Sample records for acid dna analysis

  1. Biosynthesis of Lipoic Acid in Arabidopsis: Cloning and Characterization of the cDNA for Lipoic Acid Synthase1

    PubMed Central

    Yasuno, Rie; Wada, Hajime

    1998-01-01

    Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738

  2. Database of amino acid-nucleotide contacts in contacts in DNA-homeodomain protein

    NASA Astrophysics Data System (ADS)

    Grokhlina, T. I.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Chirgadze, Yu. N.; Sivozhelezov, V. S.

    2013-09-01

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires an analysis of the physicochemical characteristics of these contacts and the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used to compare and classify the interfaces of the protein-DNA complexes.

  3. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    PubMed

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  4. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  5. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  6. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  7. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  8. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  9. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  10. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    PubMed

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  11. Cloning and sequence analysis of Hemonchus contortus HC58cDNA.

    PubMed

    Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li

    2007-06-01

    The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.

  12. Evaluation of methods of determining humic acids in nucleic acid samples for molecular biological analysis.

    PubMed

    Wang, Yong; Fujii, Takeshi

    2011-01-01

    It is important in molecular biological analyses to evaluate contamination of co-extracted humic acids in DNA/RNA extracted from soil. We compared the sensitivity of various methods for measurement of humic acids, and influences of DNA/RNA and proteins on the measurement. Considering the results, we give suggestions as to choice of methods for measurement of humic acids in molecular biological analyses.

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue. PMID:27187182

  14. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan

    2016-12-01

    Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.

  15. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combating WMD Journal. Issue 3

    DTIC Science & Technology

    2009-01-01

    analysis . USANCA is coordinating technical input to provide realism in the exercise sce- narios. The Army must continue efforts to ensure the in...sam- ples (clay, tannins , humic acids, and metals), and foods (lipids) are re- ported to inhibit Deoxynucleic Acid (DNA) based detection. A...tar- get DNA from one analysis to an- other, resulting in false-positive sig- nals, must also be avoided. Employ- ment of fluorescent-labeled

  17. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.

  18. Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding

    PubMed Central

    Lutzke, Ramon A. Puras; Plasterk, Ronald H. A.

    1998-01-01

    The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN. PMID:9573250

  19. Identification of an additional member of the protein-tyrosine-phosphatase family: evidence for alternative splicing in the tyrosine phosphatase domain.

    PubMed Central

    Matthews, R J; Cahir, E D; Thomas, M L

    1990-01-01

    Protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.13.48) have been implicated in the regulation of cell growth; however, to date few tyrosine phosphatases have been characterized. To identify additional family members, the cDNA for the human tyrosine phosphatase leukocyte common antigen (LCA; CD45) was used to screen, under low stringency, a mouse pre-B-cell cDNA library. Two cDNA clones were isolated and sequence analysis predicts a protein sequence of 793 amino acids. We have named the molecule LRP (LCA-related phosphatase). RNA transfer analysis indicates that the cDNAs were derived from a 3.2-kilobase mRNA. The LRP mRNA is transcribed in a wide variety of tissues. The predicted protein structure can be divided into the following structural features: a short 19-amino acid leader sequence, an exterior domain of 123 amino acids that is predicted to be highly glycosylated, a 24-amino acid membrane-spanning region, and a 627-amino acid cytoplasmic region. The cytoplasmic region contains two approximately 260-amino acid domains, each with homology to the tyrosine phosphatase family. One of the cDNA clones differed in that it had a 108-base-pair insertion that, while preserving the reading frame, would disrupt the first protein-tyrosine-phosphatase domain. Analysis of genomic DNA indicates that the insertion is due to an alternatively spliced exon. LRP appears to be evolutionarily conserved as a putative homologue has been identified in the invertebrate Styela plicata. Images PMID:2162042

  20. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations.

    PubMed

    Andrews, Casey T; Campbell, Brady A; Elcock, Adrian H

    2017-04-11

    Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.

  1. [A DNA study of rat liver oligonucleosomes enriched by transcriptionally active genes during induction due to the administration of an amino acid mixture].

    PubMed

    Vardevanian, P O; Davtian, A M; Tiratsuian, S G; Vardevanian, A O

    1990-01-01

    A highly active fraction of rat liver oligonucleosome DNA has been isolated and studied by means of thermal denaturation after induction by amino acid mixture or hydrocortisone. A considerable redistribution of DNA content has been shown in sucrose gradient fractions during these forms of induction. The changes are revealed in melting temperature, differential melting profile of DNA, isolated from actively transcribed chromatine fractions. Analysis of melting profiles shows changes of GC content of oligonucleosome DNA, suggesting that there are differences in activation during two studied forms of induction.

  2. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    PubMed

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  3. Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)

    PubMed Central

    El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa

    2013-01-01

    The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454

  4. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    PubMed

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  5. A combined method for DNA analysis and radiocarbon dating from a single sample.

    PubMed

    Korlević, Petra; Talamo, Sahra; Meyer, Matthias

    2018-03-07

    Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.

  6. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    NASA Astrophysics Data System (ADS)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  7. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dong-Shan; Zhou, Guo-Hua; Luo, Ming; Ji, Xing-Hu; He, Zhi-Ke

    2012-08-21

    We have developed a dual color fluorescence quantitative detection method for specific single-stranded DNA with molecular beacons (MBs) and nucleic acid dye SYBR Green I by synchronous scanning fluorescence spectrometry. It is demonstrated by a reverse-transcription oligonucleotide sequence (target DNA, 33 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of target DNA, the MBs are in the stem-closed state, the fluorescence of 5-carboxy-X-rhodamine (ROX) is quenched by black hole quencher-2 (BHQ-2), and the interaction between SYBR Green I and the MBs is very weak. At this time the fluorescence signals of ROX and SYBR Green I are all very weak. In the presence of target DNA, MBs hybridize with target DNA and form a double-strand structure, the fluorophore ROX is separated from the quencher BHQ-2, and the fluorescence of ROX recovers. At the same time, SYBR Green I binds to hybridized dsDNA, whose fluorescence intensity is significantly enhanced. Thus, dual color fluorescence quantitative detection for the target DNA can be realized by synchronous scanning fluorescence spectrometry. In this strategy, the fluorescence signal of SYBR Green I is far larger than that of ROX, so the quantitative analysis of target DNA with the fluorescence intensity of SYBR Green I can significantly improve the detection sensitivity. In addition, the false-positive signals of MBs do not affect the fluorescence signals of nucleic acid dye SYBR Green I. Thereby, in the analysis of complex samples, quantitative analysis of target DNA with SYBR Green I can avoid the false-positive signals of MBs and improve the detection accuracy.

  8. [Cloning and sequence analysis of full-length cDNA of secoisolariciresinol dehydrogenase of Dysosma versipellis].

    PubMed

    Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen

    2009-06-01

    To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.

  9. Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper

    PubMed Central

    Smith, LM; Burgoyne, LA

    2004-01-01

    Background Methods involving the analysis of nucleic acids have become widespread in the fields of traditional biology and ecology, however the storage and transport of samples collected in the field to the laboratory in such a manner to allow purification of intact nucleic acids can prove problematical. Results FTA® databasing paper is widely used in human forensic analysis for the storage of biological samples and for purification of nucleic acids. The possible uses of FTA® databasing paper in the purification of DNA from samples of wildlife origin were examined, with particular reference to problems expected due to the nature of samples of wildlife origin. The processing of blood and tissue samples, the possibility of excess DNA in blood samples due to nucleated erythrocytes, and the analysis of degraded samples were all examined, as was the question of long term storage of blood samples on FTA® paper. Examples of the end use of the purified DNA are given for all protocols and the rationale behind the processing procedures is also explained to allow the end user to adjust the protocols as required. Conclusions FTA® paper is eminently suitable for collection of, and purification of nucleic acids from, biological samples from a wide range of wildlife species. This technology makes the collection and storage of such samples much simpler. PMID:15072582

  10. StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.

    PubMed

    Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2015-11-01

    Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.

  11. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  12. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  13. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator.

    PubMed

    Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua

    2017-08-25

    As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.

  14. Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.

    PubMed

    Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M

    2016-08-21

    Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.

  15. Development and Evaluation of a Calibrator Material for Nucleic Acid-Based Assays for Diagnosing Aspergillosis

    PubMed Central

    Abdul-Ali, Deborah; Loeffler, Juergen; White, P. Lewis; Wickes, Brian; Herrera, Monica L.; Alexander, Barbara D.; Baden, Lindsey R.; Clancy, Cornelius; Denning, David; Nguyen, M. Hong; Sugrue, Michele; Wheat, L. Joseph; Wingard, John R.; Donnelly, J. Peter; Barnes, Rosemary; Patterson, Thomas F.; Caliendo, Angela M.

    2013-01-01

    Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 1010 units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid. PMID:23616459

  16. Development and evaluation of a calibrator material for nucleic acid-based assays for diagnosing aspergillosis.

    PubMed

    Lyon, G Marshall; Abdul-Ali, Deborah; Loeffler, Juergen; White, P Lewis; Wickes, Brian; Herrera, Monica L; Alexander, Barbara D; Baden, Lindsey R; Clancy, Cornelius; Denning, David; Nguyen, M Hong; Sugrue, Michele; Wheat, L Joseph; Wingard, John R; Donnelly, J Peter; Barnes, Rosemary; Patterson, Thomas F; Caliendo, Angela M

    2013-07-01

    Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 10(10) units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid.

  17. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-12-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene.

  18. Acidovorax valerianellae sp. nov., a novel pathogen of lamb's lettuce [Valerianella locusta (L.) Laterr].

    PubMed

    Gardan, Louis; Stead, David E; Dauga, Catherine; Gillis, Moniek

    2003-05-01

    Bacterial spot disease of lamb's lettuce [Valerianella locusta (L.) Laterr.] was first observed in fields in 1991. This new bacterial disease is localized in western France in high-technology field production of lamb's lettuce for the preparation of ready-to-use salad. Nineteen strains isolated in 1992 and 1993 from typical black leaf spots of naturally infected lamb's lettuce were characterized and compared with reference strains of Acidovorax and Delftia. The pathogenicity of the 19 strains was confirmed by artificial inoculation. Biochemical and physiological tests, fatty acid profiles, DNA-DNA hybridization and other nucleic acid-based tests were performed. A numerical taxonomic analysis of the 19 lamb's lettuce strains showed a single homogeneous phenon closely related to previously described phytopathogenic taxa of the genus Acidovorax. DNA-DNA hybridization studies showed that the lamb's lettuce strains were 91-100% related to a representative strain, strain CFBP 4730(T), and constituted a discrete DNA hybridization group, indicating that they belong to the same novel species. Results from DNA-rRNA hybridization, 16S rRNA sequence analysis and fatty acid analysis studies confirmed that this novel species belongs to the beta-subclass of the Proteobacteria and, more specifically, to the family Comamonadaceae and the genus Acidovorax. The name Acidovorax valerianellae sp. nov. is proposed for this novel taxon of phytopathogenic bacteria. The type strain is strain CFBP 4730(T) (= NCPPB 4283(T)).

  19. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  20. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods

    NASA Astrophysics Data System (ADS)

    Pihlasalo, S.; Mariani, L.; Härmä, H.

    2016-03-01

    Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays.Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays. Electronic supplementary information (ESI) available: The labeling of amino modified polystyrene nanoparticles with Eu3+ chelate and the experimental details and results for the optimization of nucleic acid binding protein and for the ratiometric measurement of DNA and RNA with quenching assay. See DOI: 10.1039/c5nr09252c

  1. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    PubMed

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  2. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids.

    PubMed

    Ferapontova, Elena E

    2018-06-12

    Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.

  3. Megasphaera indica sp. nov., an obligate anaerobic bacteria isolated from human faeces.

    PubMed

    Lanjekar, V B; Marathe, N P; Ramana, V Venkata; Shouche, Y S; Ranade, D R

    2014-07-01

    Two coccoid, non-motile, obligately anaerobic, Gram-stain-negative bacteria, occurring singly or in pairs, or as short chains, with a mean size of 1.4-2.5 µm were isolated from the faeces of two healthy human volunteers, aged 26 and 56 years, and were designated NMBHI-10(T) and BLPYG-7, respectively. Both the strains were affiliated to the sub-branch Sporomusa of the class Clostridia as revealed by 16S rRNA gene sequence analysis. The isolates NMBHI-10(T) and BLPYG-7 showed 99.1 and 99.2% 16S rRNA gene sequence similarity, respectively, with Megasphaera elsdenii JCM 1772(T). DNA-DNA hybridization and phenotypic analysis showed that both the strains were distinct from their closest relative, M. elsdenii JCM 1772(T) (42 and 53% DNA-DNA relatedness with NMBHI-10(T) and BLPYG-7, respectively), but belong to the same species (DNA-DNA relatedness of 80.9 % between the isolates). According to DNA-DNA hybridization results, the coccoid strains belong to the same genospecies, and neither is related to any of the recognized species of the genus Megasphaera. Strains NMBHI-10(T) and BLPYG-7 grew in PYG broth at temperatures of between 15 and 40 °C (optimum 37 °C), but not at 45 °C. The strains utilized a range of carbohydrates as sources of carbon and energy including glucose, lactose, cellobiose, rhamnose, galactose and sucrose. Glucose fermentation resulted in the formation of volatile fatty acids, mainly caproic acid and organic acids such as succinic acid. Phylogenetic analysis, specific phenotypic characteristics and/or DNA G+C content also differentiated the strains from each other and from their closest relatives. The DNA G+C contents of strains NMBHI-10(T) and BLPYG-7 are 57.7 and 54.9 mol%, respectively. The major fatty acids were 12 : 0 FAME and 17 : 0 CYC FAME. On the basis of these data, we conclude that strains NMBHI-10(T) and BLPYG-7 should be classified as representing a novel species of the genus Megasphaera, for which the name Megsphaera indica sp. nov. is proposed. The type strain is NMBHI-10(T) ( = DSM 25563(T) = MCC 2481(T)). © 2014 IUMS.

  4. 1,4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akileswaran, L.; Brock, B.J.; Cereghino, J.L.

    1999-02-01

    A cDNA clone encoding a quinone reductase (QR) from the white rot basidiomycete Phanerochaete chrysosporium was isolated and sequenced. The cDNA consisted of 1,007 nucleotides and a poly(A) tail and encoded a deduced protein containing 271 amino acids. The experimentally determined eight-amino-acid N-germinal sequence of the purified QR protein from P. chrysosporium matched amino acids 72 to 79 of the predicted translation product of the cDNA. The M{sub r} of the predicted translation product, beginning with Pro-72, was essentially identical to the experimentally determined M{sub r} of one monomer of the QR dimer, and this finding suggested that QR ismore » synthesized as a proenzyme. The results of in vitro transcription-translation experiments suggested that QR is synthesized as a proenzyme with a 71-amino-acid leader sequence. This leader sequence contains two potential KEX2 cleavage sites and numerous potential cleavage sites for dipeptidyl aminopeptidase. The QR activity in cultures of P. chrysosporium increased following the addition of 2-dimethoxybenzoquinone, vanillic acid, or several other aromatic compounds. An immunoblot analysis indicated that induction resulted in an increase in the amount of QR protein, and a Northern blot analysis indicated that this regulation occurs at the level of the qr mRNA.« less

  5. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1.

    PubMed

    Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P

    2015-11-30

    Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.

  6. Pseudomonas japonica sp. nov., a novel species that assimilates straight chain alkylphenols.

    PubMed

    Pungrasmi, Wiboonluk; Lee, Haeng-Seog; Yokota, Akira; Ohta, Akinori

    2008-02-01

    A bacterial strain, WL(T), which was isolated from an activated sludge, was able to degrade alkylphenols. 16S rDNA sequence analysis indicated that strain WL(T) belonged to the genus Pseudomonas (sensu stricto) and formed a monophyletic clade with the type strain of Pseudomonas graminis and other members in the Pseudomonas putida subcluster with sequence similarity values higher than 97%. Genomic relatedness based on DNA-DNA hybridization of strain WL(T) to these strains is 2-41%. Strain WL(T) contained ubiquinone-9 as the main respiratory quinone, and the G+C content of DNA was 66 mol%. The organism contained hexadecanoic acid (16:0), hexadecenoic acid (16:1) and octadecenoic acid (18:1) as major cellular fatty acids. The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10:0), 3-hydroxydodecanoic acid (3-OH 12:0) and 2-hydroxydodecanoic acid (2-OH 12:0). These results, as well as physiological and biochemical characteristics clearly indicate that the strain WL(T) represents a new Pseudomonas species, for which the name Pseudomonas japonica is proposed. The type strain is strain WL(T) (=IAM 15071T=TISTR 1526T).

  7. Analysis of Oligonucleotide DNA Binding and Sedimentation Properties of Montmorillonite Clay Using Ultraviolet Light Spectroscopy

    PubMed Central

    Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin

    2009-01-01

    Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334

  8. Determination of membrane disruption and genomic DNA binding of cinnamaldehyde to Escherichia coli by use of microbiological and spectroscopic techniques.

    PubMed

    He, Tian-Fu; Zhang, Zhi-Hong; Zeng, Xin-An; Wang, Lang-Hong; Brennan, Charles S

    2018-01-01

    This work was aimed to investigate the antibacterial action of cinnamaldehyde (CIN) against Escherichia coli ATCC 8735 (E. coli) based on membrane fatty acid composition analysis, alterations of permeability and cell morphology as well as interaction with genomic DNA. Analysis of membrane fatty acids using gas chromatography-mass spectrometry (GC-MS) revealed that the proportion of unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were the major fatty acids in plasmic membrane, and their levels were significantly changed after exposure of E. coli to CIN at low concentrations. For example, the proportion of UFA decreased from 39.97% to 20.98%, while the relative content of SFA increased from 50.14% to 67.80% as E. coli was grown in increasing concentrations of CIN (from 0 to 0.88mM). Scanning electron microscopy (SEM) showed that the morphology of E. coli cells to be wrinkled, distorted and even lysed after exposure to CIN, which therefore decreased the cell viability. The binding of CIN to genomic DNA was probed using fluorescence, UV-Visible absorption spectra, circular dichroism, molecular modeling and atomic force microscopy (AFM). Results indicated that CIN likely bound to the minor groove of genomic DNA, and changed the secondary structure and morphology of this biomacromolecule. Therefore, CIN can be deem as a kind of natural antimicrobial agents, which influence both cell membrane and genomic DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    PubMed Central

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.

    2017-01-01

    Abstract Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry–dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a “universal” nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments—Nucleic acids—Mars—Panspermia. Astrobiology 17, 747–760. PMID:28704064

  10. Molecular characterization and phylogenetic analysis of a yak (Bos grunniens) κ-casein cDNA from lactating mammary gland.

    PubMed

    Bai, W L; Yin, R H; Dou, Q L; Jiang, W Q; Zhao, S J; Ma, Z J; Luo, G B; Zhao, Z H

    2011-04-01

    κ-Casein is one of the major proteins in the milk of mammals. It plays an important role in determining the size and specific function of milk micelles. We have previously identified and characterized a genetic variant of yak κ-casein by evaluating genomic DNA. Here, we isolate and characterize a yak κ-casein cDNA harboring the full-length open reading frame (ORF) from lactating mammary gland. Total RNA was extracted from mammary tissue of lactating female yak, and the κ-casein cDNA were synthesized by RT-PCR technique, then cloned and sequenced. The obtained cDNA of 660-bp contained an ORF sufficient to encode the entire amino acid sequence of κ-casein precursor protein consisting of 190 amino acids with a signal peptide of 21 amino acids. Yak κ-casein has a predicted molecular mass of 19,006.588 Da with a calculated isoelectric point of 7.245. Compared with the corresponding sequences in GenBank of cattle, buffalo, sheep, goat, Arabian camel, horse, and rabbit, yak κ-casein sequence had identity of 64.76-98.78% in cDNA, and identity of 44.79-98.42% and similarity of 53.65-98.42% in deduced amino acids, revealing a high homology with the other livestock species. Based on κ-casein cDNA sequences, the phylogenetic analysis indicated that yak κ-casein had a close relationship with that of cattle. This work might be useful in the genetic engineering researches for yak κ-casein.

  11. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan.

    PubMed

    Denner, E B; Paukner, S; Kämpfer, P; Moore, E R; Abraham, W R; Busse, H J; Wanner, G; Lubitz, W

    2001-05-01

    Strain EDIVT, an exopolysaccharide-producing bacterium, was subjected to polyphasic characterization. The bacterium produced copious amounts of an extracellular polysaccharide, forming slimy, viscous, intensely yellow-pigmented colonies on Czapek-Dox (CZD) agar. The culture fluids of the liquid version of CZD medium were highly viscous after cultivation for 5 d. Cells of strain EDIVT were Gram-negative, catalase-positive, oxidase-negative, nonspore-forming, rod-shaped and motile. Comparisons of 16S rDNA gene sequences demonstrated that EDIVT clusters phylogenetically with the species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (64.5 mol%), the presence of ubiquinone Q-10, the presence of 2-hydroxymyristic acid (14:0 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the detection of sym-homospermidine as the major component in the polyamine pattern, together with the presence of sphingoglycolipid, supported this delineation. 16S rDNA sequence analysis indicated that strain EDIVT is most closely related (99.4% similarity) to Sphingomonas trueperi LMG 2142T. DNA-DNA hybridization showed that the level of relatedness to S. trueperi is only 45.5%. Further differences were apparent in the cellular fatty acid profile, the polar lipid pattern, the Fourier-transform infrared spectrum and whole-cell proteins and in a number of biochemical characteristics. On the basis of the estimated phylogenetic position derived from 16S rDNA sequence data, DNA-DNA reassociation and phenotypic differences, strain EDIVT (= CIP 106154T = DSM 13101T) was recognized as a new species of Sphingomonas, for which the name Sphingomonas pituitosa sp. nov. is proposed. A component analysis of the exopolysaccharide (named PS-EDIV) suggested that it represents a novel type of sphingan composed of glucose, rhamnose and an unidentified sugar. Glucuronic acid, which is commonly found in sphingans, was absent. The mean molecular mass of PS-EDIV was approximately 3 x 10(6) Da.

  12. Quantitative Analysis of Nucleic Acid Stability with Ligands Under High Pressure to Design Novel Drugs Targeting G-Quadruplexes.

    PubMed

    Takahashi, Shuntaro; Sugimoto, Naoki

    2017-09-18

    Nucleic acids (DNA and RNA) can form various non-canonical structures. Because some serious diseases are caused by the conformational change of G-quadruplex DNA structures, the development of ligands that bind and stabilize G-quadruplex DNA is of interest to the field of nucleic acid chemistry. Volumetric changes (ΔV) in the biomolecular reaction include the structural change of biomolecules and hydration behaviors, which provide information about the tertiary interaction between G-quadruplex DNA and ligands. Thus, it is valuable to investigate ΔV values to understand the mechanism of interaction between non-canonical structures and their ligands. This unit describes methods that can be used to quantitatively analyze the interaction between G-quadruplex DNA and ligands by using high-pressure UV melting. The combination of thermodynamic parameters (ΔG, ΔH, ΔS, and ΔV) is a powerful tool to elucidate the mechanism of ligand binding to G-quadruplex without real structural analysis by NMR and X-ray spectroscopy, and gives useful information to design novel drugs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed Central

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-01-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184

  14. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis

    PubMed Central

    Jakubec, David; Laskowski, Roman A.; Vondrasek, Jiri

    2016-01-01

    Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue—amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein—DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties. PMID:27384774

  15. Cell transformation mediated by chromosomal deoxyribonucleic acid of polyoma virus-transformed cells.

    PubMed Central

    Della Valle, G; Fenton, R G; Basilico, C

    1981-01-01

    To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments. Images PMID:6100965

  16. DNA stable-isotope probing (DNA-SIP).

    PubMed

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  17. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.)Doty

    PubMed Central

    Gupta, Vishal; Kumari, Puja; Reddy, CRK

    2015-01-01

    Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae. PMID:25688248

  18. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  19. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    PubMed Central

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  20. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  1. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zhao, Liangliang; Wu, Xia; Huang, Fei; Wang, Minqin; Liu, Xiaodan

    2014-03-01

    It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed. The detection limits for the nucleic acids (S/N = 3) were reduced to the ng mL-1 level. The interaction mechanism of the AgNPs-fish sperm DNA (fsDNA)-Qu system was also investigated in this paper. This complex system of Qu and AgNPs was also successfully used for the detection of nucleic acids in agarose gel electrophoresis analysis. Preliminary results indicated that AgNPs also helped to improve sensitivity in the fluorescence image analysis of Qu combined with cellular contents in Arabidopsis thaliana protoplasts.

  2. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  3. Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part I: maternal FADS2 genotype and DNA methylation correlate with polyunsaturated fatty acid status in toddlers: an exploratory analysis.

    PubMed

    Lupu, Daniel S; Cheatham, Carol L; Corbin, Karen D; Niculescu, Mihai D

    2015-11-01

    Polyunsaturated fatty acid metabolism in toddlers is regulated by a complex network of interacting factors. The contribution of maternal genetic and epigenetic makeup to this milieu is not well understood. In a cohort of mothers and toddlers 16 months of age (n = 65 mother-child pairs), we investigated the association between maternal genetic and epigenetic fatty acid desaturase 2 (FADS2) profiles and toddlers' n-6 and n-3 fatty acid metabolism. FADS2 rs174575 variation and DNA methylation status were interrogated in mothers and toddlers, as well as food intake and plasma fatty acid concentrations in toddlers. A multivariate fit model indicated that maternal rs174575 genotype, combined with DNA methylation, can predict α-linolenic acid plasma concentration in all toddlers and arachidonic acid concentrations in boys. Arachidonic acid intake was predictive for its plasma concentration in girls, whereas intake of 3 major n-3 species (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were predictive for their plasma concentrations in boys. FADS2 genotype and DNA methylation in toddlers were not related to plasma concentrations or food intakes, except for CpG8 methylation. Maternal FADS2 methylation was a predictor for the boys' α-linolenic acid intakes. This exploratory study suggests that maternal FADS2 genetic and epigenetic status could be related to toddlers' polyunsaturated fatty acid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase.

    PubMed Central

    Newsome, A L; McLean, J W; Lively, M O

    1992-01-01

    Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common. Images Fig. 1. PMID:1546959

  5. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver.

    PubMed

    Ehara, Tatsuya; Kamei, Yasutomi; Yuan, Xunmei; Takahashi, Mayumi; Kanai, Sayaka; Tamura, Erina; Tsujimoto, Kazutaka; Tamiya, Takashi; Nakagawa, Yoshimi; Shimano, Hitoshi; Takai-Igarashi, Takako; Hatada, Izuho; Suganami, Takayoshi; Hashimoto, Koshi; Ogawa, Yoshihiro

    2015-03-01

    The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid β-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid β-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  7. Prevotella histicola sp. nov., isolated from the human oral cavity.

    PubMed

    Downes, Julia; Hooper, Samuel J; Wilson, Melanie J; Wade, William G

    2008-08-01

    Three strains of anaerobic, variably pigmenting, Gram-negative bacilli isolated from human oral mucosal tissue were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group. 16S rRNA gene sequence analysis and DNA-DNA hybridization revealed that the strains constituted a novel group within the genus Prevotella, being most closely related to Prevotella melaninogenica and Prevotella veroralis. A novel species, Prevotella histicola sp. nov., is proposed to accommodate these strains. Prevotella histicola is saccharolytic and produces acetic acid and succinic acid as major end products of fermentation and trace to minor amounts of isovaleric acid and lactic acid. The G+C content of the DNA of the type strain is 43 mol%. The type strain of Prevotella histicola is T05-04T (=DSM 19854T=CCUG 55407T).

  8. Autonomous replication of nucleic acids by polymerization/nicking enzyme/DNAzyme cascades for the amplified detection of DNA and the aptamer-cocaine complex.

    PubMed

    Wang, Fuan; Freage, Lina; Orbach, Ron; Willner, Itamar

    2013-09-03

    The progressive development of amplified DNA sensors and aptasensors using replication/nicking enzymes/DNAzyme machineries is described. The sensing platforms are based on the tailoring of a DNA template on which the recognition of the target DNA or the formation of the aptamer-substrate complex trigger on the autonomous isothermal replication/nicking processes and the displacement of a Mg(2+)-dependent DNAzyme that catalyzes the generation of a fluorophore-labeled nucleic acid acting as readout signal for the analyses. Three different DNA sensing configurations are described, where in the ultimate configuration the target sequence is incorporated into a nucleic acid blocker structure associated with the sensing template. The target-triggered isothermal autonomous replication/nicking process on the modified template results in the formation of the Mg(2+)-dependent DNAzyme tethered to a free strand consisting of the target sequence. This activates additional template units for the nucleic acid self-replication process, resulting in the ultrasensitive detection of the target DNA (detection limit 1 aM). Similarly, amplified aptamer-based sensing platforms for cocaine are developed along these concepts. The modification of the cocaine-detection template by the addition of a nucleic acid sequence that enables the autonomous secondary coupled activation of a polymerization/nicking machinery and DNAzyme generation path leads to an improved analysis of cocaine (detection limit 10 nM).

  9. Evaluation of antimutagenic and protective effects of Parkinsonia aculeata L. leaves against H2O2 induced damage in pBR322 DNA.

    PubMed

    Sharma, Sonia; Sharma, Sushant; Vig, Adarsh Pal

    2016-01-01

    The in vitro antimutagenic and DNA protecting potential of organic (methanol, hexane, n-butanol) and aqueous extract/fractions of Parkinsonia aculeata L. (Fabaceae) was investigated by employing Ames assay and DNA nicking assay. DNA damage by hydroxyl radicals was effectively inhibited by all the extract/fractions. A marked antimutagenic effect was observed against 4-Nitro-o-phenylenediamine and sodium azide (direct acting mutagens) and 2-Aminofluorene (indirect acting mutagen) in TA98 and TA100 strains of Salmonella typhimurium. In Ames assay, two different modes of experiments i.e. pre-incubation and co-incubation were performed and it was observed that all the extract/fractions showed better results in the pre-incubation as compared to co- incubation mode. Out of all the extract/fractions tested, n-butanol fraction was found to be the most effective in preventing DNA damage and inhibiting mutagenesis. UHPLC analysis of extract/fractions revealed presence of polyphenols such as gallic acid, catechin, chlorogenic acid, caffeic acid, umbelliferone, coumaric acid, rutin, and ellagic acid etc. DNA protecting and antimutagenic activity of this plant could be attributed to presence of these polyphenols. The results of this study indicate the presence of potent antioxidant factors in Parkinsonia aculeata L, which are being explored further for their mechanism of action.

  10. Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

    PubMed Central

    Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.

    2011-01-01

    Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074

  11. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  12. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications

    PubMed Central

    Mo, Liuting; Lu, Chun-Hua; Fu, Ting

    2016-01-01

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955

  13. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  14. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    PubMed

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  15. Amino Acid Interaction (INTAA) web server.

    PubMed

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities.

    PubMed

    Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E

    2012-11-20

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.

  17. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities

    PubMed Central

    2012-01-01

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources. PMID:23168231

  18. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  19. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  20. Acrocarpospora gen. nov., a new genus of the order Actinomycetales.

    PubMed

    Tamura, T; Suzuki, S; Hatano, K

    2000-05-01

    The taxonomic position of two actinomycete strains isolated from soil was studied. The isolates contained glutamic acid, alanine and meso-diaminopimelic acid as cell-wall amino acids and menaquinone MK-9(H4) and madurose in the whole-cell hydrolysate. Phylogenetic analysis revealed that the isolates belonged to the family Streptosporangiaceae, but not to any known genus, and formed a monophyletic cluster with Streptosporangium corrugatum. On the basis of morphological characteristics, phylogenetic analysis and DNA-DNA hybridization, the name Acrocarpospora gen. nov. is proposed for a new genus containing the isolates and Streptosporangium corrugatum, and Acrocarpospora pleiomorpha sp. nov. R-31T (= IFO 16267T), Acrocarpospora macrocephala sp. nov. R-55T (=IFO 16266T) and Acrocarpospora corrugata comb. nov. IFO 13972T are described.

  1. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  2. Design of sphingomonad-detecting probes for a DNA array, and its application to investigate the behavior, distribution, and source of Rhizospherous sphingomonas and other sphingomonads inhabiting an acid sulfate soil paddock in Kalimantan, Indonesia.

    PubMed

    Hashidoko, Yasuyuki; Kitagawa, Emiko; Iwahashi, Hitoshi; Purnomo, Erry; Hasegawa, Toshihiro; Tahara, Satoshi

    2007-02-01

    Throughout Central and South Kalimantan, Indonesia, strongly acidic soil (pH 2.1-3.7) is widely distributed, and the local acidic soil-tolerant plants, including local rice varieties, often possess sphingomonads in their rhizosphere and rhizoplane. To investigate the behavior of sphingomonads inhabiting the rhizosphere of such acid-tolerant plants, we designed 13 different DNA array probes (each of 72 mer) specific to a group of sphingomonads, using a hypervariable V6 region of the 16S rRNA gene. This DNA array system was used preliminarily for an analysis of microfloral dynamisms, particularly of sphingomonads, in acidic paddock ecosystems, and the results suggest that the acid-tolerant local rice shares rhizospherous sphingomonads with wild Juncus sp., a predominant weed that thrives in acidic paddocks during the off-season for rice farming. This tentative conclusion supports the bio-rationality of the traditional rice farming system with respect to functional rhizobacteria.

  3. Use of FTA cards for the storage of breast carcinoma nucleic acid on fine-needle aspiration samples.

    PubMed

    Peluso, Anna Lucia; Cascone, Anna Maria; Lucchese, Lucrezia; Cozzolino, Immacolata; Ieni, Antonio; Mignogna, Chiara; Pepe, Stefano; Zeppa, Pio

    2015-10-01

    The preservation and storage of nucleic acids is important for DNA molecular techniques. The material obtained by fine-needle aspiration (FNA) is often scanty and can not be wasted. FTA cards are filter papers that immobilize and stabilize nucleic acids and can be stored at room temperature. The current study evaluated whether nucleic acids of breast carcinoma cells, obtained by FNA in a clinical setting, may be collected, stored, and preserved on FTA cards. Thirty breast carcinoma, 5 non-Hodgkin lymphoma (NHL), and 5 benign reactive lymph node (RLN) cell samples obtained by FNA were stored at -80 °C and on FTA cards. DNA extraction and polymerase chain reaction were performed on cells at -80 °C and on 2 punched disks of FTA cards. Fifty nanograms of extracted DNA from both sample types were used to amplify the Janus Kinase 2 (JAK2) gene. The mean value of DNA extracted from breast carcinoma cells was 28.19 ng/µL for that stored at -80 °C and 3.28 ng/µL for that stored on FTA cards. Agarose gel analysis demonstrated expected bands of DNA in 29 cases (97%) with both methods. The mean value of DNA extracted from NHL and RLN samples was 37.54 ng/µL and 4.28 ng/µL, respectively, and agarose gel analysis demonstrated bands of high molecular weight DNA in both methods. Significant differences in DNA yield were found between storage at -80 °C and FTA cards (P<.0001), but no differences were detected between 260/280 nm ratios in breast carcinoma and NHL/RLN samples. FTA cards can be conveniently used for the storage of breast carcinoma cells obtained by FNA, thus providing a reliable alternative to traditional methods. © 2015 American Cancer Society.

  4. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  5. Molecular cloning and functional characterization of a glucose transporter (CsGLUT) in Clonorchis sinensis.

    PubMed

    Ahn, Seong Kyu; Cho, Pyo Yun; Na, Byoung-Kuk; Hong, Sung-Jong; Nam, Ho-Woo; Sohn, Woon-Mok; Ardelli, Bernadette F; Park, Yun-Kyu; Kim, Tong-Soo; Cha, Seok Ho

    2016-01-01

    A complementary DNA (cDNA) encoding a glucose transporter of Clonorchis sinensis (CsGLUT) was isolated from the adult C. sinensis cDNA library. The open reading frame of CsGLUT cDNA consists of 1653 base pairs that encode a 550-amino acid residue protein. Hydropathy analysis suggested that CsGLUT possess 12 putative membrane-spanning domains. The Northern blot analysis result using poly(A)(+)RNA showed a strong band at ~2.1 kb for CsGLUT. When expressed in Xenopus oocytes, CsGLUT mediated the transport of radiolabeled deoxy-D-glucose in a time-dependent but sodium-independent manner. Concentration-dependency results showed saturable kinetics and followed the Michaelis-Menten equation. Nonlinear regression analyses yielded a Km value of 588.5 ± 53.0 μM and a Vmax value of 1500.0 ± 67.5 pmol/oocyte/30 min for [1,2-(3)H]2-deoxy-D-glucose. No trans-uptakes of bile acid (taurocholic acid), amino acids (tryptophan and arginine), or p-aminohippuric acid were observed. CsGLUT-mediated transport of deoxyglucose was significantly and concentration-dependently inhibited by radio-unlabeled deoxyglucose and D-glucose. 3-O-Methylglucose at 10 and 100 μM inhibited deoxyglucose uptake by ~50 % without concentration dependence. No inhibitory effects by galactose, mannose, and fructose were observed. This work may contribute to the molecular biological study of carbohydrate metabolism and new drug development of C. sinensis.

  6. Human brain factor 1, a new member of the fork head gene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, D.B.; Wiese, S.; Burfeind, P.

    1994-06-01

    Analysis of cDNA clones that cross-hybridized with the fork head domain of the rat HNF-3 gene family revealed 10 cDNAs from human fetal brain and human testis cDNA libraries containing this highly conserved DNA-binding domain. Three of these cDNAs (HFK1, HFK2, and HFK3) were further analyzed. The cDNA HFK1 has a length of 2557 nucleotides and shows strong homology at the nucleotide level (91.2%) to brain factor 1 (BF-1) from rat. The HFK1 cDNA codes for a putative 476 amino acid protein. The homology to BF-1 from rat in the coding region at the amino acid level is 87.5%. Themore » fork head homologous region includes 111 amino acids starting at amino acid 160 and has a 97.5% homology to BF-1. Southern hybridization revealed that HFK1 is highly conserved among mammalian species and possibly birds. Northern analysis with total RNA from human tissues and poly(A)-rich RNA from mouse revealed a 3.2-kb transcript that is present in human and mouse fetal brain and in adult mouse brain. In situ hybridization with sections of mouse embryo and human fetal brain reveals that HFK1 expression is restricted to the neuronal cells in the telencepthalon, with strong expression being observed in the developing dentate gyrus and hippocampus. HFK1 was chromosomally localized by in situ hybridization to 14q12. The cDNA clones HFK2 and HFK3 were analyzed by restriction analysis and sequencing. HFK2 and HFK3 were found to be closely related but different from HFK1. Therefore, it would appear that HFK1, HFK2, HFK3, and BF-1 form a new fork head related subfamily. 33 refs., 6 figs.« less

  7. Characterization of cDNA encoding molt-inhibiting hormone of the crab, Cancer pagurus; expression of MIH in non-X-organ tissues.

    PubMed

    Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C

    2001-10-31

    Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.

  8. Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast

    PubMed Central

    Dong, Biqin; Almassalha, Luay M.; Stypula-Cyrus, Yolanda; Urban, Ben E.; Chandler, John E.; Nguyen, The-Quyen; Sun, Cheng; Zhang, Hao F.; Backman, Vadim

    2016-01-01

    Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging. PMID:27535934

  9. MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity.

    PubMed

    Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E

    2016-01-04

    Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Species-specific identification of commercial probiotic strains.

    PubMed

    Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S

    2002-05-01

    Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.

  11. Isolation of PCR quality microbial community DNA from heavily contaminated environments.

    PubMed

    Gunawardana, Manjula; Chang, Simon; Jimenez, Abraham; Holland-Moritz, Daniel; Holland-Moritz, Hannah; La Val, Taylor P; Lund, Craig; Mullen, Madeline; Olsen, John; Sztain, Terra A; Yoo, Jennifer; Moss, John A; Baum, Marc M

    2014-07-01

    Asphalts, biochemically degraded oil, contain persistent, water-soluble compounds that pose a significant challenge to the isolation of PCR quality DNA. The adaptation of existing DNA purification protocols and commercial kits proved unsuccessful at overcoming this hurdle. Treatment of aqueous asphalt extracts with a polyamide resin afforded genomic microbial DNA templates that could readily be amplified by PCR. Physicochemically distinct asphalt samples from five natural oil seeps successfully generated the expected 291 bp amplicons targeting a region of the 16S rRNA gene, illustrating the robustness of the method. DNA recovery yields were in the 50-80% range depending on how the asphalt sample was seeded with exogenous DNA. The scope of the new method was expanded to include soil with high humic acid content. DNA from soil samples spiked with a range of humic acid concentrations was extracted with a commercial kit followed by treatment with the polyamide resin. The additional step significantly improved the purity of the DNA templates, especially at high humic acid concentrations, based on qPCR analysis of the bacterial 16S rRNA genes. The new method has the advantages of being inexpensive, simple, and rapid and should provide a valuable addition to protocols in the field of petroleum and soil microbiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [The Watson-Crick model of the DNA doublehelix. The history of the discovery and the role of the protein paradigm].

    PubMed

    Hagemann, Rudolf

    2007-01-01

    At the beginning, the two fundamental papers by Watson and Crick published in 1953 are presented. Subsequently, the main phases of protein and nucleic acids research, starting in the middle of the 19th century, are shortly reviewed. It is outlined, how the 'protein-paradigm' was gradually developed and ultimately became widely accepted. It is then described how Caspersson in 1936 newly raised the question what the chemical nature of genes was: proteins or nucleic acids ? In the main part of this report six lines of research are reviewed, the results of which led to the demise of the 'protein paradigm', the creation of the Watson-Crick model of the DNA and the elaboration of the mechanism of DNA replication: (a) mutation experiments with UV and determination of the UV action spectrum, (b) determination of the chemical identity of the transforming agent in bacteria, (c) detailed chemical analysis of the DNA of different organisms, (d) molecular investigation of the infection of bacteria by bacteriophages, (e) X-ray analysis of DNA fibers, (f) model building and theoretical treatment of all data obtained. In this article, the factors promoting and inhibiting scientific progress in this field are described (and, above all, the relations between scientists with fixated concepts). The results from these lines of research led to the recognition of the decisive role of nucleic acids as the carriers of genetic information and, in this way, formally established the 'nucleic acid paradigm'. Finally the question is discussed why Watson and Crick found the right solution for the DNA structure (and not one of their competitors).

  13. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins.

    PubMed

    Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T

    1990-01-05

    We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.

  14. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA

    PubMed Central

    Wienken, Christoph J.; Baaske, Philipp; Duhr, Stefan; Braun, Dieter

    2011-01-01

    Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique’s versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing. PMID:21297115

  15. Complete cDNA sequence and amino acid analysis of a bovine ribonuclease K6 gene.

    PubMed

    Pietrowski, D; Förster, M

    2000-01-01

    The complete cDNA sequence of a ribonuclease k6 gene of Bos Taurus has been determined. It codes for a protein with 154 amino acids and contains the invariant cysteine, histidine and lysine residues as well as the characteristic motifs specific to ribonuclease active sites. The deduced protein sequence is 27 residues longer than other known ribonucleases k6 and shows amino acids exchanges which could reflect a strain specificity or polymorphism within the bovine genome. Based on sequence similarity we have termed the identified gene bovine ribonuclease k6 b (brk6b).

  16. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry.

    PubMed

    Aybastıer, Önder; Dawbaa, Sam; Demir, Cevdet

    2018-01-01

    Phenolic compounds have been studied elaborately for their efficacy to improve health and to protect against a wide variety of diseases. Herein this study, different analysis methods were implemented to evaluate the antioxidant properties of catechin and cyanidin using their standard substances and as they found in the grape seeds extracts. Total phenol contents were 107.39±8.94mg GAE/g dw of grape seeds for grape seed extract (GSE) and 218.32±10.66mg GAE/g dw of grape seeds for acid-hydrolyzed grape seed extract (AcGSE). The extracts were analyzed by HPLC-DAD system and the results showed the presence of catechin, gallic acid, chlorogenic acid and ellagic acid in the processed methanolic extract and cyanidin, gallic acid and ellagic acid in the processed acidified methanolic extract. The protective abilities of catechin and cyanidin were tested against the oxidation of DNA. The results showed that cyanidin has better protection of DNA against oxidation than catechin. GSE and AcGSE were revealed to inhibit the oxidatively induced DNA damage. GSE decreased about 57% of damage caused by the Fenton control sample. This study could show new aspects of the antioxidant profiles of cyanidin and catechin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle.

    PubMed

    Lee, Geun-Hye; Rhee, Moon-Soo; Chang, Dong-Ho; Lee, Jonghwan; Kim, Seil; Yoon, Min Ho; Kim, Byoung-Chan

    2013-06-01

    A strictly anaerobic, Gram-negative, non-spore-forming bacterium, designated GH1(T), was isolated from the rumen of Korean native cattle (HanWoo). Cells were straight to slightly curved rods (2.0-4.5 µm long) and were motile by peritrichous flagella. The isolate grew at 30-45 °C (optimum 40 °C), at pH 5.5-6.5 (optimum pH 6.0) and with up to 3.5% (w/v) NaCl. Strain GH1(T) produced acid from d-glucose, d-ribose and d-xylose, with butyric acid being the major end product. The genomic DNA G+C content was 54.6 mol%. Based on comparative 16S rRNA gene sequence analysis, strain GH1(T) was most closely related to Oscillibacter valericigenes Sjm18-20(T) (97.3% 16S rRNA gene sequence similarity). DNA-DNA hybridization between strain GH1(T) and O. valericigenes DSM 18026(T) showed 24% reassociation. The major fatty acids were iso-C13:0 (13.0%), iso-C15:0 (17.6%), anteiso-C15:0 (8.4%) and C14:0 (4.1%), and the cellular fatty acid methyl esters as dimethylacetals (DMAs) were C16:0 DMA (17.8%), iso-C15:0 DMA (15.2%) and C14:0 DMA (4.52%). The cell-wall peptidoglycan of strain GH1(T) contained meso-diaminopimelic acid and the major cell-wall sugar was galactose. Based on 16S rRNA gene sequence similarity, phylogenetic analysis, DNA G+C content, DNA-DNA relatedness and distinct phenotypic characteristics, strain GH1(T) is classified in the genus Oscillibacter as a member of a novel species, for which the name Oscillibacter ruminantium sp. nov. is proposed. The type strain is GH1(T) (=KCTC 15176(T)=NBRC 108824(T)=JCM 18333(T)).

  18. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    PubMed

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A 620 /A 520 ) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10 -11  M to 9.0 × 10 -10  M, and as low as 1.0 × 10 -11  M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10 -8  M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Potential Diagnostic and Prognostic Value of Lymphocytic Mitochondrial DNA Deletion in Relation to Folic Acid Status in HCV-Related Hepatocellular Carcinoma

    PubMed Central

    Zekri, Abdel Rahman N; Salama, Hosny; Medhat, Eman; Hamdy, Sherif; Hassan, Zeinab K; Bakr, Yasser Mabrouk; Youssef, Amira Salah El - Din; Saleh, Doaa; Saeed, Ramy; Omran, Dalia

    2017-01-01

    Objective: We assessed the possibility of using mitochondrial (mt) DNA deletion as a molecular biomarker for disease progression in HCV-related hepatocellular carcinoma (HCC) and to identify its association with folic acid status. Methods: Serum folic acid and lymphocytic mtDNA deletions were assessed in 90 patients; 50 with HCC, 20 with liver cirrhosis (LC), and 20 with chronic hepatitis C (CHC) compared to 10 healthy control subjects. The diagnostic accuracy of mtDNA deletions frequency was evaluated using receiver-operating characteristic (ROC) curve analysis Survival analysis was performed using the Kaplan-Meier method. Differences in the survival rates were compared using log-rank test. Result: Our data revealed a significant elevation of mtDNA deletions frequency in the HCC group compared to the other groups (P-value <0.01). Also, our data showed a significant correlation between folate deficiency and high frequency of mtDNA deletions in patients with HCV-related HCC when compared to the other groups (r= -0.094 and P-value <0.05). Moreover, the size of the hepatic focal lesion in the HCC patients was positively correlated with mtDNA deletions (r= 0.09 and P-value <0.01). The median survival time for the HCC patients with high frequency of mtDNA deletions (∆Ct ≥3.9; 5.7+ 0.6 months) was significantly shorter than those with low mtDNA deletions frequency (∆Ct < 3.9; 11.9+ 0.04 months, P-value <0.01). Conclusion: Our data provided an evidence that lymphocytic mtDNA deletion could be used as non-invasive biomarker for disease progression and patients’ survival in HCV-related HCC. Also, our findings implied a causal relationship between the folate deficiency and the high mtDNA deletions frequency among Egyptian patients with HCV related HCC. PMID:28952275

  20. Biomarkers in Cerebrospinal Fluid: Analysis of Cell-Free Circulating Mitochondrial DNA by Digital PCR.

    PubMed

    Podlesniy, Petar; Trullas, Ramon

    2018-01-01

    Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.

  1. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490

  2. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones.

    PubMed

    Yu, Shunwu; Luo, Lijun

    2008-12-01

    Pyridoxal kinase is key enzyme for the biosynthesis of pyridoxal 5'-phosphate, the biologically active form of vitamin B6, in the salvage pathway. A pyridoxal kinase gene, BnPKL (GenBank accession No. DQ463962), was isolated from oilseed rape (Brassica napus L.) following water stress through rapid amplification of complementary DNA (cDNA) ends. The results showed that the gene had two splice variants: PKL and PKL2. PKL, the long cDNA, encodes a 334 amino acid protein with a complete ATP-binding site, pyridoxal kinase-binding site and dimer interface site of a pyridoxal kinase, while PKL2, the short cDNA, lacked a partial domain. Southern blot showed that there were two copies in Brassica napus. The expression of BnPKL cDNA could rescue the mutant phenotype of Escherichia coli defective in pyridoxal kinase. Real-time reverse transcription-polymerase chain reaction revealed that the relative abundance of two transcripts are modulated by development and environmental stresses. Abscisic acid and NaCl were inclined to decrease PKL expression, but H2O2 and cold temperatures induced the PKL expression. In addition, the PKL expression could be transiently induced by jasmonate acid at an early stage, abscisic acid, salicylic acid and jasmonate acid enhanced the PKL expression in roots. Our results demonstrated that BnPKL was a pyridoxal kinase involved in responses to biotic and abiotic stresses.

  3. [Biodiversity of phosphate-dissolving and plant growth--promoting endophytic bacteria of two crops].

    PubMed

    Huang, Jing; Sheng, Xiafang; He, Linyan

    2010-06-01

    We isolated and characterized phosphate-dissolving endophytic bacteria from two commonly cultivated crops. Phosphate-dissolving endophytic bacteria were isolated by plating and screening from interior tissues of rape and maize plants on NBRIP medium with tricalcium phosphate as sole phosphate source. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-indoleacetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase production,and further classified by restriction analysis of 16S rDNA. Eleven typical strains were identified by 16S rDNA sequence analysis. Thirty-two phosphate-dissolving endophytic bacteria were isolated from maize and rape plants and classified by restriction analysis of 16S rDNA in 8 different taxonomic groups at the similarity level of 76%. All the isolates could release phosphate from tricalcium phosphate and decrease the pH of the medium. The maximum phosphate content (537.6 mg/L) in the solution was obtained with strain M1L5. Thirteen isolates isolated from rape produced indoleacetic acid and siderophore, 68.4% and 63.2% of the strains isolated from maize produced indoleacetic acid and siderophore,respectively. 63.2% of the strains isolated from maize were able to grow on 1-aminocyclopropane-1-carboxylic acid as the sole nitrogen source. The eleven strains belonged to five different genera including Pantoea, Pseudomonas, Burkholderia, Acinetobacter and Ralstonia. Phosphate-dissolving endophytic bacteria isolated from rape and maize plants have abundant characteristics relative to promoting plant growth and genetic diversity.

  4. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar.

    PubMed

    Iino, Takao; Suzuki, Rei; Tanaka, Naoto; Kosako, Yoshimasa; Ohkuma, Moriya; Komagata, Kazuo; Uchimura, Tai

    2012-07-01

    Two novel acetic acid bacteria, strains G5-1(T) and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Diospyros kaki Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1(T) and I5-1 formed a distinct subline in the genus Gluconacetobacter and were closely related to Gluconacetobacter swingsii DST GL01(T) (99.3% 16S rRNA gene sequence similarity). The isolates showed 96-100% DNA-DNA relatedness with each other, but <53% DNA-DNA relatedness with closely related members of the genus Gluconacetobacter. The isolates could be distinguished from closely related members of the genus Gluconacetobacter by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30% (w/v) d-glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1(T) and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1(T) and I5-1 are assigned to a novel species, for which the name Gluconacetobacter kakiaceti sp. nov. is proposed; the type strain is G5-1(T) (=JCM 25156(T)=NRIC 0798(T)=LMG 26206(T)).

  5. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    PubMed

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  6. Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).

    PubMed

    Ken, C F; Lin, C T; Wu, J L; Shaw, J F

    2000-06-01

    A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.

  7. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans.

    PubMed

    Cleenwerck, Ilse; Camu, Nicholas; Engelbeen, Katrien; De Winter, Tom; Vandemeulebroecke, Katrien; De Vos, Paul; De Vuyst, Luc

    2007-07-01

    Twenty-three acetic acid bacteria, isolated from traditional heap fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. The isolates were catalase-positive, oxidase-negative, Gram-negative rods. They oxidized ethanol to acetic acid and were unable to produce 2-ketogluconic acid, 5-ketogluconic acid and 2,5-diketogluconic acid from glucose; therefore, they were tentatively identified as Acetobacter species. 16S rRNA gene sequencing and phylogenetic analysis confirmed their position in the genus Acetobacter, with Acetobacter syzygii and Acetobacter lovaniensis as their closest phylogenetic neighbours. (GTG)(5)-PCR fingerprinting grouped the strains in a cluster that did not contain any type strains of members of the genus Acetobacter. DNA-DNA hybridization with the type strains of all recognized Acetobacter species revealed DNA-DNA relatedness values below the species level. The DNA G+C contents of three selected strains were 56.9-57.3 mol%. The novel strains had phenotypic characteristics that enabled them to be differentiated from phylogenetically related Acetobacter species, i.e. they were motile, did not produce 2-ketogluconic acid or 5-ketogluconic acid from glucose, were catalase-positive and oxidase-negative, grew on yeast extract with 30 % glucose, grew on glycerol (although weakly) but not on maltose or methanol as carbon sources, and did not grow with ammonium as sole nitrogen source and ethanol as carbon source. Based on the genotypic and phenotypic data, the isolates represent a novel species of the genus Acetobacter for which the name Acetobacter ghanensis sp. nov. is proposed. The type strain is R-29337(T) (=430A(T)=LMG 23848(T)=DSM 18895(T)).

  8. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing.

    PubMed

    Permenter, Jessalyn; Ishwar, Arjun; Rounsavall, Angie; Smith, Maddie; Faske, Jennifer; Sailey, Charles J; Alfaro, Maria P

    2015-12-01

    Proper storage of whole blood is crucial for isolating nucleic acids from leukocytes and to ensure adequate performance of downstream assays in the molecular diagnostic laboratory. Short-term and long-term storage recommendations are lacking for successful isolation of genomic DNA (gDNA). Container type (EDTA or heparin), temperature (4 °C and room temperature) and time (1-130 days) were assessed as criterion for sample acceptance policies. The percentage of integrated area (%Ti) between 150 and 10,000 bp from the 2200 TapeStation electropherogram was calculated to measure gDNA degradation. Refrigerated EDTA samples yielded gDNA with low %Ti (high quality). Heparinized samples stored at room temperature yielded gDNA of worst quality. Downstream analysis demonstrated that the quality of the gDNA correlated with the quality of the data; samples with high %Ti generated significantly lower levels of high molecular weight amplicons. Recommendations from these analyses include storing blood samples intended for nucleic acid isolation in EDTA tubes at 4 °C for long term storage (>10 days). gDNA should be extracted within 3 days when blood is stored at room temperature regardless of the container. Finally, refrigerated heparinized samples should not be stored longer than 9 days if expecting high quality gDNA isolates. Laboratories should consider many factors, in addition to the results obtained herein, to update their policies for sample acceptance for gDNA extraction intended for molecular genetic testing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sequencing, bioinformatic characterization and expression pattern of a putative amino acid transporter from the parasitic cestode Echinococcus granulosus.

    PubMed

    Camicia, Federico; Paredes, Rodolfo; Chalar, Cora; Galanti, Norbel; Kamenetzky, Laura; Gutierrez, Ariana; Rosenzvit, Mara C

    2008-03-31

    We have sequenced and partially characterized an Echinococcus granulosus cDNA, termed egat1, from a protoscolex signal sequence trap (SST) cDNA library. The isolated 1627 bp long cDNA contains an ORF of 489 amino acids and shows an amino acid identity of 30% with neutral and excitatory amino acid transporters members of the Dicarboxylate/Amino Acid Na+ and/or H+ Cation Symporter family (DAACS) (TC 2.A.23). Additional bioinformatics analysis of EgAT1, confirmed the results obtained by similarity searches and showed the presence of 9 to 10 transmembrane domains, consensus sequences for N-glycosylation between the third and fourth transmembrane domain, a highly similar hydropathy profile with ASCT1 (a known member of DAACS family), high score with SDF (Sodium Dicarboxilate Family) and similar motifs with EDTRANSPORT, a fingerprint of excitatory amino acid transporters. The localization of the putative amino acid transporter was analyzed by in situ hybridization and immunofluorescence in protoscoleces and associated germinal layer. The in situ hybridization labelling indicates the distribution of egat1 mRNA throughout the tegument. EgAT1 protein, which showed in Western blots a molecular mass of approximately 60 kD, is localized in the subtegumental region of the metacestode, particularly around suckers and rostellum of protoscoleces and layers from brood capsules. The sequence and expression analyses of EgAT1 pave the way for functional analysis of amino acids transporters of E. granulosus and its evaluation as new drug targets against cystic echinococcosis.

  10. The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase.

    PubMed

    Lerner, D R; Raikhel, N V

    1992-06-05

    Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.

  11. Microbiological Impact on Carbon Capture and Sequestration: Biotic Processes in Natural CO2 Analogue

    EPA Science Inventory

    Multiple ground-water based microbial community analyses including membrane lipids assays for phospholipid fatty acid and DNA analysis were performed from hydraulically isolated zones. DGGE results from DNA extracts from vertical profiling of the entire depth of aquifer sampled a...

  12. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of infertility and intracytoplasmic sperm injection (ICSI) on DNA methylation of offspring. Microarray analysis of DNA methylation in archived neonatal bloodspots of in vitro fertilization (IVF)/ICSI-conceived children compared with controls born to fertile and infertile paren...

  13. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  14. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  15. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    PubMed

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures.

    PubMed Central

    Gomes, S L; Gober, J W; Shapiro, L

    1990-01-01

    Caulobacter crescentus has a single dnaK gene that is highly homologous to the hsp70 family of heat shock genes. Analysis of the cloned and sequenced dnaK gene has shown that the deduced amino acid sequence could encode a protein of 67.6 kilodaltons that is 68% identical to the DnaK protein of Escherichia coli and 49% identical to the Drosophila and human hsp70 protein family. A partial open reading frame 165 base pairs 3' to the end of dnaK encodes a peptide of 190 amino acids that is 59% identical to DnaJ of E. coli. Northern blot analysis revealed a single 4.0-kilobase mRNA homologous to the cloned fragment. Since the dnaK coding region is 1.89 kilobases, dnaK and dnaJ may be transcribed as a polycistronic message. S1 mapping and primer extension experiments showed that transcription initiated at two sites 5' to the dnaK coding sequence. A single start site of transcription was identified during heat shock at 42 degrees C, and the predicted promoter sequence conformed to the consensus heat shock promoters of E. coli. At normal growth temperature (30 degrees C), a different start site was identified 3' to the heat shock start site that conformed to the E. coli sigma 70 promoter consensus sequence. S1 protection assays and analysis of expression of the dnaK gene fused to the lux transcription reporter gene showed that expression of dnaK is temporally controlled under normal physiological conditions and that transcription occurs just before the initiation of DNA replication. Thus, in both human cells (I. K. L. Milarski and R. I. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986) and in a simple bacterium, the transcription of a hsp70 gene is temporally controlled as a function of the cell cycle under normal growth conditions. Images PMID:2345134

  17. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    PubMed

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  18. The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata.

    PubMed

    Torres-Mercado, Elineth; Renta, Jessicca Y; Rodríguez, Yolanda; López-Garriga, Juan; Cadilla, Carmen L

    2003-11-01

    Hemoglobin II from the clam Lucina pectinata is an oxygen-reactive protein with a unique structural organization in the heme pocket involving residues Gln65 (E7), Tyr30 (B10), Phe44 (CD1), and Phe69 (E11). We employed the reverse transcriptase-polymerase chain reaction (RT-PCR) and methods to synthesize various cDNA(HbII). An initial 300-bp cDNA clone was amplified from total RNA by RT-PCR using degenerate oligonucleotides. Gene-specific primers derived from the HbII-partial cDNA sequence were used to obtain the 5' and 3' ends of the cDNA by RACE. The length of the HbII cDNA, estimated from overlapping clones, was approximately 2114 bases. Northern blot analysis revealed that the mRNA size of HbII agrees with the estimated size using cDNA data. The coding region of the full-length HbII cDNA codes for 151 amino acids. The calculated molecular weight of HbII, including the heme group and acetylated N-terminal residue, is 17,654.07 Da.

  19. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea.

    PubMed

    Chang, Dong-Ho; Rhee, Moon-Soo; Kim, Ji-Sun; Lee, Yookyung; Park, Mi Young; Kim, Haseong; Lee, Seung-Goo; Kim, Byoung-Chan

    2016-11-01

    Two bacterial strains, 46-1 and 46-2 T , were isolated from garden soil. These strains were observed to be aerobic, Gram-stain negative, rod-shaped, non-spore-forming, motile and catalase and oxidase positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains shared 100 % sequence similarity with each other and belong to the genus Pseudomonas in the class Gammaproteobacteria. The concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences further confirmed that the isolates belong to the Pseudomonas koreensis subgroup (SG), with P. koreensis Ps 9-14 T , Pseudomonas moraviensis 1B4 T and Pseudomonas granadensis F-278,770 T as their close relatives (>96 % pairwise similarity). DNA-DNA hybridization with the closely related type strain P. koreensis SG revealed a low level of relatedness (<50 %). A cladogram constructed using whole-cell matrix-assisted laser desorption/ionization time-of-flight (WC-MALDI-TOF) MS analysis showed the isolates formed a completely separate monophyletic group. The isolates were negative for utilization of glycogen, D-psicose, α-keto butyric acid, α-keto valeric acid, succinamic acid and D, L-α-glycerol phosphate. In contrast, all these reactions were positive in P. koreensis JCM 14769 T and P. moraviensis DSM 16007 T . The fatty acid C 17:0 cyclo was detected as one of the major cellular fatty acids (>15 %) in the isolates but it was a minor component (<4 %) in both reference type strains. In contrast, the fatty acid, C 12:0 was not observed in the isolates but was present in both reference strains. Based on differences such as phylogenetic position, low-level DNA-DNA hybridization, WC-MALDI-TOF MS analysis, fluorescence pigmentation, fatty acid profiles, and substrate utilization, we propose that the isolates 46-1 and 46-2 T represent a novel species of the genus Pseudomonas, for which the name Pseudomonas kribbensis sp. nov. is proposed; the type strain is 46-2 T (=KCTC 32541 T  = DSM 100278 T ).

  20. Nucleotide sequence and regulatory studies of VGF, a nervous system-specific mRNA that is rapidly and relatively selectively induced by nerve growth factor.

    PubMed

    Salton, S R

    1991-09-01

    A nervous system-specific mRNA that is rapidly induced in PC12 cells to a greater extent by nerve growth factor (NGF) than by epidermal growth factor treatment has been cloned. The polypeptide deduced from the nucleic acid sequence of the NGF33.1 cDNA clone contains regions of amino acid sequence identity with that predicted by the cDNA clone VGF, and further analysis suggests that both NGF33.1 and VGF cDNA clones very likely correspond to the same mRNA (VGF). In this report both the nucleic acid sequence that corresponds to VGF mRNA and the polypeptide predicted by the NGF33.1 cDNA clone are presented. Genomic Southern analysis and database comparison did not detect additional sequences with high homology to the VGF gene. Induction of VGF mRNA by depolarization and phorbol 12-myristate 13-acetate treatment was greater than by serum stimulation or protein kinase A pathway activation. These studies suggest that VGF mRNA is induced to the greatest extent by NGF treatment and that VGF is one of the most rapidly regulated neuronal mRNAs identified in PC12 cells.

  1. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    PubMed

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  2. How-to-Do-It. An Exercise in Gene Mapping.

    ERIC Educational Resources Information Center

    Seidel-Rogol, Bonnie L.

    1990-01-01

    Described is a laboratory exercise designed to introduce students to the theory and practice of gene mapping including RNA extraction, sucrose density gradient centrifugation, labelling of nucleic acids in vitro, DNA extraction, digestion of DNA with restriction enzymes, and the southern hybridization analysis. Procedures and sample results are…

  3. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and molecular sensing for diagnostics.

  4. Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389

  5. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2003-11-01

    A bacterial strain (designated IH5(T)), isolated from rhizospheric soil of grasses growing spontaneously in Spanish soil, actively solubilized phosphates in vitro when bicalcium phosphate was used as a phosphorus source. This strain was Gram-negative, strictly aerobic, rod-shaped and motile. The strain produced catalase, but not oxidase. Cellulose, casein, starch, gelatin, aesculin and urea were not hydrolysed. Growth was observed with many carbohydrates as the carbon source. The main non-polar fatty acids detected were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)) and octadecenoic acid (C(18 : 1)). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (C(10 : 0) 3-OH), 3-hydroxydodecanoic acid (C(12 : 0) 3-OH) and 2-hydroxydodecanoic acid (C(12 : 0) 2-OH). Phylogenetic analysis of 16S rRNA indicated that this bacterium belongs to the genus Pseudomonas in the gamma-subclass of the Proteobacteria and that the closest related species is Pseudomonas graminis. The DNA G+C content was 61 mol%. DNA-DNA hybridization showed 23 % relatedness between strain IH5(T) and P. graminis DSM 11363(T). Therefore, strain IH5(T) belongs to a novel species from the genus Pseudomonas, for which the name Pseudomonas rhizosphaerae sp. nov. is proposed (type strain, IH5(T)=LMG 21640(T)=CECT 5726(T)).

  6. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM.

    PubMed

    Wang, Jing; Pan, Xiaoming; Liang, Xingguo

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature ( T m ) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m , showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T m s of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present).

  7. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines.

    PubMed

    Yi, S Y; Hwang, B K

    1998-10-31

    Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.

  8. Cloning of a cDNA encoding bovine mitochondrial NADP(+)-specific isocitrate dehydrogenase and structural comparison with its isoenzymes from different species.

    PubMed Central

    Huh, T L; Ryu, J H; Huh, J W; Sung, H C; Oh, I U; Song, B J; Veech, R L

    1993-01-01

    Mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDP) was co-purified with the pyruvate dehydrogenase complex from bovine kidney mitochondria. The determination of its N-terminal 16-amino-acid sequence revealed that it is highly similar to the IDP from yeast. A cDNA clone (1.8 kb long) encoding this protein was isolated from a bovine kidney lambda gt11 cDNA library using a synthetic oligodeoxynucleotide. The deduced protein sequence of this cDNA clone rendered a precursor protein of 452 amino-acid residues (50,830 Da) and a mature protein of 413 amino-acid residues (46,519 Da). It is 100% identical to the internal tryptic peptide sequences of the autologous form from pig heart and 62% similar to that from yeast. However, it shares little similarity with the mitochondrial NAD(+)-specific isoenzyme from yeast. Structural analyses of the deduced proteins of IDP isoenzymes from different species indicated that similarity exists in certain regions, which may represent the common domains for the active sites or coenzyme-binding sites. In Northern-blot analysis, one species of mRNA (about 2.2 kb for both bovine and human) was hybridized with a 32P-labelled cDNA probe. Southern-blot analysis of genomic DNAs verified simple patterns of hybridization with this cDNA. These results strongly indicate that the mitochondrial IDP may be derived from a single gene family which does not appear to be closely related to that of the NAD(+)-specific isoenzyme. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8318002

  9. Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge

    PubMed Central

    Maglia, Giovanni; Restrepo, Marcela Rincon; Mikhailova, Ellina; Bayley, Hagan

    2008-01-01

    Both protein and solid-state nanopores are under intense investigation for the analysis of nucleic acids. A crucial advantage of protein nanopores is that site-directed mutagenesis permits precise tuning of their properties. Here, by augmenting the internal positive charge within the α-hemolysin pore and varying its distribution, we increase the frequency of translocation of a 92-nt single-stranded DNA through the pore at +120 mV by ≈10-fold over the wild-type protein and dramatically lower the voltage threshold at which translocation occurs, e.g., by 50 mV for 1 event·s−1·μM−1. Further, events in which DNA enters the pore, but is not immediately translocated, are almost eliminated. These experiments provide a basis for improved nucleic acid analysis with protein nanopores, which might be translated to solid-state nanopores by using chemical surface modification. PMID:19060213

  10. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.

    PubMed

    Gong, Ping; Lee, Chi-Ying; Gamble, Lara J; Castner, David G; Grainger, David W

    2006-05-15

    Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats.

  12. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  13. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods.

    PubMed

    Santos, M C; Golt, C; Joerger, R D; Mechor, G D; Mourão, Gerson B; Kung, L

    2017-02-01

    The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus.

    PubMed

    La Morgia, C; Achilli, A; Iommarini, L; Barboni, P; Pala, M; Olivieri, A; Zanna, C; Vidoni, S; Tonon, C; Lodi, R; Vetrugno, R; Mostacci, B; Liguori, R; Carroccia, R; Montagna, P; Rugolo, M; Torroni, A; Carelli, V

    2008-03-04

    To investigate the mechanisms underlying myoclonus in Leber hereditary optic neuropathy (LHON). Five patients and one unaffected carrier from two Italian families bearing the homoplasmic 11778/ND4 and 3460/ND1 mutations underwent a uniform investigation including neurophysiologic studies, muscle biopsy, serum lactic acid after exercise, and muscle ((31)P) and cerebral ((1)H) magnetic resonance spectroscopy (MRS). Biochemical investigations on fibroblasts and complete mitochondrial DNA (mtDNA) sequences of both families were also performed. All six individuals had myoclonus. In spite of a normal EEG background and the absence of giant SEPs and C reflex, EEG-EMG back-averaging showed a preceding jerk-locked EEG potential, consistent with a cortical generator of the myoclonus. Specific comorbidities in the 11778/ND4 family included muscular cramps and psychiatric disorders, whereas features common to both families were migraine and cardiologic abnormalities. Signs of mitochondrial proliferation were seen in muscle biopsies and lactic acid elevation was observed in four of six patients. (31)P-MRS was abnormal in five of six patients and (1)H-MRS showed ventricular accumulation of lactic acid in three of six patients. Fibroblast ATP depletion was evident at 48 hours incubation with galactose in LHON/myoclonus patients. Sequence analysis revealed haplogroup T2 (11778/ND4 family) and U4a (3460/ND1 family) mtDNAs. A functional role for the non-synonymous 4136A>G/ND1, 9139G>A/ATPase6, and 15773G>A/cyt b variants was supported by amino acid conservation analysis. Myoclonus and other comorbidities characterized our Leber hereditary optic neuropathy (LHON) families. Functional investigations disclosed a bioenergetic impairment in all individuals. Our sequence analysis suggests that the LHON plus phenotype in our cases may relate to the synergic role of mtDNA variants.

  15. Synthesis, spectroscopic characterization, crystal structure, DNA interaction study and invitro biological screenings of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Nooruddin; Ali, Saqib; McKee, Vickie; Khan, Shahan Zeb; Malook, Khan

    2015-01-01

    The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR (1H, and 13C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from 1H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C10H10NO3Cl, is stabilized by short intramolecular Osbnd H- - -O hydrogen bonds within the molecule. In the crystal structure, intermolecular Nsbnd H- - -O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.

  16. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  17. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    2000-02-15

    Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). We show that activation of the general amino acid response pathway in rho(+) and rho(-) petite cells results in an increased number of nucleoids without an increase in mtDNA copy number. In rho(-) cells, activation of the general amino acid response pathway results in increased intramolecular recombination between tandemly repeated sequences of rho(-) mtDNA to produce small, circular oligomers that are packaged into individual nucleoids, resulting in an approximately 10-fold increase in nucleoid number. The parsing of mtDNA into nucleoids due to general amino acid control requires Ilv5p, a mitochondrial protein that also functions in branched chain amino acid biosynthesis, and one or more factors required for mtDNA recombination. Two additional proteins known to function in mtDNA recombination, Abf2p and Mgt1p, are also required for parsing mtDNA into a larger number of nucleoids, although expression of these proteins is not under general amino acid control. Increased nucleoid number leads to increased mtDNA transmission, suggesting a mechanism to enhance mtDNA inheritance under amino acid starvation conditions.

  18. Interaction of methylation-related genetic variants with circulating fatty acids on plasma lipids: a meta-analysis of 7 studies & methylation analysis of 3 studies in the Cohorts for Heart & Aging Research

    USDA-ARS?s Scientific Manuscript database

    Background: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression. Objective: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation. Design: We selected 7 SNPs on the basis of predic...

  19. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    PubMed

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  20. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification.

    PubMed

    Zheng, Jiao; Li, Ningxing; Li, Chunrong; Wang, Xinxin; Liu, Yucheng; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-06-01

    Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids.

    PubMed

    Chen, Weiwei; Fang, Xueen; Li, Hua; Cao, Hongmei; Kong, Jilie

    2017-08-15

    In this research, we found that the peroxidase-like activities of noncovalent DNA-Pt hybrid nanoparticles could be obviously blocked, when Pt nanoparticles (PtNPs) were synthesized in situ using DNA as a template. Moreover, this self-assembled synthetic process was very convenient and rapid (within few mintues), and the inhibition mediated by DNA was also very effective. First, by the paper-based analytical device (PAD) we found the catalytic activities of DNA-Pt hybrid nanoparticles exhibited a linear response to the concentration of DNA in the range from 0.0075 to 0.25µM. Then, with the magnetic bead isolated system and target DNA-induced hybridization chain reaction (HCR), we realized the specific target DNA analysis with a low detection of 0.228nM, and demonstrated its effectivity in distinguishing the target DNA from other interferences. To our knowledge, this is the first report that used the nanoassembly between DNA and PtNPs for colorimetric detection of nucleic acids, which was based on DNA-mediated inhibition of catalytic activities of platinum nanoparticles. The results may be useful for understanding the interactions between DNA and metal nanoparticles, and for development of other convenient and effective analytical strategies. Copyright © 2017. Published by Elsevier B.V.

  2. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    PubMed

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.

  3. Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity.

    PubMed

    Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C

    2006-05-01

    Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.

  4. ZnO Nanoparticles Protect RNA from Degradation Better than DNA.

    PubMed

    McCall, Jayden; Smith, Joshua J; Marquardt, Kelsey N; Knight, Katelin R; Bane, Hunter; Barber, Alice; DeLong, Robert K

    2017-11-08

    Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  5. An improved strategy and a useful housekeeping gene for RNA analysis from formalin-fixed, paraffin-embedded tissues by PCR.

    PubMed

    Finke, J; Fritzen, R; Ternes, P; Lange, W; Dölken, G

    1993-03-01

    Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of material. We describe a procedure for RNA extraction from different types of FFPE tissues, involving digestion with proteinase K followed by guanidinium-thiocyanate acid phenol extraction and DNase I digestion. These RNA preparations are suitable for PCR analysis of mRNA and even of intronless genes. Furthermore, the universally expressed porphobilinogen deaminase mRNA proved to be useful as a positive control because of the lack of pseudogenes.

  6. Paenibacillus aceti sp. nov., isolated from the traditional solid-state acetic acid fermentation culture of Chinese cereal vinegar.

    PubMed

    Li, Pan; Lin, Weifeng; Liu, Xiong; Li, Sha; Luo, Lixin; Lin, Wei-Tie

    2016-09-01

    A Gram-stain-negative, rod-shaped, motile, endospore-forming, facultatively anaerobic bacterium, designated strain L14T, was isolated from the traditional acetic acid fermentation culture of Chinese cereal vinegars. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain L14T was affiliated to the genus Paenibacillus, most closely related to Paenibacillus motobuensis MC10T with 97.8 % similarity. Chemotaxonomic characterization supported the allocation of the strain to the genus Paenibacillus. The polar lipid profile of strain L14T contained the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The predominant menaquinone was MK-7, and the major fatty acid components were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The DNA G+C content of strain L14T was 49.9 mol%. The DNA-DNA relatedness value between strain L14T and P. motobuensis MC10T was 51.2 %. The results of physiological and biochemical tests allowed phenotypic differentiation of strain L14T from closely related species. On the basis of phenotypic and chemotaxonomic analyses, phylogenetic analysis and DNA-DNA relatedness values, strain L14T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus aceti sp. nov. is proposed. The type strain is L14T (=CGMCC 1.15420T=JCM 31170T).

  7. The value of cell-free DNA for molecular pathology.

    PubMed

    Stewart, Caitlin M; Kothari, Prachi D; Mouliere, Florent; Mair, Richard; Somnay, Saira; Benayed, Ryma; Zehir, Ahmet; Weigelt, Britta; Dawson, Sarah-Jane; Arcila, Maria E; Berger, Michael F; Tsui, Dana Wy

    2018-04-01

    Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E.

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdhmore » was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.« less

  9. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.

    PubMed

    Jasiński, Maciej; Feig, Michael; Trylska, Joanna

    2018-06-06

    Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.

  10. Asymmetry and Extent of In Vivo Transcripition of R-Plasmid Deoxyribonucleic Acid in Escherichia coli

    PubMed Central

    Vapnek, Daniel; Spingler, Elizabeth

    1974-01-01

    Deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization studies have been performed with R-plasmid DNA (R538-1drd) and in vivo-synthesized RNA. R-plasmid DNA was isolated from Escherichia coli K-12, and the complementary strands were separated in cesium chloride-polyuridylic acid-polyguanylic acid gradients. DNA-RNA hybridization was performed with the separated DNA strands and RNA purified from R-plasmid-carrying cells. The results demonstrated that an asymmetric transcription of the R-plasmid DNA occurs in vivo. Hybridization was only detected with the H strand (denser strand in cesium chloride-polyuridylic acid-polyguanylic acid). By determining the density of the RNA-DNA hybrid in CsCl gradients, it was estimated that greater than 60% of the nucleotide sequences in the R-plasmid DNA are transcribed in logarithmically growing E. coli cells. No R-plasmid-specific RNA was detected in E. coli cells that did not carry the plasmid. PMID:4612013

  11. Summary of International Exhibition and Congress (3rd): BIOTECHNICA 󈨛 Hannover Held in Hannover (Germany, F.R.) on 22-24 September 1987

    DTIC Science & Technology

    1988-01-21

    nucleic acids which occur in DNA and seem to play an e Improved theoretical analysis of the important role in determining gene reg’- fntra- and...developed two retroviral vectors, based on the murine new peptide-based animal vaccines which myeloproliferative sarcoma virus (MPSV), are currertly...Structure tides are part of a precursor molecule elucidation is performed by gas-phase composed of 126 amino acids. From a pre- amino acid sequence analysis

  12. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for revealing the misclassification of strain IFO 3283 into the species A. aceti.

  13. Determinants of affinity and mode of DNA binding at the carboxy terminus of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1.

    PubMed

    Andera, L; Geiduschek, E P

    1994-03-01

    The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.

  14. DNATCO: assignment of DNA conformers at dnatco.org.

    PubMed

    Černý, Jiří; Božíková, Paulína; Schneider, Bohdan

    2016-07-08

    The web service DNATCO (dnatco.org) classifies local conformations of DNA molecules beyond their traditional sorting to A, B and Z DNA forms. DNATCO provides an interface to robust algorithms assigning conformation classes called NTC: to dinucleotides extracted from DNA-containing structures uploaded in PDB format version 3.1 or above. The assigned dinucleotide NTC: classes are further grouped into DNA structural alphabet NTA: , to the best of our knowledge the first DNA structural alphabet. The results are presented at two levels: in the form of user friendly visualization and analysis of the assignment, and in the form of a downloadable, more detailed table for further analysis offline. The website is free and open to all users and there is no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Pseudoscalar lattice modes in the amino acid crystals and DNA

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Sverbil, V. P.; Gorshunov, B. P.; Seredin, A. I.

    2017-11-01

    Intense sharp lines corresponding to the librational modes were found in the low-frequency Raman scattering spectra of the glycine, lysine, asparagine and tyrosine aminoacids as well as in the dry DNA crystal lattices. According to the group-theoretical analysis such modes were assigned to the pseudoscalar type of symmetry.

  16. 8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA.

    PubMed

    Matthew Whiteman Andrew Jenner Barry Halliwell

    1999-01-01

    Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.

  17. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    USDA-ARS?s Scientific Manuscript database

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  18. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.

    PubMed

    Wilson, David R; Routkevitch, Denis; Rui, Yuan; Mosenia, Arman; Wahlin, Karl J; Quinones-Hinojosa, Alfredo; Zack, Donald J; Green, Jordan J

    2017-07-05

    There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples.

    PubMed

    Kresse, Stine H; Namløs, Heidi M; Lorenz, Susanne; Berner, Jeanne-Marie; Myklebost, Ola; Bjerkehagen, Bodil; Meza-Zepeda, Leonardo A

    2018-01-01

    Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.

  20. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium.

    PubMed

    Gardan, L; Dauga, C; Prior, P; Gillis, M; Saddler, G S

    2000-01-01

    The bacterial leaf-spot of anthurium emerged during the 1980s, in the French West Indies and Trinidad. This new bacterial disease is presently wide spread and constitutes a serious limiting factor for commercial anthurium production. Twenty-nine strains isolated from leaf-spots of naturally infected anthurium were characterized and compared with reference strains belonging to the Comamonadaceae family, the genera Ralstonia and Burkholderia, and representative fluorescent pseudomonads. From artificial inoculations 25 out of 29 strains were pathogenic on anthurium. Biochemical and physiological tests, fatty acid analysis, DNA-DNA hybridization, 16S rRNA gene sequence analysis, DNA-16S RNA hybridization were performed. The 25 pathogenic strains on anthurium were clustered in one phenon closely related to phytopathogenic strains of the genus Acidovorax. Anthurium strains were 79-99% (deltaTm range 0.2-1.6) related to the strain CFBP 3232 and constituted a discrete DNA homology group indicating that they belong to the same species. DNA-rRNA hybridization, 16S rRNA sequence and fatty acid analysis confirmed that this new species belongs to the beta-subclass of Proteobacteria and to rRNA superfamily III, to the family of Comamonadaceae and to the genus Acidovorax. The name Acidovorax anthurii is proposed for this new phytopathogenic bacterium. The type strain has been deposited in the Collection Française des Bactéries Phytopathogènes as CFBP 3232T.

  1. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  2. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  3. Clinical comparison of branched DNA and reverse transcriptase-PCR and nucleic acid sequence-based amplification assay for the quantitation of circulating recombinant form_BC HIV-1 RNA in plasma.

    PubMed

    Pan, Pinliang; Tao, Xiaoxia; Zhang, Qi; Xing, Wenge; Sun, Xianguang; Pei, Lijian; Jiang, Yan

    2007-12-01

    To investigate the correlation between three viral load assays for circulating recombinant form (CRF)_BC. Recent studies in HIV-1 molecular epidemiology, reveals that CRF_BC is the dominant subtype of HIV-1 virus in mainland China, representing over 45% of the HIV-1 infected population. The performances of nucleic acid sequence-based amplification (NASBA), branched DNA (bDNA) and reverse transcriptase polymerase chain reaction (RT-PCR) were compared for the HIV-1 viral load detection and quantitation of CRF_BC in China. Sixteen HIV-1 positive and three HIV-1 negative samples were collected. Sequencing of the positive samples in the gp41 region was conducted. The HIV-1 viral load values were determined using bDNA, RT-PCR and NASBA assays. Deming regression analysis with SPSS 12.0 (SPS Inc., Chicago, Illinois, USA) was performed for data analysis. Sequencing and phylogenetic analysis of env gene (gp41) region of the 16 HIV-1 positive clinical specimens from Guizhou Province in southwest China revealed the dominance of the subtype CRF_BC in that region. A good correlation of their viral load values was observed among three assays. Pearson's correlation between RT-PCR and bDNA is 0.969, Lg(VL)RT-PCR = 0.969 * Lg(VL)bDNA + 0.55; Pearson's correlation between RT-PCR and NASBA is 0.968, Lg(VL)RT-PCR = 0.968 * Lg(VL)NASBA + 0.937; Pearson's correlation between NASBA and bDNA is 0.980, Lg(VL)NASBA = 0.980 * Lg(VL)bDNA - 0.318. When testing with 3 different assays, RT-PCR, bDNA and NASBA, the group of 16 HIV-1 positive samples showed the viral load value was highest for RT-PCR, followed by bDNA then NASBA, which is consistent with the former results in subtype B. The three viral load assays are highly correlative for CRF_BC in China.

  4. A rapid screening for adulterants in olive oil using DNA barcodes

    USDA-ARS?s Scientific Manuscript database

    A distinctive methodology is developed to trace out the mixing into olive oil, which is marketed every year with 20% or more fraudulent oils. Such adulteration has been difficult to differentiate using fatty acid analysis and other available current techniques, as chemically fatty acids are the same...

  5. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  6. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    PubMed

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  7. Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic Archaeon

    PubMed Central

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu

    2014-01-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137

  8. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Santa-Regina, Ignacio; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2004-05-01

    A phosphate-solubilizing bacterial strain designated OK2(T) was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the gamma-subclass of Proteobacteria within the genus Pseudomonas and that the closest related species is Pseudomonas graminis. The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59.3 mol%. DNA-DNA hybridization showed 48.7 % relatedness between strain OK2(T) and P. graminis DSM 11363(T) and 26.2 % with respect to Pseudomonas rhizosphaerae LMG 21640(T). Therefore, these results indicate that strain OK2(T) (=LMG 21974(T)=CECT 5822(T)) belongs to a novel species of the genus Pseudomonas, and the name Pseudomonas lutea sp. nov. is proposed.

  9. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

    2013-08-01

    The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K290K = 7.60 × 104 L mol-1 and K310K = 4.90 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy (ΔG°) were calculated to be -1.69 × 104 J mol-1, 35.36 J K-1 mol-1 and -2.79 × 104 J mol-1 at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA.

  10. DNA methylation of amino acid transporter genes in the human placenta.

    PubMed

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  11. Nucleotide Sequence Analysis of RNA Synthesized from Rabbit Globin Complementary DNA

    PubMed Central

    Poon, Raymond; Paddock, Gary V.; Heindell, Howard; Whitcome, Philip; Salser, Winston; Kacian, Dan; Bank, Arthur; Gambino, Roberto; Ramirez, Francesco

    1974-01-01

    Rabbit globin complementary DNA made with RNA-dependent DNA polymerase (reverse transcriptase) was used as template for in vitro synthesis of 32P-labeled RNA. The sequences of the nucleotides in most of the fragments resulting from combined ribonuclease T1 and alkaline phosphatase digestion have been determined. Several fragments were long enough to fit uniquely with the α or β globin amino-acid sequences. These data demonstrate that the cDNA was copied from globin mRNA and contained no detectable contaminants. Images PMID:4139714

  12. Identification and expression analysis of a novel R-type lectin from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Kim, Dong Hyun; Patnaik, Bharat Bhusan; Seo, Gi Won; Kang, Seong Min; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2013-11-01

    We have identified novel ricin-type (R-type) lectin by sequencing of random clones from cDNA library of the coleopteran beetle, Tenebrio molitor. The cDNA sequence is comprised of 495 bp encoding a protein of 164 amino acid residues and shows 49% identity with galectin of Tribolium castaneum. Bioinformatics analysis shows that the amino acid residues from 35 to 162 belong to ricin-type beta-trefoil structure. The transcript was significantly upregulated after early hours of injection with peptidoglycans derived from Gram (+) and Gram (-) bacteria, beta-1, 3 glucan from fungi and an intracellular pathogen, Listeria monocytogenes suggesting putative function in innate immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Membrane Destruction and DNA Binding of Staphylococcus aureus Cells Induced by Carvacrol and Its Combined Effect with a Pulsed Electric Field.

    PubMed

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo

    2016-08-17

    Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus.

  14. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  15. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses.

    PubMed Central

    Khan, A S

    1984-01-01

    The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. PMID:6328017

  16. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.).

    PubMed

    Gao, Lingchao; Sun, Ruhao; Liang, Yuanxue; Zhang, Mengdan; Zheng, Yusheng; Li, Dongdong

    2014-10-01

    Coconut (Cocos nucifera L.) is an economically tropical fruit tree with special fatty acid compositions. The stearoyl-acyl carrier protein (ACP) desaturase (SAD) plays a key role in the properties of the majority of cellular glycerolipids. In this paper, a full-length cDNA of a stearoyl-acyl carrier protein desaturase, designated CocoFAD, was isolated from cDNA library prepared from the endosperm of coconut (C. nucifera L.). An 1176 bp cDNA from overlapped PCR products containing ORF encoding a 391-amino acid (aa) protein was obtained. The coded protein was virtually identical and shared the homology to other Δ9-desaturase plant sequences (greater than 80% as similarity to that of Elaeis guineensis Jacq). The real-time fluorescent quantitative PCR result indicated that the yield of CocoFAD was the highest in the endosperm of 8-month-old coconut and leaf, and the yield was reduced to 50% of the highest level in the endosperm of 15-month-old coconut. The coding region showed heterologous expression in strain INVSc1 of yeast (Saccharomyces cerevisiae). GC-MS analysis showed that the levels of palmitoleic acid (16:1) and oleic acid (18:1) were improved significantly; meanwhile stearic acid (18:0) was reduced. These results indicated that the plastidial Δ9 desaturase from the endosperm of coconut was involved in the biosynthesis of hexadecenoic acid and octadecenoic acid, which was similar with other plants. These results may be valuable for understanding the mechanism of fatty acid metabolism and the genetic improvement of CocoFAD gene in palm plants in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM

    PubMed Central

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature (T m) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m, showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T ms of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present). PMID:27833775

  18. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  19. Identification of genes associated with low furanocoumarin content in grapefruit.

    PubMed

    Chen, Chunxian; Yu, Qibin; Wei, Xu; Cancalon, Paul F; Gmitter, Fred G

    2014-10-01

    Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of fruit tissues was performed to identify the candidate gene(s) likely associated with low furanocoumarin content in grapefruit. Fifteen tentative differentially expressed fragments were cloned through the cDNA-AFLP analysis of the grapefruit variety Foster and its spontaneous low-furanocoumarin mutant Low Acid Foster. Sequence analysis revealed a cDNA-AFLP fragment, Contig 6, was homologous to a substrate-proved psoralen synthase gene, CYP71A22, and was part of citrus unigenes Cit.3003 and Csi.1332, and predicted genes Ciclev10004717m in mandarin and orange1.1g041507m in sweet orange. The two predicted genes contained the highly conserved motifs at one of the substrate recognition sites of CYP71A22. Digital gene expression profile showed the unigenes were expressed only in fruit and seed. Quantitative real-time PCR also proved Contig 6 was down-regulated in Low Acid Foster. These results showed the differentially expressed Contig 6 was related to the reduced furanocoumarin levels in the mutant. The identified fragment, homologs, unigenes, and genes may facilitate further furanocoumarin genetic study and grapefruit variety improvement.

  20. Freezing and storage at -20 °C provides adequate preservation of Toxoplasma gondii DNA for retrospective molecular analysis.

    PubMed

    Delhaes, Laurence; Filisetti, Denis; Brenier-Pinchart, Marie-Pierre; Pelloux, Hervé; Yéra, Hélène; Dalle, Frédéric; Sterkers, Yvon; Varlet-Marie, Emmanuelle; Touafek, Feriel; Cassaing, Sophie; Bastien, Patrick

    2014-11-01

    Nucleic acid-based testing has become crucial for toxoplasmosis diagnosis. For retrospective (forensic or scientific) studies, optimal methods must be employed for DNA long-term storage. We compared Toxoplasma gondii detection before and after DNA storage using real-time PCR. No significant differences were found depending on duration or storage conditions at -20 °C or -80 °C. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Comparative Analytical Utility of DNA Derived from Alternative Human Specimens for Molecular Autopsy and Diagnostics

    PubMed Central

    Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.

    2013-01-01

    Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560

  2. Molecular cloning of a gene encoding translation initiation factor (TIF) from Candida albicans.

    PubMed

    Mirbod, F; Nakashima, S; Kitajima, Y; Ghannoum, M A; Cannon, R D; Nozawa, Y

    1996-01-01

    The differential display technique was applied to compare mRNAs from two clinical isolates of Candida albicans with different virulence; high (potent strain, 16240) and low (weak strain, 18084) extracellular phospholipase activities. Complementary DNA fragments corresponding to several apparently differentially expressed mRNAs were recovered and sequenced. A complementary DNA fragment seen distinctly in the potent phospholipase producing strain was highly homologous to the yeast translation initiation factor (TIF). The selected DNA fragment was then used as a probe to isolate its corresponding complementary DNA clone from a library of C. albicans genomic DNA. The sequence of isolated gene revealed an open reading frame of 1194 nucleotides with the potential to encode a protein of 397 amino acids with a predicted molecular weight of 43 kDa. Over its entire length, the amino acid sequence showed strong homology (78-89%) to Saccharomyces cerevisiae TIF and (63-80%) to mouse eIF-4A proteins. Therefore, our C. albicans gene was identified to be TIF (Ca TIF). Northern blot analysis in the two strains of C. albicans revealed that Ca TIF expression is 1.5-fold higher in the potent phospholipase producing strain. The restriction endonuclease digestion of genomic DNA from this potent strain revealed at least two hybridized bands in Southern blot analysis, suggesting two or more closely related sequences in the C. albicans genome.

  3. Different expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in mouse tumor cells.

    PubMed

    Okabe, Kyoko; Hayashi, Mai; Wakabayashi, Naoko; Yamawaki, Yasuna; Teranishi, Miki; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2010-01-01

    Lysophosphatidic acid (LPA) receptors act as several biological effectors through LPA, which is a bioactive phospholipid. Recently, aberrant expressions of LPA receptor genes due to DNA methylation have been detected in several tumor cells. In this study, we measured expression levels and DNA methylation status of LPA receptor genes in mouse tumor cells, LL/2 lung carcinoma, B16F0 melanoma, FM3A mammary carcinoma and L1210 leukemia cells, compared with normal tissues. Total RNAs were extracted and RT-PCR analysis was performed. For DNA methylation status, bisulfite sequencing analysis was carried out, comparing outcomes with other tumor cells and normal tissues. The expressions of LPA1 gene were shown in LL/2, but not in B16F0, FM3A and L1210 cells. While the LPA2 gene was expressed in all 4 tumor cells, the LPA3 gene was unexpressed in them. The LPA1 and LPA3 unexpressed cells were highly methylated, although normal tissues were all unmethylated. The DNA methylation status was correlated with gene expression levels in cancer cells. The present results demonstrate that DNA methylation patterns of LPA receptor genes are dependent on cancer cell types, suggesting that LPA receptors may be new molecular targets for therapeutic approaches and chemoprevention. Copyright © 2011 S. Karger AG, Basel.

  4. Amino Acid Control over Deoxyribonucleic Acid Synthesis in Escherichia coli Infected With T-Even Bacteriophage

    PubMed Central

    Donini, Pierluigi

    1970-01-01

    Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067

  5. Comparison of the canine and human acid {beta}-galactosidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern-Rindell, A.J.; Kretz, K.A.; O`Brien, J.S.

    Several canine cDNA libraries were screened with human {beta}-galactosidase cDNA as probe. Seven positive clones were isolated and sequenced yielding a partial (2060 bp) canine {beta}-galactosidase cDNA with 86% identity to the human {beta}-galactosidase cDNA. Preliminary analysis of a canine genomic library indicated conservation of exon number and size. Analysis by Northern blotting disclosed a single mRNA of 2.4 kb in fibroblasts and liver from normal dogs and dogs affected with GM1 gangliosidosis. Although incomplete, these results indicate canine GM1 gangliosidosis is a suitable animal model of the human disease and should further efforts to devise a gene therapy strategymore » for its treatment. 20 refs., 2 figs., 1 tab.« less

  6. Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns.

    PubMed

    Berthelet, M; Whyte, L G; Greer, C W

    1996-04-15

    Polyvinylpolypyrrolidone spin columns were used to rapidly purify crude soil DNA extracts from humic materials for polymerase chain reaction (PCR) analysis. The PCR detection limit for the tfdC gene, encoding chlorocatechol dioxygenase from the 2,4-dichlorophenoxyacetic acid degradation pathway, was 10(1)-10(2) cells/g soil in inoculated soils. The procedure could be applied to the amplification of biodegradative genes from indigenous microbial populations from a wide variety of soil types, and the entire analysis could be performed within 8 h.

  7. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.

    PubMed

    Rathi, Preeti; Witte, Anna; Summerer, Daniel

    2017-11-08

    Transcription activator-like effectors (TALEs) are DNA major-groove binding proteins widely used for genome targeting. TALEs contain an N-terminal region (NTR) and a central repeat domain (CRD). Repeats of the CRD selectively recognize each one DNA nucleobase, offering programmability. Moreover, repeats with selectivity for 5-methylcytosine (5mC) and its oxidized derivatives can be designed for analytical applications. However, both TALE domains also nonspecifically interact with DNA phosphates via basic amino acids. To enhance the 5mC selectivity of TALEs, we aimed to decrease the nonselective binding energy of TALEs. We substituted basic amino acids with alanine in the NTR and identified TALE mutants with increased selectivity. We then analysed conserved, DNA phosphate-binding KQ diresidues in CRD repeats and identified further improved mutants. Combination of mutations in the NTR and CRD was highly synergetic and resulted in TALE scaffolds with up to 4.3-fold increased selectivity in genomic 5mC analysis via affinity enrichment. Moreover, transcriptional activation in HEK293T cells by a TALE-VP64 construct based on this scaffold design exhibited a 3.5-fold increased 5mC selectivity. This provides perspectives for improved 5mC analysis and for the 5mC-conditional control of TALE-based editing constructs in vivo.

  8. Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.

    PubMed

    Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T

    1996-10-31

    Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.

  9. Amino Acid Racemization and the Preservation of Ancient DNA

    NASA Technical Reports Server (NTRS)

    Poinar, Hendrik N.; Hoss, Matthias

    1996-01-01

    The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.

  10. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA.

    PubMed

    Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

    2013-08-01

    The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K(290K)=7.60×10(4) L mol(-1) and K(310K)=4.90×10(4) L mol(-1). The thermodynamic parameters enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy (ΔG°) were calculated to be -1.69×10(4) J mol(-1), 35.36 J K(-1) mol(-1) and -2.79×10(4) J mol(-1) at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.

    PubMed

    Samai, Poulami; Shuman, Stewart

    2011-06-24

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.

  12. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays.

    PubMed

    Mehnaz, Samina; Weselowski, Brian; Lazarovits, George

    2007-12-01

    Two free-living nitrogen-fixing bacterial strains, N6 and N7(T), were isolated from corn rhizosphere. A polyphasic taxonomic approach, including morphological characterization, Biolog analysis, DNA-DNA hybridization, and 16S rRNA, cpn60 and nifH gene sequence analysis, was taken to analyse the two strains. 16S rRNA gene sequence analysis indicated that strains N6 and N7(T) both belonged to the genus Azospirillum and were closely related to Azospirillum oryzae (98.7 and 98.8 % similarity, respectively) and Azospirillum lipoferum (97.5 and 97.6 % similarity, respectively). DNA-DNA hybridization of strains N6 and N7(T) showed reassociation values of 48 and 37 %, respectively, with A. oryzae and 43 % with A. lipoferum. Sequences of the nifH and cpn60 genes of both strains showed 99 and approximately 95 % similarity, respectively, with those of A. oryzae. Chemotaxonomic characteristics (Q-10 as quinone system, 18 : 1omega7c as major fatty acid) and G+C content of the DNA (67.6 mol%) were also similar to those of members of the genus Azospirillum. Gene sequences and Biolog and fatty acid analysis showed that strains N6 and N7(T) differed from the closely related species A. lipoferum and A. oryzae. On the basis of these results, it is proposed that these nitrogen-fixing strains represent a novel species. The name Azospirillum zeae sp. nov. is suggested, with N7(T) (=NCCB 100147(T)=LMG 23989(T)) as the type strain.

  13. Analysis of beta-carotene hydroxylase gene cDNA isolated from the American oil-palm (Elaeis oleifera) mesocarp tissue cDNA library

    PubMed Central

    Bhore, Subhash J; Kassim, Amelia; Loh, Chye Ying; Shah, Farida H

    2010-01-01

    It is well known that the nutritional quality of the American oil-palm (Elaeis oleifera) mesocarp oil is superior to that of African oil-palm (Elaeis guineensis Jacq. Tenera) mesocarp oil. Therefore, it is of important to identify the genetic features for its superior value. This could be achieved through the genome sequencing of the oil-palm. However, the genome sequence is not available in the public domain due to commercial secrecy. Hence, we constructed a cDNA library and generated expressed sequence tags (3,205) from the mesocarp tissue of the American oil-palm. We continued to annotate each of these cDNAs after submitting to GenBank/DDBJ/EMBL. A rough analysis turned our attention to the beta-carotene hydroxylase (Chyb) enzyme encoding cDNA. Then, we completed the full sequencing of cDNA clone for its both strands using M13 forward and reverse primers. The full nucleotide and protein sequence was further analyzed and annotated using various Bioinformatics tools. The analysis results showed the presence of fatty acid hydroxylase superfamily domain in the protein sequence. The multiple sequence alignment of selected Chyb amino acid sequences from other plant species and algal members with E. oleifera Chyb using ClustalW and its phylogenetic analysis suggest that Chyb from monocotyledonous plant species, Lilium hubrid, Crocus sativus and Zea mays are the most evolutionary related with E. oleifera Chyb. This study reports the annotation of E. oleifera Chyb. Abbreviations ESTs - expressed sequence tags, EoChyb - Elaeis oleifera beta-carotene hydroxylase, MC - main cluster PMID:21364789

  14. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Pyroglutamic acid stimulates DNA synthesis in rat primary hepatocytes through the mitogen-activated protein kinase pathway.

    PubMed

    Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo

    2015-01-01

    We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.

  16. Marmoricola scoriae sp. nov., isolated from volcanic ash.

    PubMed

    Lee, Dong Wan; Lee, Soon Dong

    2010-09-01

    A novel Gram-stain-positive, coccoid actinobacterium, designated strain Sco-D01(T), was isolated from volcanic ash collected from Oreum (a parasitic volcanic cone) on Jeju Island, Republic of Korea. Cells were aerobic, oxidase-negative and catalase-positive. Colonies were vivid yellow, circular, smooth and convex. The diagnostic diamino acid in the cell wall was ll-diaminopimelic acid. The predominant menaquinone was MK-8(H(4)). The polar lipids were phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and an unknown phospholipid. The fatty acid profile was represented by large amounts of saturated, unsaturated, 10-methyl and hydroxyl components. The DNA G+C content of strain Sco-D01(T) was 72.0 mol%. 16S rRNA gene sequence analysis revealed that strain Sco-D01(T) belonged to the family Nocardioidaceae and formed a distinct sublineage within the radiation of the genus Marmoricola. The level of DNA-DNA relatedness between strain Sco-D01(T) and its closest phylogenetic relative, Marmoricola aurantiacus DSM 12652(T), was 30.2 % (35.4 % in duplicate measurements). On the basis of phenotypic and DNA-DNA hybridization data, strain Sco-D01(T) is considered to represent a novel species of the genus Marmoricola, for which the name Marmoricola scoriae sp. nov. is proposed. The type strain is Sco-D01(T) (=KCTC 19597(T)=DSM 22127(T)).

  17. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  18. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  19. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    PubMed

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  20. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Gong, Ya-Nan; Li, Wei-Wei; Sun, Jiang-Ling; Ren, Fei; He, Lin; Jiang, Hui; Wang, Qun

    2010-09-16

    Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity. Therefore, a cDNA encoding Eriocheir sinensis FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp Es-FABP gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of Es-FABP transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that Es-FABP expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January. Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in E. sinensis, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.

  1. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  2. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.

    PubMed

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao

    2017-03-01

    Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

  3. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  4. A simple non-enzymatic method for the preparation of white spot syndrome virus (WSSV) DNA from the haemolymph of Marsupenaeus japonicus using FTA matrix cards.

    PubMed

    Sudhakaran, R; Mekata, T; Kono, T; Supamattaya, K; Linh, N T H; Suzuki, Y; Sakai, M; Itami, T

    2009-07-01

    White spot syndrome virus (WSSV) is an important shrimp pathogen responsible for large economic losses for the shrimp culture industry worldwide. The nucleic acids of the virus must be adequately preserved and transported from the field to the laboratory before molecular diagnostic analysis is performed. Here, we developed a new method to isolate WSSV-DNA using Flinders Technology Associates filter paper (FTA matrix card; Whatman) without centrifugation or hazardous steps involved. FTA technology is a new method allowing the simple collection, shipment and archiving of nucleic acids from haemolymph samples providing DNA protection against nucleases, oxidation, UV damage, microbial and fungal attack. DNA samples prepared from 10-fold dilutions of moribund shrimp haemolymph using FTA matrix cards were analysed using semi-quantitative and quantitative polymerase chain reaction (PCR) and were compared with two commercially available DNA isolation methods, the blood GenomicPrep Mini Spin Kit (GE Healthcare) and the DNAzol (Invitrogen). Sequence analysis was performed for the DNA samples prepared using the various isolation procedures and no differences in the sequence among these methods were identified. Results based on the initial copy number of DNA prepared from the GenomicPrep Mini Spin Kit are a little more sensitive than the DNA prepared from FTA matrix cards, whereas the DNAzol method is not suitable for blood samples. Our data shows the efficiency of retention capacity of WSSV-DNA samples from impregnated FTA matrix cards. Matrix cards were easy to store and ship for long periods of time. They provide ease of handling and are a reliable alternative for sample collection and for molecular detection and characterization of WSSV isolates.

  5. DNA and RNA profiling of excavated human remains with varying postmortem intervals.

    PubMed

    van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T

    2016-11-01

    When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.

  6. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    PubMed

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  7. Real-time polymerase chain reaction for diagnosing infectious mononucleosis in pediatric patients: A systematic review and meta-analysis.

    PubMed

    Jiang, Sha-Yi; Yang, Jing-Wei; Shao, Jing-Bo; Liao, Xue-Lian; Lu, Zheng-Hua; Jiang, Hui

    2016-05-01

    In this meta-analysis, we evaluated the diagnostic role of Epstein-Barr virus deoxyribonucleic acid detection and quantitation in the serum of pediatric and young adult patients with infectious mononucleosis. The primary outcome of this meta-analysis was the sensitivity and specificity of Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA) detection and quantitation using polymerase chain reaction (PCR). A systematic review and meta-analysis was performed by searching for articles that were published through September 24, 2014 in the following databases: Medline, Cochrane, EMBASE, and Google Scholar. The following keywords were used for the search: "Epstein-Barr virus," "infectious mononucleosis," "children/young adults/infant/pediatric," and "polymerase chain reaction or PCR." Three were included in this analysis. We found that for detection by PCR, the pooled sensitivity for detecting EBV DNA was 77% (95%CI, 66-86%) and the pooled specificity for was 98% (95%CI, 93-100%). Our findings indicate that this PCR-based assay has high specificity and good sensitivity for detecting of EBV DNA, indicating it may useful for identifying patients with infectious mononucleosis. This assay may also be helpful to identify young athletic patients or highly physically active pediatric patients who are at risk for a splenic rupture due to acute infectious mononucleosis. © 2015 Wiley Periodicals, Inc.

  8. Genotoxic effect of ethacrynic acid and impact of antioxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less

  9. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    PubMed

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans.

    PubMed

    Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A

    2016-02-18

    We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  12. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  13. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  14. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  15. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  16. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  17. Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis.

    PubMed

    Geeta Vani, R; Varghese, C M; Rao, M R

    1999-12-15

    The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process. Copyright 1999 Academic Press.

  18. Two-color, 30 second microwave-accelerated Metal-Enhanced Fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology.

    PubMed

    Dragan, Anatoliy I; Golberg, Karina; Elbaz, Amit; Marks, Robert; Zhang, Yongxia; Geddes, Chris D

    2011-03-07

    For analyses of DNA fragment sequences in solution we introduce a 2-color DNA assay, utilizing a combination of the Metal-Enhanced Fluorescence (MEF) effect and microwave-accelerated DNA hybridization. The assay is based on a new "Catch and Signal" technology, i.e. the simultaneous specific recognition of two target DNA sequences in one well by complementary anchor-ssDNAs, attached to silver island films (SiFs). It is shown that fluorescent labels (Alexa 488 and Alexa 594), covalently attached to ssDNA fragments, play the role of biosensor recognition probes, demonstrating strong response upon DNA hybridization, locating fluorophores in close proximity to silver NPs, which is ideal for MEF. Subsequently the emission dramatically increases, while the excited state lifetime decreases. It is also shown that 30s microwave irradiation of wells, containing DNA molecules, considerably (~1000-fold) speeds up the highly selective hybridization of DNA fragments at ambient temperature. The 2-color "Catch and Signal" DNA assay platform can radically expedite quantitative analysis of genome DNA sequences, creating a simple and fast bio-medical platform for nucleic acid analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Genetic manipulation of gamma-linolenic acid (GLA) synthesis in a commercial variety of evening primrose (Oenothera sp.).

    PubMed

    de Gyves, Emilio Mendoza; Sparks, Caroline A; Sayanova, Olga; Lazzeri, Paul; Napier, Johnathan A; Jones, Huw D

    2004-07-01

    A robust Agrobacterium-mediated transformation procedure was developed for Rigel, a commercial cultivar of evening primrose, and used to deliver a cDNA encoding a Delta(6)-desaturase from borage under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the transformed plants demonstrated an altered profile of polyunsaturated fatty acids, with an increase in gamma-linolenic acid and octadecatetraenoic acid in leaf tissues when compared with control lines.

  20. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor.

    PubMed Central

    Nakajima, K; Hashimoto, T; Yamada, Y

    1993-01-01

    In the biosynthetic pathway of tropane alkaloids, tropinone reductase (EC 1.1.1.236) (TR)-I and TR-II, respectively, reduce a common substrate, tropinone, stereospecifically to the stereoisomeric alkamines tropine and pseudotropine (psi-tropine). cDNA clones coding for TR-I and TR-II, as well as a structurally related cDNA clone with an unknown function, were isolated from the solanaceous plant Datura stramonium. The cDNA clones for TR-I and TR-II encode polypeptides containing 273 and 260 amino acids, respectively, and when these clones were expressed in Escherichia coli, the recombinant TRs showed the same strict stereospecificity as that observed for the native TRs that had been isolated from plants. The deduced amino acid sequences of the two clones showed an overall identity of 64% in 260-amino acid residues and also shared significant similarities with enzymes in the short-chain, nonmetal dehydrogenase family. Genomic DNA-blot analysis detected the TR-encoding genes in three tropane alkaloid-producing solanaceous species but did not detect them in tobacco. We discuss how the two TRs may have evolved to catalyze the opposite stereospecific reductions. Images Fig. 4 Fig. 5 PMID:8415746

  1. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  2. Electrostatic interactions during acidic phospholipid reactivation of DnaA protein, the Escherichia coli initiator of chromosomal replication.

    PubMed

    Kitchen, J L; Li, Z; Crooke, E

    1999-05-11

    The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.

  3. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol.

    PubMed

    Bispo, Vanderson S; Dantas, Lucas S; Chaves, Adriano B; Pinto, Isabella F D; Silva, Railmara P DA; Otsuka, Felipe A M; Santos, Rodrigo B; Santos, Aline C; Trindade, Danielle J; Matos, Humberto R

    2017-01-01

    Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  4. Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.

    PubMed Central

    Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706

  5. Molecular cloning and sequence analysis of stearoyl-CoA desaturase in milkfish, Chanos chanos.

    PubMed

    Hsieh, S L; Liao, W L; Kuo, C M

    2001-12-01

    Stearoyl-CoA desaturase (EC 1.14.99.5) is a key enzyme in the biosynthesis of polyunsaturated fatty acids and the maintenance of the homeoviscous fluidity of biological membranes. The stearoyl-CoA desaturase cDNA in milkfish (Chanos chanos) was cloned by RT-PCR and RACE, and it was compared with the stearoyl-CoA desaturase in cold-tolerant teleosts, common carp and grass carp. Nucleotide sequence analysis revealed that the cDNA clone has a 972-bp open reading frame encoding 323 amino acid residues. Alignments of the deduced amino acid sequence showed that the milkfish stearoyl-CoA desaturase shares 79% and 75% identity with common carp and grass carp, and 63%-64% with other vertebrates such as sheep, hamsters, rats, mice, and humans. Like common carp and grass carp, the deduced amino acid sequence in milkfish well conserves three histidine cluster motifs (one HXXXXH and two HXXHH) that are essential for catalysis of stearoyl-CoA desaturase activity. However, RT-PCR analysis showed that stearoyl-CoA desaturase expression in milkfish is detected in the tissues of liver, muscle, kidney, brain, and gill, and more expression sites were found in milkfish than in common carp and grass carp. Phylogenic relationships among the deduced stearoyl-CoA desaturase amino acid sequence in milkfish and those in other vertebrates showed that the milkfish stearoyl-CoA desaturase amino acid sequence is phylogenetically closer to those of common carp and grass carp than to other higher vertebrates.

  6. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA.

    PubMed

    Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha

    2017-08-31

    Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.

  7. The bglA Gene of Aspergillus kawachii Encodes Both Extracellular and Cell Wall-Bound β-Glucosidases

    PubMed Central

    Iwashita, Kazuhiro; Nagahara, Tatsuya; Kimura, Hitoshi; Takano, Makoto; Shimoi, Hitoshi; Ito, Kiyoshi

    1999-01-01

    We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA in Saccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast. A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase. A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that the bglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii. PMID:10584016

  8. A simple capillary gel electrophoresis approach for efficient and reproducible DNA separations. Analysis of genetically modified soy and maize.

    PubMed

    Sánchez, Laura; González, Ramón; Crego, Antonio L; Cifuentes, Alejandro

    2007-03-01

    It is generally assumed that in order to achieve suitable separations of DNA fragments, capillary gel electrophoresis (CGE)-coated capillaries should be used. In this work, a new method is presented that allows to obtain reproducible CGE separations of DNA fragments using bare fused-silica capillaries without any previous coating step. The proposed method only requires: (i) a capillary washing with 0.1 M hydrochloric acid between injections and (ii) a running buffer composed of Tris-phosphate-ethylenediamine tetraacetic acid (EDTA) and 4.5% of 2-hydroxyethyl cellulose (HEC) as sieving polymer. The use of this new CGE procedure gives highly resolved and reproducible separations of DNA fragments ranging from 50 to 750 bp. The separation of these DNA fragments is accomplished in less than 30 min with efficiencies up to 1.7 x 10(6) plates/m. Reproducibility values of migration times (given as %RSD) for the analyzed DNA fragments are better than 1.0% (n = 4) for the same day, 2.2% (n = 16) for four different days, and 2.3% (n = 16) for four different capillaries. The usefulness of this separation method is demonstrated by detecting genetically modified maize and genetically modified soy after DNA amplification by PCR. This new CGE procedure together with LIF as detector provides sensitive analysis of 0.9% of Bt11 maize, Mon810 maize, and Roundup Ready soy in flours with S/ N up to 542. These results demonstrate the usefulness of this procedure to fulfill the European regulation on detection of genetically modified organisms in foods.

  9. C 3-symmetric opioid scaffolds are pH-responsive DNA condensation agents.

    PubMed

    McStay, Natasha; Molphy, Zara; Coughlan, Alan; Cafolla, Attilio; McKee, Vickie; Gathergood, Nicholas; Kellett, Andrew

    2017-01-25

    Herein we report the synthesis of tripodal C 3 -symmetric opioid scaffolds as high-affinity condensation agents of duplex DNA. Condensation was achieved on both supercoiled and canonical B-DNA structures and identified by agarose electrophoresis, viscosity, turbidity and atomic force microscopy (AFM) measurements. Structurally, the requirement of a tris-opioid scaffold for condensation is demonstrated as both di- (C 2 -symmetric) and mono-substituted (C 1 -symmetric) mesitylene-linked opioid derivatives poorly coordinate dsDNA. Condensation, observed by toroidal and globule AFM aggregation, arises from surface-binding ionic interactions between protonated, cationic, tertiary amine groups on the opioid skeleton and the phosphate nucleic acid backbone. Indeed, by converting the 6-hydroxyl group of C 3 -morphine ( MC3: ) to methoxy substituents in C 3 -heterocodeine ( HC3: ) and C 3 -oripavine ( OC3: ) molecules, dsDNA compaction is retained thus negating the possibility of phosphate-hydroxyl surface-binding. Tripodal opioid condensation was identified as pH dependent and strongly influenced by ionic strength with further evidence of cationic amine-phosphate backbone coordination arising from thermal melting analysis and circular dichroism spectroscopy, with compaction also witnessed on synthetic dsDNA co-polymers poly[d(A-T) 2 ] and poly[d(G-C) 2 ]. On-chip microfluidic analysis of DNA condensed by C 3 -agents provided concentration-dependent protection (inhibition) to site-selective excision by type II restriction enzymes: BamHI, HindIII, SalI and EcoRI, but not to the endonuclease DNase I. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    PubMed Central

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  11. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin.

    PubMed

    Clark, D P; Durell, S; Maloy, W L; Zasloff, M

    1994-04-08

    Antimicrobial peptides comprise a diverse class of molecules used in host defense by plants, insects, and animals. In this study we have isolated a novel antimicrobial peptide from the skin of the bullfrog, Rana catesbeiana. This 20 amino acid peptide, which we have termed Ranalexin, has the amino acid sequence: NH2-Phe-Leu-Gly-Gly-Leu-Ile-Lys-Ile-Val-Pro-Ala-Met-Ile-Cys-Ala-Val-Thr- Lys-Lys - Cys-COOH, and it contains a single intramolecular disulfide bond which forms a heptapeptide ring within the molecule. Structurally, Ranalexin resembles the bacterial antibiotic, polymyxin, which contains a similar heptapeptide ring. We have also cloned the cDNA for Ranalexin from a metamorphic R. catesbeiana tadpole cDNA library. Based on the cDNA sequence, it appears that Ranalexin is initially synthesized as a propeptide with a putative signal sequence and an acidic amino acid-rich region at its amino-terminal end. Interestingly, the putative signal sequence of the Ranalexin cDNA is strikingly similar to the signal sequence of opioid peptide precursors isolated from the skin of the South American frogs Phyllomedusa sauvagei and Phyllomedusa bicolor. Northern blot analysis and in situ hybridization experiments demonstrated that Ranalexin mRNA is first expressed in R. catesbeiana skin at metamorphosis and continues to be expressed into adulthood.

  12. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    PubMed

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  13. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    PubMed

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  14. Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand.

    PubMed

    Namwong, Sirilak; Tanasupawat, Somboon; Smitinont, Thitapha; Visessanguan, Wonnop; Kudo, Takuji; Itoh, Takashi

    2005-01-01

    Eight strains of aerobic, spore-forming, Gram-positive, moderately halophilic bacteria were isolated from sauce (nam-pla and bu-du) produced in Thailand by the fermentation of fish. They grew optimally in the presence of 10 % NaCl, at 37 degrees C and pH 7.0. A diagnostic diamino acid, meso-diaminopimelic acid, was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C(15 : 0) and iso-C(16 : 0). Phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid were found to be the major polar lipid components. The DNA G+C content was 42-43 mol%. These bacteria were further divided into two groups based on phenotypic characteristics and DNA-DNA similarities. Three strains of Group I were highly affiliated to the type strain of Lentibacillus salicampi in terms of phenotypic characterization and DNA-DNA similarities (96-102 %); accordingly, they were identified as strains of L. salicampi. A representative strain of Group II, strain IS40-3T, was most closely related to L. salicampi in terms of 16S rRNA-based phylogenetic analysis, although five strains of Group II could be distinguished from L. salicampi by means of several phenotypic properties, low 16S rRNA gene sequence similarity (95.2 %) and low DNA-DNA similarities (12-32 %). Therefore, the Group II strains should be included in a novel species of the genus Lentibacillus, for which the name Lentibacillus juripiscarius sp. nov. is proposed. The type strain is IS40-3T (=JCM 12147T=PCU 229T=TISTR 1535T).

  15. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    DOE PAGES

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...

    2015-01-30

    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less

  16. Interaction of the Sliding Clamp β-Subunit and Hda, a DnaA-Related Protein

    PubMed Central

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya

    2004-01-01

    In Escherichia coli, interactions between the replication initiation protein DnaA, the β subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and β proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with β in vitro. A new β-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified β-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind β. A 10-amino-acid peptide containing the E. coli Hda β-binding motif was shown to compete with Hda for binding to β in an Hda-β interaction assay. These results establish that the interaction of Hda with β is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication. PMID:15150238

  17. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein.

    PubMed

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya

    2004-06-01

    In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.

  18. A two-step electrodialysis method for DNA purification from polluted metallic environmental samples.

    PubMed

    Rodríguez-Mejía, José Luis; Martínez-Anaya, Claudia; Folch-Mallol, Jorge Luis; Dantán-González, Edgar

    2008-08-01

    Extracting DNA from samples of polluted environments using standard methods often results in low yields of poor-quality material unsuited to subsequent manipulation and analysis by molecular biological techniques. Here, we report a novel two-step electrodialysis-based method for the extraction of DNA from environmental samples. This technique permits the rapid and efficient isolation of high-quality DNA based on its acidic nature, and without the requirement for phenol-chloroform-isoamyl alcohol cleanup and ethanol precipitation steps. Subsequent PCR, endonuclease restriction, and cloning reactions were successfully performed utilizing DNA obtained by electrodialysis, whereas some or all of these techniques failed using DNA extracted with two alternative methods. We also show that his technique is applicable to purify DNA from a range of polluted and nonpolluted samples.

  19. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    PubMed

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  20. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater (Longhorn Army Ammunition Plant)

    DTIC Science & Technology

    2009-01-01

    citric acid , or ethanol have been used in field applications, and it may be possible to use mobile forms of emulsified vegetable oil, methyl esters and...70 5.7.5 Results of Volatile Fatty Acids Analysis .................................................................. 77 5.7.6 Results of...gases DNA deoxyribonucleic acid do dissolved oxygen DoD Department of Defense DOE Department of Energy DOT Department of Transportation EISB

  1. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  2. Purification and general properties of the DNA-binding protein (P16) from rat liver mitochondria.

    PubMed

    Pavco, P A; Van Tuyle, G C

    1985-01-01

    The mitochondrial DNA-binding protein P16 was isolated from rat liver mitochondrial lysates by affinity chromatography on single strand DNA agarose and separated from DNA in the preparation by alkaline CsCl isopycnic gradients. The top fraction of the gradients contained a single polypeptide species (Mr approximately equal to 15,200) based upon SDS PAGE. Digestion of single strand DNA-bound P16 with proteinase K produced a protease-insensitive, DNA-binding fragment (Mr approximately equal to 6,000) that has been purified by essentially the same procedures used for intact P16. The partial amino acid compositions for P16 and the DNA-binding fragment were obtained by conventional methods. Analysis of subcellular fractions revealed that nearly all of the cellular P16 was located in the mitochondria and that only trace amounts of protein of comparable electrophoretic mobility could be isolated from the nuclear or cytoplasmic fractions. The labeling of P16 with [35S]methionine in primary rat hepatocyte cultures was inhibited by more than 90% by the cytoplasmic translation inhibitor cycloheximide, but unaffected by the mitochondrial-specific agent chloramphenicol. These results indicate that P16 is synthesized on cytoplasmic ribosomes and imported into the mitochondria. The addition of purified P16 to deproteinized mitochondrial DNA resulted in the complete protection of the labeled nascent strands of displacement loops against branch migrational loss during cleavage of parental DNA with SstI, thus providing strong evidence that P16 is the single entity required for this in vitro function. Incubation of P16 with single strand phi X174 DNA, double strand (RF) phi X174 DNA, or Escherichia coli ribosomal RNA and subsequent analysis of the nucleic acid species for bound protein indicated a strong preference of P16 for single strand DNA and no detectable affinity for RNA or double strand DNA. Examination of P16-single strand phi X174 DNA complexes by direct electron microscopy revealed thickened, irregular fibers characteristic of protein-associated single strand DNA.

  3. Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793

  4. A properly configured ring structure is critical for the function of the mitochondrial DNA recombination protein, Mgm101.

    PubMed

    Nardozzi, Jonathan D; Wang, Xiaowen; Mbantenkhu, MacMillan; Wilkens, Stephan; Chen, Xin Jie

    2012-10-26

    Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.

  5. Nucleic acid extraction techniques and application to the microchip.

    PubMed

    Price, Carol W; Leslie, Daniel C; Landers, James P

    2009-09-07

    As recently as the early 1990s, DNA purification was time-consuming, requiring the use of toxic, hazardous reagents. The advent of solid phase extraction techniques and the availability of commercial kits for quick and reliable DNA extraction has relegated those early techniques largely to the history books. High quality DNA can now be extracted from whole blood, serum, saliva, urine, stool, cerebral spinal fluid, tissues, and cells in less time without sacrificing recovery. Having achieved such a radical change in the methodology of DNA extraction, focus has shifted to adapting these methods to a miniaturized system, or "lab-on-a-chip" (A. Manz, N. Graber and H. M. Widmer, Sens. Actuators, B, 1990, 1, 244-248). Manz et al.'s concept of a "miniaturized total chemical analysis system" (microTAS) involved a silicon chip that incorporated sample pretreatment, separation and detection. This review will focus on the first of these steps, sample pretreatment in the form of DNA purification. The intention of this review is to provide an overview of the fundamentals of nucleic acid purification and solid phase extraction (SPE) and to discuss specific microchip DNA extraction successes and challenges. In order to fully appreciate the advances in DNA purification, a brief review of the history of DNA extraction is provided so that the reader has an understanding of the impact that the development of SPE techniques have had. This review will highlight the different methods of nucleic acid extraction (Table 1), including relevant citations, but without an exhaustive summary of the literature. A recent review by Wen et al. (J. Wen, L. A. Legendre, J. M. Bienvenue and J. P. Landers, Anal. Chem., 2008, 80, 6472-6479) covers solid phase extraction methods with a greater focus on their incorporation into integrated microfluidic systems.

  6. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles.

    PubMed

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil; Brown, Stanley; Oddershede, Lene B

    2014-09-01

    This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes ~4 weeks.

  7. Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties

    PubMed Central

    Willkomm, Sarah; Zander, Adrian; Grohmann, Dina; Restle, Tobias

    2016-01-01

    Argonaute (Ago) proteins from all three domains of life are key players in processes that specifically regulate cellular nucleic acid levels. Some of these Ago proteins, among them human Argonaute2 (hAgo2) and Ago from the archaeal organism Methanocaldococcus jannaschii (MjAgo), are able to cleave nucleic acid target strands that are recognised via an Ago-associated complementary guide strand. Here we present an in-depth kinetic side-by-side analysis of hAgo2 and MjAgo guide and target substrate binding as well as target strand cleavage, which enabled us to disclose similarities and differences in the mechanistic pathways as a function of the chemical nature of the substrate. Testing all possible guide-target combinations (i.e. RNA/RNA, RNA/DNA, DNA/RNA and DNA/DNA) with both Ago variants we demonstrate that the molecular mechanism of substrate association is highly conserved among archaeal-eukaryotic Argonautes. Furthermore, we show that hAgo2 binds RNA and DNA guide strands in the same fashion. On the other hand, despite striking homology between the two Ago variants, MjAgo cannot orientate guide RNA substrates in a way that allows interaction with the target DNA in a cleavage-compatible orientation. PMID:27741323

  8. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  9. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  10. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  11. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  12. Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping.

    PubMed

    Vogel, Nicolas; Schiebel, Katrin; Humeny, Andreas

    2009-01-01

    With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.

  13. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  14. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  15. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  16. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  17. Cytoplasmic DNA synthesis in Amoeba proteus. I. On the particulate nature of the DNA-containing elements.

    PubMed

    RABINOVITCH, M; PLAUT, W

    1962-12-01

    The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 micro particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H(3)-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.

  18. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers

    PubMed Central

    Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika

    2014-01-01

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415

  19. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.

    PubMed

    Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S

    2018-02-01

    To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.

  20. Detection of viral infection and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization.

    PubMed

    Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A

    2002-09-01

    In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.

  1. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  2. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    PubMed Central

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  3. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    PubMed

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  4. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  5. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT.

    PubMed

    Nissan, Gal; Manulis-Sasson, Shulamit; Chalupowicz, Laura; Teper, Doron; Yeheskel, Adva; Pasmanik-Chor, Metsada; Sessa, Guido; Barash, Isaac

    2012-02-01

    The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.

  6. An exon 4 mutation identified in the majority of South African familial hypercholesterolaemics.

    PubMed Central

    Kotze, M J; Warnich, L; Langenhoven, E; du Plessis, L; Retief, A E

    1990-01-01

    The prevalence of familial hypercholesterolaemia (FH) is significantly higher in the Afrikaans speaking population (Afrikaners) of South Africa than reported in most other populations. A founder gene effect has been proposed to explain the high FH frequency, implying that the same low density lipoprotein (LDL) receptor gene defect is present in the majority of affected Afrikaners. By using DNA amplification and sequence determination, we have detected a point mutation in DNA from two Afrikaner FH homozygotes. A cytosine to guanine base substitution at nucleotide position 681 of the LDL receptor cDNA results in an amino acid change from aspartic acid to glutamic acid at residue 206 in the cysteine rich ligand binding domain of the LDL receptor. Since three previously mapped transport deficient alleles of the LDL receptor were also traced to cysteine rich repeats of the protein, these results suggest that the mutation is responsible for the receptor defective mutation predominantly found in Afrikaner FH homozygotes. The mutation gives rise to an additional DdeI restriction site in DNA of affected subjects and segregation of the mutation with the disease was confirmed in five large Afrikaner FH families. We predict that 65% of affected South African Afrikaners carry this particular base substitution. Amplification of genomic DNA, using the polymerase chain reaction method, and restriction enzyme analysis now permit accurate diagnosis of the mutation in subjects with FH. Images PMID:2352257

  7. Identification of amino acid residues involved in the dRP-lyase activity of human Pol ι.

    PubMed

    Miropolskaya, Nataliya; Petushkov, Ivan; Kulbachinskiy, Andrey; Makarova, Alena V

    2017-08-31

    Besides X-family DNA polymerases (first of all, Pol β) several other human DNA polymerases from Y- and A- families were shown to possess the dRP-lyase activity and could serve as backup polymerases in base excision repair (Pol ι, Rev1, Pol γ and Pol θ). However the exact position of the active sites and the amino acid residues involved in the dRP-lyase activity in Y- and A- family DNA polymerases are not known. Here we carried out functional analysis of fifteen amino acid residues possibly involved in the dRP-lyase activity of human Pol ι. We show that substitutions of residues Q59, K60 and K207 impair the dRP-lyase activity of Pol ι while residues in the HhH motif of the thumb domain are dispensable for this activity. While both K60G and K207A substitutions decrease Schiff-base intermediate formation during dRP group cleavage, the latter substitution also strongly affects the DNA polymerase activity of Pol ι, suggesting that it may impair DNA binding. These data are consistent with an important role of the N-terminal region in the dRP-lyase activity of Pol ι, with possible involvement of residues from the finger domain in the dRP group cleavage.

  8. Methods of introducing nucleic acids into cellular DNA

    DOEpatents

    Lajoie, Marc J.; Gregg, Christopher J.; Mosberg, Joshua A.; Church, George M.

    2017-06-27

    A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.

  9. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  10. Cell-free fetal nucleic acid testing: a review of the technology and its applications.

    PubMed

    Sayres, Lauren C; Cho, Mildred K

    2011-07-01

    Cell-free fetal nucleic acids circulating in the blood of pregnant women afford the opportunity for early, noninvasive prenatal genetic testing. The predominance of admixed maternal genetic material in circulation demands innovative means for identification and analysis of cell-free fetal DNA and RNA. Techniques using polymerase chain reaction, mass spectrometry, and sequencing have been developed for the purposes of detecting fetal-specific sequences, such as paternally inherited or de novo mutations, or determining allelic balance or chromosome dosage. Clinical applications of these methods include fetal sex determination and blood group typing, which are currently available commercially although not offered routinely in the United States. Other uses of cell-free fetal DNA and RNA being explored are the detection of single-gene disorders, chromosomal abnormalities, and inheritance of parental polymorphisms across the whole fetal genome. The concentration of cell-free fetal DNA may also provide predictive capabilities for pregnancy-associated complications. The roles that cell-free fetal nucleic acid testing assume in the existing framework of prenatal screening and invasive diagnostic testing will depend on factors such as costs, clinical validity and utility, and perceived benefit-risk ratios for different applications. As cell-free fetal DNA and RNA testing continues to be developed and translated, significant ethical, legal, and social questions will arise that will need to be addressed by those with a stake in the use of this technology. Obstetricians & Gynecologists and Family Physicians Learning Objectives: After participating in this activity, physicians should be better able to evaluate techniques and tools for analyzing cell-free fetal nucleic acids, assess clinical applications of prenatal testing, using cell-free fetal nucleic acids and barriers to implementation, and distinguish between relevant clinical features of cell-free fetal nucleic acid testing and existing prenatal genetic screening and diagnostic procedures.

  11. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.

    PubMed

    Camborde, Laurent; Jauneau, Alain; Brière, Christian; Deslandes, Laurent; Dumas, Bernard; Gaulin, Elodie

    2017-09-01

    DNA-binding proteins (DNA-BPs) and RNA-binding proteins (RNA-BPs) have critical roles in living cells in all kingdoms of life. Various experimental approaches exist for the study of nucleic acid-protein interactions in vitro and in vivo, but the detection of such interactions at the subcellular level remains challenging. Here we describe how to detect nucleic acid-protein interactions in plant leaves by using a fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM). Proteins of interest (POI) are tagged with a GFP and transiently expressed in plant cells to serve as donor fluorophore. After sample fixation and cell wall permeabilization, leaves are treated with Sytox Orange, a nucleic acid dye that can function as a FRET acceptor. Upon close association of the GFP-tagged POI with Sytox-Orange-stained nucleic acids, a substantial decrease of the GFP lifetime due to FRET between the donor and the acceptor can be monitored. Treatment with RNase before FRET-FLIM measurements allows determination of whether the POI associates with DNA and/or RNA. A step-by-step protocol is provided for sample preparation, data acquisition and analysis. We describe how to calibrate the equipment and include a tutorial explaining the use of the FLIM software. To illustrate our approach, we provide experimental procedures to detect the interaction between plant DNA and two proteins (the AeCRN13 effector from the oomycete Aphanomyces euteiches and the AtWRKY22 defensive transcription factor from Arabidopsis). This protocol allows the detection of protein-nucleic acid interactions in plant cells and can be completed in <2 d.

  12. Analysis of 4-hydroxy-1-(-3-pyridyl)-1-butanone (HPB)-releasing DNA adducts in human exfoliated oral mucosa cells by liquid chromatography-electrospray ionization-tandem mass spectrometry

    PubMed Central

    Stepanov, Irina; Muzic, John; Le, Chap T.; Sebero, Erin; Villalta, Peter; Ma, Bin; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.

    2013-01-01

    Quantitation of DNA adducts could provide critical information on the relationship between exposure to tobacco smoke and cancer risk in smokers. In this study, we developed a robust and sensitive liquid chromatography-tandem mass spectrometry method for the analysis of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB1)-releasing DNA adducts in human oral cells, a non-invasive source of DNA for biomarker studies. Isolated DNA undergoes acid hydrolysis, after which samples are purified by solid-phase extraction and analyzed by LC-ESI-MS/MS. The developed method was applied for analysis of samples obtained via collection with a commercial mouthwash from 30 smokers and 15 nonsmokers. In smokers, the levels of HPB-releasing DNA adducts averaged 12.0 pmol HPB/mg DNA (detected in 20 out of 28 samples with quantifiable DNA yield) and in nonsmokers, the levels of adducts averaged 0.23 pmol/mg DNA (detected in 3 out of 15 samples). For the 30 smoking subjects, matching buccal brushings were also analyzed and HPB-releasing DNA adducts were detected in 24 out of 27 samples with quantifiable DNA yield, averaging 44.7 pmol HPB/mg DNA. The levels of adducts in buccal brushings correlated with those in mouthwash samples of smokers (R = 0.73, p < 0.0001). Potentially the method can be applied in studies of individual susceptibility to tobacco-induced cancers in humans. PMID:23252610

  13. Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress.

    PubMed

    Qu, Chun-Pu; Xu, Zhi-Ru; Liu, Guan-Jun; Liu, Chun; Li, Yang; Wei, Zhi-Gang; Liu, Gui-Feng

    2010-01-01

    In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1-16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO(3). The different mRNA levels' expression of PS-CuZnSOD show the gene's different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.

  14. Genomic DNA Methylation Changes in Response to Folic Acid Supplementation in a Population-Based Intervention Study among Women of Reproductive Age

    PubMed Central

    Berry, Robert J.; Hao, Ling; Li, Zhu; Maneval, David; Yang, Thomas P.; Rasmussen, Sonja A.; Yang, Quanhe; Zhu, Jiang-Hui; Hu, Dale J.; Bailey, Lynn B.

    2011-01-01

    Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 µg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 µg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (−14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation. PMID:22163281

  15. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.

    PubMed

    Eernisse, D J

    1992-04-01

    DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.

  16. CRITICA: coding region identification tool invoking comparative analysis

    NASA Technical Reports Server (NTRS)

    Badger, J. H.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark, and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in/pub/critica) and on the World Wide Web (http:/(/)rdpwww.life.uiuc.edu).

  17. Sensitive and inexpensive digital DNA analysis by microfluidic enrichment of rolling circle amplified single-molecules.

    PubMed

    Kühnemund, Malte; Hernández-Neuta, Iván; Sharif, Mohd Istiaq; Cornaglia, Matteo; Gijs, Martin A M; Nilsson, Mats

    2017-05-05

    Single molecule quantification assays provide the ultimate sensitivity and precision for molecular analysis. However, most digital analysis techniques, i.e. droplet PCR, require sophisticated and expensive instrumentation for molecule compartmentalization, amplification and analysis. Rolling circle amplification (RCA) provides a simpler means for digital analysis. Nevertheless, the sensitivity of RCA assays has until now been limited by inefficient detection methods. We have developed a simple microfluidic strategy for enrichment of RCA products into a single field of view of a low magnification fluorescent sensor, enabling ultra-sensitive digital quantification of nucleic acids over a dynamic range from 1.2 aM to 190 fM. We prove the broad applicability of our analysis platform by demonstrating 5-plex detection of as little as ∼1 pg (∼300 genome copies) of pathogenic DNA with simultaneous antibiotic resistance marker detection, and the analysis of rare oncogene mutations. Our method is simpler, more cost-effective and faster than other digital analysis techniques and provides the means to implement digital analysis in any laboratory equipped with a standard fluorescent microscope. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Genetic and biochemical impairment of mitochondrial complex I activity in a family with Leber hereditary optic neuropathy and hereditary spastic dystonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vries, D.D.; Oost, B.A. van; Went, L.N.

    1996-04-01

    A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A{yields}G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T{yields}A transitionmore » at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy. 80 refs., 2 figs., 3 tabs.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less

  20. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room.

    PubMed

    Vaishampayan, Parag; Probst, Alexander; Krishnamurthi, Srinivasan; Ghosh, Sudeshna; Osman, Shariff; McDowall, Alasdair; Ruckmani, Arunachalam; Mayilraj, Shanmugam; Venkateswaran, Kasthuri

    2010-05-01

    Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m(-2). The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA-DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus Bacillus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99 %, but the similarity was only about 97 % with their nearest neighbours Bacillus pocheonensis, Bacillus firmus and Bacillus bataviensis. DNA-DNA hybridization dissociation values were <24 % to the closest related type strains. The novel strains had a G+C content 35.6+/-0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0) and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus Bacillus, for which the name Bacillus horneckiae sp. nov. is proposed. The type strain is 1P01SC(T) (=NRRL B-59162(T) =MTCC 9535(T)).

  1. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    PubMed

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  3. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.

    PubMed

    Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R

    2011-08-01

    Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.

  4. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  5. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  6. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    PubMed

    Kulkarni, Asmita; Dangat, Kamini; Kale, Anvita; Sable, Pratiksha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2011-03-10

    Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12) are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12) deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12) deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12) lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  7. Inducing mutations through γ-irradiation in seeds of Mucuna pruriens for developing high L-DOPA-yielding genotypes.

    PubMed

    Singh, Susheel Kumar; Yadav, Deepti; Lal, Raj Kishori; Gupta, Madan M; Dhawan, Sunita Singh

    2017-04-01

    To develop elite genotypes in Mucuna pruriens (L.) DC with high L-DOPA (L-3, 4 dihydroxyphenylalanine) yields, with non-itching characteristics and better adaptability by applying γ-irradiation. Molecular and chemical analysis was performed for screening based on specific characteristics desired for developing suitable genotypes. Developed, mutant populations were analyzed for L-DOPA % in seeds through TLC (thin layer chromatography), and the results obtained were validated with the HPLC (High performance liquid chromatography). The DNA (Deoxyribonucleic acid) was isolated from the leaf at the initial stage and used for DNA polymorphism. RNA (Ribonucleic acid) was isolated from the leaf during maturity and used for expression analysis. The selected mutant T-I-7 showed 5.7% L-DOPA content compared to 3.18% of parent CIM-Ajar. The total polymorphism obtained was 57% with the molecular marker analysis. The gene expression analysis showed higher fold change expression of the dopadecarboxylase gene (DDC) in control compared to selected mutants (T-I-7, T-II-23, T-IV-9, T-VI-1). DNA polymorphism was used for the screening of mutants for efficient screening at an early stage. TLC was found suitable for the large-scale comparative chemical analysis of L-DOPA. The expression profile of DDC clearly demonstrated the higher yields of L-DOPA in selected mutants developed by γ-irradiation in the seeds of the control.

  8. Identification of Three Kinds of Citri Reticulatae Pericarpium Based on Deoxyribonucleic Acid Barcoding and High-performance Liquid Chromatography-diode Array Detection-electrospray Ionization/Mass Spectrometry/Mass Spectrometry Combined with Chemometric Analysis

    PubMed Central

    Yu, Xiaoxue; Zhang, Yafeng; Wang, Dongmei; Jiang, Lin; Xu, Xinjun

    2018-01-01

    Background: Citri Reticulatae Pericarpium is the dried mature pericarp of Citrus reticulata Blanco which can be divided into “Chenpi” and “Guangchenpi.” “Guangchenpi” is the genuine Chinese medicinal material in Xinhui, Guangdong province; based on the greatest quality and least amount, it is most expensive among others. Hesperidin is used as the marker to identify Citri Reticulatae Pericarpium described in the Chinese Pharmacopoeia 2010. However, both “Chenpi” and “Guangchenpi” contain hesperidin so that it is impossible to differentiate them by measuring hesperidin. Objective: Our study aims to develop an efficient and accurate method to separate and identify “Guangchenpi” from other Citri Reticulatae Pericarpium. Materials and Methods: The genomic deoxyribonucleic acid (DNA) of all the materials was extracted and then the internal transcribed spacer 2 was amplified, sequenced, aligned, and analyzed. The secondary structures were created in terms of the database and website established by Jörg Schultz et al. High-performance liquid chromatography-diode array detection-electrospray Ionization/mass spectrometry (HPLC-DAD-ESI-MS)/MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of Citri Reticulatae Pericarpium. Results: A total of 22 samples were classified into three groups. The results of DNA barcoding were in accordance with principal component analysis and hierarchical cluster analysis. Eight compounds were deduced from HPLC-DAD-ESI-MS/MS. Conclusions: This method is a reliable and effective tool to differentiate the three Citri Reticulatae Pericarpium. SUMMARY The internal transcribed spacer 2 regions and the secondary structure among three kinds of Citri Reticulatae Pericarpium varied considerablyAll the 22 samples were analyzed by high-performance liquid chromatography (HPLC) to obtain the chemical profilesPrincipal component analysis and hierarchical cluster analysis were used in the chemometric analysisdeoxyribonucleic acid barcoding and HPLC-diode array detection-electrospray ionization/mass spectrometry/MS coupled with chemometric analysis provided an accurate and strong proof to identify these three herbs. Abbreviations used: CTAB: Hexadecyltrimethylammonium bromide, DNA: Deoxyribonucleic acid, ITS2: Internal transcribed spacer 2, PCR: Polymerase chain reaction. PMID:29576703

  9. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2003-07-20

    The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.

  10. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide.

    PubMed

    Kodama, Yukinobu; Ohkubo, Chikako; Kurosaki, Tomoaki; Egashira, Kanoko; Sato, Kayoko; Fumoto, Shintaro; Nishida, Koyo; Higuchi, Norihide; Kitahara, Takashi; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.

  11. iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model

    PubMed Central

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2011-01-01

    DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the “grey model” and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results. PMID:21935457

  12. EPA Method 3031 (SW-846): Acid Digestion of Oils for Metals Analysis by Atomic Absorption or ICP Spectrometry

    EPA Pesticide Factsheets

    Procedures are described for analysis of water samples and may be adapted for assessment of solid, particulate and liquid samples. The method uses real-time PCR assay for detecting Toxoplasma gondii DNA using gene-specific primers and probe.

  13. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  14. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn.

    PubMed

    Rachniyom, Hathairat; Matsumoto, Atsuko; Inahashi, Yuki; Take, Akira; Takahashi, Yoko; Thamchaipenet, Arinthip

    2018-05-01

    A novel actinomycete strain, designated GKU 128 T , isolated from the roots of an Indian oak tree [Barringtonia acutangula (L.) Gaertn.] at Khao Khitchakut district, Chantaburi province, Thailand, was characterized by using a polyphasic approach. The strain formed a branched substrate and aerial mycelia which differentiated into straight to flexuous chains of smooth-ornamented spores. Analysis of the cell wall revealed the presence of meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan. The whole-cell sugars were glucose, madurose, mannose, rhamnose and ribose. Mycolic acids were absent. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside. The predominant menaquinones were MK-9(H6), MK-9(H8), MK-9(H0) and MK-9(H4). The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0 (tuberculostearic acid). The genomic DNA G+C content was 70.5 mol%. Based on 16S rRNA gene sequence analysis, strain GKU 128 T was closely related to the type strains of Actinomadura nitritigenes NBRC 15918 T (99.2 % sequence similarity) and Actinomadura fibrosa JCM 9371 T (98.7 %). The levels of DNA-DNA relatedness between strain GKU 128 T and the closely related type species were less than 19 %. On the basis of phenotypic and genotypic characteristics, strain GKU 128 T could be distinguished from its closely related type strains and represents a novel species of the genus Actinomadura, for which the name Actinomadura barringtoniae sp. nov. (=TBRC 7225 T =NBRC 113074 T ) is proposed.

  15. Ray Wu as Fifth Business: Deconstructing collective memory in the history of DNA sequencing.

    PubMed

    Onaga, Lisa A

    2014-06-01

    The concept of 'Fifth Business' is used to analyze a minority standpoint and bring serious attention to the role of scientists who play a galvanizing role in a science but for multiple reasons appear less prominently in more common recounts of any particular development. Biochemist Ray Wu (1928-2008) published a DNA sequencing experiment in March 1970 using DNA polymerase catalysis and specific nucleotide labeling, both of which are foundational to general sequencing methods today. The scant mention of Wu's work from textbooks, research articles, and other accounts of DNA sequencing calls into question how scientific collective memory forms. This alternative history seeks to understand why a key figure in nucleic acid sequence analysis has remained less visibly connected or peripheral to solidifying narratives about the history of DNA sequencing. The study resists predictable dismissals of Wu's work in order to seriously examine the formation of his nucleic acid sequence analysis research program and how he shared his knowledge of sequencing during a period of rapid advancement in the field. An analysis of Wu's work on sequencing the cohesive ends of lambda bacteriophage in the 1960s and 1970s exemplifies how a variety of individuals and groups attempted to develop protocol for sequencing the order of nucleotide base pairs comprising DNA. This historical examination of the sociality of scientific research suggests a way to understand how Wu and others contributed to the very collective memory of DNA sequencing that Wu eventually tried to repair. The study of Wu, who was a Chinese immigrant to the United States, provides a foundation for further critical scholarship on the heterogeneous histories of Asian American bioscientists, the sociality of their scientific works, and how the resulting knowledge produced is preserved, if not evenly, in a scientific field's collective memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Isolation and characterization of the chicken trypsinogen gene family.

    PubMed Central

    Wang, K; Gan, L; Lee, I; Hood, L

    1995-01-01

    Based on genomic Southern hybridizations and cDNA sequence analyses, the chicken trypsinogen gene family can be divided into two multi-member subfamilies, a six-member trypsinogen I subfamily which encodes the cationic trypsin isoenzymes and a three-member trypsinogen II subfamily which encodes the anionic trypsin isoenzymes. The chicken cDNA and genomic clones containing these two subfamilies were isolated and characterized by DNA sequence analysis. The results indicated that the chicken trypsinogen genes encoded a signal peptide of 15 to 16 amino acid residues, an activation peptide of 9 to 10 residues and a trypsin of 223 amino acid residues. The chicken trypsinogens contain all the common catalytic and structural features for trypsins, including the catalytic triad His, Asp and Ser and the six disulphide bonds. The trypsinogen I and II subfamilies share approximately 70% sequence identity at the nucleotide and amino acid level. The sequence comparison among chicken trypsinogen subfamily members and trypsin sequences from other species suggested that the chicken trypsinogen genes may have evolved in coincidental or concerted fashion. Images Figure 6 Figure 7 PMID:7733885

  17. Characterization of rat calcitonin mRNA.

    PubMed Central

    Amara, S G; David, D N; Rosenfeld, M G; Roos, B A; Evans, R M

    1980-01-01

    A chimeric plasmic containing cDNA complementary to rat calcitonin mRNA has been constructed. Partial sequence analysis shows that the insert contains a nucleotide sequence encoding the complete amino acid sequence of calcitonin. Two basic amino acids precede and three basic amino acids follow the hormone sequence, suggesting that calcitonin is generated by the proteolytic cleavage of a larger precursor in a manner analogous to that of other small polypeptide hormones. The COOH-terminal proline, known to be amidated in the secreted hormone, is followed by a glycine in the precursor. The cloned calcitonin DNA was used to characterize the expression of calcitonin mRNA. Cytoplasmic mRNAs from calcitonin-producing rat medullary thyroid carcinoma lines and from normal rat thyroid glands contain a single species, 1050 nucleotides long, whch hybridizes to the cloned calcitonin cDNA. The concentration of calcitonin mRNA sequences is greater in those tumors that produce larger amounts of immunoreactive calcitonin. RNAs from other endocrine tissues, including anterior and neurointermediate lobes of rat pituitary, contain no detectable calcitonin mRNA. Images PMID:6933496

  18. Analysis of the Cytotoxic Potential of Anisomelic Acid Isolated from Anisomeles malabarica

    PubMed Central

    Preethy, Christo Paul; Alshatwi, Ali Abdullah; Gunasekaran, Muthukumaran; Akbarsha, Mohammad Abdulkadher

    2013-01-01

    Anisomelic acid (AA), one of the major compounds in Anisomeles malabarica, was tested for its cytotoxicity and apoptosis-inducing potential in breast and cervical cancer cells. The MTT assay for cell viability indicated that AA is cytotoxic to all of the four cell lines tested in a dose- and duration-dependent manner. Acridine Orange & Ethidium Bromide (AO & EB) and Hoechst 33258 staining of AA-treated cells revealed typical apoptotic morphology such as condensed chromatin and formation of apoptotic bodies. The comet assay revealed DNA strand break(s), indicating that AA induces DNA damage which culminates in apoptosis. Thus, the study revealed the anti-proliferative and apoptosis-inducing properties of AA in both breast and cervical cancer cells. Therefore, anisomelic acid offers potential for application in breast and cervical cancer therapy. PMID:23833721

  19. Use of multiplex polymerase chain reaction-based assay to conduct epidemiological studies on bovine hemoparasites in Mexico.

    PubMed

    Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M

    1993-01-01

    A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.

  20. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.

    PubMed Central

    Hummer, G; García, A E; Soumpasis, D M

    1995-01-01

    A computationally efficient method to describe the organization of water around solvated biomolecules is presented. It is based on a statistical mechanical expression for the water-density distribution in terms of particle correlation functions. The method is applied to analyze the hydration of small nucleic acid molecules in the crystal environment, for which high-resolution x-ray crystal structures have been reported. Results for RNA [r(ApU).r(ApU)] and DNA [d(CpG).d(CpG) in Z form and with parallel strand orientation] and for DNA-drug complexes [d(CpG).d(CpG) with the drug proflavine intercalated] are described. A detailed comparison of theoretical and experimental data shows positional agreement for the experimentally observed water sites. The presented method can be used for refinement of the water structure in x-ray crystallography, hydration analysis of nuclear magnetic resonance structures, and theoretical modeling of biological macromolecules such as molecular docking studies. The speed of the computations allows hydration analyses of molecules of almost arbitrary size (tRNA, protein-nucleic acid complexes, etc.) in the crystal environment and in aqueous solution. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 9 FIGURE 12 FIGURE 13 PMID:7542034

  1. Effect of marine derived deoxyribonucleic acid on nonlinear optical properties of PicoGreen dye

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Mathew, S.; Nithyaja, B.; Radhakrishnan, P.; Nampoori, V. P. N.

    2013-06-01

    We have investigated the effect of DNA on nonlinear absorption of PicoGreen dye using single beam open aperture Z-scan technique in nanosecond regime. We observed reverse saturable absorption at 532 nm for PicoGreen without DNA. In the presence of DNA, the sample begins to behave like saturable absorbers and this effect increased as the concentration of DNA was increased. The dye-intercalated DNA showed SA characteristics near the focus but exhibited RSA characteristics at the focus. Theoretical analysis has been performed using a two-photon absorption model based on nonlinear absorption coefficient and saturation intensity. Such tailoring of optical nonlinear absorption in PicoGreen makes it a potential candidate for photonic application.

  2. Availability: A Metric for Nucleic Acid Strand Displacement Systems.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Padilla, Jennifer E; Hallstrom, Natalya; Goltry, Sara; Lee, Jeunghoon; Yurke, Bernard; Hughes, William L; Graugnard, Elton

    2017-01-20

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.

  3. Blending DNA binding dyes to improve detection in real-time PCR.

    PubMed

    Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes

    2017-03-01

    The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.

  4. Specificity determinants for the abscisic acid response element.

    PubMed

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  5. Casein expression in cytotoxic T lymphocytes.

    PubMed Central

    Grusby, M J; Mitchell, S C; Nabavi, N; Glimcher, L H

    1990-01-01

    A cDNA that expresses a mRNA restricted to cytotoxic T lymphocytes (CTL) and mammary tissue has been isolated and characterized. The deduced amino acid sequence from this cDNA shows extensive homology with the previously reported amino acid sequence for rat alpha-casein. Indeed, the presence of a six-residue-repeated motif that is specific for rodent alpha-caseins strongly supports the identification of this cDNA as mouse alpha-casein. Northern (RNA) blot analysis of many hematopoietic cell types revealed that this gene is restricted to CTL, being expressed in four of six CTL lines examined. Furthermore, CTL that express this gene were also found to express other members of the casein gene family, such as beta- and kappa-casein. These results suggest that caseins may be important in CTL function, and their potential role in CTL-mediated lysis is discussed. Images PMID:2395885

  6. CYTOPLASMIC DNA SYNTHESIS IN AMOEBA PROTEUS

    PubMed Central

    Rabinovitch, M.; Plaut, W.

    1962-01-01

    The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 µ particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H3-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles. PMID:13972870

  7. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  8. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  9. Label-free DNA quantification via a 'pipette, aggregate and blot' (PAB) approach with magnetic silica particles on filter paper.

    PubMed

    Li, Jingyi; Liu, Qian; Alsamarri, Hussein; Lounsbury, Jenny A; Haversitick, Doris M; Landers, James P

    2013-03-07

    Reliable measurement of DNA concentration is essential for a broad range of applications in biology and molecular biology, and for many of these, quantifying the nucleic acid content is inextricably linked to obtaining optimal results. In its most simplistic form, quantitative analysis of nucleic acids can be accomplished by UV-Vis absorbance and, in more sophisticated format, by fluorimetry. A recently reported new concept, the 'pinwheel assay', involves a label-free approach for quantifying DNA through aggregation of paramagnetic beads in a rotating magnetic field. Here, we describe a simplified version of that assay adapted for execution using only a pipet and filter paper. The 'pipette, aggregate, and blot' (PAB) approach allows DNA to induce bead aggregation in a pipette tip through exposure to a magnetic field, followed by dispensing (blotting) onto filter paper. The filter paper immortalises the extent of aggregation, and digital images of the immortalized bead conformation, acquired with either a document scanner or a cell phone camera, allows for DNA quantification using a noncomplex algorithm. Human genomic DNA samples extracted from blood are quantified with the PAB approach and the results utilized to define the volume of sample used in a PCR reaction that is sensitive to input mass of template DNA. Integrating the PAB assay with paper-based DNA extraction and detection modalities has the potential to yield 'DNA quant-on-paper' devices that may be useful for point-of-care testing.

  10. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  11. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end.

    PubMed

    Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N

    1994-12-02

    Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.

  12. 5-Methylation of Cytosine in CG:CG Base-Pair Steps: A Physicochemical Mechanism for the Epigenetic Control of DNA Nanomechanics

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Olson, Wilma; Li, Yun

    2014-03-01

    Van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile ``opening'' mode and two shear ``sliding'' and ``tearing'' modes in the orthogonal plane. The stacking interactions of the methyl groups are observed to globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. The results have implications for the epigenetic control of DNA mechanics.

  13. 2'β-Fluoro-Tricyclo Nucleic Acids (2'F-tc-ANA): Thermal Duplex Stability, Structural Studies, and RNase H Activation.

    PubMed

    Istrate, Alena; Katolik, Adam; Istrate, Andrei; Leumann, Christian J

    2017-08-01

    We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'β-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Human milk is a source of lactic acid bacteria for the infant gut.

    PubMed

    Martín, Rocío; Langa, Susana; Reviriego, Carlota; Jimínez, Esther; Marín, María L; Xaus, Jordi; Fernández, Leonides; Rodríguez, Juan M

    2003-12-01

    To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.

  15. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  16. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches.

    PubMed

    Khodakov, Dmitriy; Wang, Chunyan; Zhang, David Yu

    2016-10-01

    Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Identification and properties of the largest subunit of the DNA-dependent RNA polymerase of fish lymphocystis disease virus: dramatic difference in the domain organization in the family Iridoviridae.

    PubMed

    Müller, M; Schnitzler, P; Koonin, E V; Darai, G

    1995-05-01

    Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family Iridoviridae, which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete EcoRI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the EcoRI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the EcoRI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and Chilo iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.

  18. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA molecules and other nucleic acid stabilizing molecules can increase analytical sensitivity whilst maintaining nucleobase mismatch discrimination in triplex helix based diagnostic assays.

  19. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  20. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad).

    PubMed

    Xu, Tiefeng; Zhang, Lei; Sun, Xiaofen; Zhang, Hanming; Tang, Kexuan

    2004-02-01

    Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.

  1. Naumovozyma Kurtzman (2008)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycetous yeast genus Naumovozyma, which was recognized from multigene deoxyribonucleic acid (DNA) sequence analysis. The genus has two describes species, which were formerly classified in the genus Saccharomyces. The species reproduce by multilateral budding but do not...

  2. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin.

    PubMed

    Horner, W E; Reese, G; Lehrer, S B

    1995-01-01

    Basidiospores are a prevalent and frequent cause of respiratory allergies, yet their allergens remain poorly defined; thus, we have attempted a molecular characterization of representative basidiomycete allergens. A Psilocybe cubensis mycelial cDNA library was immunoscreened with patient serum. A clone was isolated that expressed a 23-kD recombinant allergen as a fusion protein and inhibited a 16-kD band (Psi c 2) in immunoprints of P. cubenis extract, indicating antigenic identity. Sequence (cDNA) analysis of the clone indicates homology with cyclophilin and the deduced amino acid sequence of Psi c 2 showed 78% identity and 4% similarity with the amino acid sequence of Schizosaccharomyces pombe cyclophilin. This recombinant allergen is a useful model for epitope analysis of basidiospore allergens and fungal allergen cross-reactivity, and may provide an improved reagent for basidiospore allergy diagnosis and treatment.

  3. fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets.

    PubMed

    Madrigal, Pedro

    2017-03-01

    Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers. An R/Bioconductor package is available at http://bioconductor.org/packages/fCCAC/ . pmb59@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode for the determination of anticancer drug gemcitabine.

    PubMed

    Tığ, Gözde Aydoğdu; Zeybek, Bülent; Pekyardımcı, Şule

    2016-07-01

    In this study, a simple methodology was used to develop a new electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) (P(PDCA)) modified glassy carbon electrode (GCE). This modified electrode was used to monitor for the electrochemical interaction between the dsDNA and gemcitabine (GEM) for the first time. A decrease in oxidation signals of guanine after the interaction of the dsDNA with the GEM was used as an indicator for the selective determination of the GEM via differential pulse voltammetry (DPV). The guanine oxidation peak currents were linearly proportional to the concentrations of the GEM in the range of 1-30mgL(‒1). Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.276mgL(‒1) and 0.922mgL(‒1), respectively. The reproducibility, repeatability, and applicability of the analysis to pharmaceutical dosage forms and human serum samples were also examined. In addition to DPV method, UV-vis and viscosity measurements were utilized to propose the interaction mechanism between the GEM and the dsDNA. The novel DNA biosensor could serve for sensitive, accurate and rapid determination of the GEM. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis.

    PubMed

    Sato, T; Oeller, P W; Theologis, A

    1991-02-25

    The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.

  6. Synthesis, Characterization, and Biological Activity Studies of Copper(II) Mixed Compound with Histamine and Nalidixic Acid

    PubMed Central

    Bivián-Castro, Egla Yareth; López, Mercedes G.; Pedraza-Reyes, Mario; Bernès, Sylvain; Mendoza-Díaz, Guillermo

    2009-01-01

    A mixed copper complex with deprotonated nalidixic acid (nal) and histamine (hsm) was synthesized and characterized by FTIR, UV-Vis, elemental analysis, and conductivity. The crystal structure of [Cu(hsm)(nal)H2O]Cl·3H2O (chn) showed a pentacoordinated cooper(II) in a square pyramidal geometry surrounded by two N atoms from hsm, two O atoms from the quinolone, and one apical water oxygen. Alteration of bacterial DNA structure and/or associated functions in vivo by [Cu(hsm)(nal)H2O]Cl·3H2O was demonstrated by the induction of a recA-lacZ fusion integrated at the amyE locus of a recombinant Bacillus subtilis strain. Results from circular dichroism and denaturation of calf thymus DNA (CT-DNA) suggested that increased amounts of copper complex were able to stabilize the double helix of DNA in vitro mainly by formation of hydrogen bonds between chn and the sugars of DNA minor groove. In vivo and in vitro biological activities of the chn complex were compared with the chemical nuclease [Cu(phen)(nal)H2O]NO3 · 3H2O (cpn) where phen is phenanthroline. PMID:19557138

  7. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets.

    PubMed

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.

  8. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets

    PubMed Central

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546

  9. An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection

    PubMed Central

    Shin, Sang Hyun; Pak, Jung-Hun; Kim, Mi Jin; Kim, Hye Jeong; Oh, Ju Sung; Choi, Hong Kyu; Jung, Ho Won; Chung, Young Soo

    2014-01-01

    Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections. PMID:25289005

  10. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  11. DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids

    PubMed Central

    Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin

    2003-01-01

    The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851

  12. An instrument for automated purification of nucleic acids from contaminated forensic samples

    PubMed Central

    Broemeling, David J; Pel, Joel; Gunn, Dylan C; Mai, Laura; Thompson, Jason D; Poon, Hiron; Marziali, Andre

    2008-01-01

    Forensic crime scene sample analysis, by its nature, often deals with samples in which there are low amounts of nucleic acids, on substrates that often lead to inhibition of subsequent enzymatic reactions such as PCR amplification for STR profiling. Common substrates include denim from blue jeans, which yields indigo dye as a PCR inhibitor, and soil, which yields humic substances as inhibitors. These inhibitors frequently co-extract with nucleic acids in standard column or bead-based preps, leading to frequent failure of STR profiling. We present a novel instrument for DNA purification of forensic samples that is capable of highly effective concentration of nucleic acids from soil particulates, fabric, and other complex samples including solid components. The novel concentration process, known as SCODA, is inherently selective for long charged polymers such as DNA, and therefore is able to effectively reject known contaminants. We present an automated sample preparation instrument based on this process, and preliminary results based on mock forensic samples. PMID:18438455

  13. Characterization of Bacteroides forsythus Strains from Cat and Dog Bite Wounds in Humans and Comparison with Monkey and Human Oral Strains

    PubMed Central

    Hudspeth, M. K.; Gerardo, S. Hunt; Maiden, M. F. J.; Citron, D. M.; Goldstein, E. J. C.

    1999-01-01

    Bacteroides forsythus strains recovered from cat and dog bite wound infections in humans (n = 3), monkey oral strains (n = 3), and the human oral ATCC 43037 type strain were characterized by using phenotypic characteristics, enzymatic tests, whole cell fatty acid analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, PCR fingerprinting, and 16S rDNA (genes coding for rRNA) sequencing. All three bite wound isolates grew on brucella agar supplemented with 5% sheep blood, vitamin K1, and hemin. These strains, unlike the ATCC strain and previously described monkey oral and human clinical strains, did not require N-acetylmuramic acid supplementation for growth as pure cultures. However, their phenotypic characteristics, except for catalase production, were similar to those of previously identified strains. PCR fingerprinting analysis showed differences in band patterns from the ATCC strain. Also, SDS-PAGE and whole cell fatty acid analysis indicated that the dog and cat bite wound strains were similar but not identical to the human B. forsythus ATCC 43037 type strain and the monkey oral strains. The rDNA sequence analysis indicated that the three bite wound isolates had 99.93% homology with each other and 98.9 and 99.22% homology with the human ATCC 43037 and monkey oral strains, respectively. These results suggest that there are host-specific variations within each group. PMID:10325363

  14. Triple-helix molecular switch-based aptasensors and DNA sensors.

    PubMed

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  16. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  17. Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing.

    PubMed

    Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna

    2016-01-01

    Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.

  18. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: brain and liver enzymes are identical proteins encoded by two distinct mRNAs.

    PubMed

    Tappaz, M; Bitoun, M; Reymond, I; Sergeant, A

    1999-09-01

    Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.

  19. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simplified Microarray Technique for Identifying mRNA in Rare Samples

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    Two simplified methods of identifying messenger ribonucleic acid (mRNA), and compact, low-power apparatuses to implement the methods, are at the proof-of-concept stage of development. These methods are related to traditional methods based on hybridization of nucleic acid, but whereas the traditional methods must be practiced in laboratory settings, these methods could be practiced in field settings. Hybridization of nucleic acid is a powerful technique for detection of specific complementary nucleic acid sequences, and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes. A traditional microarray study entails at least the following six steps: 1. Purification of cellular RNA, 2. Amplification of complementary deoxyribonucleic acid [cDNA] by polymerase chain reaction (PCR), 3. Labeling of cDNA with fluorophores of Cy3 (a green cyanine dye) and Cy5 (a red cyanine dye), 4. Hybridization to a microarray chip, 5. Fluorescence scanning the array(s) with dual excitation wavelengths, and 6. Analysis of the resulting images. This six-step procedure must be performed in a laboratory because it requires bulky equipment.

  1. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions.

    PubMed

    Sirker, Miriam; Schneider, Peter M; Gomes, Iva

    2016-11-01

    Blood, saliva, and semen are some of the forensically most relevant biological stains commonly found at crime scenes, which can often be of small size or challenging due to advanced decay. In this context, it is of great importance to possess reliable knowledge about the effects of degradation under different environmental conditions and to use appropriate methods for retrieving maximal information from limited sample amount. In the last decade, RNA analysis has been demonstrated to be a reliable approach identifying the cell or tissue type of an evidentiary body fluid trace. Hence, messenger RNA (mRNA) profiling is going to be implemented into forensic casework to supplement the routinely performed short tandem repeat (STR) analysis, and therefore, the ability to co-isolate RNA and DNA from the same sample is a prerequisite. The objective of this work was to monitor and compare the degradation process of both nucleic acids for human blood, saliva, and semen stains at three different concentrations, exposed to dry and humid conditions during a 17-month time period. This study also addressed the question whether there are relevant differences in the efficiency of automated, magnetic bead-based single DNA or RNA extraction methods compared to a manually performed co-extraction method using silica columns. Our data show that mRNA, especially from blood and semen, can be recovered over the entire time period surveyed without compromising the success of DNA profiling; mRNA analysis indicates to be a robust and reliable technique to identify the biological source of aged stain material. The co-extraction method appears to provide mRNA and DNA of sufficient quantity and quality for all different forensic investigation procedures. Humidity and accompanied mold formation are detrimental to both nucleic acids.

  2. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  3. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    PubMed

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  4. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  5. Diverse Applications of Environmental DNA Methods in Parasitology.

    PubMed

    Bass, David; Stentiford, Grant D; Littlewood, D T J; Hartikainen, Hanna

    2015-10-01

    Nucleic acid extraction and sequencing of genes from organisms within environmental samples encompasses a variety of techniques collectively referred to as environmental DNA or 'eDNA'. The key advantages of eDNA analysis include the detection of cryptic or otherwise elusive organisms, large-scale sampling with fewer biases than specimen-based methods, and generation of data for molecular systematics. These are particularly relevant for parasitology because parasites can be difficult to locate and are morphologically intractable and genetically divergent. However, parasites have rarely been the focus of eDNA studies. Focusing on eukaryote parasites, we review the increasing diversity of the 'eDNA toolbox'. Combining eDNA methods with complementary tools offers much potential to understand parasite communities, disease risk, and parasite roles in broader ecosystem processes such as food web structuring and community assembly. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  7. Molecular Weight of Deoxyribonucleic Acid Synthesized During Initiation of Chromosome Replication in Escherichia coli

    PubMed Central

    Kuempel, Peter L.

    1972-01-01

    Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome. PMID:4562387

  8. Concentration determination of nucleic acids and proteins using the micro-volume BioSpec-nano-spectrophotometer.

    PubMed

    Sukumaran, Suja

    2011-02-17

    Nucleic acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF · (OD260-OD320)· NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected. Protein concentration results can be expressed as μg/mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells.

  9. Concentration Determination of Nucleic Acids and Proteins Using the Micro-volume Bio-spec Nano Spectrophotometer

    PubMed Central

    Sukumaran, Suja

    2011-01-01

    Nucleic Acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF · (OD260-OD320)· NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected1. Protein concentration results can be expressed as μg/ mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells. PMID:21372788

  10. Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5.

    PubMed

    Vanegas, N; Castañeda, V; Santamaría, D; Hernández, P; Schvartzman, J B; Krimer, D B

    1997-06-05

    We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.

  11. Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella.

    PubMed

    Noar, Jesse D; Buckley, Daniel H

    2009-08-01

    Strain 1a22T, a nitrogen-fixing bacterium, was isolated from soil associated with the rhizosphere of a perennial grass growing in a fallow agricultural field in Ithaca, New York, USA. Analysis of the 16S rRNA gene sequence placed the strain in the Rubrivivax-Roseateles-Leptothrix-Azohydromonas-Aquincola-Ideonella branch of the Betaproteobacteria and the closest characterized relative was the type strain of Ideonella dechloratans (97.7% 16S rRNA sequence similarity). Cells of strain 1a22T were Gram-negative, motile, straight rods, which formed polyhydroxybutyrate-like granules and were positive for oxidase and weakly positive for catalase. Cells were chemo-organotrophic, unable to grow by reduction of chlorate or nitrate and grew exclusively through aerobic respiration. Growth with mannitol on N-free solid media caused the strain to produce copious amounts of slime. The G+C content of the genomic DNA was 67.4 mol%. The major cellular fatty acids were C16:1 cis-9 and C16:0 and cells contained significant amounts of the hydroxy fatty acids C10:0 3-OH, C12:0 2-OH and C12:0 3-OH. Based on DNA-DNA hybridization studies, 16S rRNA gene sequence analysis, fatty acid analysis, and morphological and physiological characteristics, strain 1a22T represents a novel species in the genus Ideonella, for which the name Ideonella azotifigens sp. nov. is proposed. The type strain of Ideonella azotifigens is 1a22T (=JCM 15503T=DSM 21438T).

  12. Human Hrs, a tyrosine kinase substrate in growth factor-stimulated cells: cDNA cloning and mapping of the gene to chromosome 17.

    PubMed

    Lu, L; Komada, M; Kitamura, N

    1998-06-15

    Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.

  13. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  14. Relatedness of three species of "false neisseriae," Neisseria caviae, Neisseria cuniculi, and Neisseria ovis, by DNA-DNA hybridizations and fatty acid analysis.

    PubMed

    Véron, M; Lenvoisé-Furet, A; Coustère, C; Ged, C; Grimont, F

    1993-04-01

    DNA-DNA hybridization was used to determine the levels of genomic relatedness of the three species of "false neisseriae," Neisseria caviae, Neisseria cuniculi, and Neisseria ovis. The reference strains of these species exhibited high levels of intraspecies relatedness (93 to 100% for N. caviae, 79 to 100% for N. cuniculi, and 68 to 100% for N. ovis) but low levels of interspecific relatedness (less than 34%) to each other and to various species belonging to the beta subclass of the Proteobacteria (Kingella kingae, Neisseria gonorrhoeae, Neisseria meningitidis, and Oligella urethralis) or to the gamma subclass (Branhamella catarrhalis, Kingella indologenes, Moraxella atlantae, Moraxella bovis, Moraxella lacunata subsp. lacunata, Moraxella lacunata subsp. liquefaciens, Moraxella nonliquefaciens, Moraxella osloensis, and Moraxella phenylpyruvica). However, the levels of DNA-DNA hybridization for the three species of "false neisseriae" were significantly higher with the species belonging to the gamma subclass (average, 13.7%) than with the species belonging to the beta subclass (average, 4.5%). These data suggest that N. caviae, N. cuniculi, and N. ovis are three separate genomic species in the gamma subclass. An ascendant hierarchical classification based only on fatty acid profiles distinguished four main classes containing (i) most of the "classical moraxellae," the "false neisseriae," and B. catarrhalis, (ii) only Acinetobacter spp., (iii) M. nonliquefaciens and "misnamed moraxellae" (M. atlantae, M. osloensis, and M. phenylpyruvica), and (iv) the "true neisseriae," the three Kingella species, and O. urethralis. Fatty acids that distinguish these four classes were identified. The fatty acid profiles of the two strains of Psychrobacter immobilis which we studied are not very similar to the profiles of the other taxa. Our results support the hypothesis that the three species of "false neisseriae," B. catarrhalis, the "classical moraxellae," and Acinetobacter spp. should be included in the same family.

  15. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  16. The effects of structural variations of thiophene-containing Ru(II) complexes on the acid-base and DNA binding properties.

    PubMed

    Yuan, Cui-Li; Zhang, An-Guo; Zheng, Ze-Bo; Wang, Ke-Zhi

    2013-03-01

    A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)₂(Hbptip)](PF₆)₂ {bpy = 2,2'-bipyridine, Hbptip = 2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, ¹H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid-base properties of the complex were studied by UV-visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK(a1) = 1.31 ± 0.09 and pK(a2) = 5.71 ± 0.11 with the pK(a2) associated deprotonation/protonation process occurring over 3 pK(a) units more acidic than thiophenyl-free parent complex of [Ru(bpy)₂(Hpip)]²⁺ {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)₂(Hbptip)]²⁺ in Tris-HCl buffer (pH 7.1 and 50 mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV-visible and emission spectroscopy techniques of UV-visible and luminescence titrations, steady-state emission quenching by [Fe(CN)₆]⁴⁻, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)₂(Hip)]²⁺, [Ru(bpy)₂(Htip)]²⁺, and [Ru(bpy)₂(Haptip)]²⁺ {Hip = 1H-imidazo[4,5-f][1,10]phenanthroline, Htip = 2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip = 2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.

  17. The structure and intermolecular forces of DNA condensates.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2016-03-18

    Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Accelerated digestion of nucleic acids by pepsin from the stomach of chicken.

    PubMed

    Liu, Y; Zhang, Y; Guo, H; Wu, W; Dong, P; Liang, X

    2016-10-01

    Nucleic acids have become an important nutritional supplement in poultry feed; however, the digestion of nucleic acids in poultry is unclear. The objective of this study was to investigate the digestion of nucleic acids by chicken pepsin in vitro. The extracted pepsinogen from the stomach of the chicken was purified to homogeneity. Upon activation at pH 2.0, chicken pepsinogen was converted to its active form. Nucleic acids, including λ-DNA, salmon sperm DNA and single-strand DNA (ssDNA), can be used as substrates and digested into short-chain oligonucleotides by pepsin. Interestingly, the digestion of the nucleic acids was inhibited when pepsin was treated by alkaline solution (pH 8.0) or pepstatin A. Also, the digestion of the nucleic acids was not affected by the addition of haemoglobin or bovine serum albumin. The results suggested that nucleic acids could be digested by chicken pepsin. Thus pepsin may have a role in digesting nucleic acids in vivo. Nucleic acids added to poultry fed may be digested, starting from the stomach.

  19. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  20. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  1. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  2. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    PubMed Central

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  3. Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris.

    PubMed

    Taspinar, Mahmut Sinan; Aydin, Murat; Sigmaz, Burcu; Yildirim, Nalan; Agar, Guleray

    2017-10-01

    Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.

  4. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  5. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.

    2017-06-01

    Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.

  6. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  7. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus.

    PubMed

    Qiu, Guo-Hua

    2016-01-01

    In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

    PubMed

    Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L

    2016-07-29

    Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.

  9. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-[beta] receptor promoter DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie

    2010-10-08

    Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.

  10. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755.

    PubMed

    Suo, Yukai; Luo, Sheng; Zhang, Yanan; Liao, Zhengping; Wang, Jufang

    2017-08-01

    The response of Clostridium tyrobutyricum to butyric acid stress involves various stress-related genes, and therefore overexpression of stress-related genes can improve butyric acid tolerance and yield. Class I heat shock proteins (HSPs) play an important role in the process of protecting bacteria from sudden changes of extracellular stress by assisting protein folding correctly. The results of quantitative real-time PCR indicated that the Class I HSGs grpE, dnaK, dnaJ, groEL, groES, and htpG were significantly upregulated under butyric acid stress, especially the dnaK and groE operons. Overexpression of groESL and htpG could significantly improve the tolerance of C. tyrobutyricum to butyric acid, while overexpression of dnaK and dnaJ showed negative effects on butyric acid tolerance. Acid production was also significantly promoted by increased GroESL expression levels; the final butyric acid and acetic acid concentrations were 28.2 and 38% higher for C. tyrobutyricum ATCC 25755/groESL than for the wild-type strain. In addition, when fed-batch fermentation was carried out using cell immobilization in a fibrous-bed bioreactor, the butyric acid yield produced by C. tyrobutyricum ATCC 25755/groESL reached 52.2 g/L, much higher than that for the control. The improved butyric acid yield is probably attributable to the high GroES and GroEL levels, which can stabilize the biosynthetic machinery of C. tyrobutyricum under extracellular butyric acid stress.

  11. UDP-glucuronosyltransferase-dependent bioactivation of clofibric acid to a DNA-damaging intermediate in mouse hepatocytes.

    PubMed

    Ghaoui, Roula; Sallustio, Benedetta C; Burcham, Philip C; Fontaine, Frank R

    2003-05-06

    Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.

  12. Study of nucleic acid-gold nanorod interactions and detecting nucleic acid hybridization using gold nanorod solutions in the presence of sodium citrate.

    PubMed

    Kanjanawarut, Roejarek; Su, Xiaodi

    2010-09-01

    In this study, the authors report that sodium citrate can aggregate hexadecyl-trimethyl-ammonium ion(+)-coated gold nanorods (AuNRs), and nucleic acids of different charge and structure properties, i.e., single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded peptide nucleic acid (PNA), and PNA-DNA complex, can bind to the AuNRs and therefore retard the sodium citrate-induced aggregation to different extents. The discovery that hybridized dsDNA (and the PNA-DNA complex) has a more pronounced protection effect than ssDNA (and PNA) allows the authors to develop a homogeneous phase AuNRs-based UV-visible (UV-vis) spectral assay for detecting specific sequences of oligonucleotides (20 mer) with a single-base-mismatch selectivity and a limit of detection of 5 nM. This assay involves no tedious bioconjugation and on-particle hybridization. The simple "set and test" format allows for a highly efficient hybridization in a homogeneous phase and a rapid display of the results in less than a minute. By measuring the degree of reduction in AuNR aggregation in the presence of different nucleic acid samples, one can assess how different nucleic acids interact with the AuNRs to complement the knowledge of spherical gold nanoparticles. Besides UV-vis characterization, transmission electron microscopy and zeta potential measurements were conduced to provide visual evidence of the particle aggregation and to support the discussion of the assay principle.

  13. Molecular characterization and expression analysis of osteopontin cDNA from lactating mammary gland in yak (Bos grunniens).

    PubMed

    Bai, W L; Yang, R J; Yin, R H; Jiang, W Q; Luo, G B; Yin, R L; Zhao, S J; Li, C; Zhao, Z H

    2012-04-01

    Osteopontin (OPN) is a secreted phosphorylated glycoprotein. It has an important role in mammary gland development and lactation, as well as, is thought to be a potential candidate gene for lactation traits. In the present work, we isolated and characterized a full-length open reading frame (ORF) of yak OPN cDNA from lactating mammary tissue, and examined its expression pattern in mammary gland during different stages of lactation, as well as, the recombinant OPN protein of yak was expressed successfully in E. coli. The sequencing results indicated that the isolated cDNA was 1132-bp in length containing a complete ORF of 837-bp. It encoded a precursor protein of yak OPN consisting of 278 amino acid with a signal peptide of 16 amino acids. Yak OPN has a predicted molecular mass of 29285.975 Da and an isoelectric point of 4.245. It had an identity of 65.50-99.16% in cDNA, identity of 52.06-98.56% and similarity of 65.40-98.56% in deduced amino acids with the corresponding sequences of cattle, buffalo, sheep, goat, pig, human, and rabbit. The phylogenetic analysis indicated that yak OPN had the closest evolutionary relationship with that of cattle, and next buffalo. In mammary gland, yak OPN was generally transcribed in a declining pattern from colostrum period to dry period with an apparent increase of OPN expression being present in the late period of lactation compared with peak period of lactation. Western blot analysis indicated that His-tagged yak OPN protein expressed in E. coli could be recognized not only by an anti-His-tag antibody but also by an anti-human OPN antibody. These results from the present work provided a foundation for further insight into the role of OPN gene in yak lactation.

  14. Streptomyces tremellae sp. nov., isolated from a culture of the mushroom Tremella fuciformis.

    PubMed

    Wen, Zhi-Qiang; Chen, Bingzhi; Li, Xiao; Li, Bing-Bing; Li, Cheng-Huan; Huang, Qing-Hua; Zhang, Qi-Hui; Dai, Wei-Hao; Jiang, Yu-Ji

    2016-12-01

    A novel actinomycete strain, designated Js-1T, was isolated from Tremella fuciformis collected from Gutian, Fujian Province, in southeastern China. The taxonomic status of this strain was determined by a polyphasic approach, which demonstrated that the novel strain was a member of the genus Streptomyces. The cell walls of this strain were found to contain ll-diaminopimelic acid, muramic acid and glycine. An analysis of whole-cell hydrolysates revealed that no characteristic sugar was present. The key identified menaquinones were MK-9 (H6) and MK-9 (H8), while the diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmethylethanolamine and phosphatidylglycerol. The main cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. An analysis of an almost complete 16S rRNA gene sequence showed that the strain shared the highest levels of sequence similarity with Streptomyces sannanensisKC-7038T (97.87 %), Streptomyces hebeiensis YIM 001T (97.84 %), Streptomyces pathocidini NBRC 13812T (97.80 %), Streptomyces cocklensis BK168T (97.25 %), Streptomyces coerulescens NBRC 12758T (97.12 %), Streptomyces aurantiogriseus NBRC 12842T (97.06 %) and Streptomyces rimosussubsp. rimosus ATCC 10970T (97.04 %). The DNA G+C content of the genomic DNA of strain Js-1T was 70.1 mol%. Furthermore, DNA-DNA hybridization tests revealed that the relatedness values between strain Js-1T and the most closely related species ranged from 15.10 to 47.20 %. Based on its phenotypic and genotypic characteristics, strain Js-1T (=CCTCC M 2011365T=JCM 30846T) is considered to represent a novel species within the genus Streptomyces, which we classified as Streptomycestremellae sp. nov.

  15. CmPEX6, a Gene Involved in Peroxisome Biogenesis, Is Essential for Parasitism and Conidiation by the Sclerotial Parasite Coniothyrium minitans

    PubMed Central

    Wei, Wei; Zhu, Wenjun; Cheng, Jiasen; Xie, Jiatao; Li, Bo; Jiang, Daohong; Li, Guoqing; Yi, Xianhong

    2013-01-01

    Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans. PMID:23563946

  16. Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine.

    PubMed

    Benardini, James N; Vaishampayan, Parag A; Schwendner, Petra; Swanner, Elizabeth; Fukui, Youhei; Osman, Sharif; Satomi, Masakata; Venkateswaran, Kasthuri

    2011-06-01

    A novel Gram-positive, motile, endospore-forming, aerobic bacterium was isolated from the NASA Phoenix Lander assembly clean room that exhibits 100 % 16S rRNA gene sequence similarity to two strains isolated from a deep subsurface environment. All strains are rod-shaped, endospore-forming bacteria, whose endospores are resistant to UV radiation up to 500 J m(-2). A polyphasic taxonomic study including traditional phenotypic tests, fatty acid analysis, 16S rRNA gene sequencing and DNA-DNA hybridization analysis was performed to characterize these novel strains. The 16S rRNA gene sequencing convincingly grouped these novel strains within the genus Paenibacillus as a separate cluster from previously described species. The similarity of 16S rRNA gene sequences among the novel strains was identical but only 98.1 to 98.5 % with their nearest neighbours Paenibacillus barengoltzii ATCC BAA-1209(T) and Paenibacillus timonensis CIP 108005(T). The menaquinone MK-7 was dominant in these novel strains as shown in other species of the genus Paenibacillus. The DNA-DNA hybridization dissociation value was <45 % with the closest related species. The novel strains had DNA G+C contents of 51.9 to 52.8 mol%. Phenotypically, the novel strains can be readily differentiated from closely related species by the absence of urease and gelatinase and the production of acids from a variety of sugars including l-arabinose. The major fatty acid was anteiso-C(15 : 0) as seen in P. barengoltzii and P. timonensis whereas the proportion of C(16 : 0) was significantly different from the closely related species. Based on phylogenetic and phenotypic results, it was concluded that these strains represent a novel species of the genus Paenibacillus, for which the name Paenibacillus phoenicis sp. nov. is proposed. The type strain is 3PO2SA(T) ( = NRRL B-59348(T)  = NBRC 106274(T)).

  17. Alloactinosynnema iranicum sp. nov., a rare actinomycete isolated from a hypersaline wetland, and emended description of the genus Alloactinosynnema.

    PubMed

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-04-01

    A Gram-staining-positive actinobacterial strain, Chem10(T), was isolated from soil around Inche-Broun hypersaline wetland in the north of Iran. Strain Chem10(T) was strictly aerobic, and catalase- and oxidase-positive. The isolate grew with 0-3 % NaCl, at 20-40 °C and at pH 6.0-8.0. The optimum temperature and pH for growth were 30 °C and pH 7.0, respectively. The cell wall of strain Chem10(T) contained meso-diaminopimelic acid as diamino acid and galactose, ribose and arabinose as whole-cell sugars. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain Chem10(T) synthesized cellular fatty acids of the straight-chain saturated and mono-unsaturated, and iso- and anteiso-branched types C14 : 0, C16 : 0, iso-C16 : 1, anteiso-C17 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 70.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Chem10(T) belonged to the family Pseudonocardiaceae and showed the closest phylogenetic similarity to Alloactinosynnema album KCTC 19294(T) (98.3 %) and Actinokineospora cibodasensis DSM 45658(T) (97.9 %). DNA-DNA relatedness values between the novel strain and strains Alloactinosynnema album KCTC 19294(T) and Actinokineospora cibodasensis DSM 45658(T) were only 52 % and 23 %, respectively. On the basis of phylogenetic analysis, phenotypic characteristics and DNA-DNA hybridization data, a novel species of the genus Alloactinosynnema is proposed, Alloactinosynnema iranicum sp. nov. The type strain is Chem10(T) ( = IBRC-M 10403(T) = CECT 8209(T)). In addition, an emended description of the genus Alloactinosynnema is proposed.

  18. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA.

    PubMed

    Laursen, J R; di Liu, H; Wu, X J; Yoshino, T P

    1997-11-01

    Sublethal heat-shock of cells of the Bge (Biomphalaria glabrata embryonic) snail cell line resulted in increased or new expression of metabolically labeled polypeptides of approximately 21.5, 41, 70, and 74 kDa molecular mass. Regulation of this response appeared to be at the transcriptional level since a similar protein banding pattern was seen upon SDS-PAGE/fluorographic analysis of polypeptides produced by in vitro translation of total RNA from cells subjected to heat shock. Using a yeast (Saccharomyces cerevisiae) 70-kDa heat-shock protein (HSP70) probe to screen a cDNA library from heat-treated Bge cells, we isolated a full-length cDNA clone encoding a putative Bge HSP70. The cDNA was 2453 bp in length and contained an open reading frame of 1908 bp encoding a 636-amino-acid polypeptide with calculated molecular mass of 70,740 Da. Comparison of a conserved region of 209 amino acid residues revealed > 80% identity between the deduced amino acid sequence of Bge HSP70 and that of yeast (81%), the human blood fluke Schistosoma mansoni (for which B. glabrata serves as intermediate host) (81%), Drosophila (81%), human (84%), and the marine gastropod Aplysia californica (88%, 90%). In addition to the extensive sharing of sequence homology, the identification of several eukaryotic HSP70 signature sequences and an N-linked glycosylation site characteristic of cytoplasmic HSPs strongly support the identity of the Bge cDNA as encoding an authentic HSP70. Results of a Northern blot analysis, using Bge HSP70 clone-specific probes, indicated that gene expression was heat inducible and not constitutively expressed. This is the first reported sequence of an inducible HSP70 from cells originating from a freshwater gastropod and provides a first step in the development of a genetic transformation system for molluscs of medical importance.

  19. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less

  20. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Hu, Shi Jun; Huang, Han Cheng; Zhu, Tao; Xia, Qing You

    2014-06-01

    Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    PubMed

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  2. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  3. Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water.

    PubMed

    Takai, K; Komatsu, T; Horikoshi, K

    2001-07-01

    A novel extreme thermophile was isolated from a water sample derived from a deep subsurface geothermal water pool at a depth of 1500 m in the Hacchoubaru geothermal plant in Oita Prefecture, Japan. The cells were found to be straight rods, each being motile by means of a polar flagellum. Growth was observed at temperatures between 60 and 85 degrees C (optimum 78 degrees C; 120 min doubling time) and between pH 5.5 and pH 9.0 (optimum 7.5). The isolate was a strictly aerobic heterotroph capable of utilizing a number of substrates such as yeast extract, peptone, tryptone, various carbohydrates, sugars, amino acids and organic acids. Elemental sulfur, thiosulfate, sulfide or cysteine-hydrochloride was required as an electron donor for growth. Hydrogen gas did not support growth. The G+C content of the genomic DNA was 44.7 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA-DNA hybridization analysis indicated that the isolate was closely related to members of the hydrogen-oxidizing, autotrophic and thermophilic genera Hydrogenobacter and Calderobacterium. However this isolate was differentiated from the previously described species of these genera on the basis of the physiological and molecular properties of the new isolate. The name Hydrogenobacter subterraneus sp. nov. is proposed; the type strain is HGP1T (= JCM 10560T = IFO 16485T).

  4. Aminoglycosylation Can Enhance the G-Quadruplex Binding Activity of Epigallocatechin

    PubMed Central

    Bai, Li-Ping; Ho, Hing-Man; Ma, Dik-Lung; Yang, Hui; Fu, Wai-Chung; Jiang, Zhi-Hong

    2013-01-01

    With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures. PMID:23335983

  5. Kinetics of Bacteriophage λ Deoxyribonucleic Acid Infection of Escherichia coli

    PubMed Central

    Barnhart, Benjamin J.

    1965-01-01

    Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage λ deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617–1623. 1965.—The kinetics of Escherichia coli K-12 infection by phage λ deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between λ DNA infection of E. coli and bacterial transformation systems are discussed. PMID:5322721

  6. A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations.

    PubMed

    Tang, Wei; Hu, Shichao; Wang, Huaming; Zhao, Yan; Li, Na; Liu, Feng

    2014-11-28

    A universal molecular translator based on the target-triggered DNA strand displacement was developed, which was able to convert various kinds of non-nucleic acid targets into a unique output DNA. This translation strategy was successfully applied in directing dynamic DNA assemblies and in realizing three-input logic gate operations.

  7. Cloning and expression of cDNA coding for bouganin.

    PubMed

    den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo

    2002-03-01

    Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.

  8. Environmental exposure to human carcinogens in teenagers and the association with DNA damage.

    PubMed

    Franken, Carmen; Koppen, Gudrun; Lambrechts, Nathalie; Govarts, Eva; Bruckers, Liesbeth; Den Hond, Elly; Loots, Ilse; Nelen, Vera; Sioen, Isabelle; Nawrot, Tim S; Baeyens, Willy; Van Larebeke, Nicolas; Boonen, Francis; Ooms, Daniëlla; Wevers, Mai; Jacobs, Griet; Covaci, Adrian; Schettgen, Thomas; Schoeters, Greet

    2017-01-01

    We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Six hundred 14-15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel and t,t-muconic acid were inversely associated with the alkaline comet assay. This cross-sectional study found associations between current environmental exposure to (potential) human carcinogens in 14-15-year-old Flemish adolescents and short-term (oxidative) damage to DNA. Prospective follow-up will be required to investigate whether long-term effects may occur due to complex environmental exposures. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.

  10. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.

    PubMed Central

    Burke, W D; Calalang, C C; Eickbush, T H

    1987-01-01

    Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905

  11. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  13. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed Central

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578

  14. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Nuclease-resistant double-stranded DNA controls or standards for hepatitis B virus nucleic acid amplification assays

    PubMed Central

    2009-01-01

    Background Identical blood samples tested using different kits can give markedly different hepatitis B virus (HBV) DNA levels, which can cause difficulty in the interpretation of viral load. A universal double-stranded DNA control or standard that can be used in all commercial HBV DNA nucleic acid amplification assay kits is urgently needed. By aligning all HBV genotypes (A-H), we found that the surface antigen gene and precore-core gene regions of HBV are the most conserved regions among the different HBV genotypes. We constructed a chimeric fragment by overlapping extension polymerase chain reaction and obtained a 1,349-bp HBVC+S fragment. We then packaged the fragment into lambda phages using a traditional lambda phage cloning procedure. Results The obtained armored DNA was resistant to DNase I digestion and was stable, noninfectious to humans, and could be easily extracted using commercial kits. More importantly, the armored DNA may be used with all HBV DNA nucleic acid amplification assay kits. Conclusions The lambda phage packaging system can be used as an excellent expression platform for armored DNA. The obtained armored DNA possessed all characteristics of an excellent positive control or standard. In addition, this armored DNA is likely to be appropriate for all commercial HBV DNA nucleic acid amplification detection kits. Thus, the constructed armored DNA can probably be used as a universal positive control or standard in HBV DNA assays. PMID:20025781

  16. Wickerhamiella van der Walt (1973)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycetous yeast genus Wickerhamiella, which has five described species and has been defined from multigene deoxyribonucleic acid (DNA) sequence analysis. The species reproduce by multilateral budding but do not form hyphae or pseudohyphae. Asci typically form a single a...

  17. Photocrosslinking and Photodamage in Protein-Nucleic Acid Systems Resulting from UV and IR Radiation.

    NASA Astrophysics Data System (ADS)

    Kozub, John Andrew

    1995-01-01

    Photocrosslinking of protein-nucleic acid complexes with low intensity UV has frequently been used to study biological systems. We have investigated the photochemistry of protein-nucleic acid systems using nanosecond UV pulses from a Nd:YAG-pumped dye laser system, low-intensity continuous UV from a typical germicidal lamp, and high-intensity mid -IR pulses from the Vanderbilt Free Electron Laser. Quantum yields for UV-induced nucleic acid damage from laser pulses and the germicidal lamp were found to be nearly equivalent. We have demonstrated the general applicability of the laser to this technique by successfully crosslinking hnRNP protein to RNA, yeast TATA-binding protein to dsDNA, and gene 32 protein to ssDNA with UV laser pulses. Our results indicate that UV-crosslinking has an intrinsic specificity for nucleic acid sites containing thymidine (or uridine), forcing a distinction between preferred binding sites and favorable crosslinking sites. We have found in each system that protein and nucleic acid photodamage competes with crosslinking, limits the yield, and may interfere with subsequent analysis. The distribution of photoproducts in the gene 32 protein-ssDNA system was investigated as a function of the total dose of UV radiation and the intensity of UV laser pulses. It was found that laser pulses providing up to 50 photons per nucleic acid base induce a linear response from the system; the absolute and relative yields of photoproducts depend only on the total dose of UV and not on the rate of delivery. At higher intensities, the yield of crosslinks per incident photon was reduced. A single pulse at the optimum intensity (about 100-200 photons per nucleic acid base) induced roughly 80% of the maximum attainable yield of crosslinks in this system. The early results of our search for photochemistry induced by Free Electron Laser pulses indicate the potential to induce a unique photoreaction in the gene 32 protein -ssDNA system. The yield is apparently enhanced by simultaneous exposure to UV pulses. Future experiments will test the potential of IR and UV irradiations to increase the specificity for photocrosslinks.

  18. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency than their corresponding Schiff base amino acid ligands.

  19. Retrospective MicroRNA Sequencing: Complementary DNA Library Preparation Protocol Using Formalin-fixed Paraffin-embedded RNA Specimens.

    PubMed

    Loudig, Olivier; Liu, Christina; Rohan, Thomas; Ben-Dov, Iddo Z

    2018-05-05

    -Archived, clinically classified formalin-fixed paraffin-embedded (FFPE) tissues can provide nucleic acids for retrospective molecular studies of cancer development. By using non-invasive or pre-malignant lesions from patients who later develop invasive disease, gene expression analyses may help identify early molecular alterations that predispose to cancer risk. It has been well described that nucleic acids recovered from FFPE tissues have undergone severe physical damage and chemical modifications, which make their analysis difficult and generally requires adapted assays. MicroRNAs (miRNAs), however, which represent a small class of RNA molecules spanning only up to ~18-24 nucleotides, have been shown to withstand long-term storage and have been successfully analyzed in FFPE samples. Here we present a 3' barcoded complementary DNA (cDNA) library preparation protocol specifically optimized for the analysis of small RNAs extracted from archived tissues, which was recently demonstrated to be robust and highly reproducible when using archived clinical specimens stored for up to 35 years. This library preparation is well adapted to the multiplex analysis of compromised/degraded material where RNA samples (up to 18) are ligated with individual 3' barcoded adapters and then pooled together for subsequent enzymatic and biochemical preparations prior to analysis. All purifications are performed by polyacrylamide gel electrophoresis (PAGE), which allows size-specific selections and enrichments of barcoded small RNA species. This cDNA library preparation is well adapted to minute RNA inputs, as a pilot polymerase chain reaction (PCR) allows determination of a specific amplification cycle to produce optimal amounts of material for next-generation sequencing (NGS). This approach was optimized for the use of degraded FFPE RNA from specimens archived for up to 35 years and provides highly reproducible NGS data.

  20. Standardization of Spore Inactivation Method for PMA-PhyloChip Analysis

    NASA Technical Reports Server (NTRS)

    Schrader, Michael

    2011-01-01

    In compliance with the Committee on Space Research (COSPAR) planetary protection policy, National Aeronautics and Space Administration (NASA) monitors the total microbial burden of spacecraft as a means for minimizing the inadvertent transfer of viable contaminant microorganisms to extraterrestrial environments (forward contamination). NASA standard assay-based counts are used both as a proxy for relative surface cleanliness and to estimate overall microbial burden as well as to assess whether forward planetary protection risk criteria are met for a given mission, which vary by the planetary body to be explored and whether or not life detection missions are present. Despite efforts to reduce presence of microorganisms from spacecraft prior to launch, microbes have been isolated from spacecraft and associated surfaces within the extreme conditions of clean room facilities using state of the art molecular technologies. Development of a more sensitive method that will better enumerate all viable microorganisms from spacecraft and associated surfaces could support future life detection missions. Current culture-based (NASA standard spore assay) and nucleic-acid-based polymerase chain reaction (PCR) methods have significant shortcomings in this type of analysis. The overall goal of this project is to evaluate and validate a new molecular method based on the use of a deoxyribonucleic acid (DNA) intercalating agent propidium monoazide (PMA). This is used in combination with DNA microarray (PhyloChip) which has been shown to identify very low levels of organisms on spacecraft associated surfaces. PMA can only penetrate the membrane of dead cells. Once penetrated, it intercalates the DNA and, upon photolysis using visible light it produces stable DNA monoadducts. This allows DNA to be unavailable for further PCR analysis. The specific aim of this study is to standardize the spore inactivation method for PMA-PhyloChip analysis. We have used the bacterial spores Bacillus subtilis 168 (standard laboratory isolate) as a test organism.

  1. Biomolecular recognition and detection using gold-based nanoprobes

    NASA Astrophysics Data System (ADS)

    Crew, Elizabeth

    The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.

  2. Interpreting the biological relevance of bioinformatic analyses with T-DNA sequence for protein allergenicity.

    PubMed

    Harper, B; McClain, S; Ganko, E W

    2012-08-01

    Global regulatory agencies require bioinformatic sequence analysis as part of their safety evaluation for transgenic crops. Analysis typically focuses on encoded proteins and adjacent endogenous flanking sequences. Recently, regulatory expectations have expanded to include all reading frames of the inserted DNA. The intent is to provide biologically relevant results that can be used in the overall assessment of safety. This paper evaluates the relevance of assessing the allergenic potential of all DNA reading frames found in common food genes using methods considered for the analysis of T-DNA sequences used in transgenic crops. FASTA and BLASTX algorithms were used to compare genes from maize, rice, soybean, cucumber, melon, watermelon, and tomato using international regulatory guidance. Results show that BLASTX for maize yielded 7254 alignments that exceeded allergen similarity thresholds and 210,772 alignments that matched eight or more consecutive amino acids with an allergen; other crops produced similar results. This analysis suggests that each nontransgenic crop has a much greater potential for allergenic risk than what has been observed clinically. We demonstrate that a meaningful safety assessment is unlikely to be provided by using methods with inherently high frequencies of false positive alignments when broadly applied to all reading frames of DNA sequence. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  4. Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis.

    PubMed

    Li, Leilei; Wieme, Anneleen; Spitaels, Freek; Balzarini, Tom; Nunes, Olga C; Manaia, Célia M; Van Landschoot, Anita; De Vuyst, Luc; Cleenwerck, Ilse; Vandamme, Peter

    2014-07-01

    Five acetic acid bacteria isolates, awK9_3, awK9_4 ( = LMG 27543), awK9_5 ( = LMG 28092), awK9_6 and awK9_9, obtained during a study of micro-organisms present in traditionally produced kefir, were grouped on the basis of their MALDI-TOF MS profile with LMG 1530 and LMG 1531(T), two strains currently classified as members of the genus Acetobacter. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences as well as on concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB indicated that these isolates were representatives of a single novel species together with LMG 1530 and LMG 1531(T) in the genus Acetobacter, with Acetobacter aceti, Acetobacter nitrogenifigens, Acetobacter oeni and Acetobacter estunensis as nearest phylogenetic neighbours. Pairwise similarity of 16S rRNA gene sequences between LMG 1531(T) and the type strains of the above-mentioned species were 99.7%, 99.1%, 98.4% and 98.2%, respectively. DNA-DNA hybridizations confirmed that status, while amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) data indicated that LMG 1531(T), LMG 1530, LMG 27543 and LMG 28092 represent at least two different strains of the novel species. The major fatty acid of LMG 1531(T) and LMG 27543 was C18 : 1ω7c. The major ubiquinone present was Q-9 and the DNA G+C contents of LMG 1531(T) and LMG 27543 were 58.3 and 56.7 mol%, respectively. The strains were able to grow on D-fructose and D-sorbitol as a single carbon source. They were also able to grow on yeast extract with 30% D-glucose and on standard medium with pH 3.6 or containing 1% NaCl. They had a weak ability to produce acid from d-arabinose. These features enabled their differentiation from their nearest phylogenetic neighbours. The name Acetobacter sicerae sp. nov. is proposed with LMG 1531(T) ( = NCIMB 8941(T)) as the type strain. © 2014 IUMS.

  5. Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation.

    PubMed

    Cleenwerck, Ilse; Gonzalez, Angel; Camu, Nicholas; Engelbeen, Katrien; De Vos, Paul; De Vuyst, Luc

    2008-09-01

    Six acetic acid bacterial isolates, obtained during a study of the microbial diversity of spontaneous fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. (GTG)(5)-PCR fingerprinting grouped the isolates together, but they could not be identified using this method. Phylogenetic analysis based on 16S rRNA gene sequences allocated the isolates to the genus Acetobacter and revealed Acetobacter lovaniensis, Acetobacter ghanensis and Acetobacter syzygii to be nearest neighbours. DNA-DNA hybridizations demonstrated that the isolates belonged to a single novel genospecies that could be differentiated from its phylogenetically nearest neighbours by the following phenotypic characteristics: no production of 2-keto-D-gluconic acid from D-glucose; growth on methanol and D-xylose, but not on maltose, as sole carbon sources; no growth on yeast extract with 30% D-glucose; and weak growth at 37 degrees C. The DNA G+C contents of four selected strains were 56.8-58.0 mol%. The results obtained prove that the isolates should be classified as representatives of a novel Acetobacter species, for which the name Acetobacter fabarum sp. nov. is proposed. The type strain is strain 985(T) (=R-36330(T) =LMG 24244(T) =DSM 19596(T)).

  6. Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium.

    PubMed

    Doronina, N V; Trotsenko, Y A; Krausova, V I; Boulygina, E S; Tourova, T P

    1998-10-01

    A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T).

  7. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Evaluation of Skin Surface as an Alternative Source of Reference DNA Samples: A Pilot Study.

    PubMed

    Albujja, Mohammed H; Bin Dukhyil, Abdul Aziz; Chaudhary, Abdul Rauf; Kassab, Ahmed Ch; Refaat, Ahmed M; Babu, Saranya Ramesh; Okla, Mohammad K; Kumar, Sachil

    2018-01-01

    An acceptable area for collecting DNA reference sample is a part of the forensic DNA analysis development. The aim of this study was to evaluate skin surface cells (SSC) as an alternate source of reference DNA sample. From each volunteer (n = 10), six samples from skin surface areas (forearm and fingertips) and two traditional samples (blood and buccal cells) were collected. Genomic DNA was extracted and quantified then genotyped using standard techniques. The highest DNA concentration of SSC samples was collected using the tape/forearm method of collection (2.1 ng/μL). Cotton swabs moistened with ethanol yielded higher quantities of DNA than swabs moistened with salicylic acid, and it gave the highest percentage of full STR profiles (97%). This study supports the use of SSC as a noninvasive sampling technique and as a extremely useful source of DNA reference samples among certain cultures where the use of buccal swabs can be considered socially unacceptable. © 2017 American Academy of Forensic Sciences.

  9. DNA polymerase ι: The long and the short of it!

    PubMed

    Frank, Ekaterina G; McLenigan, Mary P; McDonald, John P; Huston, Donald; Mead, Samantha; Woodgate, Roger

    2017-10-01

    The cDNA encoding human DNA polymerase ι (POLI) was cloned in 1999. At that time, it was believed that the POLI gene encoded a protein of 715 amino acids. Advances in DNA sequencing technologies led to the realization that there is an upstream, in-frame initiation codon that would encode a DNA polymerase ι (polι) protein of 740 amino acids. The extra 25 amino acid region is rich in acidic residues (11/25) and is reasonably conserved in eukaryotes ranging from fish to humans. As a consequence, the curated Reference Sequence (RefSeq) database identified polι as a 740 amino acid protein. However, the existence of the 740 amino acid polι has never been shown experimentally. Using highly specific antibodies to the 25 N-terminal amino acids of polι, we were unable to detect the longer 740 amino acid (ι-long) isoform in western blots. However, trace amounts of the ι-long isoform were detected after enrichment by immunoprecipitation. One might argue that the longer isoform may have a distinct biological function, if it exhibits significant differences in its enzymatic properties from the shorter, well-characterized 715 amino acid polι. We therefore purified and characterized recombinant full-length (740 amino acid) polι-long and compared it to full-length (715 amino acid) polι-short in vitro. The metal ion requirements for optimal catalytic activity differ slightly between ι-long and ι-short, but under optimal conditions, both isoforms exhibit indistinguishable enzymatic properties in vitro. We also report that like ι-short, the ι-long isoform can be monoubiquitinated and polyubiuquitinated in vivo, as well as form damage induced foci in vivo. We conclude that the predominant isoform of DNA polι in human cells is the shorter 715 amino acid protein and that if, or when, expressed, the longer 740 amino acid isoform has identical properties to the considerably more abundant shorter isoform. Published by Elsevier B.V.

  10. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein.

    PubMed

    Huang, Shengbing; Song, Wei; Lin, Qishui

    2005-08-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  11. Molecular characterization of DnaJ 5 homologs in silkworm Bombyx mori and its expression during egg diapause.

    PubMed

    Sirigineedi, Sasibhushan; Vijayagowri, Esvaran; Murthy, Geetha N; Rao, Guruprasada; Ponnuvel, Kangayam M

    2014-12-01

    A comparison of the cDNA sequences (1 056 bp) of Bombyx mori DnaJ 5 homolog with B. mori genome revealed that unlike in other Hsps, it has an intron of 234 bp. The DnaJ 5 homolog contains 351 amino acids, of which 70 contain the conserved DnaJ domain at the N-terminal end. This homolog of B. mori has all desirable functional domains similar to other insects, and the 13 different DnaJ homologs identified in B. mori genome were distributed on different chromosomes. The expressed sequence tag database analysis of Hsp40 gene expression revealed higher expression in wing disc followed by diapause-induced eggs. Microarray analysis revealed higher expression of DnaJ 5 homolog at 18th h after oviposition in diapause-induced eggs. Further validation of DnaJ 5 expression through qPCR in diapause-induced and nondiapause eggs at different time intervals revealed higher expression in diapause eggs at 18 and 24 h after oviposition, which coincided with the expression of Hsp70 as the Hsp 40 is its co-chaperone. This study thus provides an outline of the genome organization of Hsp40 gene, and its role in egg diapause induction in B. mori. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  12. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  13. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  14. Charge Transport in 2D DNA Tunnel Junction Diodes.

    PubMed

    Yoon, Minho; Min, Sung-Wook; Dugasani, Sreekantha Reddy; Lee, Yong Uk; Oh, Min Suk; Anthopoulos, Thomas D; Park, Sung Ha; Im, Seongil

    2017-12-01

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiO x junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiO x ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  16. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    PubMed

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  17. Evidence for the binding of the carcinogen 3-methylcholanthrene to both the purine and the pyrimidine bases of hamster fibroblast deoxyribonucleic acid (Short Communication)

    PubMed Central

    Jones, Peter A.; Gevers, Wieland; Hawtrey, Arthur O.

    1973-01-01

    The binding of [3H]3-methylcholanthrene to the DNA of hamster fibroblasts was studied by using chemical methods for DNA degradation. DNA depurinated by mild acid hydrolysis released approximately half of the radioactivity at the same rate as the purine bases, but the resulting apurinic acid still contained radioactive carcinogen. PMID:4797167

  18. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    PubMed Central

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-01-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils. PMID:8742713

  19. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    PubMed

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  20. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    USGS Publications Warehouse

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  2. Disruption of Higher Order DNA Structures in Friedreich’s Ataxia (GAA)n Repeats by PNA or LNA Targeting

    PubMed Central

    Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236

  3. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  4. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism

    PubMed Central

    Aarabi, Mahmoud; San Gabriel, Maria C.; Chan, Donovan; Behan, Nathalie A.; Caron, Maxime; Pastinen, Tomi; Bourque, Guillaume; MacFarlane, Amanda J.; Zini, Armand; Trasler, Jacquetta

    2015-01-01

    Dietary folate is a major source of methyl groups required for DNA methylation, an epigenetic modification that is actively maintained and remodeled during spermatogenesis. While high-dose folic acid supplementation (up to 10 times the daily recommended dose) has been shown to improve sperm parameters in infertile men, the effects of supplementation on the sperm epigenome are unknown. To assess the impact of 6 months of high-dose folic acid supplementation on the sperm epigenome, we studied 30 men with idiopathic infertility. Blood folate concentrations increased significantly after supplementation with no significant improvements in sperm parameters. Methylation levels of the differentially methylated regions of several imprinted loci (H19, DLK1/GTL2, MEST, SNRPN, PLAGL1, KCNQ1OT1) were normal both before and after supplementation. Reduced representation bisulfite sequencing (RRBS) revealed a significant global loss of methylation across different regions of the sperm genome. The most marked loss of DNA methylation was found in sperm from patients homozygous for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, a common polymorphism in a key enzyme required for folate metabolism. RRBS analysis also showed that most of the differentially methylated tiles were located in DNA repeats, low CpG-density and intergenic regions. Ingenuity Pathway Analysis revealed that methylation of promoter regions was altered in several genes involved in cancer and neurobehavioral disorders including CBFA2T3, PTPN6, COL18A1, ALDH2, UBE4B, ERBB2, GABRB3, CNTNAP4 and NIPA1. Our data reveal alterations of the human sperm epigenome associated with high-dose folic acid supplementation, effects that were exacerbated by a common polymorphism in MTHFR. PMID:26307085

  5. Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation.

    PubMed Central

    Kishi, H; Mukai, T; Hirono, A; Fujii, H; Miwa, S; Hori, K

    1987-01-01

    Fructose-1,6-bisphosphate aldolase A (fructose-bisphosphate aldolase; EC 4.1.2.13) deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia. To clarify the molecular mechanism of the deficiency at the nucleotide level, we have cloned aldolase A cDNA from a patient's poly(A)+ RNA that was expressed in cultured lymphoblastoid cells. Nucleotide analysis of the patient's aldolase A cDNA showed a substitution of a single nucleotide (adenine to guanine) at position 386 in a coding region. As a result, the 128th amino acid, aspartic acid, was replaced with glycine (GAT to GGT). Furthermore, change of the second letter of the aspartic acid codon extinguished a F ok I restriction site (GGATG to GGGTG). Southern blot analysis of the genomic DNA showed the patient carried a homozygous mutation inherited from his parents. When compared with normal human aldolase A, the patient's enzyme from erythrocytes and from cultured lymphoblastoid cells was found to be highly thermolabile, suggesting that this mutation causes a functional defect of the enzyme. To further examine this possibility, the thermal stability of aldolase A of the patient and of a normal control, expressed in Escherichia coli using expression plasmids, was determined. The results of E. coli expression of the mutated aldolase A enzyme confirmed the thermolabile nature of the abnormal enzyme. The Asp-128 is conserved in aldolase A, B, and C of eukaryotes, including an insect, Drosophila, suggesting that the Asp-128 of the aldolase A protein is likely to be an amino acid residue with a crucial role in maintaining the correct spatial structure or in performing the catalytic function of the enzyme. Images PMID:2825199

  6. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  7. Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China.

    PubMed

    Gao, Miao; Yang, Hui; Zhao, Ji; Liu, Jun; Sun, Yan-hua; Wang, Yu-jiong; Sun, Jian-guang

    2013-03-01

    A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112(T), was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10-40 °C and pH 4-11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112(T) is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112(T), Paenibacillus sabinae DSM 17841(T) (97.82 %) and Paenibacillus forsythiae DSM 17842(T) (97.22 %). However, the DNA-DNA hybridization values between strain 112(T) and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C(15:0) and C(16:0). The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA-DNA hybridization, strain 112(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112(T) (= ACCC 01125(T) = DSM 24983(T)).

  8. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    PubMed

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  9. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  10. Fatty acid composition of spermatozoa is associated with BMI and with semen quality.

    PubMed

    Andersen, J M; Rønning, P O; Herning, H; Bekken, S D; Haugen, T B; Witczak, O

    2016-09-01

    High body mass index (BMI) is negatively associated with semen quality. In addition, the composition of fatty acids of spermatozoa has been shown to be important for their function. The aim of the study was to examine the association between BMI and the composition of spermatozoa fatty acids in men spanning a broad BMI range. We also analysed the relation between fatty acid composition of spermatozoa and semen characteristics, and the relationship between serum fatty acids and spermatozoa fatty acids. One hundred forty-four men with unknown fertility status were recruited from the general population, from couples with identified female infertility and from morbid obesity centres. Standard semen analysis (WHO) and sperm DNA integrity (DFI) analysis were performed. Fatty acid compositions were assessed by gas chromatography. When adjusted for possible confounders, BMI was negatively associated with levels of sperm docosahexaenoic acid (DHA) (p < 0.001) and palmitic acid (p < 0.001). The amount of sperm DHA correlated positively with total sperm count (r = 0.482), sperm concentration (r = 0.469), sperm vitality (r = 0.354), progressive sperm motility (r = 0.431) and normal sperm morphology (r = 0.265). A negative association was seen between DHA levels and DNA fragmentation index (r = -0.247). Levels of spermatozoa palmitic acid correlated positively with total sperm count (r = 0.227), while levels of linoleic acid correlated negatively (r = -0.254). When adjusted for possible confounders, only the levels of arachidonic acid showed positive correlation between spermatozoa and serum phospholipids (r = 0.262). Changes in the fatty acid composition of spermatozoa could be one of the mechanisms underlying the negative association between BMI and semen quality. The relationship between fatty acids of spermatozoa and serum phospholipids was minor, which indicates that BMI affects fatty acid composition of spermatozoa through regulation of fatty acid metabolism in the testis. The role of dietary intake of fatty acids on the spermatozoa fatty acid composition remains to be elucidated. © 2016 American Society of Andrology and European Academy of Andrology.

  11. DNA-bending properties of TF1.

    PubMed

    Schneider, G J; Sayre, M H; Geiduschek, E P

    1991-10-05

    Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of DNA-binding proteins that includes Escherichia coli HU and integration host factor, IHF. A gel electrophoretic retardation method has been used to show that a TF1 dimer binding to one of its preferred sites in (5-hydroxymethyl)uracil (hmUra)-containing DNA sharply bends the latter. In fact, the DNA-bending properties of TF1 and E. coli IHF are indistinguishable. Substitutions at amino acid 61 in the DNA-binding "arm" of TF1 are known to affect DNA-binding affinity and site selectivity. Experiments described here show that these substitutions also affect DNA bending. The selectivity of TF1 binding is very greatly diminished and the affinity is reduced when hmUra is replaced in DNA by thymine (T). An extension of the gel retardation method that permits an analysis of DNA bending by non-specifically bound TF1 is proposed. Under the assumptions of this analysis, the reduced affinity of TF1 for T-containing DNA is shown to be associated with bending that is still sharp. The analysis of the TF1-DNA interaction has also been extended by hydroxyl radical (.OH) and methylation interference footprinting at two DNA sites. At each of these sites, and on each strand, TF1 strongly protects three segments of DNA from attack by OH. Patches of protected DNA are centered approximately ten base-pairs apart and fall on one side of the B-helix. Methylation in either the major or minor groove in the central ten base-pairs of the two TF1 binding sites quantitatively diminishes, but does not abolish, TF1 binding. We propose that multiple protein contacts allow DNA to wrap around the relatively small TF1 dimer, considerably deforming the DNA B-helix in the process.

  12. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L.

    PubMed

    Toubart, P; Desiderio, A; Salvi, G; Cervone, F; Daroda, L; De Lorenzo, G

    1992-05-01

    Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein purified from hypocotyls of true bean (Phaseolus vulgaris L.). PGIP inhibits fungal endopolygalacturonases and is considered to be an important factor for plant resistance to phytopathogenic fungi (Albersheim and Anderson, 1971; Cervone et al., 1987). The amino acid sequences of the N-terminus and one internal tryptic peptide of the PGIP purified from P. vulgaris cv. Pinto were used to design redundant oligonucleotides that were successfully utilized as primers in a polymerase chain reaction (PCR) with total DNA of P. vulgaris as a template. A DNA band of 758 bp (a specific PCR amplification product of part of the gene coding for PGIP) was isolated and cloned. By using the 758-bp DNA as a hybridization probe, a lambda clone containing the PGIP gene was isolated from a genomic library of P. vulgaris cv. Saxa. The coding and immediate flanking regions of the PGIP gene, contained on a subcloned 3.3 kb SalI-SalI DNA fragment, were sequenced. A single, continuous ORF of 1026 nt (342 amino acids) was present in the genomic clone. The nucleotide and deduced amino acid sequences of the PGIP gene showed no significant similarity with any known databank sequence. Northern blotting analysis of poly(A)+ RNAs, isolated from various tissues of bean seedlings or from suspension-cultured bean cells, were also performed using the cloned PCR-generated DNA as a probe. A 1.2 kb transcript was detected in suspension-cultured cells and, to a lesser extent, in leaves, hypocotyls, and flowers.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A new model for ancient DNA decay based on paleogenomic meta-analysis.

    PubMed

    Kistler, Logan; Ware, Roselyn; Smith, Oliver; Collins, Matthew; Allaby, Robin G

    2017-06-20

    The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Cdc45-induced loading of human RPA onto single-stranded DNA.

    PubMed

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Nucleic Acid Engineering: RNA Following the Trail of DNA.

    PubMed

    Kim, Hyejin; Park, Yongkuk; Kim, Jieun; Jeong, Jaepil; Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2016-02-08

    The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.

  16. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  17. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  18. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots.

    PubMed

    Freeman, Ronit; Liu, Xiaoqing; Willner, Itamar

    2011-08-03

    Nucleic acid subunits consisting of fragments of the horseradish peroxidase (HRP)-mimicking DNAzyme and aptamer domains against ATP or sequences recognizing Hg(2+) ions self-assemble, in the presence of ATP or Hg(2+), into the active hemin-G-quadruplex DNAzyme structure. The DNAzyme-generated chemiluminescence provides the optical readout for the sensing events. In addition, the DNAzyme-stimulated chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs) is implemented to develop aptamer or DNA sensing platforms. The self-assembly of the ATP-aptamer subunits/hemin-G-quadruplex DNAzyme, where one of the aptamer subunits is functionalized with CdSe/ZnS QDs, leads to the CRET signal. Also, the functionalization of QDs with a hairpin nucleic acid that includes the G-quadruplex sequence in a ''caged'' configuration is used to analyze DNA. The opening of the hairpin structure by the target DNA assembles the hemin-G-quadruplex DNAzyme that stimulates the CRET signal. By the application of three different sized QDs functionalized with different hairpins, the multiplexed analysis of three different DNA targets is demonstrated by the generation of three different CRET luminescence signals.

  19. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    PubMed

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  20. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    PubMed Central

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. Results: In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions. PMID:23508290

  1. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  2. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  3. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  4. BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA from disk abalone Haliotis discus discus.

    PubMed

    Kim, Yucheol; De Zoysa, Mahanama; Lee, Youngdeuk; Whang, Ilson; Lee, Jehee

    2010-11-01

    A BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA was cloned from the disk abalone (Haliotis discus discus) and designated as AbLECT-1. A full-length (705 bp) of AbLECT-1 cDNA was composed of a 576 bp open reading frame that translates into a putative peptide of 192 amino acids. Deduced amino acid sequence of AbLECT-1 had 15.5- and 27.8% identity and similarity to human LECT-1, respectively. Quantitative real-time PCR analysis results showed that the mRNA of AbLECT-1 was constitutively expressed in abalone hemocytes, gills, mantle, muscle, digestive tract and hepatopancreas in a tissue-specific manner. Moreover, the AbLECT-1 transcription level was induced in hemocytes after challenge with Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes suggesting that it may be involved in immune response reactions in abalone. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Availability: A Metric for Nucleic Acid Strand Displacement Systems

    PubMed Central

    2016-01-01

    DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531

  6. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.

    PubMed

    Cattani-Scholz, Anna; Pedone, Daniel; Dubey, Manish; Neppl, Stefan; Nickel, Bert; Feulner, Peter; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc

    2008-08-01

    We investigated hydroxyalkylphosphonate monolayers as a novel platform for the biofunctionalization of silicon-based field effect sensor devices. This included a detailed study of the thin film properties of organophosphonate films on Si substrates using several surface analysis techniques, including AFM, ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity, and current-voltage characteristics in electrolyte solution. Our results indicate the formation of a dense monolayer on the native silicon oxide that has excellent passivation properties. The monolayer was biofunctionalized with 12 mer peptide nucleic acid (PNA) receptor molecules in a two-step procedure using the heterobifunctional linker, 3-maleimidopropionic-acid-N-hydroxysuccinimidester. Successful surface modification with the probe PNA was verified by XPS and contact angle measurements, and hybridization with DNA was determined by fluorescence measurements. Finally, the PNA functionalization protocol was translated to 2 microm long, 100 nm wide Si nanowire field effect devices, which were successfully used for label-free DNA/PNA hybridization detection.

  7. DNA before Watson & Crick-The Pioneering Studies of J. M. Gulland and D. O. Jordan at Nottingham

    NASA Astrophysics Data System (ADS)

    Booth, Harold; Hey, Michael J.

    1996-10-01

    A description placed in a historical context, of the physico-chemical investigations of DNA carried out in the period 1940-1950 by a group at University College, Nottingham led by J.M.Gulland and D.O.Jordan. The isolation of a pure sample of DNA from calf thymus was followed by its analysis by potentiometric titrations and by measurements at variable pH of viscosity and streaming birefringence. Unlike the phosphoric acid groups, the primary amino and enolic hydroxyl groups could only be titrated after prior treatment with strong acid or strong base. The conclusion of Gulland and Jordan, that extremes of pH caused liberation of amino and enolic hydoxyl groups by disruption of hydrogen bonds between neighbouring polynucleotide chains, proved to be of considerable importance. The article includes life histories of Gulland and Jordan, and reference to Linus Pauling's remarkable foresight during his Sir Jesse Boot Foundation Lecture delivered at Nottingham in 1948.

  8. Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.).

    PubMed

    Qin, Xiaobo; Lin, Fanrong; Lii, Yifan; Gou, Chunbao; Chen, Fang

    2011-03-01

    A cDNA clone designated arf1 was isolated from a physic nut (Jatropha curcas L.) endosperm cDNA library which encodes a small GTP-binding protein and has significant homology to ADP-ribosylation factors (ARF) in plants, animals and microbes. The cDNA contains an open reading frame that encodes a polypeptide of 181 amino acids with a calculated molecular mass of 20.7 kDa. The deduced amino acid sequence showed high homology to known ARFs from other organisms. The products of the arf1 obtained by overexpression in E. coli revealed the specific binding activity toward GTP. The expression of arf1 was observed in flowers, roots, stems and leaves as analyzed by RT-PCR, and its transcriptional level was highest in flowers. In particular, the accumulation of arf1 transcripts was different under various environmental stresses in seedlings. The results suggest that arf1 plays distinct physiological roles in Jatropha curcas cells.

  9. Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Ichinose, H; Wariishi, H; Tanaka, H

    2002-09-01

    A cDNA encoding cytochrome P450 oxidoreductase (CPR) from the lignin-degrading basidiomycete Coriolus versicolor was identified using RT-PCR. The full-length cDNA consisted of 2,484 nucleotides with a poly(A) tail, and contained an open reading frame. The G+C content of the cDNA isolated was 60%. A deduced protein contained 730 amino acid residues with a calculated molecular weight of 80.7 kDa. The conserved amino acid residues involved in functional domains such as FAD-, FMN-, and NADPH-binding domains, were all found in the deduced protein. A phylogenetic analysis demonstrated that C. versicolor CPR is significantly similar to CPR of the basidiomycete Phanerochaete chrysosporium and that they share the same major branch in the fungal cluster. A recombinant CPR protein was expressed using a pET/ Escherichia coli system. The recombinant CPR protein migrated at 81 kDa on SDS polyacrylamide gel electrophoresis. It exhibited an NADPH-dependent cytochrome c reducing activity.

  10. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens.

    PubMed

    Small, G J; Hemingway, J

    2000-12-01

    Widespread resistance to organophosphorus insecticides (OPs) in Nilaparvata lugens is associated with elevation of carboxylesterase activity. A cDNA encoding a carboxylesterase, Nl-EST1, has been isolated from an OP-resistant Sri Lankan strain of N. lugens. The full-length cDNA codes for a 547-amino acid protein with high homology to other esterases/lipases. Nl-EST1 has an N-terminal hydrophobic signal peptide sequence of 24 amino acids which suggests that the mature protein is secreted from cells expressing it. The nucleotide sequence of the homologue of Nl-EST1 in an OP-susceptible, low esterase Sri Lankan strain of N. lugens is identical to Nl-EST1. Southern analysis of genomic DNA from the Sri Lankan OP-resistant and susceptible strains suggests that Nl-EST1 is amplified in the resistant strain. Therefore, resistance to OPs in the Sri Lankan strain is through amplification of a gene identical to that found in the susceptible strain.

  11. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    DTIC Science & Technology

    2010-01-01

    partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three

  12. Veillonella infantium sp. nov., an anaerobic, Gram-stain-negative coccus isolated from tongue biofilm of a Thai child.

    PubMed

    Mashima, Izumi; Liao, Yu-Chieh; Miyakawa, Hiroshi; Theodorea, Citra F; Thawboon, Boonyanit; Thaweboon, Sroisiri; Scannapieco, Frank A; Nakazawa, Futoshi

    2018-04-01

    A strain of a novel anaerobic, Gram-stain-negative coccus was isolated from the tongue biofilm of a Thai child. This strain was shown, at the phenotypic level and based on 16S rRNA gene sequencing, to be a member of the genus Veillonella. Comparative analysis of the 16S rRNA, dnaK and rpoB gene sequences indicated that phylogenetically the strain comprised a distinct novel branch within the genus Veillonella. The novel strain showed 99.8, 95.1 and 95.9 % similarity to partial 16S rRNA, dnaK and rpoB gene sequences, respectively, to the type strains of the two most closely related species, Veillonelladispar ATCC 17748 T and Veillonellatobetsuensis ATCC BAA-2400 T . The novel strain could be discriminated from previously reported species of the genus Veillonella based on partial dnaK and rpoB gene sequencing and average nucleotide identity values. The major acid end-product produced by this strain was acetic acid under anaerobic conditions in trypticase-yeast extract-haemin with 1 % (w/v) glucose or fructose medium. Lactate was fermented to acetic acid and propionic acid. Based on these observations, this strain represents a novel species, for which the name Veillonella infantium sp. nov. is proposed. The type strain is T11011-4 T (=JCM 31738 T =TSD-88 T ).

  13. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis.

    PubMed

    Cho, Young Sun; Choi, Buyl Nim; Ha, En-Mi; Kim, Ki Hong; Kim, Sung Koo; Kim, Dong Soo; Nam, Yoon Kwon

    2005-01-01

    Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.

  14. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress.

    PubMed

    Colgan, Aoife M; Quinn, Heather J; Kary, Stefani C; Mitchenall, Lesley A; Maxwell, Anthony; Cameron, Andrew D S; Dorman, Charles J

    2018-03-01

    DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4-5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic-membrane-located inhibitor of proton-driven F 1 F 0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin-resistant (Nov R ) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with Nov R gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug-treated bacteria. The Salmonella cytosol reaches pH 5-6 in response to an external pH of 4-5: the ATP-dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP-dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid-mediated impairment of the negative supercoiling activity of gyrase. © 2018 John Wiley & Sons Ltd.

  15. Kinetics of Nucleic Acid Synthesis in Human Embryonic Kidney Cultures Infected with Adenovirus 2 or 12: Inhibition of Cellular Deoxyribonucleic Acid Synthesis

    PubMed Central

    Ledinko, Nada; Fong, Caroline K. Y.

    1969-01-01

    Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of 3H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. 3H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much 3H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase. PMID:5806981

  16. Association of the Bacillus subtilis Chromosome with the Cell Membrane: Resolution of Free and Bound Deoxyribonucleic Acid on Renografin Gradients

    PubMed Central

    Ivarie, Robert D.; Pène, Jacques J.

    1970-01-01

    Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane. PMID:4992373

  17. RNA-Dependent DNA Polymerase Activity of RNA Tumor Viruses II. Directing Influence of RNA in the Reaction

    PubMed Central

    Leis, Jonathan P.; Hurwitz, Jerard

    1972-01-01

    The role of ribonucleic acid (RNA) in deoxyribonucleic acid (DNA) synthesis with the purified DNA polymerase from the avian myeloblastosis virus has been studied. The polymerase catalyzes the synthesis of DNA in the presence of four deoxynucleoside triphosphates, Mg2+, and a variety of RNA templates including those isolated from avian myeloblastosis, Rous sarcoma, and Rauscher leukemia viruses; phages f2, MS2, and Qβ; and synthetic homopolymers such as polyadenylate·polyuridylic acid. The enzyme does not initiate the synthesis of new chains but incorporates deoxynucleotides at 3′ hydroxyl ends of primer strands. The product is an RNA·DNA hybrid in which the two polynucleotide components are covalently linked. Free DNA has not been detected among the products formed with the purified enzyme in vitro. The DNA synthesized with avian myeloblastosis virus RNA after alkaline hydrolysis has a sedimentation coefficient of 6 to 7S. PMID:4333539

  18. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form

    NASA Astrophysics Data System (ADS)

    Qiao, Hai; Hu, Na; Bai, Jin; Ren, Lili; Liu, Qing; Fang, Liaoqiong; Wang, Zhibiao

    2017-12-01

    Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.

  19. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery

    PubMed Central

    Lü, Jian-Ming; Liang, Zhengdong; Wang, Xiaoxiao; Gu, Jianhua; Yao, Qizhi; Chen, Changyi

    2016-01-01

    Aim: To develop an improved delivery system for nucleic acids. Materials & methods: We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. Results: The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. Conclusion: The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI. PMID:27456396

  1. Insights into the structural features and stability of peptide nucleic acid with a D-prolyl-2-aminocyclopentane carboxylic acid backbone that binds to DNA and RNA.

    PubMed

    Poomsuk, Nattawee; Vilaivan, Tirayut; Siriwong, Khatcharin

    2018-06-12

    Peptide nucleic acid (PNA) is a powerful biomolecule with a wide variety of important applications. In this work, the molecular structures and binding affinity of PNA with a D-prolyl-2-aminocyclopentane carboxylic acid backbone (acpcPNA) that binds to both DNA and RNA were studied using molecular dynamics simulations. The simulated structures of acpcPNA-DNA and acpcPNA-RNA duplexes more closely resembled the typical structures of B-DNA and A-RNA than the corresponding duplexes of aegPNA. The calculated binding free energies are in good agreement with the experimental results that the acpcPNA-DNA duplex is more stable than the acpcPNA-RNA duplex regardless of the base sequences. The results provide further insights in the relationship between structure and stability of this unique PNA system. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Procedure for normalization of cDNA libraries

    DOEpatents

    Bonaldo, Maria DeFatima; Soares, Marcelo Bento

    1997-01-01

    This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.

  3. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2017-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish ( Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  4. The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.

    PubMed

    Schnitzler, P; Handermann, M; Szépe, O; Darai, G

    1991-06-01

    The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.

  5. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    PubMed Central

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  6. Synthesis of novel Eu(III) luminescent probe based on 9- acridinecarboxylic acid skelton for sensing of ds-DNA.

    PubMed

    Azab, Hassan A; Hussein, Belal H M; El-Falouji, Abdullah I

    2012-03-01

    Eu(III)-9-acridinecarboxylate (9-ACA) complex was synthesized and characterized by elemental analysis, conductivity measurement, IR spectroscopy, thermal analysis, mass spectroscopy, (1)H-NMR, fluorescence and ultraviolet spectra. The results indicated that the composition of this complex is [Eu(III)-(9-ACA)(2)(NCS)(C(2)H(5)OH)(2)] 2.5 H(2)O and the oxygen of the carbonyl group coordinated to Eu(III). The interaction between the complex with nucleotides guanosine 5'- monophosphate (5'-GMP), adenosine 5'-diphosphates (5'-ADP), inosine (5'-IMP) and CT-DNA was studied by fluorescence spectroscopy. The fluorescence intensity of Eu(III)-9-acridinecarboxylate complex was enhanced with the addition of CT-DNA. The effect of pH values on the fluorescence intensity of Eu(III) complex was investigated. Under experimental conditions, the linear range was 9-50 ng mL(-1) for calf thymus DNA (CT- DNA) and the corresponding detection limit was 5 ng mL(-1). The results showed that Eu(III)-(9-ACA)(2) complex binds to CT-DNA with stability constant of 2.41 × 10(4) M.

  7. Tandem Mass Spectrometry for Characterization of Covalent Adducts of DNA with Anti-cancer Therapeutics

    PubMed Central

    Silvestri, Catherine; Brodbelt, Jennifer S.

    2012-01-01

    The chemotherapeutic activities of many anticancer and antibacterial drugs arise from their interactions with nucleic acid substrates. Some of these ligands interact with DNA in a way that causes conformational changes or damage to the nucleic acid targets, ultimately altering recognition by key DNA-specific enzymes, interfering with DNA transcription or prohibiting replication, and terminating cell growth and proliferation. The design and synthesis of ligands that bind to nucleic acids remains a dynamic field in medicinal chemistry and pharmaceutical research. The quest for more selective and efficacious DNA-interactive anti-cancer chemotherapeutics has likewise catalyzed the need for sensitive analytical methods that can provide structural information about the nature of the resulting DNA adducts and provide insight into the mechanistic pathways of the DNA/drug interactions and the impact on the cellular processes in biological systems. This review focuses on the array of tandem mass spectrometric strategies developed and applied for characterization of covalent adducts formed between DNA and anti-cancer ligands. PMID:23150278

  8. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    PubMed

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  9. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    PubMed

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  11. The Activation Domain of the Bovine Papillomavirus E2 Protein Mediates Association of DNA-Bound Dimers to form DNA Loops

    NASA Astrophysics Data System (ADS)

    Knight, Jonathan D.; Li, Rong; Botchan, Michael

    1991-04-01

    The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, performed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on te DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and D8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.

  12. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  13. DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor15 and Characterization of the COR 15 Polypeptide 1

    PubMed Central

    Lin, Chentao; Thomashow, Michael F.

    1992-01-01

    Previous studies have indicated that changes in gene expression occur in Arabidopsis thaliana L. (Heyn) during cold acclimation and that certain of the cor (cold-regulated) genes encode polypeptides that share the unusual property of remaining soluble upon boiling in aqueous solution. Here, we identify a cDNA clone for a cold-regulated gene encoding one of the “boiling-stable” polypeptides, COR15. DNA sequence analysis indicated that the gene, designated cor15, encodes a 14.7-kilodalton hydrophilic polypeptide having an N-terminal amino acid sequence that closely resembles transit peptides that target proteins to the stromal compartment of chloroplasts. Immunological studies indicated that COR15 is processed in vivo and that the mature polypeptide, COR 15m, is present in the soluble fraction of chloroplasts. Possible functions of COR 15m are discussed. ImagesFigure 1Figure 4Figure 5Figure 6Figure 7 PMID:16668917

  14. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  15. The recA gene from the thermophile Thermus aquaticus YT-1: cloning, expression, and characterization.

    PubMed Central

    Angov, E; Camerini-Otero, R D

    1994-01-01

    We have cloned, expressed, and purified the RecA analog from the thermophilic eubacterium Thermus aquaticus YT-1. Analysis of the deduced amino acid sequence indicates that the T. aquaticus RecA is structurally similar to the Escherichia coli RecA and suggests that RecA-like function has been conserved in thermophilic organisms. Preliminary biochemical analysis indicates that the protein has an ATP-dependent single-stranded DNA binding activity and can pair and carry out strand exchange to form a heteroduplex DNA under reaction conditions previously described for E. coli RecA, but at 55 to 65 degrees C. Further characterization of a thermophilically derived RecA protein should yield important information concerning DNA-protein interactions at high temperatures. In addition, a thermostable RecA protein may have some general applicability in stabilizing DNA-protein interactions in reactions which occur at high temperatures by increasing the specificity (stringency) of annealing reactions. Images PMID:8113181

  16. Parvovirus B19 is a bystander in adult myocarditis.

    PubMed

    Koepsell, Scott A; Anderson, Daniel R; Radio, Stanley J

    2012-01-01

    The genomic DNA of parvovirus B19, a small single-stranded DNA virus of the genus Erythrovirus, has been shown to persist in solid tissues of constitutionally healthy, immunocompetent individuals. Despite these data, many case reports and series have linked the presence of parvovirus B19 genomic DNA, detected through nucleic acid amplification testing, with myocarditis and cardiomyopathy. Herein, we use multiple tools to better assess the relationship between parvovirus B19 and myocarditis and cardiomyopathy. Nucleic acid amplification testing, immunohistochemistry, in situ hybridization, and electron microscopy were used to assess the location and activity of parvovirus B19 in cases of myocarditis and in cases with no significant cardiac disease. Nucleic acid amplification testing for parvovirus B19 genomic DNA was positive in 73% of patients with myocarditis/cardiomyopathy and in 26% of patients with no significant disease. In situ hybridization and immunohistochemistry showed that, in cases with amplifiable parvovirus B19 DNA, parvovirus B19 genomic DNA and viral protein production were present in rare mononuclear cells. In a majority of cases of myocarditis and a significant number of otherwise normal hearts, nucleic acid amplification testing detected persistent parvovirus B19 genomic DNA that did not play a significant pathogenic role. The source of parvovirus B19 DNA appeared to be interstitial mononuclear inflammatory cells and not myocardial or endothelial cells. Therefore, nucleic acid amplification testing alone is not diagnostically helpful for determining the etiology of adult myocarditis. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards.

    PubMed

    Rajendram, D; Ayenza, R; Holder, F M; Moran, B; Long, T; Shah, H N

    2006-12-01

    We assessed the potential use of Whatman FTA paper as a device for archiving and long-term storage of bacterial cell suspensions of over 400 bacterial strains representing 61 genera, the molecular applications of immobilised DNA on FTA paper, and tested its microbial inactivation properties. The FTA paper extracted bacterial DNA is of sufficiently high quality to successfully carryout the molecular detection of several key genes including 16S rRNA, esp (Enterococcus surface protein), Bft (Bacteroides fragilis enterotoxin) and por (porin protein) by PCR and for DNA fingerprinting by random amplified polymorphic DNA-PCR (RAPD-PCR). To test the long-term stability of the FTA immobilised DNA, 100 of the 400 archived bacterial samples were randomly selected following 3 years of storage at ambient temperature and PCR amplification was used to monitor its success. All of the 100 samples were successfully amplified using the 16S rDNA gene as a target and confirmed by DNA sequencing. Furthermore, the DNA was eluted into solution from the FTA cards using a new alkaline elution procedure for evaluation by real-time PCR-based assays. The viability of cells retained on the FTA cards varied among broad groups of bacteria. For the more fragile gram-negative species, no viable cells were retained even at high cell densities of between 10(7) and 10(8) colony forming units (cfu) ml(-1), and for the most robust species such as spore-formers and acid-fast bacteria, complete inactivation was achieved at cell densities ranging between 10(1) and 10(4) cfu ml(-1). The inactivation of bacterial cells on FTA cards suggest that this is a safe medium for the storage and transport of bacterial nucleic acids.

  18. Gene promoter methylation and DNA repair capacity in monozygotic twins with discordant smoking habits.

    PubMed

    Ottini, Laura; Rizzolo, Piera; Siniscalchi, Ester; Zijno, Andrea; Silvestri, Valentina; Crebelli, Riccardo; Marcon, Francesca

    2015-02-01

    The influence of DNA repair capacity, plasma nutrients and tobacco smoke exposure on DNA methylation was investigated in blood cells of twenty-one couples of monozygotic twins with discordant smoking habits. All study subjects had previously been characterized for mutagen sensitivity with challenge assays with ionizing radiation in peripheral blood lymphocytes. Plasma levels of folic acid, vitamin B12 and homocysteine were also available from a previous investigation. In this work DNA methylation in the promoter region of a panel of ten genes involved in cell cycle control, differentiation, apoptosis and DNA repair (p16, FHIT, RAR, CDH1, DAPK1, hTERT, RASSF1A, MGMT, BRCA1 and PALB2) was assessed in the same batches of cells isolated for previous studies, using the methylation-sensitive high-resolution melting technique. Fairly similar profiles of gene promoter methylation were observed within co-twins compared to unrelated subjects (p= 1.23 × 10(-7)), with no significant difference related to smoking habits (p = 0.23). In a regression analysis the methylation index of study subjects, used as synthetic descriptor of overall promoter methylation, displayed a significant inverse correlation with radiation-induced micronuclei (p = 0.021) and plasma folic acid level (p = 0.007) both in smokers and in non-smokers. The observed association between repair of radiation-induced DNA damage and promoter methylation suggests the involvement of the DNA repair machinery in DNA modification. Data also highlight the possible modulating effect of folate deficiency on DNA methylation and the strong influence of familiarity on the individual epigenetic profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Immobilization and stretching of 5'-pyrene-terminated DNA on carbon film deposited on electron microscope grid.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim

    2015-11-01

    The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.

  20. NDI and DAN DNA: nucleic acid-directed assembly of NDI and DAN.

    PubMed

    Ikkanda, Brian A; Samuel, Stevan A; Iverson, Brent L

    2014-03-07

    Two novel DNA base surrogate phosphoramidites 1 and 2, based upon relatively electron-rich 1,5-dialkoxynaphthalene (DAN) and relatively electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (NDI), respectively, were designed, synthesized, and incorporated into DNA oligonucleotide strands. The DAN and NDI artificial DNA bases were inserted within a three-base-pair region within the interior of a 12-mer oligonucleotide duplex in various sequential arrangements and investigated with CD spectroscopy and UV melting curve analysis. The CD spectra of the modified duplexes indicated B-form DNA topology. Melting curve analyses revealed trends in DNA duplex stability that correlate with the known association of DAN and NDI moieties in aqueous solution as well as the known favorable interactions between NDI and natural DNA base pairs. This demonstrates that DNA duplex stability and specificity can be driven by the electrostatic complementarity between DAN and NDI. In the most favorable case, an NDI-DAN-NDI arrangement in the middle of the DNA duplex was found to be approximately as stabilizing as three A-T base pairs.

  1. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis.

    PubMed

    Ercolini, D; Moschetti, G; Blaiotta, G; Coppola, S

    2001-03-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects.

  2. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  3. Endonuclease from Micrococcus luteus Which Has Activity Toward Ultraviolet-Irradiated Deoxyribonucleic Acid: Its Action on Transforming Deoxyribonucleic Acid

    PubMed Central

    Setlow, R. B.; Setlow, Jane K.; Carrier, W. L.

    1970-01-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  4. Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

    PubMed

    Ceccarelli, Veronica; Valentini, Virginia; Ronchetti, Simona; Cannarile, Lorenza; Billi, Monia; Riccardi, Carlo; Ottini, Laura; Talesa, Vincenzo Nicola; Grignani, Francesco; Vecchini, Alba

    2018-05-14

    In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21 Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

  5. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    PubMed Central

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  6. Separation of Single-stranded DNA, Double-stranded DNA and RNA from an Environmental Viral Community Using Hydroxyapatite Chromatography

    PubMed Central

    Fadrosh, Douglas W.; Andrews-Pfannkoch, Cynthia; Williamson, Shannon J.

    2011-01-01

    Viruses, particularly bacteriophages (phages), are the most numerous biological entities on Earth1,2. Viruses modulate host cell abundance and diversity, contribute to the cycling of nutrients, alter host cell phenotype, and influence the evolution of both host cell and viral communities through the lateral transfer of genes 3. Numerous studies have highlighted the staggering genetic diversity of viruses and their functional potential in a variety of natural environments. Metagenomic techniques have been used to study the taxonomic diversity and functional potential of complex viral assemblages whose members contain single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and RNA genotypes 4-9. Current library construction protocols used to study environmental DNA-containing or RNA-containing viruses require an initial nuclease treatment in order to remove nontargeted templates 10. However, a comprehensive understanding of the collective gene complement of the virus community and virus diversity requires knowledge of all members regardless of genome composition. Fractionation of purified nucleic acid subtypes provides an effective mechanism by which to study viral assemblages without sacrificing a subset of the community’s genetic signature. Hydroxyapatite, a crystalline form of calcium phosphate, has been employed in the separation of nucleic acids, as well as proteins and microbes, since the 1960s11. By exploiting the charge interaction between the positively-charged Ca2+ ions of the hydroxyapatite and the negatively charged phosphate backbone of the nucleic acid subtypes, it is possible to preferentially elute each nucleic acid subtype independent of the others. We recently employed this strategy to independently fractionate the genomes of ssDNA, dsDNA and RNA-containing viruses in preparation of DNA sequencing 12. Here, we present a method for the fractionation and recovery of ssDNA, dsDNA and RNA viral nucleic acids from mixed viral assemblages using hydroxyapatite chromotography. PMID:21989424

  7. Human HST1 (HSTF1) gene maps to chromosome band 11q13 and coamplifies with the INT2 gene in human cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi

    1988-07-01

    The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less

  8. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    PubMed

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  9. Molecular cloning, overexpression, purification, and sequence analysis of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide.

    PubMed

    Fu, L; Hou, Y L; Ding, X; Du, Y J; Zhu, H Q; Zhang, N; Hou, W R

    2016-08-30

    The complementary DNA (cDNA) of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide (FTL) gene was successfully cloned using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing FTL cDNA and overexpressed it in Escherichia coli using pET28a plasmids. The expressed protein was then purified by nickel chelate affinity chromatography. The cloned cDNA fragment was 580 bp long and contained an open reading frame of 525 bp. The deduced protein sequence was composed of 175 amino acids and had an estimated molecular weight of 19.90 kDa, with an isoelectric point of 5.53. Topology prediction revealed one N-glycosylation site, two casein kinase II phosphorylation sites, one N-myristoylation site, two protein kinase C phosphorylation sites, and one cell attachment sequence. Alignment indicated that the nucleotide and deduced amino acid sequences are highly conserved across several mammals, including Homo sapiens, Cavia porcellus, Equus caballus, and Felis catus, among others. The FTL gene was readily expressed in E. coli, which gave rise to the accumulation of a polypeptide of the expected size (25.50 kDa, including an N-terminal polyhistidine tag).

  10. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    PubMed

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from soda lake of the Southern Transbaikal region.

    PubMed

    Doronina, Nina; Darmaeva, Tsyregma; Trotsenko, Yuri

    2003-09-01

    A new, moderately haloalkaliphilic and restricted-facultatively methylotrophic bacterium (strain Bur2T) with the ribulose monophosphate pathway of carbon assimilation is described. The isolate, which utilizes methanol, methylamine and fructose, is an aerobic, Gram-negative, asporogenous, motile short rod multiplying by binary fission. It is auxotrophic for vitamin B12, and requires NaHCO3 or NaCl for growth in alkaline medium. Cellular fatty acids profile consists primarily of straight-chain saturated C16:0, unsaturated C16:1 and C18:1 acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. Diphosphatidylglycerol is also present. Optimal growth conditions are 25-29 degrees C, pH 8.5-9.0 and 2-3% (w/v) NaCl. Cells accumulate ectoine and glutamate as the main osmoprotectants. The G + C content of the DNA is 45.0 mol%. Based on 16S rDNA sequence analysis and DNA-DNA relatedness (25-35%) with type strains of marine and soda lake methylobacteria belonging to the genus Methylophaga, the novel isolate was classified as a new species of this genus and named Methylophaga natronica (VKM B-2288T).

  12. Nocardioides albertanoniae sp. nov., isolated from Roman catacombs.

    PubMed

    Alias-Villegas, Cynthia; Jurado, Valme; Laiz, Leonila; Miller, Ana Z; Saiz-Jimenez, Cesareo

    2013-04-01

    A Gram-reaction-positive, aerobic, non-spore-forming, rod- or coccoid-shaped, strain, CD40127(T), was isolated from a green biofilm covering the wall of the Domitilla Catacombs in Rome, Italy. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CD40127(T) belongs to the genus Nocardioides, closely related to Nocardioides luteus DSM 43366(T) and Nocardioides albus DSM 43109(T) with 98.86 % and 98.01 % similarity values, respectively. Strain CD40127(T) exhibited 16S rRNA gene sequence similarity values below 96.29 % with the rest of the species of the genus Nocardioides. The G+C content of the genomic DNA was 69.7 mol%. The predominant fatty acid was iso-C16 : 0 and the major menaquinone was MK-8(H4) in accordance with the phenotypes of other species of the genus Nocardioides. A polyphasic approach using physiological tests, fatty acid profiles, DNA base ratios and DNA-DNA hybridization showed that isolate CD40127(T) represents a novel species within the genus Nocardioides, for which the name Nocardioides albertanoniae is proposed. The type strain is CD40127(T) ( = DSM 25218(T) = CECT 8014(T)).

  13. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning.

    PubMed

    Breidt, Fred; Medina, Eduardo; Wafa, Doria; Pérez-Díaz, Ilenys; Franco, Wendy; Huang, Hsin-Yu; Johanningsmeier, Suzanne D; Kim, Jae Ho

    2013-03-01

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fermentations can result in significant economic loss for industrial producers. The microbiota that result in spoilage remain incompletely defined. Previous studies have implicated yeasts, lactic acid bacteria, enterobacteriaceae, and Clostridia as having a role in spoilage fermentations. We report that Propionibacterium and Pectinatus isolates from cucumber fermentation spoilage converted lactic acid to propionic acid, increasing pH. The analysis of 16S rDNA cloning libraries confirmed and expanded the knowledge gained from previous studies using classical microbiological methods. Our data show that Gram-negative anaerobic bacteria supersede Gram-positive Fermincutes species after the pH rises from around 3.2 to pH 5, and propionic and butyric acids are produced. Characterization of the spoilage microbiota is an important first step in efforts to prevent cucumber fermentation spoilage. An understanding of the microorganisms that cause commercial cucumber fermentation spoilage may aid in developing methods to prevent the spoilage from occurring. © 2013 Institute of Food Technologists®

  14. Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley.

    PubMed

    Pandey, Bharati; Sharma, Pradeep; Tyagi, Chetna; Goyal, Sukriti; Grover, Abhinav; Sharma, Indu

    2016-06-01

    AP2/ERF transcription factors play a critical role in plant development and stress adaptation. This study reports the three-dimensional ab initio-based model of AP2/EREBP protein of barley and its interaction with DNA. Full-length coding sequence of HvAP2/EREBP gene isolated from two Indian barley cultivars, RD 2503 and RD 31, was used to model the protein. Of five protein models obtained, the one with lowest C-score was chosen for further analysis. The N- and C-terminal regions of HvAP2 protein were found to be highly disordered. The dynamic properties of AP2/EREBP and its interaction with DNA were investigated by molecular dynamics simulation. Analysis of trajectories from simulation yielded the equilibrated conformation between 2-10ns for protein and 7-15ns for protein-DNA complex. We established relationship between DNA having GCC box and DNA-binding domain of HvAP2/EREBP was established by modeling 11-base-pair-long nucleotide sequence and HvAP2/EREBP protein using ab initio method. Analysis of protein-DNA interaction showed that a β-sheet motif constituting amino acid residues THR105, ARG100, ARG93, and ARG83 seems to play important role in stabilizing the complex as they form strong hydrogen bond interactions with the DNA motif. Taken together, this study provides first-hand comprehensive information detailing structural conformation and interactions of HvAP2/EREBP proteins in barley. The study intensifies the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information. It also provides molecular insight into protein-DNA binding for understanding and enhancing abiotic stress resistance for improving the water use efficiency in crop plants.

  15. Analysis of informational redundancy in the protein-assembling machinery

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2004-03-01

    Entropy analysis of the DNA structure does not reveal a significant departure from randomness indicating lack of informational redundancy. This signifies the absence of a hidden meaning in the genome text and supports the 'barcode' interpretation of DNA given in [1]. Lack of informational redundancy is a characteristic property of an identification label rather than of a message of instructions. Yet randomness of DNA has to induce non-random structures of the proteins. Protein synthesis is a two-step process: transcription into RNA with gene splicing and formation a structure of amino acids. Entropy estimations, performed by A. Djebbari, show typical values of redundancy of the biomolecules along these pathways: DNA gene 4proteins 15-40in gene expression, the RNA copy carries the same information as the original DNA template. Randomness is essentially eliminated only at the step of the protein creation by a degenerate code. According to [1], the significance of the substitution of U for T with a subsequent gene splicing is that these transformations result in a different pattern of RNA oscillations, so the vital DNA communications are protected against extraneous noise coming from the protein making activities. 1. S. Berkovich, "On the 'barcode' functionality of DNA, or the Phenomenon of Life in the Physical Universe", Dorrance Publishing Co., Pittsburgh, 2003

  16. PCR-based detection of micro-organisms in extreme environments during the EuroGeoMars MDRS campaign

    NASA Astrophysics Data System (ADS)

    Thiel, Cora S.; Ullrich, Oliver

    Deoxyribonucleic acid (DNA) is found in all known living organisms and some viruses on earth. The main function of DNA molecules is the long-term storage of genetic information. They are passed on from generation to generation as the hereditary material. The polymerase chain reaction (PCR) is a revolutionary technique which allows amplifying a single or few copies of DNA molecules across several orders of magnitude, generating millions of copies of the original DNA fragment allowing detection of minimal traces of DNA. The compactness of the nowadays PCR instruments makes routine sample analysis possible with only a minimum of laboratory space. Our goal was to establish a routine for detection of DNA from micro-organisms based on the effective but also robust and simple PCR technique during the EuroGeoMars simula-tion campaign at The Mars Society's Mars Desert Research Station (MDRS) in February 2009. During the MDRS simulation we were able to show that it is possible to establish a minimal molecular biology lab in the habitat for an immediate on-site analysis by PCR after sample collection. Soil and water samples were taken from different locations and soil depths. The sample analysis was started immediately after returning to the habitat and was completed dur-ing the following days. DNA was isolated from micro-organisms and was used as a template for PCR analysis of the highly conserved ribosomal DNA to identify representatives of the different groups of micro-organisms (archaea, bacteria, eukaryotes). PCR products were visualized by agarose gel electrophoresis and documented by UV-transilluminator and digital camera. For the first time it was possible to demonstrate a direct on-site DNA analysis by PCR at MDRS, situated in an extreme environment that functions as a model for preparation and optimization of techniques to be used for future Mars exploration.

  17. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism.

    PubMed

    Awate, Sanket; Brosh, Robert M

    2017-06-08

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.

  18. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism

    PubMed Central

    Awate, Sanket; Brosh, Robert M.

    2017-01-01

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies. PMID:28594346

  19. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Yoshiyuki; Matsuoka, Makoto; Yamanoto, Naoki

    A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The M{sub r} of its subunit was 77,000. The cells converted ({sup 14}C)-L-phenylalanine into ({sup 14}C)-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2,121-base pair (bp) open-reading framemore » capable of coding for a polypeptide with 707 amino acids (M{sub r} 77,137), a 22-bp 5{prime}-noncoding region and a 207-bp 3{prime}-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.« less

  20. Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity, HBsAg and viral DNA.

    PubMed

    Xiang, Kuan-Hui; Michailidis, Eleftherios; Ding, Hai; Peng, Ya-Qin; Su, Ming-Ze; Li, Yao; Liu, Xue-En; Dao Thi, Viet Loan; Wu, Xian-Fang; Schneider, William M; Rice, Charles M; Zhuang, Hui; Li, Tong

    2017-02-01

    As important virological markers, serum hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels show large fluctuations among chronic hepatitis B patients. The aim of this study was to reveal the potential impact and mechanisms of amino acid substitutions in small hepatitis B surface proteins (SHBs) on serum HBsAg and HBV DNA levels. Serum samples from 230 untreated chronic hepatitis B patients with genotype C HBV were analyzed in terms of HBV DNA levels, serological markers of HBV infection and SHBs sequences. In vitro functional analysis of the identified SHBs mutants was performed. Among 230 SHBs sequences, there were 39 (16.96%) sequences with no mutation detected (wild-type) and 191 (83.04%) with single or multiple mutations. SHBs consist of 226 amino acids, of which 104 (46.02%) had mutations in our study. Some mutations (e.g., sE2G, sL21S, sR24K, sT47A/K, sC69stop (sC69∗), sL95W, sL98V, and sG145R) negatively correlated with serum HBsAg levels. HBsAg and HBV DNA levels from this group of patients had a positive correlation (r=0.61, p<0.001). In vitro analysis showed that these mutations reduced extracellular HBsAg and HBV DNA levels by restricting virion secretion and antibody binding capacity. Virion secretion could be rescued for sE2G, sC69∗, and sG145R by co-expression of wild-type HBsAg. The serum HBsAg levels were lower in untreated CHB patients with novel SHBs mutations outside the major antigenic region than those without mutations. Underlying mechanisms include impairment of virion secretion and lower binding affinity to antibodies used for HBsAg measurements. The hepatitis B surface antigen (HBsAg) is a major viral protein of the hepatitis B virus (HBV) secreted into patient blood serum and its quantification value serves as an important marker for the evaluation of chronic HBV infection and antiviral response. We found a few new amino acid substitutions in HBsAg associated with lower serum HBsAg and HBV DNA levels. These different substitutions might impair virion secretion, change the ability of HBsAg to bind to antibodies, or impact HBV replication. These could all result in decreased detectable levels of serum HBsAg. The factors affecting circulating HBsAg level and HBsAg detection are varied and caution is needed when interpreting clinical significance of serum HBsAg levels. Clinical trial number: NCT01088009. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Top