrogens gave rise to a lipid profile that approached that of control animals. Paralleling changes in lipid composition, patterns of gene expression of enzymes involved in lipid biosynthesis were also altered and affected by combination of experimental factors. Overall, these results indicate that hippocampal lipid homeostasis is strongly affected by hormonal and dietary conditions, and that manipulation of these factors might be incorporated in AD therapeutics.

  17. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells.

    PubMed

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.

  18. Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47.

    PubMed

    Yeh, Andrew; Kruse, Shane E; Marcinek, David J; Gallagher, Evan P

    2015-06-01

    High levels of the flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) have been detected in Pacific salmon sampled near urban areas, raising concern over the safety of salmon consumption. However, salmon fillets also contain the antioxidants eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose oxidation products induce cellular antioxidant responses. Because oxidative stress is a mechanism of BDE 47 toxicity, we hypothesized that oxidized EPA and DHA can ameliorate the cellular and mitochondrial toxicity of BDE 47. HepG2 cells were treated with a mixture of oxidized EPA and DHA (oxEPA/oxDHA) at a ratio relevant to salmon consumption (1.5/1 oxEPA/oxDHA) followed by exposure to 100 μM BDE 47. Pretreatment with oxEPA/oxDHA for 12 h prior to BDE 47 exposure prevented BDE 47-mediated depletion of glutathione, and increased expression of antioxidant response genes. oxEPA/oxDHA also reduced the level of reactive oxygen species production by BDE 47. The oxEPA/oxDHA antioxidant responses were associated with partial protection against BDE 47-induced loss of viability and also mitochondrial membrane potential. Mitochondrial electron transport system functional analysis revealed extensive inhibition of State 3 respiration and maximum respiratory capacity by BDE 47 were partially reversed by oxEPA/oxDHA. Our findings indicate that the antioxidant effects of oxEPA/oxDHA protect against short exposures to BDE 47, including a protective role of these compounds on maintaining cellular and mitochondrial function.

  19. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis.

    PubMed

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson's disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson's disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  20. Erythrocyte fatty acids of term infants fed either breast milk, standard formula, or formula supplemented with long-chain polyunsaturates.

    PubMed

    Makrides, M; Neumann, M A; Simmer, K; Gibson, R A

    1995-10-01

    The purpose of our study was to assess whether a supplement of fish oil (FO) and evening primrose oil (EPO) for formula-fed infants was capable of avoiding reductions in erythrocyte docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) associated with standard formula feeding. Healthy, term infants, whose mothers chose to formula feed, were randomized to either a placebo or supplemented formula for their first 30 wk of life. A reference group of beast-fed infants also was enrolled. Erythrocyte fatty acids were measured by capillary gas chromatography on day 5 and in weeks 6, 16, and 30. Supplementation of formula with 0.36% of total fatty acids as DHA resulted in erythrocyte DHA being maintained at or above breast-fed levels for the entire 30-wk study period, and breast feeding (0.21% DHA) resulted in a modest fall in erythrocyte DHA relative to baseline (day 5) values. The level of erythrocyte DHA in placebo formula-fed infants was halved by week 16. AA levels decreased in all infants in the first six weeks, but the levels in breast- and placebo formula-fed infants increased with age and returned to approximate baseline (day 5) values by 16 and 30 wk of age, respectively. Erythrocyte AA in FO+EPO-supplemented infants remained low and below breast- and placebo formula-fed levels. Our data suggest that dietary supplementation with DHA at 0.36% total fatty acids results in erythrocyte DHA levels above those found in breast-fed infants. EPO supplementation was not effective at maintaining erythrocyte AA when given with FO.

  1. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR.

    PubMed

    Bächler, Christoph; Schneider, Philipp; Bähler, Priska; Lustig, Ariel; Erni, Bernhard

    2005-01-26

    Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize either ATP (in animals, plants, bacteria) or the bacterial phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) as a source of high-energy phosphate. The PTS-dependent kinase of Escherichia coli consists of three subunits: DhaK contains the Dha binding site, DhaL contains ADP as cofactor for the double displacement of phosphate from DhaM to Dha, and DhaM provides a phospho-histidine relay between the PTS and DhaL::ADP. DhaR is a transcription activator belonging to the AAA+ family of enhancer binding proteins. It stimulates transcription of the dhaKLM operon from a sigma70 promoter and autorepresses dhaR transcription. Genetic and biochemical studies indicate that the enzyme subunits DhaL and DhaK act antagonistically as coactivator and corepressor of the transcription activator by mutually exclusive binding to the sensing domain of DhaR. In the presence of Dha, DhaL is dephosphorylated and DhaL::ADP displaces DhaK and stimulates DhaR activity. In the absence of Dha, DhaL::ADP is converted by the PTS to DhaL::ATP, which does not bind to DhaR.

  2. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer's disease.

    PubMed

    Yuki, Dai; Sugiura, Yuki; Zaima, Nobuhiro; Akatsu, Hiroyasu; Takei, Shiro; Yao, Ikuko; Maesako, Masato; Kinoshita, Ayae; Yamamoto, Takayuki; Kon, Ryo; Sugiyama, Keikichi; Setou, Mitsutoshi

    2014-11-20

    Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by senile plaques, neurofibrillary tangles, synaptic disruption, and neuronal loss. Several studies have demonstrated decreases of docosahexaenoic acid-containing phosphatidylcholines (DHA-PCs) in the AD brain. In this study, we used matrix-assisted laser desorption/ionization imaging mass spectrometry in postmortem AD brain to show that PC molecular species containing stearate and DHA, namely PC(18:0/22:6), was selectively depleted in the gray matter of patients with AD. Moreover, in the brain regions with marked amyloid β (Aβ) deposition, the magnitude of the PC(18:0/22:6) reduction significantly correlated with disease duration. Furthermore, at the molecular level, this depletion was associated with reduced levels of the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin. Interestingly, this reduction in PC(18:0/22:6) levels did not correlate with the degrees of Aβ deposition and neuronal loss in AD. The analysis of the correlations of key factors and disease duration showed that their effects on the disease time course were arranged in order as Aβ deposition, presynaptic disruption, postsynaptic disruption coupled with PC(18:0/22:6) reduction, and neuronal loss.

  3. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer's disease

    PubMed Central

    Yuki, Dai; Sugiura, Yuki; Zaima, Nobuhiro; Akatsu, Hiroyasu; Takei, Shiro; Yao, Ikuko; Maesako, Masato; Kinoshita, Ayae; Yamamoto, Takayuki; Kon, Ryo; Sugiyama, Keikichi; Setou, Mitsutoshi

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by senile plaques, neurofibrillary tangles, synaptic disruption, and neuronal loss. Several studies have demonstrated decreases of docosahexaenoic acid-containing phosphatidylcholines (DHA-PCs) in the AD brain. In this study, we used matrix-assisted laser desorption/ionization imaging mass spectrometry in postmortem AD brain to show that PC molecular species containing stearate and DHA, namely PC(18:0/22:6), was selectively depleted in the gray matter of patients with AD. Moreover, in the brain regions with marked amyloid β (Aβ) deposition, the magnitude of the PC(18:0/22:6) reduction significantly correlated with disease duration. Furthermore, at the molecular level, this depletion was associated with reduced levels of the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin. Interestingly, this reduction in PC(18:0/22:6) levels did not correlate with the degrees of Aβ deposition and neuronal loss in AD. The analysis of the correlations of key factors and disease duration showed that their effects on the disease time course were arranged in order as Aβ deposition, presynaptic disruption, postsynaptic disruption coupled with PC(18:0/22:6) reduction, and neuronal loss. PMID:25410733

  4. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  5. Blood and tissue fatty acid compositions, lipoprotein levels, performance and meat flavor of broilers fed fish oil: changes in the pre- and post-withdrawal design.

    PubMed

    Aghaei, N; Safamehr, A; Mehmannavaz, Y; Chekaniazar, S

    2012-12-01

    Administration of fish oil (FO) in broiler diets can elevate α-linolenic acid (ALA), eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) levels, which are protective against cardiovascular disease. However, optimization based solely on n-3 polyunsaturated fatty acid (n-3 PUFA) enrichment in chicken meat could lead to lower meat quality, unless the withdrawal period (plan) is applied for 1 week. The present study investigated whether the incorporation of FO in the diet for 32 days followed by its withdrawal for 1 week affected blood lipid profiles, lipoprotein particles, performance and meat flavor in male broiler chickens. Two hundred and forty birds (1-day-old, Ross 308) were assigned to 1 of 4 dietary groups: 0%, 1%, 2% or 3% FO with four replicates. Broilers were fed for 49 days according to a 4-phase feeding program. The experimental phase comprised day 11 to 42, and FO was removed on day 42. Blood samples were collected during the pre- and post-withdrawal period after the recordings before slaughter. The FO groups demonstrated decreased low-density lipoprotein (LDL) and increased high-density lipoprotein levels on day 42 (P < 0.01); however, these values were not significant after design withdrawal. Diet supplementation with FO elevated the blood levels of palmitic acid (C16:0) and n-3 PUFAs, especially long-chain (LC) PUFAs (EPA, C20:5n-3 and DHA, C22:6n-3), and caused a decline in the level of arachidonic acid (AA, C20:4n-6; P < 0.05). Application of a one-week withdrawal period resulted in a decrease in (P < 0.05) linoleic acid (C18:2n-6) and an increase in the level of AA, unlike their amounts on day 42. Although blood and tissue LC n-3 PUFA levels on day 49 were significantly higher in the FO groups compared with the control, they demonstrated a substantial decrease on day 49 compared with day 42. The best results, mainly the lowest n-6/n-3 fatty acids (FAs) and feed conversion ratio (FCRs), were observed for 3% FO (group T4), even after institution

  6. Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men[S

    PubMed Central

    McManus, Seán; Tejera, Noemi; Awwad, Khader; Rigby, Neil; Fleming, Ingrid; Cassidy, Aedin; Minihane, Anne Marie

    2016-01-01

    Our objective was to investigate the impact of EPA versus DHA on arterial stiffness and reactivity and underlying mechanisms (with a focus on plasma oxylipins) in the postprandial state. In a three-arm crossover acute test meal trial, men (n = 26, 35–55 years) at increased CVD risk received a high-fat (42.4 g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, long chain n-3 PUFA-derived oxylipins, nitrite and hydrogen sulfide, and serum lipids and glucose. Vascular function was assessed using blood pressure, reactive hyperemia index, pulse wave velocity, and augmentation index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P = 0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA- and DHA-derived oxylipins in the acute postprandial state, with an (1.3-fold) increase in 19,20-dihydroxydocosapentaenoic acid evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight into the AIx effect. PMID:27170732

  7. Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men.

    PubMed

    McManus, Seán; Tejera, Noemi; Awwad, Khader; Vauzour, David; Rigby, Neil; Fleming, Ingrid; Cassidy, Aedin; Minihane, Anne Marie

    2016-09-01

    Our objective was to investigate the impact of EPA versus DHA on arterial stiffness and reactivity and underlying mechanisms (with a focus on plasma oxylipins) in the postprandial state. In a three-arm crossover acute test meal trial, men (n = 26, 35-55 years) at increased CVD risk received a high-fat (42.4 g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, long chain n-3 PUFA-derived oxylipins, nitrite and hydrogen sulfide, and serum lipids and glucose. Vascular function was assessed using blood pressure, reactive hyperemia index, pulse wave velocity, and augmentation index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P = 0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA- and DHA-derived oxylipins in the acute postprandial state, with an (1.3-fold) increase in 19,20-dihydroxydocosapentaenoic acid evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight into the AIx effect.

  8. Ability of rainbow trout (Oncorhynchus mykiss) to convert and store EPA and DHA when reared on plant oil replacement feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the potential for improving the conversion and deposition of the important omega-3 fatty acids docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) in fish, forty-three families of rainbow trout were fed a diet low in these components and then evaluated for their...

  9. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells

    PubMed Central

    Hwang, Jin-Ki; Yu, Hong-Nu; Noh, Eun-Mi; Kim, Jeong-Mi; Hong, On-Yu; Youn, Hyun Jo; Jung, Sung Hoo; Kwon, Kang-Beom; Kim, Jong-Suk; Lee, Young-Rae

    2017-01-01

    Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis. PMID:28123548

  10. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test.

    PubMed

    Park, Yongsoon; Moon, Hyoun-Jung; Kim, Seok-Hyeon

    2012-08-01

    Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.

  11. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008

    PubMed Central

    2014-01-01

    Background The American Heart Association’s Strategic Impact Goal Through 2020 and Beyond recommends ≥ two 3.5-oz fish servings per week (preferably oily fish) partly to increase intake of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We examined the intake of total fish, fish high in omega-3 fatty acids, α-linolenic acid, EPA, and DHA in U.S. adults (19 + years) using data from the National Health and Nutrition Examination Survey, 2003–2008. Methods Usual intakes from foods alone and from foods plus dietary supplements were determined using the methods from the National Cancer Institute. Results Mean usual intake of total fish and fish high in omega-3 fatty acids was 0.61 ± 0.03 and 0.15 ± 0.03 oz/day, 0.43 and 0.07 respectively. Total fish and fish high in omega-3 fatty acids median intake was 0.43 and 0.07 oz/day, respectively. Intake from foods alone for ALA, EPA and DHA was 1.5 ± 0.01 g/d, 23 ± 7 mg/d and 63 ± 2 mg/d, respectively. ALA, EPA and DHA from food only median intakes were 1.4 g/d, 18 mg/d and 50 mg/d, respectively. Intake of ALA, EPA and DHA from foods and dietary supplements was 1.6 ± 0.04 g/d, 41 ± 4 mg/d and 72 ± 4 mg/d, respectively. While intakes of fish high in omega-3 fatty acids were higher in older adults (0.13 ± 0.01 oz/d for those 19–50 yrs and 0.19 ± 0.02 oz/d for those 51+ year; p < 0.01) and in males as compared to females (0.18 ± 0.02 vs 0.13 ± 0.01 oz/d, respectively; p < 0.05), few consumed recommended levels. Males also had higher (p < 0.05) intake of EPA and DHA from foods and dietary supplements relative to females (44 ± 6 vs 39 ± 4 and 90 ± 7 vs 59 ± 4 mg/d, respectively) and older adults had higher intakes of EPA, but not DHA compared to younger adults (EPA: 34 ± 3 vs 58 ± 9, p < 0.05; DHA: 68 ± 4 vs 81 ± 6, p < 0.05). Conclusions As omega-3 fatty

  12. Differential levels of long chain polyunsaturated fatty acids in women with preeclampsia delivering male and female babies.

    PubMed

    Roy, Suchitra; Dhobale, Madhavi; Dangat, Kamini; Mehendale, Savita; Wagh, Girija; Lalwani, Sanjay; Joshi, Sadhana

    2014-11-01

    Maternal long chain polyunsaturated fatty acids (LCPUFA) play a key role in fetal growth and development. This study for the first time examines the maternal and cord LCPUFA levels in preeclamptic mothers delivering male and female infants. In this study 122 normotensive control pregnant women (gestation≥37 weeks) and 90 women with preeclampsia were recruited. Results indicate lower maternal plasma docosahexaenoic acid (DHA) levels (p<0.05) in women with preeclampsia delivering male babies as compared to normotensive control women delivering male babies. Similarly, cord nervonic acid levels were lower (p<0.01) in women with preeclampsia delivering male babies as compared to normotensive control group. However, cord nervonic acid levels were comparable in women with preeclampsia and normotensive control women delivering female babies. This data suggests that male babies born to mothers with preeclampsia may be at an increased risk of developing neurodevelopmental disorders as compared to female babies. Future studies need to follow up both male and female children born to mothers with preeclampsia since altered levels of LCPUFA at birth may have differential implications for the growth and development.

  13. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications.

    PubMed

    Davis, Brenda C; Kris-Etherton, Penny M

    2003-09-01

    Although vegetarian diets are generally lower in total fat, saturated fat, and cholesterol than are nonvegetarian diets, they provide comparable levels of essential fatty acids. Vegetarian, especially vegan, diets are relatively low in alpha-linolenic acid (ALA) compared with linoleic acid (LA) and provide little, if any, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Clinical studies suggest that tissue levels of long-chain n-3 fatty acids are depressed in vegetarians, particularly in vegans. n-3 Fatty acids have numerous physiologic benefits, including potent cardioprotective effects. These effects have been demonstrated for ALA as well as EPA and DHA, although the response is generally less for ALA than for EPA and DHA. Conversion of ALA by the body to the more active longer-chain metabolites is inefficient: < 5-10% for EPA and 2-5% for DHA. Thus, total n-3 requirements may be higher for vegetarians than for nonvegetarians, as vegetarians must rely on conversion of ALA to EPA and DHA. Because of the beneficial effects of n-3 fatty acids, it is recommended that vegetarians make dietary changes to optimize n-3 fatty acid status.

  14. Maternal dietary docosahexanoic acid content affects the rat pup auditory system.

    PubMed

    Haubner, Laura Y; Stockard, Janet E; Saste, Monisha D; Benford, Valerie J; Phelps, Christopher P; Chen, Li T; Barness, Lewis; Wiener, Doris; Carver, Jane D

    2002-05-01

    Previous studies of the effects of dietary docosahexanoic acid (DHA), 22:6n3, on neurodevelopment have focused mainly on visual-evoked potentials and indices of visual activity, measures that may be confounded by effects on the retina rather than on neural pathways. We investigated the effect of pre- and postnatal maternal dietary DHA content on auditory brainstem conduction times (ABCTs), the appearance of the auditory startle reflex (ASR), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity in brainstem homogenates. Timed pregnant dams were fed, beginning on day 2 of gestation and throughout lactation, a purified diet containing one of three levels of DHA (0, 1, or 3% of total fatty acids, or 0, 0.4 or 1.2% of total energy). On postnatal day (PND) 3, pups were randomly crossfostered within diet groups to minimize litter effects and culled to 10 per litter. Cerebrums and milk from culled pups stomachs were collected for lipid analysis. The timing of appearance of the ASR was determined between PND 10 through 14 and ABCTs were measured in pups on PND 24 and 31. Pups were sacrificed on PND 31 and cerebrums were removed. In each of two replicated studies, pups in the 1% DHA group weighed significantly less on PND 3 and they gained significantly less weight from PND 3 to 31 compared with pups in the 0 or 3% groups (p<0.01). The auditory studies were not conducted on the 1% DHA group since measures of auditory function are in part a function of somatic growth. The tissue fatty acid data for the 1% DHA group did not show unexpected findings. Higher dietary DHA was reflected in milk and pup cerebrums, and levels of arachidonic acid were inversely related to levels of DHA. In the pups of dams fed diets containing 3% versus 0% DHA, the ASR appeared significantly later (p<0.001) and the ABCTs were longer (p<0.05) on PND 31. CNPase activity levels were not different between the 0 and 3% DHA groups. This study demonstrated that the auditory brainstem response

  15. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids.

    PubMed

    Sanden, Monica; Stubhaug, Ingunn; Berntssen, Marc H G; Lie, Øyvind; Torstensen, Bente E

    2011-12-14

    The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.

  16. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    SciTech Connect

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-02-15

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the

  17. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    PubMed

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  18. Role of Omega-3 Fatty Acids in the Etiology, Treatment, and Prevention of Depression: Current Status and Future Directions.

    PubMed

    McNamara, Robert K

    2016-09-01

    Over the past three decades a body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of major depressive disorder (MDD). Cross-national and cross-sectional data suggest that greater habitual intake of preformed EPA+DHA is associated with reduced risk for developing depressive symptoms and syndromal MDD. Erythrocyte EPA and DHA composition is highly correlated with habitual fish or fish oil intake, and case-control studies have consistently observed lower erythrocyte EPA and/or DHA levels in patients with MDD. Low erythrocyte EPA+DHA composition may also be associated with increased risk for suicide and cardiovascular disease, two primary causes of excess premature mortality in MDD. While controversial, dietary EPA+DHA supplementation may have antidepressant properties and may augment the therapeutic efficacy of antidepressant medications. Neuroimaging and rodent neurodevelopmental studies further suggest that low LCn-3 fatty acid intake or biostatus can recapitulate central pathophysiological features associated with MDD. Prospective findings suggest that low LCn-3 fatty acid biostatus increases risk for depressive symptoms in part by augmenting pro-inflammatory responsivity. When taken collectively, these translational findings provide a strong empirical foundation in support of dietary LCn-3 fatty acid deficiency as a modifiable risk factor for MDD. This review provides an overview of this translational evidence and then discusses future directions including strategies to translate this evidence into routine clinical screening and treatment algorithms.

  19. Effect of type and level of fish oil supplementation on yolk fat composition and n-3 fatty acids retention efficiency in laying hens.

    PubMed

    Cachaldora, P; García-Rebollar, P; Alvarez, C; De Blas, J C; Méndez, J

    2006-02-01

    1. Laying hen performance and yolk fat fatty acid (FA) concentrations were evaluated with respect to the inclusion in the diet of different sources and levels of marine fish oil (MFO). 2. Twelve diets were arranged factorially, with three sources (MFO1, MFO2_EPA, MFO3_DHA) and four levels of inclusion (15, 30, 45 and 60 g/kg) of MFO. 3. Type of diet had little effect on egg production traits, although laying rate and shell thickness slightly decreased at the highest level of MFO supplementation. 4. An increase in level of inclusion of MFO from 15 to 60 g/kg linearly increased concentrations of C20:5 n-3, C22:5 n-3, C22:6 n-3 and total n-3 FA in yolk fat, but greatly impaired their efficiencies of deposition (g retained/g ingested). 5. An interaction between type and dietary concentration of MFO was found, as the reduction in efficiency of retention of n-3 FA in egg fat with level of MFO was less when the proportion of n-3 in total FA decreased or when that of DHA in total n-3 FA increased. 6. MFO3_ DHA was more efficiently used for total n-3 FA yolk deposition than MFO2_EPA at a similar total n-3 FA intake. 7. Dietary inclusion of MFO reduced LC n-6 FA yolk fat content, which additionally decreased the ratio between total n-6 and total n-3 FA in egg fat. 8. Regression equations were calculated in order to predict efficiency of retention and n-3 FA concentration of yolk fat in the range of diets studied.

  20. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Betancor, Mónica B.; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J.; Napier, Johnathan A.; Tocher, Douglas R.

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents. PMID:27454884

  1. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    PubMed

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline.

  2. Baseline Blood Levels of Omega-3 and Depression Remission: A secondary analysis of data from a placebo-controlled trial of omega-3 supplements

    PubMed Central

    Carney, Robert M.; Steinmeyer, Brian C.; Freedland, Kenneth E.; Rubin, Eugene H.; Rich, Michael W.; Harris, William S.

    2017-01-01

    Objective Depression is associated with low red blood cell (RBC) levels of two omega-3 fatty acids (FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), suggesting that omega-3 supplements might improve depression. However, clinical trials have produced mixed results. The purpose of this secondary analysis of data from a randomized controlled trial was to determine whether baseline blood levels of omega-3, which are known to vary widely among individuals, predict depression outcomes. Methods The percentages of EPA, DHA, and the omega-6 arachidonic acid (AA) were measured in RBCs at baseline and post-treatment in 122 participants with DSM-IV major depression who were randomized between May 2005 and December 2008 to receive either 50 mg/day of sertraline and 930 mg EPA/750 mg DHA/day or sertraline plus placebo. Associations between baseline RBC omega-3 levels and remission of depression (HAM-D≤7) were analyzed by treatment arm. Results Among participants in the omega-3 arm, baseline RBC levels of EPA+DHA (p=0.002) and the EPA+DHA:AA ratio (p=0.003) were significantly higher among those whose depression subsequently remitted compared with those whose depression did not remit. No associations were detected in the sertraline plus placebo arm. Baseline levels of EPA (p=0.03) and the EPA+DHA:AA ratio (p=0.04) moderated the relationship between treatment arm and depression outcomes. Conclusion High pre-treatment RBC levels of EPA and DHA, and a high EPA+DHA:AA ratio, predict favorable depression outcomes in patients receiving omega-3 supplements. Omega-3 supplementation may be an effective treatment for depression, but the requisite dosage and duration of treatment may depend on the patient's baseline level of omega-3. PMID:26930527

  3. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury

    PubMed Central

    Harvey, Lloyd D.; Yin, Yan; Attarwala, Insiya Y.; Begum, Gulnaz; Deng, Julia; Yan, Hong Q.; Dixon, C. Edward

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1+ microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32+ microglia or macrophages, but an increased CD206+ phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1+ microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1+ microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to

  4. E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro.

    PubMed

    Zheng, Weilong; Wang, Xudong; Cao, Wenjing; Yang, Bowen; Mu, Ying; Dong, Yuesheng; Xiu, Zhilong

    2017-02-01

    Many bioactive components such as poly-unsaturated fatty acids (e.g. EPA and DHA), phospholipids and astaxanthin are known in Antarctic krill (Euphausia superba) oil. The krill DHA and EPA are generally considered to be similar to natural ones. However, two chemical compounds which were separated from Antarctic krill oil and identified as EPA and DHA by HRESIMS and NMR acted much more effective inhibitive activities on growth of several cell lines (U937, K562, SMMC-7721, PC-3, MDA-MB-231, HL60 and MCF-7) than those from sturgeon liver and commercial fish oil. Taking MCF-7 as an example, the IC50 values of Antarctic krill EPA and DHA were 14.01 and 19.94μM,while the IC50 values of sturgeon liver and commercial fish EPA and DHA were 81.45, 73.13, 82.11 and 75.31μM, respectively. Raman spectra revealed that the Antarctic krill EPA and DHA have E-configuration structures, which were different from those in commercial fish oil. Additionally, the Antarctic krill EPA and DHA had no effects on human normal liver cell line HL7702. These results indicated that the Antarctic krill E-EPA and E-DHA had a great prospect in cancer therapy.

  5. Omega-3 Fatty acids and hippocampal neurogenesis in depression.

    PubMed

    Kang, Jing X; Gleason, Erin D

    2013-06-01

    The mammalian brain and central nervous system are especially dependent on the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA) for normative signaling and function, and research suggests that n-3 fatty acid deficiencies are one contributing factor in the increasing prevalence of depressive disorders. However, the reasons for which n-3 fatty acids and mood are connected remain unknown. Atrophy in the hippocampus is one of the most significant neuroanatomical findings in depressed patients, and current therapies for depression tend to increase hippocampal neurogenesis. We recently discovered that the fat-1 transgenic mouse, which has enriched levels of DHA in the brain because it can convert n-6 to n-3 fatty acids, exhibits increased hippocampal neurogenesis. This finding suggests a mechanism by which omega-3 could influence depression and mood; here we expand on the argument that n-3 fatty acids, and DHA in particular, may help prevent and treat depression by virtue of their effects on neurogenesis in the hippocampus. Because DHA can be obtained through the diet, increasing DHA intake in depressed patients or those at risk for depression may be one way of managing the disease and perhaps providing aid to those who have not been able to achieve remission via pharmacological means.

  6. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why?

    PubMed

    Das, Undurti N

    2008-01-01

    Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.

  7. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.

  8. Long-Chain Omega-3 Polyunsaturated Fatty Acids Have Developmental Effects on the Crop Pest, the Cabbage White Butterfly Pieris rapae

    PubMed Central

    Hixson, Stefanie M.; Shukla, Kruti; Campbell, Lesley G.; Hallett, Rebecca H.; Smith, Sandy M.; Packer, Laurence; Arts, Michael T.

    2016-01-01

    Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable. PMID:27011315

  9. Long-Chain Omega-3 Polyunsaturated Fatty Acids Have Developmental Effects on the Crop Pest, the Cabbage White Butterfly Pieris rapae.

    PubMed

    Hixson, Stefanie M; Shukla, Kruti; Campbell, Lesley G; Hallett, Rebecca H; Smith, Sandy M; Packer, Laurence; Arts, Michael T

    2016-01-01

    Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.

  10. Proresolving Action of Docosahexaenoic Acid Monoglyceride in Lung Inflammatory Models Related to Cystic Fibrosis.

    PubMed

    Morin, Caroline; Cantin, André M; Rousseau, Éric; Sirois, Marco; Sirois, Chantal; Rizcallah, Edmond; Fortin, Samuel

    2015-10-01

    Cystic fibrosis (CF) is a hereditary, chronic disease of the exocrine glands, characterized by the production of viscid mucus that obstructs the pancreatic ducts and bronchi, leading to infection and fibrosis. ω3 fatty acid supplementations are known to improve the essential fatty acid deficiency as well as reduce inflammation in CF. The objective of this study was to determine the effects of docosahexaenoic acid monoacylglyceride (MAG-DHA) on mucin overproduction and resolution of airway inflammation in two in vitro models related to CF. Isolated human bronchi reverse permeabilized with CF transmembrane conductance regulator (CFTR) silencing (si) RNA and stable Calu3 cells expressing a short hairpin (sh) RNA directed against CFTR (shCFTR) were used. Lipid analyses revealed that MAG-DHA increased DHA/arachidonic acid (AA) ratio in shCFTR Calu-3 cells. MAG-DHA treatments, moreover, resulted in a decreased activation of Pseudomonas aeruginosa LPS-induced NF-κB in CF and non-CF Calu-3 cells. Data also revealed a reduction in MUC5AC, IL-6, and IL-8 expression levels in MAG-DHA-treated shCFTR cells stimulated, or not, with LPS. Antiinflammatory properties of MAG-DHA were also investigated in a reverse-permeabilized human bronchi model with CFTR siRNA. After MAG-DHA treatments, messenger RNA transcript levels for MUC5AC, IL-6, and IL-8 were markedly reduced in LPS-treated CFTR siRNA bronchi. MAG-DHA displays antiinflammatory properties and reduces mucin overexpression in Calu-3 cells and human bronchi untreated or treated with P. aeruginosa LPS, a finding consistent with the effects of resolvinD1, a known antiinflammatory mediator.

  11. DHA Supplementation Decreases Serum C - Reactive Protein and Other Markers of Inflammation in Hypertriglyceridemic Men1-3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation is an independent risk factor for the development of cardiovascular disease (CVD). N-3 polyunsaturated fatty acids (PUFA) reduce inflammation but the anti-inflammatory effect of docosahexenoic acid (DHA) in hypertriglyceridemic men has not been reported. We determined its effects on cir...

  12. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes

    PubMed Central

    Ruyter, Bente; Berge, Gerd Marit; Sun, Yajing; Østbye, Tone-Kari Knutsdatter

    2016-01-01

    Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids. PMID:27973547

  13. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats

    PubMed Central

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels. PMID:27752492

  14. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum

    PubMed Central

    Hamilton, Mary L.; Warwick, Joanna; Terry, Anya; Allen, Michael J.; Napier, Johnathan A.; Sayanova, Olga

    2015-01-01

    The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater

  15. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.

    PubMed

    Hamilton, Mary L; Warwick, Joanna; Terry, Anya; Allen, Michael J; Napier, Johnathan A; Sayanova, Olga

    2015-01-01

    The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater

  16. Effects of DHA-phospholipids, melatonin and tryptophan supplementation on erythrocyte membrane physico-chemical properties in elderly patients suffering from mild cognitive impairment.

    PubMed

    Cazzola, Roberta; Rondanelli, Mariangela; Faliva, Milena; Cestaro, Benvenuto

    2012-12-01

    A randomized, double-blind placebo-controlled clinical trial was carried out to assess the efficacy of a docosahexenoic acid (DHA)-phospholipids, melatonin and tryptophan supplemented diet in improving the erythrocyte oxidative stress, membrane fluidity and membrane-bound enzyme activities of elderly subjects suffering from mild cognitive impairment (MCI). These subjects were randomly assigned to the supplement group (11 subjects, 9F and 2M; age 85.3±5.3y) or placebo group (14-matched subjects, 11F and 3M; 86.1±6.5). The duration of the treatment was 12weeks. The placebo group showed no significant changes in erythrocyte membrane composition and function. The erythrocyte membranes of the supplement group showed a significant increase in eicosapentenoic acid, docosapentenoic acid and DHA concentrations and a significant decrease in arachidonic acid, malondialdehyde and lipofuscin levels. These changes in membrane composition resulted in an increase in the unsaturation index, membrane fluidity and acetylcholine esterase activity. Moreover, a significant increase in the ratio between reduced and oxidized glutathione was observed in the erythrocyte of the supplement group. Although this study is a preliminary investigation, we believe these findings to be of great speculative and interpretative interest to better understand the complex and multi-factorial mechanisms behind the possible links between diets, their functional components and possible molecular processes that contribute to increasing the risk of developing MCI and Alzheimer's.

  17. Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: relationship with interleukin-6.

    PubMed

    Lotrich, Francis E; Sears, Barry; McNamara, Robert K

    2013-07-01

    Cross-sectional studies have found that an elevated ratio of arachidonic acid to omega-3 fatty acid is associated with depression, and controlled intervention studies have found that decreasing this ratio through administration of omega-3 fatty acids can alleviate depressive symptoms. Additionally, arachidonic acid and omega-3 fatty acids have opposing effects on inflammatory signaling. Exogenous administration of the inflammatory cytokine interferon-alpha (IFN-α) can trigger a depressive episode in a subset of vulnerable people, though associated risk factors remain poorly understood. Using a within-subject prospective design of 138 subjects, we examined whether baseline long-chain omega-3 (docosahexaenoic acid - DHA; eicosapentaenoic acid - EPA) and omega-6 (arachidonic acid - AA; di-homo-gamma-linolenic acid - DGLA) fatty acid status was associated with depression vulnerability in hepatitis C patients treated with IFN-α. Based on the literature, we had specific a priori interest in the AA/EPA+DHA ratio. Lower baseline DHA predicted depression incidence (p=0.04), as did elevated DGLA (p=0.02) and an elevated AA/EPA+DHA ratio (p=0.007). The AA/EPA+DHA ratio predicted depression even when controlling for other critical variables such as sleep quality and race. A higher AA/EPA+DHA ratio was positively associated with both increasing Montgomery-Asperg Depression Rating Scores over time (F=4.0; p<0.05) as well as interleukin-6 levels (F=107.4; p<0.05) but not C-reactive protein. Importantly, omega-3 and omega-6 fatty acid status was not associated with sustained viral response to IFN-α treatment. These prospective data support the role of fatty acid status in depression vulnerability and indicate a potential role for omega-3 fatty acids in the prevention of inflammation-induced depression.

  18. Is a dietary n-3 fatty acid supplement able to influence the cardiac effect of the psychological stress?

    PubMed

    Rousseau, D; Moreau, D; Raederstorff, D; Sergiel, J P; Rupp, H; Muggli, R; Grynberg, A

    1998-01-01

    Epidemiological studies suggest that n-3 polyunsaturated fatty acids (PUFA) are involved in the prevention of cardiovascular disease. Stress is known to increase the incidence of CVD and the present study was realised to evaluate some physiological and biochemical effects of dietary docosahexaenoic acid (DHA) in male Wistar rats subjected to a psycho social stress. Rats were fed for 8 weeks a semi-purified diet containing 10% of either sunflower seed oil or the same oil supplemented with DHA. This food supply represented 50% of their daily requirement. The remaining 50% were supplied as 45 mg food pellets designed to induce stress in rats by an intermittent-feeding schedule process. The control group (n = 12) was fed the equivalent food ration as a single daily feeding. The physiological cardiovascular parameters were recorded by telemetry through a transmitter introduced in the abdomen. At the end of the experimentation, the heart and adrenals were withdrawn and the fatty acid composition and the catecholamine store were determined. Dietary DHA induced a pronounced alteration of the fatty acid profile of cardiac phospholipids (PL). The level of all the n-6 PUFAs was reduced while 22:6 n-3 was increased. The stress induced a significant increase in heart rate which was not observed in DHA-fed group. The time evolution of the systolic blood pressure was not affected by the stress and was roughly similar in the stressed rats of either dietary group. Conversely, the systolic blood pressure decreased in the unstressed rats fed DHA. Similar data were obtained for the diastolic blood pressure. The beneficial effect of DHA was also observed on cardiac contractility, since the dP/dt(max) increase was prevented in the DHA-fed rats. The stress-induced modifications were associated with an increase in cardiac noradrenaline level which was not observed in DHA-fed rats. The fatty acid composition of adrenals was significantly related to the fatty acid intake particularly the

  19. Nutritional biomarkers in Alzheimer's disease: the association between carotenoids, n-3 fatty acids, and dementia severity.

    PubMed

    Wang, Wei; Shinto, Lynne; Connor, William E; Quinn, Joseph F

    2008-02-01

    Carotenoids are fat-soluble antioxidants that may protect polyunsaturated fatty acids, such as n-3 fatty acids from oxidation, and are potentially important for Alzheimer's disease (AD) prevention and treatment. Fasting plasma carotenoids were measured in 36 AD subjects and 10 control subjects by HPLC. Correlations between plasma carotenoid levels, red blood cell (RBC) n-3 fatty acids, and dementia severity were examined in AD patients. Moderately severe AD patients (MMSE=16-19) had much lower plasma levels of two major carotenoids: lutein and beta-carotene, compared to mild AD patients (MMSE=24-27) or controls. Among AD patients, variables (lutein, beta-carotene, RBC docosahexaenoic acid (DHA) and LDL-cholesterol) were significantly correlated with MMSE. A lower MMSE score was associated with lower lutein, beta-carotene and RBC DHA levels, and a higher LDL-cholesterol level. These variables explained the majority of variation in dementia severity (55% of variance in MMSE). Lutein, beta-carotene and beta-cryptoxanthin were positively correlated with RBC DHA in AD patients. The association between higher carotenoids levels and DHA and higher MMSE scores, supports a protective role of both types of nutrients in AD. These findings suggest targeting multiple specific nutrients, lutein, beta-carotene, and DHA in strategies to slow the rate of cognitive decline.

  20. Dietary docosahexaenoic acid as a source of eicosapentaenoic acid in vegetarians and omnivores.

    PubMed

    Conquer, J A; Holub, B J

    1997-03-01

    The utilization of dietary docosahexaenoic acid (DHA; 22:6n-3) as a source of eicosapentaenoic acid (EPA; 20:5n-3) via retroconversion was investigated in both vegetarians and omnivores. For this purpose, an EPA-free preparation of DHA was given as a daily supplement (1.62 g DHA) over a period of 6 wk. The dietary supplement provided for a marked increase in DHA levels in both serum phospholipid (from 2.1 to 7.1 mol% in vegetarians and 2.2 to 7.6 mol% in omnivores) and platelet phospholipid (from 1.1 to 3.4 mol% in vegetarians and 1.4 to 3.9 mol% in omnivores). EPA levels rose to a significant but much lesser extent, while 20:4n-6, 22:5n-6, and 22:5n-3 all decreased. Based on the serum phospholipid data, the retroconversion of DHA to EPA in vivo was estimated to be 9.4% overall with no significant difference between omnivores and vegetarians.

  1. DHA supplementation for late onset Stargardt disease: NAT-3 study

    PubMed Central

    Querques, Giuseppe; Benlian, Pascale; Chanu, Bernard; Leveziel, Nicolas; Coscas, Gabriel; Soubrane, Gisele; Souied, Eric H

    2010-01-01

    Background: We analyzed the effects of a docosahexaenoic acid (DHA) supplementation in patients affected with late onset Stargardt disease (STGD). Methods: DHA (840 mg/day) was given to 20 STGD patients for six months. A complete ophthalmologic examination, including best-corrected visual acuity (BCVA) and multifocal electroretinogram (mfERG), was performed at inclusion day 0 (D0) and at month 6 (M6). Results: Overall, no statistical differences have been observed at M6 vs D0 as regards BCVA and mfERG (P > 0.05). Mild Improvement of BCVA and improvement of mfERG was noted in seven/40 eyes of four/20 patients. In the first patient, the peak of the a wave increased from 66 nV/deg2 to 75.4 nV/deg2 in the right eye (RE) and 24.5 nV/deg2 to 49.1 nV/deg2 in the left eye (LE). The peak of the b wave improved from 122 nV/deg2 to 157 nV/deg2 in the RE, and 102 nV/deg2 to 149 nV/deg2 in the LE. In the second patient peaks of the a and b waves respectively increased from 11.8 nV/deg2 to 72.1 nV/deg2 and 53 nV/deg2 to 185 nV/deg2 in the RE. In the third patient the peak of the a wave increased from 37 nV/deg2 to 43 nV/deg2 in the RE, and from 31 nV/deg2 to 45 nV/deg2 in the LE; the peak of the b wave improved from 70 nV/deg2 to 89 nV/deg2 in the RE, and from 101 nV/deg2 to 108 nV/deg2 in the LE. In the fourth patient, the peak of the a wave increased from 39 nV/deg2 to 42 nV/deg2 in the RE, and from 40 nV/deg2 to 43 nV/deg2 in the LE; the peak of the b wave improved from 86 nV/deg2 to 94 nV/deg2 in the RE, and from 87 nV/deg2 to 107 nV/deg2 in the LE. Conclusion: DHA seems to influence some functional parameters in patients affected with STGD. However, no short-term benefit should be expected from DHA supplementation. PMID:20668719

  2. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    PubMed

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  3. Low Plasma Eicosapentaenoic Acid Levels are Associated with Elevated Trait Aggression and Impulsivity in Major Depressive Disorder with a History of Comorbid Substance Use Disorder

    PubMed Central

    Beier, Anne Mette; Lauritzen, Lotte; Galfalvy, Hanga C.; Cooper, Thomas B.; Oquendo, Maria A.; Grunebaum, Michael F.; Mann, J. John; Sublette, M. Elizabeth

    2014-01-01

    Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n=48) and healthy volunteers (HV, n=35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n=39; HV, n=33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76=12.493, p=0.001), and impulsivity (F1,65=5.598, p=0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76=7.941, p=0.001) and impulsivity (F1,65=3.485, p=0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission. PMID:25017608

  4. Localized Delivery of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles to the Rat Brain using Focused Ultrasound

    PubMed Central

    Mulik, Rohit S.; Bing, Chenchen; Ladouceur-Wodzak, Michelle; Munaweera, Imalka; Chopra, Rajiv; Corbin, Ian R.

    2016-01-01

    Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2× more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain. PMID:26790145

  5. Effect of Dietary Levels of Menhaden Fish Oil and Feeding Duration on Growth Performance, and Proximate and Fatty Acid Composition of Channel Catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omega-3 highly unsaturated fatty acids (HUFA n-3), which consist mainly of eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), plays vital roles in human nutrition, disease prevention and health promotion. As the general public becomes aware of the health benefits of cons...

  6. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds

    PubMed Central

    McDaniel, Jodi C.; Massey, Karen; Nicolaou, Anna

    2013-01-01

    Chronic wounds often result from prolonged inflammation involving excessive polymorphonuclear leukocyte activity. Studies show that the ω-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish oils generate bioactive lipid mediators that reduce inflammation and polymorphonuclear leukocyte recruitment in numerous inflammatory disease models. This study’s purpose was to test the hypotheses that boosting plasma levels of EPA and DHA with oral supplementation would alter lipid mediator levels in acute wound microenvironments and reduce polymorphonuclear leukocyte levels. Eighteen individuals were randomized to 28 days of either EPA + DHA supplementation (Active Group) or placebo. After 28 days, the Active Group had significantly higher plasma levels of EPA (p < 0.001) and DHA (p < 0.001) than the Placebo Group and significantly lower wound fluid levels of two 15-lipoxygenase products of ω-6 polyunsaturated fatty acids (9-hydroxyoctadecadienoic acid [p=0.033] and 15-hydroxyeicosatrienoic acid [p=0.006]), at 24 hours postwounding. The Active Group also had lower mean levels of myeloperoxidase, a leukocyte marker, at 12 hours and significantly more reepithelialization on Day 5 postwounding. We suggest that lipid mediator profiles can be manipulated by altering polyunsaturated fatty acid intake to create a wound microenvironment more conducive to healing. PMID:21362086

  7. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease

    PubMed Central

    Bascoul-Colombo, Cécile; Guschina, Irina A.; Maskrey, Benjamin H.; Good, Mark; O'Donnell, Valerie B.; Harwood, John L.

    2016-01-01

    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes. PMID:26968097

  8. Bioequivalence Demonstration for Ω-3 Acid Ethyl Ester Formulations: Rationale for Modification of Current Guidance.

    PubMed

    Maki, Kevin C; Johns, Colleen; Harris, William S; Puder, Mark; Freedman, Steven D; Thorsteinsson, Thorsteinn; Daak, Ahmed; Rabinowicz, Adrian L; Sancilio, Frederick D

    2017-02-08

    The US Food and Drug Administration (FDA) draft guidance for establishing bioequivalence (BE) of ω-3 acid ethyl esters (containing both eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] as ethyl esters), used to treat severe hypertriglyceridemia, recommends the conduct of 2 studies: one with participants in the fasting state and one with participants in the fed state. For the fasting study, the primary measures of BE are baseline-adjusted EPA and DHA levels in total plasma lipids. For the fed study, the primary measures of BE are EPA and DHA ethyl esters in plasma. This guidance differs from that established for icosapent ethyl (EPA ethyl esters) in which the primary measure of BE is baseline-adjusted total EPA in plasma lipids for both the fasting and fed states. The FDA guidance for ω-3 acid ethyl esters is not supported by their physiologic characteristics and triglyceride-lowering mechanisms because EPA and DHA ethyl esters are best characterized as pro-drugs. This article presents an argument for amending the FDA draft guidance for ω-3 acid ethyl esters to use baseline-adjusted EPA and DHA in total plasma lipids as the primary measures of BE for both fasting and fed conditions. This change would harmonize the approaches for demonstration of BE for ω-3 acid ethyl esters and icosapent ethyl (EPA ethyl esters) products for future development programs and is the most physiologically rational approach to BE testing.

  9. Levels of Red Blood Cell Fatty Acids in Patients With Psychosis, Their Unaffected Siblings, and Healthy Controls

    PubMed Central

    Medema, Suzanne; Mocking, Roel J. T.; Koeter, Maarten W. J.; Vaz, Frédéric M.; Meijer, Carin; de Haan, Lieuwe; van Beveren, Nico J. M.; Kahn, René; de Haan, Lieuwe; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Meijer, Carin; Myin-Germeys, Inez

    2016-01-01

    Background: Two recent meta-analyses showed decreased red blood cell (RBC) polyunsaturated fatty acids (FA) in schizophrenia and related disorders. However, both these meta-analyses report considerable heterogeneity, probably related to differences in patient samples between studies. Here, we investigated whether variations in RBC FA are associated with psychosis, and thus may be an intermediate phenotype of the disorder. Methods: For the present study, a total of 215 patients (87% outpatients), 187 siblings, and 98 controls were investigated for multiple FA analyses. Based on previous studies, we investigated docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), arachidonic acid (AA), linoleic acid (LA), nervonic acid (NA), and eicasopentaenoic acid (EPA). On an exploratory basis, a large number of additional FA were investigated. Multilevel mixed models were used to compare the FA between the 3 groups. Results: Compared to controls, both patients and siblings showed significantly increased DHA, DPA, AA, and NA. LA was significantly higher in siblings compared to controls. EPA was not significantly different between the 3 groups. Also the exploratory FA were increased in patients and siblings. Conclusions: We found increased RBC FA DHA, DPA, AA, and NA in patients and siblings compared to controls. The direction of change is similar in both patients and siblings, which may suggest a shared environment and/or an intermediate phenotype. Differences between patient samples reflecting stage of disorder, dietary patterns, medication use, and drug abuse are possible modifiers of FA, contributing to the heterogeneity in findings concerning FA in schizophrenia patients. PMID:26385764

  10. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  11. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  12. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro

    PubMed Central

    Shin, Seung Kyun; Kim, Ji Hyeon; Lee, Jung Hoon; Son, Young Hoon; Lee, Min Wook; Kim, Hak Joong; Noh, Sue Ah; Kim, Kwang Pyo; Kim, In-Gyu; Lee, Min Jae

    2017-01-01

    Proteasomes are the primary degradation machinery for oxidatively damaged proteins that compose a class of misfolded protein substrates. Cellular levels of reactive oxygen species increase with age and this cellular propensity is particularly harmful when combined with the age-associated development of various human disorders including cancer, neurodegenerative disease and muscle atrophy. Proteasome activity is reportedly downregulated in these disease conditions. Herein, we report that docosahexaenoic acid (DHA), a major dietary omega-3 polyunsaturated fatty acid, mediates intermolecular protein cross-linkages through oxidation, and the resulting protein aggregates potently reduce proteasomal activity both in vitro and in cultured cells. Cellular models overexpressing aggregation-prone proteins such as tau showed significantly elevated levels of tau aggregates and total ubiquitin conjugates in the presence of DHA, thereby reflecting suppressed proteasome activity. Strong synergetic cytotoxicity was observed when the cells overexpressing tau were simultaneously treated with DHA. Antioxidant N-acetyl cysteine significantly desensitized the cells to DHA-induced oxidative stress. DHA significantly delayed the proteasomal degradation of muscle proteins in a cellular atrophy model. Thus, the results of our study identified DHA as a potent inducer of cellular protein aggregates that inhibit proteasome activity and potentially delay systemic muscle protein degradation in certain pathologic conditions. PMID:28104914

  13. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  14. Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats.

    PubMed

    Marzuca-Nassr, Gabriel Nasri; Vitzel, Kaio Fernando; De Sousa, Luís Gustavo; Murata, Gilson M; Crisma, Amanda Rabello; Rodrigues Junior, Carlos Flores; Abreu, Phablo; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Hirabara, Sandro M; Newsholme, Philip; Curi, Rui

    2016-09-01

    The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.

  15. DHA- Rich Fish Oil Improves Complex Reaction Time in Female Elite Soccer Players

    PubMed Central

    Guzmán, José F.; Esteve, Hector; Pablos, Carlos; Pablos, Ana; Blasco, Cristina; Villegas, José A.

    2011-01-01

    Omega-3 fatty acids (n-3) has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA) on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12) or olive oil (OO = 12) over 4 weeks of training. Two measurements (pre- and post-treatment) of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post) and experimental group (FO/OO) on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004) and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003). It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players. Key points The results obtained from the study suggest that supplementation with DHA produced perceptual-motor benefits in female elite athletes. DHA could be a beneficial supplement in sports where decision making and reaction time efficiency are of importance. PMID:24149875

  16. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  17. Omega-3 fatty acids and neuropsychiatric disorders.

    PubMed

    Young, Genevieve; Conquer, Julie

    2005-01-01

    Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.

  18. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diets with low omega (u)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT...

  19. n-6 and n-3 Long-chain polyunsaturated fatty acids in the erythrocyte membrane of Brazilian preterm and term neonates and their mothers at delivery.

    PubMed

    Pontes, P V; Torres, A G; Trugo, N M F; Fonseca, V M; Sichieri, R

    2006-02-01

    Placental transfer of the long-chain polyunsaturated fatty acids (LCPUFA) arachidonic (AA) and docosahexaenoic (DHA) acids is selectively high to maintain accretion to fetal tissues, especially the brain. The objectives of the present study were to investigate the essential fatty acid (EFA) and LCPUFA status at birth of preterm and term Brazilian infants and their mothers, from a population of characteristically low intake of n-3 LCPUFA, and to evaluate the association between fetal and maternal status, by the determination of the fatty acid composition of the erythrocyte membrane. Blood samples from umbilical cord of preterm (26-36 weeks of gestation; n = 30) and term (37-42 weeks of gestation; n = 30) infants and the corresponding maternal venous blood were collected at delivery. The LCPUFA composition of the erythrocyte membrane and DHA status were similar for mothers of preterm and term infants. Neonatal AA was higher (P < 0.01) whereas its precursor 18:2n-6 was lower (P < 0.01) than maternal levels, as expected. There was no difference in LCPUFA erythrocyte composition between preterm and term infants, except for DHA. Term infants presented a worse DHA status than preterm infants (P < 0.01) and than their mothers (P < 0.01) at delivery. There was a negative correlation of neonatal DHA with maternal AA and a positive correlation between neonatal AA and maternal AA and 18:2n-6 only at term. These results suggest that the persistent low DHA maternal status, together with the comparatively better AA and 18:2n-6 status, might have affected maternal-fetal transfer of DHA when gestation was completed up to term, and possibly contributed to the worse DHA status of term neonates compared with the preterm neonates.

  20. A prospective study of maternal fatty acids, micronutrients and homocysteine and their association with birth outcome.

    PubMed

    Wadhwani, Nisha S; Pisal, Hemlata R; Mehendale, Savita S; Joshi, Sadhana R

    2015-10-01

    Our earlier studies both in animals and in humans have indicated that micronutrients (folic acid, vitamin B12) and long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are interlinked in the one-carbon cycle, which plays an important role in fetal 'programming' of adult diseases. The present study examines the levels of maternal and cord plasma fatty acids, maternal folate, vitamin B12 and homocysteine in healthy mothers at various time points during pregnancy and also examine an association between them. A longitudinal study of 106 normal pregnant women was carried out, and maternal blood was collected at three time points, viz., T1 = 16-20th week, T2 = 26-30th week and T3 = at delivery. Cord blood was collected at delivery. Fatty acids were estimated using a gas chromatograph. Levels of folate, vitamin B12 and homocysteine were estimated by the chemiluminescent microparticle immunoassay (CMIA) technology. Maternal plasma folate (P < 0.05), vitamin B12 (P < 0.01) and DHA (P < 0.05) levels were lowest, while maternal homocysteine levels were highest (P < 0.01) at T3. There was a negative association between maternal DHA and homocysteine at T2 (P < 0.05) and T3 (P < 0.01). There was a positive association between plasma DHA in maternal blood at T3 and cord blood. Furthermore, there was a positive association between maternal folate and vitamin B12 at T3 and baby weight, whereas maternal homocysteine at T1 were inversely associated with baby weight at delivery. Our study provides evidence for the associations of folic acid, vitamin B12, homocysteine with DHA and baby weight, suggesting that a balanced dietary supplementation of folate-vitamin B12-DHA during pregnancy may be beneficial.

  1. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease.

  2. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  3. [Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage].

    PubMed

    Bosch, Virgilio; Golfetto, Iván; Alonso, Hilda; Laurentin, Zuly; Materan, Mercedes; García, Ninoska

    2009-03-01

    Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage. Breast milk is the main food in infants from birth until six months old. It is important to know if precarious life conditions could limit some nutrients in mother's milk. The objective of this study is to evaluate the total fat and essential long chain fatty acids in mature breast milk from low socioeconomic levels in Venezuelan women. The values of total fat (3.56 +/- 1.18 g/%) are similar that reported in the literature, however the sume of LC-PUFA n-3 was 0.3 +/- 0.04% which is related whith low n-3 fatty acid maternal diet.The sume LC-PUFA n-3 contained in this study is below most of the reviewed publications. The average amount of 22:6 n-3 in breast milk offered to newborn one month old (750 ml/day) is below estimated requirements (70 mg/day). The majority of these samples provide to the infants, the amount of DHA estimated as convenient to sustain normal growth. Also it was explored how the time (8h to 24 h) and temperatura (+4 degrees C, +15 degrees C, and +25 degrees C) can affect its composition. This data will permit to select the best condiitions of sampling and storage of mother's milk in future investigations in different regions of Venezuela. Most of the breast milk fatty acids tolerate some hours at room temperature (25 degrees C) but essential long chain fatty acids are very vulnerable. We propose that, in consequence, that samples should be transported in sterile conditions in dry ice to the laboratory in a few hours and should be kept at -70 degrees C until their analysis.

  4. Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology.

    PubMed

    Lund, Ivar; Skov, Peter Vilhelm; Hansen, Benni Winding

    2012-08-01

    The present study examined the effects of feeding pike perch larvae Artemia, enriched with either docosahexanoic acid (DHA), arachidonic acid (ARA), oleic acid (OA), olive oil (OO) or a commercial enrichment DHA Selco (DS) on tissue lipid deposition, stress tolerance, growth and development, and metabolic rate. There was higher tissue retention of ARA than DHA at comparable inclusion levels. No differences were observed between diets on the percentage contribution of ARA or DHA to the fatty acid profile of tissues (head and trunk). Total fatty acid content (mgg(-1)) was significantly higher in the head, reflecting its high content of neural tissue. Observations on larval erratic behaviour and mortality following exposure to salinity stress suggested that high inclusions levels of DHA had an alleviating effect, while ARA did not. Particularly larval groups reared for 16 days on diets enriched with OO and OA had mortality rates approaching 100% within two hours. Interestingly, this tendency, although not as pronounced, was also apparent in juvenile fish after 120 days of rearing on a common diet. Standard metabolic rate in larvae on an OO enriched diet was significantly elevated, but otherwise no groups had significant changes to their respiratory physiology. In addition to increased stress challenge sensitivity, early feeding with OA had long term impact on pike perch neural development indicated by a smaller brain size in juvenile fish. In conclusion, lack of DHA in the diet of pikeperch larvae suggests that this long chain polyunsaturated fatty acid is involved in processes that increase stress tolerance and that lack of dietary DHA in early larval stage caused increased stress sensitivity and long-term impaired neural development, while it does not appear to affect metabolic rate at rest.

  5. Evaluation of Bioequivalency and Toxicological Effects of Three Sources of Arachidonic Acid (ARA) in Domestic Piglets

    PubMed Central

    Tyburczy, Cynthia; Brenna, Margaret E.; DeMari, Joseph A.; Kothapalli, Kumar S. D.; Blank, Bryant S.; Valentine, Helen; McDonough, Sean P.; Banavara, Dattatreya; Diersen-Schade, Deborah A.; Brenna, J. Thomas

    2011-01-01

    Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are routinely added to infant formula to support growth and development. We evaluated the bioequivalence and safety of three ARA-rich oils for potential use in infant formula using the neonatal pig model. The primary outcome for bioequivalence was brain accretion of ARA and DHA. Days 3 to 22 of age, domestic pigs fed one of three formulas, each containing ARA at ~0.64% and DHA at ~0.34% total fatty acids (FA). Control diet ARA was provided by ARASCO® and all diets had DHA from DHASCO® (Martek Biosciences Corp., Columbia, MD). The experimental diets a1 and a2 provided ARA from Refined Arachidonic acid-rich Oil (RAO; Cargill, Inc., Wuhan, China) and SUNTGA40S (Nissui, Nippon Suisan Kaisha, Ltd., Tokyo, Japan), respectively. Formula intake and growth were similar across all diets, and ARA was bioequivalent across treatments in the brain, retina, heart, liver and day 21 RBC. DHA levels in the brain, retina and heart were unaffected by diet. Liver sections, clinical chemistry, and hematological parameters were normal. We conclude that RAO and SUNTGA40S, when added to formula to supply ~0.64% ARA are safe and nutritionally bioequivalent to ARASCO in domestic piglets. PMID:21722692

  6. Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    PubMed Central

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-01-01

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond. PMID:22832392

  7. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    PubMed

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  8. Odour characteristics of seafood flavour formulations produced with fish by-products incorporating EPA, DHA and fish oil.

    PubMed

    Peinado, I; Miles, W; Koutsidis, G

    2016-12-01

    Thermal degradation of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids was investigated. As a novelty, EPA, DHA or fish oil (FO) were incorporated as ω-fatty acid sources into model systems containing fish powder produced via Maillard reactions. Aroma composition of the resulting products was determined and complemented with sensory evaluation. Heating of the oils led to a fast decrease of both, EPA and DHA, and to the development of characteristic volatile compounds including hexanal, 2,4-heptadienal and 4-heptenal, the most abundant being (E,E)-2,4-heptadienal (132±44-329±122μmol/g). EPA and DHA addition to the model systems increased the concentration of these characteristic volatile compounds. However, it did not have a considerable impact on the development of characteristic Maillard reaction products, such as pyrazines and some aldehydes. Finally, the results of the sensory evaluation illustrated that panellists would chose samples fortified with FO as the ones with a more pleasant aroma.

  9. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  10. Synovial fluid lactic acid levels in septic arthritis.

    PubMed

    Riley, T V

    1981-01-01

    Synovial fluid lactic acid estimations were carried out on 50 samples by gas liquid chromatography. Specimens from 4 patients with bacteria arthritis, other than gonococcal, had a mean lactic acid concentration of 215 mg/dl. One patient with gonococcal arthritis had a synovial fluid lactic acid of 30 mg/dl. Forty-one patients with inflammatory arthritis and 4 patients with degenerative arthritis had mean synovial fluid lactic acid levels of 27 and 23 mg/dl respectively. The estimation of synovial fluid lactic acid is reliable in differentiating septic arthritis from inflammatory and degenerative arthritis except when the infecting organism is NEisseria gonorrhoeae.

  11. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways.

    PubMed

    Inoue, Takayuki; Tanaka, Masashi; Masuda, Shinya; Ohue-Kitano, Ryuji; Yamakage, Hajime; Muranaka, Kazuya; Wada, Hiromichi; Kusakabe, Toru; Shimatsu, Akira; Hasegawa, Koji; Satoh-Asahara, Noriko

    2017-02-22

    Obesity and diabetes are known risk factors for dementia, and it is speculated that chronic neuroinflammation contributes to this increased risk. Microglia are brain-resident immune cells modulating the neuroinflammatory state. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the major ω-3 polyunsaturated fatty acids (PUFAs) of fish oil, exhibit various effects, which include shifting microglia to the anti-inflammatory phenotype. To identify the molecular mechanisms involved, we examined the impact of EPA, DHA, and EPA+DHA on the lipopolysaccharide (LPS)-induced cytokine profiles and the associated signaling pathways in the mouse microglial line MG6. Both EPA and DHA suppressed the production of the pro-inflammatory cytokines TNF-α and IL-6 by LPS-stimulated MG6 cells, and this was also observed in LPS-stimulated BV-2 cells, the other microglial line. Moreover, the EPA+DHA mixture activated SIRT1 signaling by enhancing mRNA level of nicotinamide phosphoribosyltransferase (NAMPT), cellular NAD(+) level, SIRT1 protein deacetylase activity, and SIRT1 mRNA levels in LPS-stimulated MG6. EPA+DHA also inhibited phosphorylation of the stress-associated transcription factor NF-κB subunit p65 at Ser536, which is known to enhance NF-κB nuclear translocation and transcriptional activity, including cytokine gene activation. Further, EPA+DHA increased the LC3-II/LC3-I ratio, an indicator of autophagy. Suppression of TNF-α and IL-6 production, inhibition of p65 phosphorylation, and autophagy induction were abrogated by a SIRT1 inhibitor. On the other hand, NAMPT inhibition reversed TNF-α suppression but not IL-6 suppression. Accordingly, these ω-3 PUFAs may suppress neuroinflammation through SIRT1-mediated inhibition of the microglial NF-κB stress response and ensue pro-inflammatory cytokine release, which is implicated in NAMPT-related and -unrelated pathways.

  12. Cerebrospinal fluid ascorbic acid levels in neurological disorders.

    PubMed

    Brau, R H; García-Castiñeiras, S; Rifkinson, N

    1984-02-01

    The ascorbic acid/dehydroascorbic acid system was analyzed in the cerebrospinal fluid (CSF) of 41 patients with different neurological disorders. The chi-square test of covariance analysis revealed in this sample significant differences in the CSF levels of total ascorbic acid when patients were classified by diagnostic categories. The population analyzed contained a group of 18 patients (back pain/sciatica group) in whom no overt neurological abnormalities were disclosed upon evaluation. Taking the CSF levels of total ascorbic acid and dehydroascorbic acid in these patients as the reference (3.57 +/- 0.87 (SD)/100 ml and 0.53 +/- 0.19 mg/100 ml, respectively), it was found that head-traumatized patients showed a significant reduction in the concentration of total ascorbic acid in the CSF. CSF ascorbic acid levels were also significantly lower in patients with increased intracranial pressure (noninfected hydrocephalus group) and in patients with cerebral tumors. Although the CSF concentration of dehydroascorbic acid did not correspondingly increase over the reference values in these three groups of patients, the tendency existed for dehydroascorbic acid to represent in them a higher percentage of total ascorbic acid. After examining different alternatives, it is concluded that the hypothesis of free radical damage to the central nervous system after certain types of injury (trauma, ischemia, and tumors) may provide a satisfactory explanation of our findings. A rationale for the use of vitamin C in the management of some neurological patients is also derived from this work.

  13. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  14. DHA inhibits protein degradation more efficiently than EPA by regulating the PPARγ/NFκB pathway in C2C12 myotubes.

    PubMed

    Wang, Yue; Lin, Qiao-wei; Zheng, Pei-pei; Zhang, Jian-song; Huang, Fei-ruo

    2013-01-01

    This study was conducted to evaluate the mechanism by which n-3 PUFA regulated the protein degradation in C2C12 myotubes. Compared with the BSA control, EPA at concentrations from 400 to 600 µM decreased total protein degradation (P < 0.01). However, the total protein degradation was decreased when the concentrations of DHA ranged from 300 µM to 700 µM (P < 0.01). DHA (400 µM, 24 h) more efficiently decreased the I κ B α phosphorylation and increased in the I κ B α protein level than 400 µM EPA (P < 0.01). Compared with BSA, 400 µM EPA and DHA resulted in a 47% or 68% induction of the NF κ B DNA binding activity, respectively (P < 0.01). Meanwhile, 400 µM EPA and DHA resulted in a 1.3-fold and 2.0-fold induction of the PPAR γ expression, respectively (P < 0.01). In C2C12 myotubes for PPAR γ knockdown, neither 400 µM EPA nor DHA affected the levels of p-I κ B α , total I κ B α or NF κ B DNA binding activity compared with BSA (P > 0.05). Interestingly, EPA and DHA both still decreased the total protein degradation, although PPAR γ knockdown attenuated the suppressive effects of EPA and DHA on the total protein degradation (P < 0.01). These results revealed that DHA inhibits protein degradation more efficiently than EPA by regulating the PPAR γ /NF- κ B pathway in C2C12 myotubes.

  15. Effect of DHA containing oils and powders on baking performance and quality of white pan bread.

    PubMed

    Serna-Saldivar, Sergio O; Zorrilla, Raquel; De La Parra, Columba; Stagnitti, George; Abril, Ruben

    2006-09-01

    Different sources of DHA and/or n-3 (omega-3) rich oils, oil emulsions and microencapsulated (ME) powders were tested at two different concentrations with the aim of producing fortified pan bread. Three oils (S-algae, fish and flax), two emulsified algae oils (Emulsion-P and Emulsion-L) and two ME oils (ME-S algae and ME-C algae) were compared. The DHA and n-3 oils replaced part of the shortening in order to obtain 32 g slices enriched with 25 or 50 mg DHA, 35 or 70 mg total n-3 from fish oil and 90 or 180 mg linolenic from flax oil. Addition of oils did not significantly affect water absorption but reduced mix time whereas addition of the ME oils decreased both water absorption and mix time. Breads enriched with flax or ME-C oils had lower volume and higher density than the control, ME-S algae, Emulsion-P and Emulsion-L breads. All breads lost texture throughout 14 d storage, the major changes occurred after 3 d. The ME-S algae oil bread had the best softness after 14 d storage whereas breads produced from ME-S algae or ME-C algae oils had the poorest texture. Sensory evaluations indicated that the color of the ME-S algae oil fortified bread was significantly less preferred than the other loaves. After 6 d the control bread had higher acceptability compared with the rest of the breads enriched with high levels of DHA or omega-3 oils. The high-enriched fish oil bread was well accepted during the first days of storage but had the least preferred acceptability after 13 d. The best fortified breads were those supplemented with S-algae oil, Emulsion-P and Emulsion-L oils.

  16. Effects of EPA and DHA on lipid droplet accumulation and mRNA abundance of PAT proteins in caprine monocytes.

    PubMed

    Lecchi, Cristina; Invernizzi, Guido; Agazzi, Alessandro; Modina, Silvia; Sartorelli, Paola; Savoini, Giovanni; Ceciliani, Fabrizio

    2013-04-01

    The present study investigated the in vitro effects on caprine monocytes of two ω-3 PUFAs, namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on lipid droplet formation, an emerging process of fundamental importance in innate immunity regulation. The mRNA abundance of PAT protein family (PLIN1, PLIN2 and PLIN3), involved in the formation and trafficking of the droplets, was also assessed. The effects of EPA and DHA on monocyte apoptosis were studied as well. The number of lipid droplets per cell was found to be dependent on both type and concentration of fatty acid. ω-3 PUFAs upregulated PLIN3 and PLIN2 gene expression, as well as apoptosis rate. The present findings suggest that PUFA might modify innate immune functions of goat monocytes by interfering with the formation of lipid droplets and by upregulating proteins belonging to PAT protein family.

  17. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA.

    PubMed

    Rahman, Aminur; Nahar, Noor; Nawani, Neelu N; Jass, Jana; Hossain, Khaled; Saud, Zahangir Alam; Saha, Ananda K; Ghosh, Sibdas; Olsson, Björn; Mandal, Abul

    2015-01-01

    Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.

  18. A computational study of the phosphoryl transfer reaction between ATP and Dha in aqueous solution.

    PubMed

    Bordes, I; Ruiz-Pernía, J J; Castillo, R; Moliner, V

    2015-10-28

    Phosphoryl transfer reactions are ubiquitous in biology, being involved in processes ranging from energy and signal transduction to the replication genetic material. Dihydroxyacetone phosphate (Dha-P), an intermediate of the synthesis of pyruvate and a very important building block in nature, can be generated by converting free dihydroxyacetone (Dha) through the action of the dihydroxyacetone kinase enzyme. In this paper the reference uncatalyzed reaction in solution has been studied in order to define the foundations of the chemical reaction and to determine the most adequate computational method to describe this electronically complex reaction. In particular, the phosphorylation reaction mechanism between adenosine triphosphate (ATP) and Dha in aqueous solution has been studied by means of quantum mechanics/molecular mechanics (QM/MM) Molecular Dynamics (MD) simulations with the QM subset of atoms described with semi-empirical and DFT methods. The results appear to be strongly dependent on the level of calculation, which will have to be taken into account for future studies of the reaction catalyzed by enzymes. In particular, PM3/MM renders lower free energy barriers and a less endergonic process than AM1d/MM and PM6/MM methods. Nevertheless, the concerted pathway was not located with the former combination of potentials.

  19. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma

    PubMed Central

    Elsherbiny, Marwa E.; Emara, Marwan; Godbout, Roseline

    2015-01-01

    Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma. PMID:23981365

  20. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood.

    PubMed

    Bhatia, Harsharan Singh; Agrawal, Rahul; Sharma, Sandeep; Huo, Yi-Xin; Ying, Zhe; Gomez-Pinilla, Fernando

    2011-01-01

    Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders.

  1. EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related Decrease in Hippocampal RXRγ and Kinase Expression in Rats.

    PubMed

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Richard, Emmanuel; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2016-01-01

    Studies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore, we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ, and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT, and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging.

  2. Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism.

    PubMed

    Gil-Zamorano, Judit; Martin, Roberto; Daimiel, Lidia; Richardson, Kris; Giordano, Elena; Nicod, Nathalie; García-Carrasco, Belén; Soares, Sara M A; Iglesias-Gutiérrez, Eduardo; Lasunción, Miguel A; Sala-Vila, Aleix; Ros, Emilio; Ordovás, Jose M; Visioli, Francesco; Dávalos, Alberto

    2014-05-01

    Consumption of the long-chain ω-3 (n-3) polyunsaturated fatty acid docosahexaenoic acid (DHA) is associated with a reduced risk of cardiovascular disease and greater chemoprevention. However, the mechanisms underlying the biologic effects of DHA remain unknown. It is well known that microRNAs (miRNAs) are versatile regulators of gene expression. Therefore, we aimed to determine if the beneficial effects of DHA may be modulated in part through miRNAs. Loss of dicer 1 ribonuclease type III (DICER) in enterocyte Caco-2 cells supplemented with DHA suggested that several lipid metabolism genes are modulated by miRNAs. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that are differentially modulated by fatty acids. Among the miRNAs modulated by DHA were miR-192 and miR-30c. Overexpression of either miR-192 or miR-30c in enterocyte and hepatocyte cells suggested an effect on the expression of genes related to lipid metabolism, some of which were confirmed by endogenous inhibition of these miRNAs. Our results show in enterocytes that DHA exerts its biologic effect in part by regulating genes involved in lipid metabolism and cancer. Moreover, this response is mediated through miRNA activity. We validate novel targets of miR-30c and miR-192 related to lipid metabolism and cancer including nuclear receptor corepressor 2, isocitrate dehydrogenase 1, DICER, caveolin 1, ATP-binding cassette subfamily G (white) member 4, retinoic acid receptor β, and others. We also present evidence that in enterocytes DHA modulates the expression of regulatory factor X6 through these miRNAs. Alteration of miRNA levels by dietary components in support of their pharmacologic modulation might be valuable in adjunct therapy for dyslipidemia and other related diseases.

  3. Docosahexaenoic acid attenuates in endocannabinoid synthesis in RAW 264.7 macrophages activated with benzo(a)pyrene and lipopolysaccharide.

    PubMed

    Gdula-Argasińska, Joanna; Bystrowska, Beata

    2016-09-06

    Endocannabinoids are synthetized as a results of demand from membrane phospholipids. The formation and actions of these lipid mediators depend to a great extent on the prevalence of precursor fatty acid (FA), and can be influenced by diet or supplementation. The purpose of this study was to evaluate the interactive effects of lipopolysaccharide (LPS) and benzo(a)pyrene (BaP) in RAW 264.7 cells supplemented with docosahexaenoic acid (DHA). After LPS and/or BaP treatment in macrophages pre-incubated with DHA, a significant decrease in the amount of fatty acid was observed. The highest content of monounsaturated fatty acids was detected in RAW 264.7 cells co-treated with LPS and BaP. Significant interactions between LPS and BaP co-treatment in terms of endocannabinoid levels were observed in RAW 264.7 cells after DHA supplementation. The highest amount of endocannabinoids was detected in macrophages supplemented with DHA and co-treated with BaP and LPS: arachidonoyl ethanolamine AEA (5.9μg/mL), docosahexaenoyl ethanolamide DHEA (10.6μg/mL) and nervonoyl ethanolamide NEA (16.5μg/mL). The highest expression of cyclooxygenase (COX-2) and cannabinoid receptor 2 (CB2) was noted in macrophages supplemented with DHA and activated with LPS and BaP. Our data suggested a novel, CB2 receptor-dependent, environmental stress reaction in macrophages co-treated with LPS and BaP after supplementation with DHA. Despite the synergistic LPS and BaP action DHA potentiates the anti-inflammatory response in RAW 264.7 cells.

  4. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice.

    PubMed

    Weiser, Michael J; Mucha, Brittany; Denheyer, Heather; Atkinson, Devon; Schanz, Norman; Vassiliou, Evros; Benno, Robert H

    2016-03-01

    The prevalence of autism spectrum disorders over the last several decades has risen at an alarming rate. Factors such as broadened clinical definitions and increased parental age only partially account for this precipitous increase, suggesting that recent changes in environmental factors may also be responsible. One such factor could be the dramatic decrease in consumption of anti-inflammatory dietary omega-3 (n-3) polyunsaturated fatty acids (PUFAs) relative to the amount of pro-inflammatory omega-6 (n-6) PUFAs and saturated fats in the Western diet. Docosahexaenoic acid (DHA) is the principle n-3 PUFA found in neural tissue and is important for optimal brain development, especially during late gestation when DHA rapidly and preferentially accumulates in the brain. In this study, we tested whether supplementation of a low n-3 PUFA diet with DHA throughout development could improve measures related to autism in a mouse model of maternal immune activation. We found that dietary DHA protected offspring from the deleterious effects of gestational exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid on behavioral measures of autism and subsequent adulthood immune system reactivity. These data suggest that elevated dietary levels of DHA, especially during pregnancy and nursing, may help protect normal neurodevelopment from the potentially adverse consequences of environmental insults like maternal infection.

  5. ω-3 fatty acids and cognitive decline: modulation by ApoEε4 allele and depression.

    PubMed

    Samieri, Cécilia; Féart, Catherine; Proust-Lima, Cécile; Peuchant, Evelyne; Dartigues, Jean-François; Amieva, Hélène; Barberger-Gateau, Pascale

    2011-12-01

    Long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may slow cognitive decline. The ε4 allele of the ApolipoproteinE (ApoE), the main genetic risk factor for Alzheimer's disease, and depressive symptoms, which are frequently associated with cognitive impairment in older persons, may modify this relationship. We estimated the associations between EPA and DHA plasma levels and subsequent cognitive decline over 7 years, taking into account ApoE-ε4 status and depressive symptoms, in a prospective population-based cohort. Participants (≥ 65 years, n = 1,228 nondemented at baseline) were evaluated at least once over three follow-up visits using four cognitive tests. Plasma EPA was associated with slower decline on Benton Visual Retention Test (BVRT) performances in ApoE-ε4 carriers, or in subjects with high depressive symptoms at baseline. Plasma DHA was associated with slower decline on BVRT performances in ApoE-ε4 carriers only. EPA and DHA may contribute to delaying decline in visual working memory in ApoE-ε4 carriers. In older depressed subjects, EPA, but not DHA, may slow cognitive decline.

  6. EPA and DHA exposure alters the inflammatory response but not the surface expression of toll-like receptor 4 in macrophages

    PubMed Central

    Honda, Kaori L.; Lamon-Fava, Stefania; Matthan, Nirupa R.; Wu, Dayong; Lichtenstein, Alice H.

    2014-01-01

    Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their respective enrichment in cell membranes have been negatively associated with atherosclerotic lesion development. This effect may be mediated, in part, by dampened inflammatory response of macrophages triggered by toll-like receptor 4 (TLR4) activation. This study investigated the influence of membrane fatty acid profile on TLR4-mediated inflammation in RAW 264.7 macrophages. Cells pretreated with myristic acid (MA), EPA, DHA or vehicle control for 24 h were stimulated with ultra-pure LPS, a specific TLR4 agonist, for 6 h or 24 h, corresponding to early and late stages of TNFα and IL-6 protein induction. Treatment significantly increased cell membrane MA, EPA, and DHA by 4.5-, 20.6-, and 8.9-fold, respectively. MA significantly increased IL-6 secretion 6 h post-exposure to the fatty acid, but did not change TNFα secretion in response to any other treatment condition. EPA and DHA significantly reduced TNFα secretion by 36% and 41%, respectively, in cells stimulated for 24 h but not 6 h. In contrast, EPA and DHA significantly reduced IL-6 secretion at both 6 h (67% and 72%, respectively) and 24 h (69% and 72%, respectively). MA or DHA treatment had no significant effect compared to vehicle on factors influencing cellular LPS recognition, including LPS-cell association, and cell surface expression of TLR4, TLR4-MD2 complex, and CD14. These data suggest that membrane fatty acid profiles influence the TLR4-mediated inflammatory response in macrophages, via mechanisms that occur downstream of TLR4 receptor activation. PMID:25408476

  7. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.

    PubMed

    Dhobale, Madhavi; Joshi, Sadhana

    2012-04-01

    Preterm pregnancies account for approximately 10% of the total pregnancies and are associated with low birth weight (LBW) babies. Recent studies have shown that LBW babies are at an increased risk of developing brain disorders such as cognitive dysfunction and psychiatric disorders. Maternal nutrition, particularly, micronutrients involved in one-carbon metabolism (folic acid, vitamin B(12), and docosahexaenoic acid (DHA)) have a major role during pregnancy for developing fetus and are important determinants of epigenesis. A series of our studies in pregnancy complications have well established the importance of omega 3 fatty acids especially DHA. DHA regulates levels of neurotrophins like brain-derived neurotrophic factor and nerve growth factor, which are required for normal neurological development. We have recently described that in one carbon metabolic pathway, membrane phospholipids are major methyl group acceptors and reduced DHA levels may result in diversion of methyl groups toward deoxyribonucleic acid (DNA) ultimately resulting in DNA methylation. In this review, we propose that altered maternal micronutrients (folic acid, vitamin B(12)), increased homocysteine, and oxidative stress levels that cause epigenetic modifications may be one of the mechanisms that contribute to preterm birth and poor fetal outcome, increasing risk for behavioural disorders in children.

  8. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    PubMed Central

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P < 0.01). Total cholesterol and triglyceride concentrations were similar in the two groups. Systolic and diastolic blood pressure were significantly higher in control children aged >10 years (P < 0.01). Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P < 0.001). Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension. PMID:26464873

  9. Suppression of PPARβ, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities.

    PubMed

    Wannous, Ramez; Bon, Emeline; Gillet, Ludovic; Chamouton, Julie; Weber, Günther; Brisson, Lucie; Goré, Jacques; Bougnoux, Philippe; Besson, Pierre; Roger, Sébastien; Chevalier, Stephan

    2015-06-01

    Peroxisome proliferator-activated receptor β (PPARβ) and NaV1.5 voltage-gated sodium channels have independently been shown to regulate human breast cancer cell invasiveness. The n-3 polyunsaturated docosahexaenoic acid (DHA, 22:6n-3), a natural ligand of PPAR, is effective in increasing survival and chemotherapy efficacy in breast cancer patient with metastasis. DHA reduces breast cancer cell invasiveness and it also inhibits PPARβ expression. We have shown previously that NaV1.5 promotes MDA-MB-231 breast cancer cells invasiveness by potentiating the activity of Na(+)/H(+) exchanger type 1 (NHE-1), the major regulator of H(+) efflux in these cells. We report here that DHA inhibited NaV1.5 current and NHE-1 activity in human breast cancer cells, and in turn reduced NaV1.5-dependent cancer cell invasiveness. For the first time, we show that antagonizing PPARβ, or inhibiting its expression, reduced NaV1.5 mRNA and protein expression and NaV1.5 current, as well as NHE-1 activity and cell invasiveness. Consistent with these results, the DHA-induced reduction of both NaV1.5 expression and NHE-1 activity was abolished in cancer cells knocked-down for the expression of PPARβ (shPPARβ). This demonstrates a direct link between the inhibition of PPARβ expression and the inhibition of Nav1.5/NHE-1 activities and breast cancer cell invasiveness. This study provides new mechanistic data advocating for the use of natural fatty acids such as DHA to block the development of breast cancer metastases.

  10. Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.

    PubMed

    Sublimi Saponetti, Matilde; Grimaldi, Manuela; Scrima, Mario; Albonetti, Cristiano; Nori, Stefania Lucia; Cucolo, Annamaria; Bobba, Fabrizio; D'Ursi, Anna Maria

    2014-01-01

    β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.

  11. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    PubMed

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  12. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography.

  13. Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome.

    PubMed

    Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Ramos-Romero, Sara; Romeu, Marta; Giralt, Montserrat; Taltavull, Núria; Muñoz-Cortes, Mònica; Jáuregui, Olga; Méndez, Lucía; Medina, Isabel; Torres, Josep Lluís

    2015-03-28

    The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.

  14. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu

    2017-01-01

    The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr(cp)/NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver.

  15. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants.

    PubMed

    Wu, Guohai; Truksa, Martin; Datla, Nagamani; Vrinten, Patricia; Bauer, Joerg; Zank, Thorsten; Cirpus, Petra; Heinz, Ernst; Qiu, Xiao

    2005-08-01

    Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.

  16. Polyunsaturated fatty acids moderate the effect of poor sleep on depression risk.

    PubMed

    Lotrich, Francis E; Sears, Barry; McNamara, Robert K

    2016-03-01

    Although potentially modifiable risk factors for interferon-alpha (IFN-α)-associated depression (IFN-MDD) have been identified, it is not currently known how they interact to confer risk. In the present study we prospectively investigated interactions among poor sleep quality, high-stress, pre-existing depressive symptoms, and polyunsaturated fatty acid status. Non-depressed hepatitis C patients (n=104) were followed prospectively during IFN-α therapy. IFN-MDD occurs in 20-40% of patients and was diagnosed using the Structured Clinical Interview of DSM-IV (SCID-IV), with incidence examined using Cox regression. Baseline Pittsburgh Sleep Quality Inventory (PSQI), Perceived Stress Scale (PSS), Beck Depression Inventory (BDI), and a range of plasma long-chain fatty acid levels were measured (gas chromatography) - focusing on the ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (AA/EPA+DHA). The AA/EPA+DHA ratio (Β=0.40 ± 0.16; p=0.006), PSQI (Β=0.12 ± 0.04; p=0.001), PSS (Β=0.07 ± 0.02; p<0.001), and baseline BDI (Β=0.05 ± 0.02; p<0.001) each individually predicted IFN-MDD incidence. In step-wise Cox regression eliminating non-significant variables, two interactions remained significantly predictive: PSQI*AA/EPA+DHA (p=0.008) and PSS*AA/EPA+DHA (p=0.01). Receiver Operator Curves (ROC) were used to examine the specificity and sensitivity of IFN-MDD prediction. When sleep was normal (PSQI<5), AA/EPA+DHA was strongly predictive of IFN-MDD (AUC=91 ± 6; p=0.002). For example, among those with AA/EPA+DHA less than the median (4.15), none with PSQI<5 developed depression. Conversely, neither PSS nor PSQI was statistically associated with depression risk in those with an elevated AA/EPA+DHA ratio. These data demonstrate that the AA/EPA+DHA ratio moderates the effect of poor sleep on risk for developing IFN-MDD and may have broader implications for predicting and preventing MDD associated with inflammation.

  17. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    SciTech Connect

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  18. Is the fatty acid composition of freshwater zoobenthic invertebrates controlled by phylogenetic or trophic factors?

    PubMed

    Makhutova, Olesia N; Sushchik, Nadezhda N; Gladyshev, Michail I; Ageev, Alexander V; Pryanichnikova, Ekaterina G; Kalachova, Galina S

    2011-08-01

    We studied the fatty acid (FA) content and composition of ten zoobenthic species of several taxonomic groups from different freshwater bodies. Special attention was paid to essential polyunsaturated fatty acids, eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (ARA, 20:4n-6); and the n-3/n-6 and DHA/ARA ratios, which are important for consumers of higher trophic levels, i.e., fish. The content and ratios of these FA varied significantly in the studied zoobenthic species, consequently, the invertebrates were of different nutritional quality for fish. Eulimnogammarus viridis (Crustacea) and Dendrocoelopsis sp. (Turbellaria) had the highest nutrition value for fish concerning the content of EPA and DHA and n-3/n-6 and DHA/ARA ratios. Using canonical correspondence analysis we compared the FA profiles of species of the studied taxa taking into account their feeding strategies and habitats. We gained evidence that feeding strategy is of importance to determine fatty acid profiles of zoobenthic species. However, the phylogenetic position of the zoobenthic species is also responsible and may result in a similar fatty acid composition even if species or populations inhabit different water bodies or have different feeding strategies.

  19. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  20. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months.

    PubMed

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Erwich, Jan Jaap H M; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid and neurodevelopment were studied. An age-specific, standardized neurological assessment for the evaluation of minor neurological dysfunction (MND), and the Bayley Scales of Infant Development (BSID) were used. The intervention did not influence any of the outcomes. Umbilical venous (UV) Mead acid was negatively and n-6 fatty acids were weakly positively associated to the BSID mental developmental index. Children with simple MND had lower UV DHA compared to normally classified children. We conclude that relatively short-term maternal DHA or DHA+AA supplementation does not influence neurodevelopment at toddler age, although some parameters of brain development are related to perinatal DHA and AA status.

  1. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid

    PubMed Central

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-01-01

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism. PMID:25721623

  2. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    PubMed

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  3. The Essentiality of Arachidonic Acid in Infant Development.

    PubMed

    Hadley, Kevin B; Ryan, Alan S; Forsyth, Stewart; Gautier, Sheila; Salem, Norman

    2016-04-12

    Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.

  4. The Essentiality of Arachidonic Acid in Infant Development

    PubMed Central

    Hadley, Kevin B.; Ryan, Alan S.; Forsyth, Stewart; Gautier, Sheila; Salem, Norman

    2016-01-01

    Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence. PMID:27077882

  5. Effects of DHA Supplementation on Vascular Function, Telomerase Activity in PBMC, Expression of Inflammatory Cytokines, and PPARγ-LXRα-ABCA1 Pathway in Patients With Type 2 Diabetes Mellitus: Study Protocol for Randomized Controlled Clinical Trial.

    PubMed

    Toupchian, Omid; Sotoudeh, Gity; Mansoori, Anahita; Djalali, Mahmoud; Keshavarz, Seyyed Ali; Nasli-Esfahani, Ensieh; Alvandi, Ehsan; Koohdani, Fariba

    2016-07-01

    Docosahexaenoic acid (DHA), as an omega-3 fatty acid, in a natural ligand of peroxisome proliferator-activated receptors (PPARs). Regarding the combinative effects of Nutrigenomics and Nutrigenetics and due to the lack of in vivo studies conducted using natural ligands of PPARs, we aimed to evaluate the effects of DHA supplementation on vascular function, telomerase activity, and PPARγ-LXRα-ABCA1 pathway, in patients with type 2 diabetes mellitus (T2DM), based on the Pro12Ala polymorphism in PPARγ encoding gene. 72 T2DM patients (36 dominant and 36 recessive allele carriers), aged 30-70, with body mass index of 18.5 to 35 kg/m2, will be participated in this double blind randomized controlled trial. In each group, stratification will be performed based on sex and age and participants will be randomly assigned to receive 2.4 g/day DHA or placebo (paraffin) for 8 weeks. PPARγ genotyping will be carried out using PCR-RFLP method; Telomerase activity will be estimated by PCR-ELISA TRAP assay; mRNA expression levels of target genes will be assessed using real time PCR. Serum levels of ADMA, sCD163 and adiponectin, will be measured using ELISA commercial kits. The present study is designed in order to help T2DM patients to modify their health conditions based on their genetic backgrounds, and to recommend the proper food ingredients as the natural agonists for PPARs in order to prevent and treat metabolic abnormalities of the disease.

  6. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.

    PubMed

    Bazan, Nicolas G

    2005-04-01

    The biosynthesis of oxygenated arachidonic acid messengers triggered by cerebral ischemia-reperfusion is preceded by an early and rapid phospholipase A2 activation reflected in free arachidonic and docosahexaenoic acid (DHA) accumulation. These fatty acids are released from membrane phospholipids. Both fatty acids are derived from dietary essential fatty acids; however, only DHA, the omega-3 polyunsaturated fatty acyl chain, is concentrated in phospholipids of various cells of brain and retina. Synaptic membranes and photoreceptors share the highest content of DHA of all cell membranes. DHA is involved in memory formation, excitable membrane function, photoreceptor cell biogenesis and function, and neuronal signaling, and has been implicated in neuroprotection. In addition, this fatty acid is required for retinal pigment epithelium cell (RPE) functional integrity. Here we provide an overview of the recent elucidation of a specific mediator generated from DHA that contributes at least in part to its biological significance. In oxidative stress-challenged human RPE cells and rat brain undergoing ischemia-reperfusion, 10,17S-docosatriene (neuroprotectin D1, NPD1) synthesis evolves. In addition, calcium ionophore A23187, IL-1beta, or the supply of DHA enhances NPD1 synthesis. A time-dependent release of endogenous free DHA followed by NPD1 formation occurs, suggesting that a phospholipase A2 releases the mediator's precursor. When NPD1 is infused during ischemia-reperfusion or added to RPE cells during oxidative stress, apoptotic DNA damage is down-regulated. NPD1 also up-regulates the anti-apoptotic Bcl-2 proteins Bcl-2 and BclxL and decreases pro-apoptotic Bax and Bad expression. Moreover, NPD1 inhibits oxidative stress-induced caspase-3 activation. NPD1 also inhibits IL-1beta-stimulated expression of COX-2. Overall, NPD1 protects cells from oxidative stress-induced apoptosis. Because photoreceptors are progressively impaired after RPE cell damage in retinal

  7. Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats.

    PubMed

    Casanova, Ester; Baselga-Escudero, Laura; Ribas-Latre, Aleix; Cedó, Lídia; Arola-Arnal, Anna; Pinent, Montserrat; Bladé, Cinta; Arola, Lluís; Salvadó, M Josepa

    2014-10-01

    Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative-stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are intensively studied as products that can reduce the health complications related to obesity. We evaluate the effects of 21 days of supplementation with grape seed proanthocyanidins extract (GSPE), docosahexaenoic-rich oil (DHA-OR) or both compounds (GSPE+DHA-OR) on skeletal muscle metabolism in diet-obese rats. The supplementation with different treatments did not reduce body weight, although all groups used more fat as fuel, particularly when both products were coadministered; muscle β-oxidation was activated, the mitochondrial functionality and oxidative capacity were higher, and fatty acid uptake gene expressions were up-regulated. In addition to these outcomes shared by all treatments, GSPE reduced insulin resistance and improved muscle status. Both treatments increased 5'-AMP-activated protein kinase (AMPK) phosphorylation, which was consistent with higher plasma adiponectin levels. Moreover, AMPK activation by DHA-OR was also correlated with an up-regulation of peroxisome proliferator-activated receptor alpha (Pparα). GSPE+DHA-OR, in addition to activating AMPK and enhancing fatty acid oxidation, increased the muscle gene expression of uncoupling protein 2 (Ucp2). In conclusion, GSPE+DHA-OR induced modifications that improved muscle status and could counterbalance the deleterious effects of obesity, and such modifications are mediated, at least in part, through the AMPK signaling pathway.

  8. Effect of Different Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratios on the Formation of Monohydroxylated Fatty Acids in THP-1 Derived Macrophages.

    PubMed

    Keeren, Kathrin; Huang, Dan; Smyl, Christopher; Fischer, Andreas; Rothe, Michael; Weylandt, Karsten-H

    2015-04-09

    Omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA) can modulate inflammatory processes. In western diets, the content of n-6 PUFA is much higher than that of n-3 PUFA, which has been suggested to promote a pro-inflammatory phenotype. The aim of this study was to analyze the effect of modulating the n-6/n-3 PUFA ratio on the formation of monohydroxylated fatty acid (HO-FAs) derived from the n-6 PUFA arachidonic acid (AA) and the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in THP-1 macrophages by means of LC-MS. Lipid metabolites were measured in THP-1 macrophage cell pellets. The concentration of AA-derived hydroxyeicosatetraenoic acids (HETEs) was not significantly changed when incubated THP-1 macrophages in a high AA/(EPA+DHA) ratio of 19/1 vs. a low ratio AA/(EPA+DHA) of 1/1 (950.6 ± 110 ng/mg vs. 648.2 ± 92.4 ng/mg, p = 0.103). Correspondingly, the concentration of EPA-derived hydroxyeicosapentaenoic acids (HEPEs) and DHA-derived hydroxydocosahexaenoic acids (HDHAs) were significantly increased (63.9 ± 7.8 ng/mg vs. 434.4 ± 84.3 ng/mg, p = 0.012 and 84.9 ± 18.3 ng/mg vs. 439.4 ± 82.7 ng/mg, p = 0.014, respectively). Most notable was the strong increase of 18-hydroxyeicosapentaenoic acid (18-HEPE) formation in THP-1 macrophages, with levels of 170.9 ± 40.2 ng/mg protein in the high n-3 PUFA treated cells. Thus our data indicate that THP-1 macrophages prominently utilize EPA and DHA for monohydroxylated metabolite formation, in particular 18-HEPE, which has been shown to be released by macrophages to prevent pressure overload-induced maladaptive cardiac remodeling.

  9. Serum uric acid levels and cardiovascular disease: the Gordian knot

    PubMed Central

    Tugores, Antonio; Rodríguez-González, Fayna

    2016-01-01

    Hyperuricemia is defined as serum uric acid level of more than 7 mg/dL and blood levels of uric acid are causally associated with gout, as implicated by evidence from randomized clinical trials using urate lowering therapies. Uric acid as a cardiovascular risk factor often accompanies metabolic syndrome, hypertension, diabetes, dyslipidemia, chronic renal disease, and obesity. Despite the association of hyperuricemia with cardiovascular risk factors, it has remained controversial as to whether uric acid is an independent predictor of cardiovascular disease. To settle this issue, and in the absence of large randomized controlled trials, Mendelian randomization analysis in which the exposure is defined based on the presence or absence of a specific allele that influences a risk factor of interest have tried to shed light on this. PMID:28066631

  10. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  11. Independence of sialic acid levels in normal and malignant growth.

    PubMed

    Khadapkar, S V; Sheth, N A; Bhide, S V

    1975-06-01

    Sialic acid content in breast or tumor tissue and serum of mouse strains that are either susceptible or resistant to breast cancer was measured at various age periods. Sialic acid content was also studied in normal lung tissue and in lung adenoma and hepatoma. Sialic acid levels during nonmalignant growth of a tissue were measured in breast tissue during pregnancy and lactation, and in regenerating liver, as well as in newborn and postnatal liver. The sialic acid content, when expressed per mg of protein, increased in mammary tumor, lung adenoma, and hepatoma. It also increased in nonmalignant growth of breast tissue during pregnancy and lactation and of regenerating liver and postnatal liver. Increase in sialic acid per mg DNA was observed only in lung tumors, regenerating liver, and postnatal liver. It appears that the changes in sialic acid level are independent of the normal or malignant growth of a tissue and that these changes might be the function of the parameter used to express the sialic acid values, i.e., either the DNA content or protein content of a given tissue.

  12. Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder.

    PubMed

    Beier, Anne Mette; Lauritzen, Lotte; Galfalvy, Hanga C; Cooper, Thomas B; Oquendo, Maria A; Grunebaum, Michael F; Mann, J John; Sublette, M Elizabeth

    2014-10-01

    Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n = 48) and healthy volunteers (HV, n = 35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n = 39; HV, n = 33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76 = 12.493, p = 0.001), and impulsivity (F1,65 = 5.598, p = 0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76 = 7.941, p = 0.001) and impulsivity (F1,65 = 3.485, p = 0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission.

  13. Docosahexanoic acid diet supplementation attenuates the peripheral mononuclear cell inflammatory response to exercise following LPS activation.

    PubMed

    Capó, X; Martorell, M; Llompart, I; Sureda, A; Tur, J A; Pons, A

    2014-10-01

    Exercise induces changes in circulating pro- and anti-inflammatory cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on the plasma cytokine levels and on the peripheral mononuclear (PBMCs) cells cytokine production after a training season or an acute bout of exercise. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA, whereas the placebo group consumed the same beverage without DHA. Three blood samples were taken: in basal conditions at the beginning of the nutritional intervention and after eight weeks of training season in basal and post-exercise conditions. The DHA content increased in erythrocytes after 8weeks of training and supplementation. Neither diet supplementation with DHA nor training season altered the basal plasma cytokines and growth factors. Only acute exercise significantly increased plasma IL6 in experimental and placebo groups. Lipopolysaccharide (LPS) activation induced the inflammatory response in PBMCs, with a significant production rate of TNFα, IL6 and IL8 mainly after acute exercise. DHA supplementation significantly reduced the rate of TNFα and IL6 production by stimulated PBMCs. Acute exercise increased the Toll-like receptor 4 (TLR4) protein levels in PBMCs, although the increase was only statistically significant in the placebo group. In conclusion, a training season does not induce significant changes in the circulating cytokine profile in well-trained soccer players. Exercise increases the PBMCs cell capabilities to produce cytokines after TLR4 stimulation with LPS and this rate of cytokine production is attenuated by diet DHA supplementation.

  14. Validation of a food frequency questionnaire to assess intake of n-3 polyunsaturated fatty acids in subjects with and without major depressive disorder.

    PubMed

    Sublette, M Elizabeth; Segal-Isaacson, C J; Cooper, Thomas B; Fekri, Shiva; Vanegas, Nora; Galfalvy, Hanga C; Oquendo, Maria A; Mann, J John

    2011-01-01

    The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21-item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research to assess intake of α-linolenic acid (18:3n-3 [ALA]), docosahexaenoic acid (22:6n-3 [DHA]), and eicosapentaenoic acid (20:5n-3 [EPA]). In a cross-sectional study conducted from September 2006 to September 2008, sixty-one ethnically diverse adult participants with (n=34) and without (n=27) major depressive disorder completed this n-3 PUFA FFQ and provided a plasma sample. Plasma levels of n-3 PUFAs EPA and DHA, and n-6 PUFA arachidonic acid (20:4n-6 [AA]) were quantified by gas chromatography. Using Spearman's ρ, FFQ-estimated intake correlated with plasma levels of DHA (r=0.50; P<0.0001) and EPA (r=0.38; P=0.002), but not with ALA levels (r=0.22; P=0.086). Participants were classified into quartiles by FFQ-estimated intake and plasma PUFA concentrations. Efficacy of the FFQ to rank individuals into same or adjacent plasma quartiles was 83% for DHA, 78.1% for EPA, and 70.6% for ALA; misclassification into extreme quartiles was 4.9% for DHA, 6.5% for EPA, and 8.2% for ALA. FFQ-estimated EPA intake and plasma EPA were superior to plasma AA levels as predictors of the plasma AA to EPA ratio. This brief FFQ can provide researchers and clinicians with valuable information concerning dietary intake of DHA and EPA.

  15. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    SciTech Connect

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-12-15

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.

  16. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  17. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    PubMed

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-03-22

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting.

  18. Dehydroascorbic acid taken up by glucose transporters stimulates estradiol production through inhibition of JNK/c-Jun/AP1 signaling in JAR cells.

    PubMed

    Wang, Yongjie; Tang, Chao; Wu, Minglan; Pan, Yibin; Ruan, Hongfeng; Chen, Linling; Yao, Hongyi; Zhu, Haibin; Wu, Ximei

    2014-08-01

    We have previously demonstrated that the reduced form of vitamin C (l-ascorbic acid, AA) is able to induce the production of both steroid and peptide hormones in human choriocarcinoma cells. Here, we attempted to investigate the role and underlying mechanism of the oxidized form of vitamin C, dehydroascorbic acid (DHA), in steroidogenesis in primary human cytotrophoblasts and human choriocarcinoma cells. Messenger RNA and protein levels of steroidogenic enzymes including P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1), 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) and aromatase were examined by quantitative RT-PCR and western blots, respectively. Progesterone (P4) and estradiol (E2) levels were determined by enzyme immunoassays. Knockdown of c-Jun was achieved by lentivirus-mediated shRNA, and signaling pathways implicated in DHA-induced steroidogenesis were examined by western blots and dual-luciferase assays. DHA dose-dependently induced the expression of steroidogenic enzymes including 3β-HSD1, 17β-HSD1 and aromatase at both mRNA and protein levels, and subsequently increased the production of E2 but not P4. These effects were synergized by diethylmaleate, a glutathione-depleting compound, and α-tocopherol, a reducing agent, but robustly attenuated by inhibition of DHA transportation by phloretin or 2-deoxy-d-glucose. DHA time-dependently inhibited JNK and c-Jun phosphorylation, and dose-dependently reduced AP1 reporter activity. JNK signaling pathway-specific inhibitor SP600125 and c-Jun shRNA both significantly increased the expression of steroidogenic enzymes and E2 production regardless of the presence or absence of DHA. These findings suggest that DHA is able to induce steroidogenesis through inhibition of JNK/c-Jun/AP1 signaling, and may therefore play indispensable roles in pregnancy maintenance.

  19. Association of Renal Manifestations with Serum Uric Acid in Korean Adults with Normal Uric Acid Levels

    PubMed Central

    Jung, Dong-Hyuk; Lee, Yong-Jae; Lee, Hye-Ree; Lee, Jung-Hyun

    2010-01-01

    Several studies have reported that hyperuricemia is associated with the development of hypertension and cardiovascular disease. Increasing evidences also suggest that hyperuricemia may have a pathogenic role in the progression of renal disease. Paradoxically, uric acid is also widely accepted to have antioxidant activity in experimental studies. We aimed to investigate the association between glomerular filtration rate (GFR) and uric acid in healthy individuals with a normal serum level of uric acid. We examined renal function determined by GFR and uric acid in 3,376 subjects (1,896 men; 1,480 women; aged 20-80 yr) who underwent medical examinations at Gangnam Severance Hospital from November 2006 to June 2007. Determinants for renal function and uric acid levels were also investigated. In both men and women, GFR was negatively correlated with systolic and diastolic blood pressures, fasting plasma glucose, total cholesterol, uric acid, log transformed C reactive protein, and log transformed triglycerides. In multivariate regression analysis, total uric acid was found to be an independent factor associated with estimated GFR in both men and women. This result suggests that uric acid appears to contribute to renal impairment in subjects with normal serum level of uric acid. PMID:21165292

  20. Gastric cancer risk and erythrocyte composition of docosahexaenoic acid with anti-inflammatory effects.

    PubMed

    Kuriki, Kiyonori; Wakai, Kenji; Matsuo, Keitaro; Hiraki, Akio; Suzuki, Takeshi; Yamamura, Yoshitaka; Yamao, Kenji; Nakamura, Tsuneya; Tatematsu, Masae; Tajima, Kazuo

    2007-11-01

    Infection with Helicobacter pylori is linked to inflammation and is the main cause of peptic ulcer, gastritis, and gastric malignancies. To examine associations between gastric cancer risk and the erythrocyte composition of docosahexaenoic acid (DHA), a fatty acid with anti-inflammatory and apoptosis-inducing effects, here we conducted a case-control study of 179 incident gastric cancer cases and 357 noncancer controls (matched by age, sex, and season of sample collection). Dietary information and blood samples were collected from all subjects, and erythrocyte fatty acid levels were measured using accelerated solvent extraction and gas-liquid chromatography. Gastric cancer risk did not seem to be directly associated with dietary intake of fish and n-3 highly unsaturated fatty acids (HUFAs), such as DHA, derived from fish. However, risk was inversely associated with erythrocyte compositions of n-3 HUFAs [the highest to the lowest tertile, odds ratio (OR), 0.39; 95% confidence interval (95% CI), 0.23-0.68; P(trend)<0.005] and DHA (OR, 0.47; 95% CI, 0.28-0.79; P(trend)<0.01). Particularly strong associations were noted for well-differentiated type lesions and n-3 HUFAs (OR, 0.10; 95% CI, 0.03-0.35; P(trend)=0.0005) as well as DHA (OR, 0.20; 95% CI, 0.07-0.58; P(trend)<0.01) values. In conclusion, the erythrocyte composition of DHA was found to be negatively linked to risk of gastric cancer, especially of well-differentiated adenocarcinoma. Further studies are needed to investigate mechanisms of action of DHA relevant to antitumor effects in the stomach.

  1. Docosahexaenoic acid in the goat kid diet: effects on immune system and meat quality.

    PubMed

    Moreno-Indias, I; Morales-delaNuez, A; Hernández-Castellano, L E; Sánchez-Macías, D; Capote, J; Castro, N; Argüello, A

    2012-11-01

    The effect of dietary docosahexaenoic acid (C22:6n3; DHA) supplementation on meat quality and immunity in goat (Capra hircus) kids was examined. Goat kids (n = 30) were fed 1 of 3 experimental diets: goat milk (GM), cow (Bos taurus) milk (CM), and CM supplemented with DHA (CM-DHA). Animals were fed ad libitum twice daily and weighed twice each week. Blood samples were collected by jugular venipuncture daily during the first 10 d of life and were subsequently collected every 5 d until slaughter at a BW of 8 kg. Carcass size (linear measurements) and weight, as well as meat pH, color, tenderness, and chemical composition were determined. Fatty acid profiles of intramuscular, peri-renal, pelvic, subcutaneous, and intermuscular fats were analyzed. Blood IgG and IgM concentrations, complement system activity (classical and alternative pathways), and chitotriosidase activity were recorded. Results indicated that the diet containing DHA did not affect (P > 0.05) carcass linear measurements, meat quality characteristics, or proximate composition of the meat. However, C22:6n3 fatty acid levels, mainly in intramuscular fat, were enriched (P < 0.05) in CM-DHA animals, and the n-6 to n-3 PUFA ratio was improved (P < 0.05). No differences (P > 0.05) in immune function were observed among groups. In conclusion, powdered whole CM is an effective option for feeding goat kids, and the inclusion of DHA to CM increases the quantity of this fatty acid in the meat.

  2. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health.

    PubMed

    Walker, Celia G; Jebb, Susan A; Calder, Philip C

    2013-02-01

    There is substantial evidence to show that consumption and increased blood levels of the very long-chain (VLC) ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The consumption of oily fish is an effective way of increasing EPA and DHA intake and status, but intake in most Western countries remains below the levels recommended for optimal health. The reasons for this include not liking the taste, a concern about sustainability of fish supplies, or potential chemical and heavy metal contamination. Alternative dietary sources of ω-3 fatty acids to enhance EPA and DHA status in the body would therefore be beneficial. There are many non-fish food sources of the essential plant-derived ω-3 fatty acid α-linolenic acid, but conversion from this to longer-chain EPA and especially to DHA is poor. Stearidonic acid (SDA) is an intermediate fatty acid in the biosynthetic pathway from α-linolenic acid to VLC ω-3 PUFAs and the conversion from SDA is more efficient than from α-linolenic acid. However, there are few food sources rich in SDA. Oil crops naturally rich in SDA or enriched through genetic modification may offer an alternative supplemental oil to boost the population status of VLC ω-3 PUFAs. This review discusses the currently available evidence that increased SDA consumption can increase red blood cell EPA content, although this is less than the effect of supplementation directly with EPA. There is now a need for trials specifically designed to assess whether an increased SDA consumption would translate into improved human health outcomes.

  3. The Cryptococcus neoformans Gene DHA1 Encodes an Antigen That Elicits a Delayed-Type Hypersensitivity Reaction in Immune Mice

    PubMed Central

    Mandel, M. Alejandra; Grace, Greg G.; Orsborn, Kris I.; Schafer, Fredda; Murphy, Juneann W.; Orbach, Marc J.; Galgiani, John N.

    2000-01-01

    When mice are vaccinated with a culture filtrate from Cryptococcus neoformans (CneF), they mount a protective cell-mediated immune response as detected by dermal delayed-type hypersensitivity (DTH) to CneF. We have identified a gene (DHA1) whose product accounts at least in part for the DTH reactivity. Using an acapsular mutant (Cap-67) of C. neoformans strain B3501, we prepared a culture filtrate (CneF-Cap67) similar to that used for preparing the commonly used skin test antigen made with C. neoformans 184A (CneF-184A). CneF-Cap67 elicited DTH in mice immunized with CneF-184A. Deglycosylation of CneF-Cap67 did not diminish its DTH activity. Furthermore, size separation by either chromatography or differential centrifugation identified the major DTH activity of CneF-Cap67 to be present in fractions that contained proteins of approximately 19 to 20 kDa. Using N-terminal and internal amino acid sequences derived from the 20-kDa band, oligonucleotide primers were designed, two of which produced a 776-bp amplimer by reverse transcription-PCR (RT-PCR) using RNA from Cap-67 to prepare cDNA for the template. The amplimer was used as a probe to isolate clones containing the full-length DHA1 gene from a phage genomic library prepared from strain B3501. The full-length cDNA was obtained by 5′ rapid amplification of cDNA ends and RT-PCR. Analysis of DHA1 revealed a similarity between the deduced open reading frame and that of a developmentally regulated gene from Lentinus edodes (shiitake mushroom) associated with fruiting-body formation. Also, the gene product contained several amino acid sequences identical to those determined biochemically from the purified 20-kDa peptide encoded by DHA1. Recombinant DHA1 protein expressed in Escherichia coli was shown to elicit DTH reactions similar to those elicited by CneF-Cap67 in mice immunized against C. neoformans. Thus, DHA1 is the first gene to be cloned from C. neoformans whose product has been shown to possess immunologic

  4. Omega-3 fatty acids affected human perception of ground beef negatively.

    PubMed

    Jiang, T; Busboom, J R; Nelson, M L; Mengarelli, R

    2011-12-01

    The objective was to determine the impact of increasing levels of Eicosapentaenoic acid (EPA; C20:5n3) and Docosahexaenoic acid (DHA; C22:6n3) on beef palatability. Two commercial supplements of EPA and DHA were added to 85% lean ground beef patties (176.2 ± 3.76 g) with different levels (0, 0.3, 0.4, 0.5, 0.6, 0.7, and 1% as-is). Olive oil was added so that all patties contained 1% added lipid. A control treatment was also prepared with no supplement or olive oil. Sensory evaluation and fatty acid analysis was conducted. Ground beef flavor decreased linearly (P<0.001) with increasing levels of EPA and DHA. Off-aroma and off-flavor increased linearly and then plateaued with increasing levels of EPA (P<0.0001). In conclusion, EPA had a greater negative impact on beef palatability than DHA. Also, the panelists were more sensitive to EPA in off-flavor perception than off-aroma.

  5. Enhanced incorporation of docosahexaenoic acid in serum, heart, and brain of rats given microemulsions of fish oil.

    PubMed

    Sugasini, D; Lokesh, B R

    2013-10-01

    Long-chain n-3 fatty acids are essential for the development of cognitive functions and reducing the risk factor for cardiovascular diseases. The present study was undertaken to prepare fish oil (FO) microemulsion and explore the possibility of enhancing the enrichment of long-chain n-3 PUFA in the heart and brain lipids. The bioavailability of encapsulated FO was compared with that of native oil in rats by utilizing the intestinal sac method and by an in vivo study giving microemulsions of FO through intubation for a period of 30 days. Microemulsions were prepared using chitosan, gum acacia, whey protein, and lipoid. The bioavailability of eicosapentaenoic acid and docosahexaenoic acid (DHA) from FO encapsulated in chitosan, gum acacia, whey protein, and lipoid was increased by 7, 9, 23, and 68%, respectively, as compared to oil given without encapsulation in the everted intestinal sacs model. The DHA levels in serum lipids when FO was given as lipoid emulsion to rats were found to be 56 μg/ml, while rats given FO without encapsulation had a DHA level of 22 μg/ml. In the heart and brain lipids, the DHA levels were increased by 77 and 41%, respectively, in rats given FO encapsulated with lipoid compared to those given native oil. These studies indicated that DHA from FO was taken up in a more efficient manner when given in an encapsulated form with lipoid. Thus, phospholipid-based binding materials such as Lipoid provide a good delivery system for FO and significantly enhance DHA levels in the serum, liver, heart, and brain tissues.

  6. Omega-3 Fatty acids: anti-arrhythmic, pro-arrhythmic, or both?

    PubMed

    von Schacky, C

    2012-01-01

    This review focuses on developments after 2008, when the topic was last reviewed by the author. Pertinent publications were found by medline searches and in the author's personal data base. Prevention of atrial fibrillation (AF) was investigated in a number of trials, sparked by one positive report on the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), considerations of upstream therapy, data from electrophysiologic laboratories and animal experiments. If EPA + DHA prevent postoperative AF, the effect is probably smaller than initially expected. The same is probably true for maintenance of sinus rhythm after cardioversion and for new-onset AF. Larger trials are currently ongoing. Prevention of ventricular arrhythmias was studied in carriers of an implanted cardioverter-defibrillator, with no clear results. This might have been due to a broad definition of the primary endpoint, including any ventricular arrhythmia and any action of the device. Epidemiologic studies support the contention that high levels of EPA + DHA prevent sudden cardiac death (SCD). However, since SCD is a rare occurrence, it is difficult to conduct an adequately powered trial. In patients with congestive heart failure, EPA + DHA reduced total mortality and rehospitalizations, but not SCD or presumed arrhythmic death. Of three trials in patients after a myocardial infarction, two were inadequately powered, and in one, the dose might have been too low. Taken together, while epidemiologic studies support an inverse relation between EPA + DHA and occurrence of SCD or arrhythmic death, demonstrating this effect in intervention trials remained elusive so far. A pro-arrhythmic effect of EPA + DHA has not been seen in intervention studies, and results of epidemiologic and animal studies also rather argue against such an effect. A different, and probably more productive, perspective is provided by a standardized analytical assessment of a person's status in EPA + DHA

  7. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  8. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids.

    PubMed

    Cardoso, Henriqueta D; Passos, Priscila P; Lagranha, Claudia J; Ferraz, Anete C; Santos Júnior, Eraldo F; Oliveira, Rafael S; Oliveira, Pablo E L; Santos, Rita de C F; Santana, David F; Borba, Juliana M C; Rocha-de-Melo, Ana P; Guedes, Rubem C A; Navarro, Daniela M A F; Santos, Geanne K N; Borner, Roseane; Picanço-Diniz, Cristovam W; Beltrão, Eduardo I; Silva, Janilson F; Rodrigues, Marcelo C A; Andrade da Costa, Belmira L S

    2012-01-01

    Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative disorders. Some of these disorders have been associated with unbalanced levels of essential fatty acids (EFA). The response of certain brain regions to OS, however, is not uniform and a selective vulnerability or resilience can occur. In our previous study on rat brains, we observed that a two-generation EFA dietary restriction reduced the number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial. To understand whether OS contributes to this effect, we assessed the status of lipid peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were raised from conception on control or experimental diets containing adequate or reduced levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD) and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (~28%) and F2 (~50%) groups. In F1 adult animals of the experimental group there was no LP in both SN and CS. Consistently, there was a significant increase in the t-SOD activity (p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was found for these parameters in the CS. Conversely, a significant increase in t-SOD activity (p < 0.05) was detected in the CS of the experimental group compared to the control. The results show that unbalanced EFA dietary levels reduce the redox balance in the SN and reveal mechanisms of resilience in the CS under this stressful condition.

  9. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids

    PubMed Central

    Cardoso, Henriqueta D.; Passos, Priscila P.; Lagranha, Claudia J.; Ferraz, Anete C.; Santos Júnior, Eraldo F.; Oliveira, Rafael S.; Oliveira, Pablo E. L.; Santos, Rita de C. F.; Santana, David F.; Borba, Juliana M. C.; Rocha-de-Melo, Ana P.; Guedes, Rubem C. A.; Navarro, Daniela M. A. F.; Santos, Geanne K. N.; Borner, Roseane; Picanço-Diniz, Cristovam W.; Beltrão, Eduardo I.; Silva, Janilson F.; Rodrigues, Marcelo C. A.; Andrade da Costa, Belmira L. S.

    2012-01-01

    Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative disorders. Some of these disorders have been associated with unbalanced levels of essential fatty acids (EFA). The response of certain brain regions to OS, however, is not uniform and a selective vulnerability or resilience can occur. In our previous study on rat brains, we observed that a two-generation EFA dietary restriction reduced the number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial. To understand whether OS contributes to this effect, we assessed the status of lipid peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were raised from conception on control or experimental diets containing adequate or reduced levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD) and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (~28%) and F2 (~50%) groups. In F1 adult animals of the experimental group there was no LP in both SN and CS. Consistently, there was a significant increase in the t-SOD activity (p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was found for these parameters in the CS. Conversely, a significant increase in t-SOD activity (p < 0.05) was detected in the CS of the experimental group compared to the control. The results show that unbalanced EFA dietary levels reduce the redox balance in the SN and reveal mechanisms of resilience in the CS under this stressful condition. PMID

  10. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  11. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation.

    PubMed

    Messamore, Erik; McNamara, Robert K

    2016-02-10

    A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case-control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤ 4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice.

  12. Nutrition in brain development and aging: role of essential fatty acids.

    PubMed

    Uauy, Ricardo; Dangour, Alan D

    2006-05-01

    The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.

  13. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine.

    PubMed

    Mao, Xiangzhao; Liu, Qianqian; Qiu, Yongqian; Fan, Xiaoqin; Han, Qingqing; Liu, Yanjun; Zhang, Lujia; Xue, Changhu

    2017-03-25

    Phosphatidylserine (PS) and docosahexaenoic acid-phosphatidylserine (DHA-PS) have significant nutritional and biological functions, which are extensively used in functional food industries. Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) or DHA-PC with l-serine, is an effective method for PS and DHA-PS preparation. However, because of the hydrolysis activity of PLD, PC and DHA-PC would be converted to the undesirable byproduct, phosphatidic acid (PA) and DHA-PA. In this study, a novel phospholipase D (PLDa2) was firstly cloned from Acinetobacter radioresistens a2 with high transphosphatidylation activity and no hydrolysis activity. In the PLD-catalyzed synthesis process (12h), both the transphosphatidylation conversion rate and selectivity of PS and DHA-PS were about 100%, which is the only PLD enzyme reported with this superiority up till now. In comparison with the majority of other known PLDs, PLDa2 exerted the highest activity at neutral pH, and it was stable from pH 4.0 to pH 9.0. In addition, PLDa2 had excellent thermal stability, with an optimum reaction temperature of 40°C and keeping more than 80% activity from 20°C to 60°C. The high catalytic selectivity mechanism of PLDa2 was explained by utilizing homology modeling, two-step docking, and binding energy and conformation analysis. PLDa2 ensured a stable supply of the biocatalyst with its most preponderant transphosphatidylation activity and PS selectivity, and had great potential in phospholipids industrial production.

  14. Circulating n-3 fatty acids and trans-fatty acids, PLA2G2A gene variation and sudden cardiac arrest.

    PubMed

    Lemaitre, Rozenn N; Bartz, Traci M; King, Irena B; Brody, Jennifer A; McKnight, Barbara; Sotoodehnia, Nona; Rea, Thomas D; Johnson, Catherine O; Mozaffarian, Dariush; Hesselson, Stephanie; Kwok, Pui-Yan; Siscovick, David S

    2016-01-01

    Whether genetic factors influence the associations of fatty acids with the risk of sudden cardiac arrest (SCA) is largely unknown. To investigate possible gene-fatty acid interactions on SCA risk, we used a case-only approach and measured fatty acids in erythrocyte samples from 1869 SCA cases in a population-based repository with genetic data. We selected 191 SNP in ENCODE-identified regulatory regions of fifty-five candidate genes in fatty acid metabolic pathways. Using linear regression and additive genetic models, we investigated the association of the selected SNP with erythrocyte levels of fatty acids, including DHA, EPA and trans-fatty acids among the SCA cases. The assumption of no association in non-cases was supported by analysis of publicly available datasets containing over 8000 samples. None of the SNP-fatty acid associations tested among the cases reached statistical significance after correction for multiple comparisons. One SNP, rs4654990 near PLA2G2A, with an allele frequency of 0·33, was nominally associated with lower levels of DHA and EPA and higher levels of trans-fatty acids. The strongest association was with DHA levels (exponentiated coefficient for one unit (1 % of total fatty acids), 0·90, 95 % CI 0·85, 0·97; P = 0·003), indicating that for subjects with a coded allele, the OR of SCA associated with one unit higher DHA is about 90 % what it is for subjects with one fewer coded allele. These findings suggest that the associations of circulating n-3 and trans-fatty acids with SCA risk may be more pronounced in carriers of the rs4654990 G allele.

  15. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    PubMed Central

    Nikan, Mehran; Osborn, Maire F; Coles, Andrew H; Godinho, Bruno MDC; Hall, Lauren M; Haraszti, Reka A; Hassler, Matthew R; Echeverria, Dimas; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders. PMID:27504598

  16. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption.

    PubMed

    Cook, Chad M; Larsen, Terje S; Derrig, Linda D; Kelly, Kathleen M; Tande, Kurt S

    2016-10-01

    Oil from the marine copepod, Calanus finmarchicus, which contains >86 % of fatty acids present as wax esters, is a novel source of n-3 fatty acids for human consumption. In a randomized, two-period crossover study, 18 healthy adults consumed 8 capsules providing 4 g of Calanus(®) Oil supplying a total of 260 mg EPA and 156 mg DHA primarily as wax esters, or 1 capsule of Lovaza(®) providing 465 mg EPA and 375 mg DHA as ethyl esters, each with an EPA- and DHA-free breakfast. Plasma EPA and DHA were measured over a 72 h period (t = 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h). The positive incremental area under the curve over the 72 h test period (iAUC0-72 h) for both EPA and DHA was significantly different from zero (p < 0.0001) in both test conditions, with similar findings for the iAUC0-24 h and iAUC0-48 h, indicating the fatty acids were absorbed. There was no difference in the plasma iAUC0-72 h for EPA + DHA, or DHA individually, in response to Calanus Oil vs the ethyl ester condition; however, the iAUC0-48 h and iAUC0-72 h for plasma EPA in response to Calanus Oil were both significantly increased relative to the ethyl ester condition (iAUC0-48 h: 381 ± 31 vs 259 ± 39 μg*h/mL, p = 0.026; iAUC0-72 h: 514 ± 47 vs 313 ± 49 μg*h/mL, p = 0.009). These data demonstrate a novel wax ester rich marine oil is a suitable alternative source of EPA and DHA for human consumption.

  17. Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt.

    PubMed

    Chen, Wei; Zhou, Pengpeng; Zhu, Yuanmin; Xie, Chen; Ma, Lin; Wang, Xiaopeng; Bao, Zhendong; Yu, Longjiang

    2016-02-01

    Schizochytrium is a marine microalga that requires high concentrations of sea salt for growth, although problems arise with significant amounts of chloride ions in the culture medium, which corrodes the fermenters. In this work, we evaluated that cell growth and docosahexaenoic acid (DHA) production can be improved when using 1 % (w/v) sodium sulfate instead of 2 % (w/v) sea salt in the culture medium for Schizochytrium sp. S056. In practice, the use of sodium sulfate as the sodium salt led to chloride ion levels in the medium that can be completely removed, thus avoiding fermenter corrosion during Schizochytrium sp. S056 growth, reducing cost and increasing DHA production, and simplifying the disposal of fermentation wastewater. Additionally, we demonstrated that the osmolality of growth media did not play a crucial role in the production of DHA. These findings may be significantly important to companies involved in production of PUFAs by marine microbes.

  18. Nutritional armor in evolution: docosahexaenoic acid as a determinant of neural, evolution and hominid brain development.

    PubMed

    Crawford, Michael A; Broadhurst, C Leigh; Cunnane, Stephen; Marsh, David E; Schmidt, Walter F; Brand, Annette; Ghebremeskel, Kebreab

    2014-11-01

    The aim of this article is to draw attention to the special significance of docosahexaenoic acid (DHA) in the brain, the potential relevance of its abundance to the evolution of the brain in past history, and now the relevance of paucity in the food supply to the rise in mental ill-health. Membrane lipids of photoreceptors, synapses, and neurons over the last 600 million years contained consistent and similarly high levels of DHA despite wide genomic change. The consistency is despite the DHA precursor differing only by 2 protons. This striking conservation is an example of Darwin's "Conditions of Existence," which he described as the higher force in evolution. A purpose of this article is to suggest that the present paradigm of food production currently based on protein requirements, should change to serve the specific lipid needs of the brain to address the rise in mental ill-health.(1.)

  19. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants

    PubMed Central

    Lee, Ho-Sun; Barraza-Villarreal, Albino; Biessy, Carine; Duarte-Salles, Talita; Sly, Peter D.; Ramakrishnan, Usha; Rivera, Juan; Herceg, Zdenko

    2014-01-01

    Epigenetic regulation of imprinted genes is regarded as a highly plausible explanation for linking dietary exposures in early life with the onset of diseases during childhood and adulthood. We sought to test whether prenatal dietary supplementation with docosahexaenoic acid (DHA) during pregnancy may modulate epigenetic states at birth. This study was based on a randomized intervention trial conducted in Mexican pregnant women supplemented daily with 400 mg of DHA or a placebo from gestation week 18–22 to parturition. We applied quantitative profiling of DNA methylation states at IGF2 promoter 3 (IGF2 P3), IGF2 differentially methylated region (DMR), and H19 DMR in cord blood mononuclear cells of the DHA-supplemented group (n = 131) and the control group (n = 130). In stratified analyses, DNA methylation levels in IGF2 P3 were significantly higher in the DHA group than the control group in preterm infants (P = 0.04). We also observed a positive association between DNA methylation levels and maternal body mass index; IGF2 DMR methylation was higher in the DHA group than the control group in infants of overweight mothers (P = 0.03). In addition, at H19 DMR, methylation levels were significantly lower in the DHA group than the control group in infants of normal weight mothers (P = 0.01). Finally, methylation levels at IGF2/H19 imprinted regions were associated with maternal BMI. These findings suggest that epigenetic mechanisms may be modulated by DHA, with potential impacts on child growth and development. PMID:25293351

  20. The influence of dietary manipulation with n-3 and n-6 fatty acids on liver and plasma phospholipid fatty acids in rats.

    PubMed

    Nassar, B A; Huang, Y S; Manku, M S; Das, U N; Morse, N; Horrobin, D F

    1986-10-01

    The interrelations between linoleic acid (LA) metabolites and fish oil fatty acids were studied. Sprague-Dawley rats (200-220 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) of different combinations of evening primrose oil (EPO), a rich source of LA and gamma-linolenic acid, and polepa (POL), a marine oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. The combinations of supplement were as follows: 9% EPO-1% POL, 8% EPO-2% POL, 7% EPO-3% POL, 6% EPO-4% POL and 5% EPO-5% POL. After two weeks on the respective diets, the animals were killed, and the fatty acid compositions of liver and plasma phospholipids were examined. The results showed that animals fed higher proportions of POL consistently contained higher levels of dihomo-gamma-linolenic acid (DGLA) (p less than 0.05), a metabolite of LA and GLA, and lower levels of arachidonic acid (AA) (p less than 0.01), a metabolite of DGLA through delta-5-desaturation. Thus, an inverse relationship between AA/DGLA ratio and EPA levels was found to exist (r = -0.765 in plasma and -0.792 in liver). However, there was no such relationship between AA/DGLA ratio and DHA levels. This result suggested that EPA but not DHA in fish oil exerts an inhibitory effect on the conversion of DGLA to AA.

  1. Serum pro-BDNF/BDNF as a treatment biomarker for response to docosahexaenoic acid in traumatized people vulnerable to developing psychological distress: a randomized controlled trial

    PubMed Central

    Matsuoka, Y; Nishi, D; Tanima, Y; Itakura, M; Kojima, M; Hamazaki, K; Noguchi, H; Hamazaki, T

    2015-01-01

    Our open-label pilot study showed that supplementation with docosahexaenoic acid (DHA) increased serum brain-derived neurotrophic factor (BDNF) levels and that there might be an association between changes in serum BDNF levels and reduced psychological distress. Animal research has indicated that a DHA-enriched diet increases BDNF in the brain. In this randomized double-blind controlled trial of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) and depression, we examined whether DHA increases serum BDNF levels and whether changes in BDNF levels are associated with subsequent symptoms of PTSD and depression. Patients received 1470 mg per day of DHA plus 147 mg per day of eicosapentaenoic acid (EPA; n=53) or placebo (n=57) for 12 weeks. Serum levels of mature BDNF and precursor pro-BDNF at baseline and 12-week follow-up were measured using enzyme-linked immunosorbent assay kits. At 12 weeks, we used the Clinician-Administered PTSD Scale to assess PTSD symptoms and depressive symptoms by the Montgomery–Åsberg Depression Rating Scale. We found a significant increase in serum BDNF levels during the trial in the DHA and placebo groups with no interaction between time and group. Changes in BDNF levels were not associated with PTSD severity but negatively associated with depression severity (Spearman's ρ=−0.257, P=0.012). Changes in pro-BDNF were also negatively associated with depression severity (Spearman's ρ=−0.253, P=0.013). We found no specific effects of DHA on increased serum levels of BDNF and pro-BDNF; however, evidence in this study suggests that increased BDNF and pro-BDNF have a protective effect by minimizing depression severity. PMID:26151924

  2. Puget Sound acidity levels drop after ASARCO shutdown

    SciTech Connect

    Not Available

    1987-07-01

    The levels of acidity in Puget Sound region rainfall have decreased significantly since the shutdown of the ASARCO copper smelter in Tacoma, Washington, according to a study funded by the US Environmental Protection Agency. Results indicate that sulfate and hydrogen ion concentrations obtained from samples taken before the closure were significantly different than those collected after the shutdown. Rainwater samples collected downwind during smelter operation were also significantly different from those collected upwind. Sulfur dioxide is considered to be one of the principal contributors to acid rain. The smelter was a major source of sulfur dioxide emissions in the Puget Sound region before it shut down in March 1985.

  3. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  4. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  5. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  6. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  7. DIETARY N-6 POLYUNSATURATED FATTY ACID DEPRIVATION INCREASES DOCOSAHEXAENOIC ACID METABOLISM IN RAT BRAIN

    PubMed Central

    Kim, Hyung-Wook; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2011-01-01

    Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A2 (cPLA2-IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective Ca2+-independent iPLA2-VIA expression. We hypothesized that these changes are accompanied by upregulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA “adequate” (31.4 wt% linoleic acid) or “deficient” (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-14C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acidn-3 (DPAn-3, 22:5n-3) and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid. Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promote neuroprotection. (199 words) PMID:22117540

  8. Incorporation of polyunsaturated fatty acids into CT-26, a transplantable murine colonic adenocarcinoma.

    PubMed

    Gaposchkin, D P; Zoeller, R A; Broitman, S A

    2000-02-01

    Previous studies in our laboratory have shown that marine oils, with high levels of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acids (DHA, 22:6n-3), inhibit the growth of CT-26, a murine colon carcinoma cell line, when implanted into the colons of male BALB/c mice. An in vitro model was developed to study the incorporation of polyunsaturated fatty acids (PUFA) into CT-26 cells in culture. PUFA-induced changes in the phospholipid fatty acid composition and the affinity with which different fatty acids enter the various phospholipid species and subspecies were examined. We found that supplementation of cultured CT-26 cells with either 50 microM linoleic acid (LIN, 18:2n-6), arachidonic acid (AA, 20:4n-6), EPA, or DHA significantly alters the fatty acid composition of CT-26 cells. Incorporation of these fatty acids resulted in decreased levels of monounsaturated fatty acids, while EPA and DHA also resulted in lower levels of AA. While significant elongation of both AA and EPA occurred, LIN remained relatively unmodified. Incorporation of radiolabeled fatty acids into different phospholipid species varied significantly. LIN was incorporated predominantly into phosphatidylcholine and had a much lower affinity for the ethanolamine phospholipids. DHA had a higher affinity for plasmenylethanolamine (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) than the other fatty acids, while EPA had the highest affinity for phosphatidylethanol-amine (1,2-diacyl-sn-glycero-3-phosphoethanolamine). These results demonstrate that, in vitro, significant differences are seen between the various PUFA in CT-26 cells with respect to metabolism and distribution, and these may help to explain differences observed with respect to their effects on tumor growth and metastasis in the transplantable model.

  9. Altered Serum Uric Acid Level in Lichen Planus Patients

    PubMed Central

    Chakraborti, Goutam; Biswas, Rabindranath; Chakraborti, Sandip; Sen, Pradyot Kumar

    2014-01-01

    Background: Lichen planus (LP) is a common disorder whose etiopathogenesis is not clear. Recently, it has been suggested that increased reactive oxygen species (ROS) play important roles in the underlying mechanism of LP. Objectives: The principal aim of this study was to evaluate serum uric acid (UA) levels as a measure of the antioxidant defense status in LP patients. Methods: Serum UA levels were determined in 58 LP patients and 61 controls. Results: Serum UA levels were significantly decreased in patients with respect to controls. Moreover, serum UA level was decreased according to increasing duration of disease. Conclusions: The results of our study suggest that LP is associated with decrease of UA levels in serum. UA may be a potential, useful biomarker of antioxidant status in LP for elaboration of treatment strategy and monitoring. PMID:25484383

  10. Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids.

    PubMed

    Feller, Scott E

    2008-05-01

    A variety of experimental methods indicate unique biophysical properties of membranes containing the highly polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA). In the following we review the atomically detailed picture of DHA acyl chains structure and dynamics that has emerged from computational studies of this system in our lab. A comprehensive approach, beginning with ab-initio quantum chemical studies of model compounds representing segments of DHA and ending with large scale classical molecular dynamics simulations of DHA-containing bilayers, is described with particular attention paid to contrasting the properties of DHA with those of saturated fatty acids. Connection with experiment is made primarily through comparison with Nuclear Magnetic Resonance (NMR) studies, particularly those that probe details of the chain structure and dynamics. Our computational results suggest that low torsional energy barriers, comparable to kT at physiological conditions, for the rotatable bonds in the DHA chain are the key to the differences observed between polyunsaturated and saturated acyl chains.

  11. Polyunsaturated Fatty Acid (PUFA) Status in Pregnant Women: Associations with Sleep Quality, Inflammation, and Length of Gestation

    PubMed Central

    Christian, Lisa M.; Blair, Lisa M.; Porter, Kyle; Lower, Mary; Cole, Rachel M.; Belury, Martha A.

    2016-01-01

    Mechanistic pathways linking maternal polyunsaturated fatty acid (PUFA) status with gestational length are poorly delineated. This study examined whether inflammation and sleep quality serve as mediators, focusing on the antiinflammatory ω-3 docosahexaenoic acid (DHA; 22:6n3) and proinflammatory ω-6 arachidonic acid (AA; 20:4n6). Pregnant women (n = 135) provided a blood sample and completed the Pittsburgh Sleep Quality Index (PSQI) at 20–27 weeks gestation. Red blood cell (RBC) fatty acid levels were determined by gas chromatography and serum inflammatory markers [interleukin (IL)-6, IL-8, tumor necrosis factor-α, IL-1β, and C-reactive protein] by electrochemiluminescence using high sensitivity kits. Both higher serum IL-8 (95% CI = 0.10,3.84) and poor sleep (95% CI = 0.03,0.28) served as significant mediators linking lower DHA:AA ratios with shorter gestation. Further, a serial mediation model moving from the DHA:AA ratio → sleep → IL-8 → length of gestation was statistically significant (95% CI = 0.02, 0.79). These relationships remained after adjusting for depressive symptoms, age, BMI, income, race, and smoking. No interactions with race were observed in relation to length of gestation as a continuous variable. However, a significant interaction between race and the DHA:AA ratio in predicting preterm birth was observed (p = 0.049); among African Americans only, odds of preterm birth decreased as DHA:AA increased (p = 0.048). These data support a role for both inflammatory pathways and sleep quality in linking less optimal RBC PUFA status with shorter gestation in African American and European American women and suggest that African-Americans have greater risk for preterm birth in the context of a low DHA:AA ratio. PMID:26859301

  12. A Mutant of Arabidopsis with Increased Levels of Stearic Acid.

    PubMed Central

    Lightner, J.; Wu, J.; Browse, J.

    1994-01-01

    A mutation at the fab2 locus of Arabidopsis caused increased levels of stearate in leaves. The increase in leaf stearate in fab2 varied developmentally, and the largest increase occurred in young leaves, where stearate accounted for almost 20% of total leaf fatty acids. The fatty acid composition of leaf lipids isolated from the fab2 mutant showed increased stearate in all the major glycerolipids of both the chloroplast and extrachloroplast membranes. Although the stearate content was increased, the fab2 mutant still contained abundant amounts of 18:1, 18:2, and 18:3 fatty acids. These results are consistent with the expectations for a mutation partially affecting the action of the stromal stearoyl-acyl carrier protein desaturase. Positional analysis indicated that the extra 18:0 is excluded with high specificity from the sn-2 position of both chloroplast and extrachloroplast glycerolipids. Although stearate content was increased in all the major leaf membrane lipids, the amount of increase varied considerably among the different lipids, from a high of 25% of fatty acids in phosphatidylcholine to a low of 2.9% of fatty acids in monogalactosyldiacylglycerol. PMID:12232421

  13. In Vitro and In Vivo Characterization of the New Analgesic Combination Beta-Caryophyllene and Docosahexaenoic Acid

    PubMed Central

    Fiorenzani, Paolo; Lamponi, Stefania; Magnani, Agnese; Ceccarelli, Ilaria; Aloisi, Anna Maria

    2014-01-01

    Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity. PMID:25097659

  14. Serum fatty acid composition in normal Japanese and its relationship with dietary fish and vegetable oil contents and blood lipid levels.

    PubMed

    Nakamura, T; Takebe, K; Tando, Y; Arai, Y; Yamada, N; Ishii, M; Kikuchi, H; Machida, K; Imamura, K; Terada, A

    1995-01-01

    A survey was conducted on 110 normal Japanese adults (55 men and 55 women) to determine their caloric intake, dietary fat content and its origin (animal, plant, or marine). In addition, their blood lipid levels and fatty acid compositions were examined. Men in their 30s-50s consumed 2,600-2,800 calories and 60 g of fats, while women in the same age range consumed 2,000-2,200 calories and 52-58 g of fats. In both sexes, caloric, fat, and cholesterol intakes were lower for those in their 60s but protein and crude fiber consumption remained generally unchanged. When the dietary fats were classified according to origin, men and women in their 30s were found to consume less oil of marine origin. This appeared to be the result of a western style diet for Japanese adults in their 30s. Compared with men, women exhibited lower blood lipid levels. As age increased, the total cholesterol level of the blood rose in women. Thus the blood lipid level was generally equal in the two groups in their 60s. There was a positive correlation between the blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and dietary consumption of fish oil. The marine/plant lipid ratio was positively correlated with the blood EPA/arachidonic acid ratio. Therefore, it was believed that the origin of the dietary fats consumed is a factor in determining the blood fatty acid profile. The linoleic acid (18:2), arachidonic acid (20:4), and 18:2 + 20:4 contents were negatively correlated to the total cholesterol level in the blood but positively correlated to the HDL-cholesterol level. Polyunsaturated fatty acids (18:2 + 20:4 + 20:5 + 22:6) were negatively correlated with the blood triglyceride level. From the findings presented above, we concluded that dietary fats not derived from animal sources should be classified into fish and vegetable oils to evaluate their dietary significance. We also noted that Japanese in their 30s consume less fish oil, indicating the western trend in their

  15. Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.

    PubMed

    Wei, Dong; Wang, Min; Jiang, Biao; Shi, Jiping; Hao, Jian

    2014-05-10

    Dha regulon is responsible for anaerobic glycerol metabolism and 1,3-propanediol production in Klebsiella pneumoniae. DhaK encodes an ATP-dependent dihydroxyacetone kinase I, whereas dhaK123 encodes a dihydroxyacetone kinase II that uses phosphoenolpyruvate as a phosphate donor. The functions of dihydroxyacetone kinases I and II in K. pneumoniae have not been discriminated. In this study, four individual genes of the two kinases were knocked out, and the metabolic characteristics of these mutants were investigated. DhaK1 or dhaK2 mutation inhibited dha regulon expression. DhaK3 mutation reduced glycerol utilization, and the growth was slower than the wild stain. However, dhaK mutation exerted no significant effects on glycerol metabolism. The metabolic characteristics of these mutants showed that the subunits of dihydroxyacetone kinase II were involved in the regulation of dha regulon expression, similar to the dha regulon of E. coli. Dihydroxyacetone kinase II catalyzed dihydroxyacetone conversion to dihydroxyacetone phosphate, whereas dihydroxyacetone kinase I showed no significant contribution to this reaction.

  16. A comparison of the changes in cardiac output and systemic vascular resistance during exercise following high-fat meals containing DHA or EPA.

    PubMed

    Rontoyanni, Victoria G; Hall, Wendy L; Pombo-Rodrigues, Sonia; Appleton, Amber; Chung, Roxanna; Sanders, Thomas A B

    2012-08-01

    Long-chain n-3 PUFA can lower blood pressure (BP) but their acute effects on cardiac output, BP and systemic vascular resistance (SVR) in response to dynamic exercise are uncertain. We compared the effects of high-fat meals rich in EPA (20 : 5n-3), DHA (22 : 6n-3) or oleic acid (control) on cardiac output, BP and SVR in response to exercise stress testing. High-fat meals (50 g fat) containing high-oleic sunflower oil enriched with 4·7 g of either EPA or DHA v. control (high-oleic sunflower oil only) were fed to twenty-two healthy males using a randomised cross-over design. Resting measurements of cardiac output, heart rate and BP were made before and hourly over 5 h following the meal. A standardised 12 min exercise test was then conducted with further measurements made during and post-exercise. Blood samples were collected at fasting, 5 h postprandially and immediately post-exercise for the analysis of lipid, glucose and 8-isoprostane-F2α (8-iso-PGF2α). Plasma concentrations of EPA and DHA increased by 0·22 mmol/l 5 h following the EPA and DHA meals, respectively, compared with the control (P < 0·001). Resting cardiac output and 8-iso-PGF2α increased similarly following all meals and there were no significant differences in cardiac output during exercise between the meals. SVR was lower at 5 h and during exercise following the DHA but not EPA meal, compared with the control meal, by 4·9 % (95 % CI 1·3, 8·4; P < 0·01). Meals containing DHA appear to differ from EPA with regard to their effects on cardiovascular haemodynamics during exercise.

  17. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters.

    PubMed

    Maervoet, Veerle E T; De Maeseneire, Sofie L; Soetaert, Wim K; De Mey, Marjan

    2014-04-01

    In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.

  18. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage.

  19. Supplementation with docosahexaenoic acid in the last trimester of pregnancy: maternal-fetal biochemical findings.

    PubMed

    Sanjurjo, Pablo; Ruiz-Sanz, Jose I; Jimeno, Pilar; Aldámiz-Echevarría, Luis; Aquino, Lourdes; Matorras, Roberto; Esteban, Judit; Banqué, Montserrat

    2004-01-01

    The nutritional significance of long-chain polyunsaturated fatty acids (LCPS) during the perinatal period is becoming increasingly important. There are currently very few studies on dietary intervention during gestation. The aim of the study was to analyze the effect of docosahexaenoic acid (DHA) supplementation during pregnancy on levels in both the newborn and the mother. A randomized placebo controlled study was carried out on 20 pregnant women in study group receiving 200 mg/day of docosahexaenoic acid-(DHA) during the last trimester of pregnancy. Results in both groups (A supplemented, B non-supplemented) highlighted a decrease in plasma arachidonic acid (5.99 +/- 0.91 vs. 4.51 +/- 0.71 p<0.001 for group A and 5.84 +/- 0.71 vs. 4.80 +/- 0.51 p<0.01 for group B) in the baseline-final intra-group comparison. The intergroup comparison revealed a significant difference in plasma DHA at delivery: it was found to be higher in the population of supplemented pregnant women (3.17 +/- 0.26 vs. 2.77 +/- 0.31). The neonate population displayed no significant differences between the two groups. The results show that LCPS are consumed during the final stages of pregnancy and that oral supplementation with 200 mg/day of DHA is reflected in an increase in the plasma level of this fatty acid in the mother. One could speculate that there would be a corresponding increase in DHA bioavailability for the fetus.

  20. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    PubMed

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka.

  1. Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life.

    PubMed

    Chen, Hui-Feng; Su, Hui-Min

    2013-01-01

    Brain docosahexaenoic acid (DHA, 22:6n-3) accumulates rapidly during brain development and is essential for normal neurological function. The aim of this study was to evaluate whether brain development was the critical period in which DHA deficiency leads to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress later in life. Rats were exposed to an n-3 fatty acid-deficient diet or the same diet supplemented with fish oil as an n-3 fatty acid-adequate diet either throughout the preweaning period from embryo to weaning at 3 weeks old or during the postweaning period from 3 to 10 weeks old. Exposure to the n-3 fatty acid-deficient diet during the preweaning period resulted, at weaning, in a significant decrease in hypothalamic DHA levels and a reduced male offspring body weight. DHA deficiency during the preweaning period significantly increased and prolonged restraint stress-induced changes in colonic temperature and serum corticosterone levels, caused a significant increase in GABA(A) antagonist-induced heart rate changes and enhanced depressive-like behavior in the forced swimming test and anxiety-like behavior in the plus-maze test in later life. These effects were not seen in male rats fed the n-3 fatty acid-deficient diet during the postweaning period. These results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood. We propose that these effects of hypothalamic DHA deficiency during brain development may involve a GABA(A) receptor-mediated mechanism.

  2. The role of omega-3 fatty acids in mood disorders.

    PubMed

    Stahl, Lauren A; Begg, Denovan P; Weisinger, Richard S; Sinclair, Andrew J

    2008-01-01

    Research has established that docosahexaenoic acid (DHA), a long-chain omega-3 polyunsaturated fatty acid (PUFA), plays a fundamental role in brain structure and function. Epidemiological and cross-sectional studies have also identified a role for long-chain omega-3 PUFA, which includes DHA, eicosapentaenoic acid, and docosapentaenoic acid, in the etiology of depression. In the past ten years, there have been 12 intervention studies conducted using various preparations of longchain omega-3 PUFA in unipolar and bipolar depression. The majority of these studies administered long-chain omega-3 PUFA as an adjunct therapy. The studies have been conducted over 4 to 16 weeks of intervention and have often included small cohorts. In four out of the seven studies conducted in depressed individuals and in two out of the five studies in bipolar patients, individuals have reported a positive outcome following supplementation with ethyl-eicosapentaenoic acid or fish oil containing long-chain omega-3 PUFA. In the three trials that researched the influence of DHA-rich preparations, no significant effects were reported. The mechanisms that have been invoked to account for the benefits of long-chain omega-3 PUFA in depression include reductions in prostaglandins derived from arachidonic acid, which lead to decreased brain-derived neurotrophic factor levels and/or alterations in blood flow to the brain.

  3. The drug:H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts

    PubMed Central

    2013-01-01

    Background The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. Results The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type

  4. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

    PubMed Central

    Lee, Mak-Soon; Shin, Yoonjin; Moon, Sohee; Kim, Seunghae; Kim, Yangha

    2016-01-01

    Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-1α promoter activity in C2C12 muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-1α, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-1α promoter from −970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-1α, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-1α promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-1α gene expression in C2C12 muscle cells. PMID:28078253

  5. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells.

    PubMed

    Lee, Mak-Soon; Shin, Yoonjin; Moon, Sohee; Kim, Seunghae; Kim, Yangha

    2016-12-01

    Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-1α promoter activity in C2C12 muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-1α, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-1α promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-1α, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-1α promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-1α gene expression in C2C12 muscle cells.

  6. Omega-3 Fatty Acids Do Not Protect Against Arrhythmias in Acute Nonreperfused Myocardial Infarction Despite Some Antiarrhythmic Effects.

    PubMed

    Mączewski, Michał; Duda, Monika; Marciszek, Mariusz; Kołodziejczyk, Joanna; Dobrzyń, Paweł; Dobrzyń, Agnieszka; Mackiewicz, Urszula

    2016-11-01

    Ventricular arrhythmias are an important cause of mortality in the acute myocardial infarction (MI). To elucidate the effect of the omega-3 polyunsaturated fatty acids (PUFAs) on ventricular arrhythmias in acute nonreperfused MI, rats were fed with normal or eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA)-enriched diet for 3 weeks. Subsequently the rats were subjected to either MI induction or sham operation. ECG was recorded for 6 h after the operation and episodes of ventricular tachycardia/fibrillation (VT/VF) were identified. Six hours after MI epicardial monophasic action potentials (MAPs) were recorded, cardiomyocyte Ca(2+) handling was assessed and expression of proteins involved in Ca(2+) turnover was studied separately in non-infarcted left ventricle wall and infarct borderzone. EPA and DHA had no effect on occurrence of post-MI ventricular arrhythmias or mortality. Nevertheless, DHA but not EPA prevented Ca(2+) overload in LV cardiomiocytes and improved rate of Ca(2+) transient decay, protecting PMCA and SERCA function. Moreover, both EPA and DHA prevented MI-induced hyperphosphorylation of ryanodine receptors (RyRs) as well as dispersion of action potential duration (APD) in the left ventricular wall. In conclusion, EPA and DHA have no antiarrhythmic effect in the non-reperfused myocardial infarction in the rat, although these omega-3 PUFAs and DHA in particular exhibit several potential antiarrhythmic effects at the subcellular and tissue level, that is, prevent MI-induced abnormalities in Ca(2+) handling and APD dispersion. In this context further studies are needed to see if these potential antiarrhythmic effects could be utilized in the clinical setting. J. Cell. Biochem. 117: 2570-2582, 2016. © 2016 Wiley Periodicals, Inc.

  7. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  8. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  9. Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    PubMed Central

    Kothapalli, Kumar S.D.; Anthony, Joshua C.; Pan, Bruce S.; Hsieh, Andrea T.; Nathanielsz, Peter W.; Brenna, J. Thomas

    2007-01-01

    Background Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. Methods and Findings Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly

  10. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  11. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  12. Fatty acids profiling reveals potential candidate markers of semen quality.

    PubMed

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements.

  13. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  14. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  15. Association between serum folic acid level and erectile dysfunction.

    PubMed

    Karabakan, M; Erkmen, A E; Guzel, O; Aktas, B K; Bozkurt, A; Akdemir, S

    2016-06-01

    This study measured the serum folic acid (FA) level in patients with erectile dysfunction (ED) and evaluated the possible association between the serum FA level and erectile function. The study divided 120 patients with ED into 3 groups of 40 patients each: those with severe, moderate and mild ED. Forty healthy men served as controls. Fasting serum samples were obtained, and the total testosterone, cholesterol and FA levels were measured using chemiluminescent immunoassays. There were no significant differences in the mean age, mean body mass index or mean serum total testosterone and cholesterol levels among the three ED groups and controls (P > 0.05). The mean serum FA concentrations were 7.2 ± 3.7, 7.1 ± 3.2, 10.2 ± 4.6 and 10.7 ± 4.6 ng ml(-1) in the severe, moderate and mild ED and control groups respectively. The mean serum FA concentration was significantly higher in the control group than in the severe and moderate ED groups (both P < 0.001), but not the mild ED group (P = 0.95). Considering the significant differences in the serum FA levels between the control and ED groups, serum FA deficiency might reflect the severity of ED.

  16. Association Between Fatty Acid Supplementation and Prenatal Stress in African Americans: A Randomized Controlled Trial

    PubMed Central

    Keenan, Kate; Hipwell, Alison E.; Bortner, Jenna; Hoffmann, Amy; McAloon, Rose

    2014-01-01

    Objective To test the association between docosahexaenoic acid (DHA)supplementation and perceived stress and cortisol response to a stressor during pregnancy in a sample of African American women living in low-income environments. Methods Sixty-four African American women were enrolled at 16–21 weeks of gestation. Power calculations were computed using published standard deviations for the Perceived Stress Scale and the Trier Social Stress Test. Participants were randomized to either 450 mg per day of DHA(n=43) or placebo (n=21).At baseline, 24, and 30 weeks of gestation, perceived stress was assessed by self-report. Cortisol response to a controlled stressor, the Trier Social Stress Test (TSST) was measured from saliva samples collected upon arrival to the laboratory and after the completion of the TSST. Results Women in the DHA supplementation group reported lower levels of perceived stress at 30 weeks of gestation, controlling for depression and negative life events (mean = 27.4 versus 29.5, (F [3, 47] = 5.06, p = .029, cohen’s d = .65). Women in the DHA supplementation had lower cortisol output in response to arriving to the laboratory and a more modulated response to the stressor (F [1.78, 83.85] = 6.24, p = .004, cohen’s d = .76). Conclusions Pregnant women living in urban low-income environments who received DHA reported reduced perceived stress and lower levels of stress hormones in the third trimester. DHA supplementation may be a method for attenuating the effects of maternal stress during late pregnancy and improving the uterine environment with regard to fetal exposure to glucocorticoids. PMID:25415158

  17. Cytokine levels affected by gamma-linolenic acid.

    PubMed

    Dirks, J; van Aswegen, C H; du Plessis, D J

    1998-10-01

    This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.

  18. Color and fatty acid profile of abdominal fat pads from broiler chickens fed lobster meal.

    PubMed

    Rathgeber, B M; Anderson, D M; Thompson, K L; Macisaac, J L; Budge, S

    2011-06-01

    Consumer demands for food products enriched with healthful n-3 fatty acids are steadily increasing. Feeding marine byproducts may provide an economical means of increasing the long-chain n-3 content of broiler tissues. A study was conducted to evaluate the effect of dietary lobster meal (LM) on the color and fatty acid profile of broiler chicken fatty tissue. Broilers were fed increasing levels (0, 2, 4, 6, 8, and 10%) of LM for 35 d. Fat pad samples were collected at slaughter and color and fatty acid concentrations were determined. A linear effect was found of LM on red coloration (P < 0.05) as dietary LM increased. Fat pad eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels also increased (P < 0.0001) in a linear fashion. The essential long-chain fatty acids were lower for the 10% LM diet (0.37 mg of EPA/g; 0.16 mg of DHA/g) compared with the 8% LM diet (0.51 mg of EPA/g; 0.27 mg of DHA/g). Using lobster meal as a feed ingredient resulted in broiler abdominal fat pads with a favorable increase in n-3 fatty acids.

  19. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  20. Lipidomics to analyze the influence of diets with different EPA:DHA ratios in the progression of Metabolic Syndrome using SHROB rats as a model.

    PubMed

    Dasilva, Gabriel; Pazos, Manuel; García-Egido, Eduardo; Pérez-Jiménez, Jara; Torres, Josep Lluis; Giralt, Montserrat; Nogués, María-Rosa; Medina, Isabel

    2016-08-15

    The role of specific proportions of ω-3 EPA and DHA, in the modulation of inflammation and oxidative stress markers associated to the progression of Metabolic Syndrome was investigated. Potential inflammatory eicosanoids and docosanoids were discussed together to biomarkers of CVD, obesity, inflammation and oxidative stress in an animal model of metabolic disorders. Results evidenced a noteworthy health effect of 1:1 and 2:1 EPA:DHA proportions over 1:2 EPA:DHA based diets through a down-regulation in the production of strong pro-inflammatory ω-6 eicosanoids, a decrement of biomarkers of oxidative stress, and a modulation of fatty acid