Science.gov

Sample records for acid dna filter

  1. Development of a small gantry robotic workcell for deoxyribonucleic acid (DNA) filter array construction

    SciTech Connect

    Beugelsdijk, T.J.; Hollen, R.M.; Snider, K.T.

    1990-01-01

    At Los Alamos National Laboratory, we have constructed a primary cosmid library of human chromosome 16. This library consists of an 11-fold representation of the chromosome and is arrayed in microtiter plate format. A need has arisen in the large scale physical mapping of this chromosome, to array spots of DNA from each of these colonies onto filter media for hybridization studies. We are currently developing a small gantry robot-based workcell to array small spots of DNA in an interleaved format. This allows for the construction of a high spot density format filter array. This paper will discuss the features incorporated into this workcell for the handling of thousands of colonies and their automatic tracking and positioning onto the filter. 7 refs., 3 figs., 1 tab.

  2. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  3. Filter replicas and permanent collections of recombinant DNA plasmids.

    PubMed Central

    Gergen, J P; Stern, R H; Wensink, P C

    1979-01-01

    A permanent, ordered collection of 23,000 recombinant DNA plasmids containing Drosophila melanogaster DNA has been established. Simple and practical methods for storing and manipulating this collection were developed. In addition, an improved, simple and inexpensive method for making paper filter replicas of such an ordered collection and of a high density (10,000 colonies/petri dish) unordered collection was developed. These filter replicas are suitable for nucleic acid hybridization screens of recombinant DNA colinies and each filter replica can be used for many (greater than 5) successive screens. The kinetics of this hybridization reaction were examined and allow design of experiments that detect colony complementarity to a nucleic acid that is 0.5% of the hybridization probe. Images PMID:118435

  4. Filter elution assyas for DNA damage : practical and mechanistic significance of the DNA on the filter support.

    SciTech Connect

    Blazek, E. R.; Peak, J. G.; Biological and Medical Research; Rush Presbyterian St. Luke's Medical Center

    1992-01-01

    The alkaline and neutral (or nondenaturing) filter elution assays are popular methods for the measurement of DNA strand breakage and its repair in eukaryotic cells. In both alkaline and neutral elution, it is recommended practice to wash the filter support after removal of the filter and to analyze the DNA recovered by this procedure together with that remaining on the filter as uneluted DNA, although it is not obvious why the DNA in the filter support wash should be so interpreted. We have observed that the sum of the DNA on the filter and that recovered in the filter support wash is approximately constant when the pH of the alkaline filter elution assay for total strand breaks is increased from 12.1 to 12.6, whereas the fraction on the filter itself is markedly smaller at the higher pH. This behavior characterized DNA elution from undamaged cells, as well as from cells treated with various DNA-damaging agents. These findings are consistent with the 'tug-of-war' mechanism that has been proposed for alkaline elution, but are inconsistent with the simplest mechanism of the 'sieve' class. In the neutral filter elution assay for double-strand breaks, by contrast, the distribution of DNA between the filter and the filter support wash is pH-independent. This suggests that single- and double-stranded DNA segments traverse a filter by different physical mechanisms. Our observations underscore the importance of carrying out the filter support wash and the analysis of the DNA it contains as uneluted DNA in alkaline elution, while indicating that a different analysis of this DNA might be appropriate for neutral elution.

  5. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  6. A novel method for the purification of DNA by capturing nucleic acid and magnesium complexes on non-woven fabric filters under alkaline conditions for the gene diagnosis of tuberculosis by loop-mediated isothermal amplification (LAMP).

    PubMed

    Fukasawa, Tadashi; Oda, Naozumi; Wada, Yasunao; Tamaru, Aki; Fukushima, Yukari; Nakajima, Chie; Suzuki, Yasuhiko

    2010-07-01

    A novel method for purifying DNA from clinical samples based on the complex formation of DNA and magnesium ion (Mg(2+)) was developed for the detection of Mycobacterium tuberculosis. The formation of a DNA-Mg(2+) complex under alkaline conditions was observed by analyzing electrophoretic mobility reduction of DNA on agarose gel. The DNA-Mg(2+) complex increases the efficacy of DNA recovery from the sample solution on polyethylene terephthalate non-woven fabric (PNWF) filters. Among the various divalent metal cations, only Mg(2+) was associated with this effect. The applicability of DNA recovered on the PNWF filter was examined for the gene amplification method; loop-mediated isothermal amplification (LAMP). DNA on the PNWF filter could be used for the amplification of specific DNA fragments without elution from the filter. Using this method, DNA was directly purified from M. tuberculosis spiked sputum and examined by LAMP assay, showing a high sensitivity in comparison to the commercially available DNA extraction kit. These results indicated that the method developed in this study is useful for rapid gene diagnosis of tuberculosis.

  7. Purification of crime scene DNA extracts using centrifugal filter devices

    PubMed Central

    2013-01-01

    Background The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Methods Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Results Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Conclusions Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The

  8. Purification of crime scene DNA extracts using centrifugal filter devices.

    PubMed

    Norén, Lina; Hedell, Ronny; Ansell, Ricky; Hedman, Johannes

    2013-04-24

    The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices

  9. Air-sampled Filter Analysis for Endotoxins and DNA Content.

    PubMed

    Lang-Yona, Naama; Mazar, Yinon; Pardo, Michal; Rudich, Yinon

    2016-03-07

    Outdoor aerosol research commonly uses particulate matter sampled on filters. This procedure enables various characterizations of the collected particles to be performed in parallel. The purpose of the method presented here is to obtain a highly accurate and reliable analysis of the endotoxin and DNA content of bio-aerosols extracted from filters. The extraction of high molecular weight organic molecules, such as lipopolysaccharides, from sampled filters involves shaking the sample in a pyrogen-free water-based medium. The subsequent analysis is based on an enzymatic reaction that can be detected using a turbidimetric measurement. As a result of the high organic content on the sampled filters, the extraction of DNA from the samples is performed using a commercial DNA extraction kit that was originally designed for soils and modified to improve the DNA yield. The detection and quantification of specific microbial species using quantitative polymerase chain reaction (q-PCR) analysis are described and compared with other available methods.

  10. Comparison of filtering methods, filter processing and DNA extraction kits for detection of mycobacteria in water.

    PubMed

    Kaevska, Marija; Slana, Iva

    2015-01-01

    Mycobacteria have been isolated from almost all types of natural waters, as well as from man-made water distribution systems. Detection of mycobacteria using PCR has been described in different types of water; however, currently, there is no standardised protocol for the processing of large volumes of water. In the present study, different filtering methods are tested and optimised for tap or river water filtration up to 10 L, as well as filter processing and DNA isolation using four commercially available kits. The PowerWater DNA isolation kit (MoBio, USA), together with a kit used for soil and other environmental samples (PowerSoil DNA isolation kit, MoBio), had the highest efficiency. Filtration of 10 L of water and elution of the filter in PBS with the addition of 0.05% of Tween 80 is suggested. The described protocol for filter elution is recommended, and the use of the PowerWater DNA isolation kit for the highest mycobacterial DNA yield from water samples. The described protocol is suitable for parallel detection of mycobacteria using cultivation.

  11. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as

  12. Fluid mechanics of DNA double-strand filter elution.

    PubMed

    Rudinger, George; Blazek, Ed Robert

    2002-01-01

    Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters.

  13. Fluid mechanics of DNA double-strand filter elution.

    PubMed Central

    Rudinger, George; Blazek, Ed Robert

    2002-01-01

    Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters. PMID:11751292

  14. Identification of DNA viruses by membrane filter hybridization.

    PubMed Central

    Stålhandske, P; Pettersson, U

    1982-01-01

    The use of membrane filter hybridization for the identification of DNA viruses is described. We designed and used a procedure for identification of herpes simplex virus. This method can discriminate between herpes simplex virus types 1 and 2 in a simple way. Images PMID:6279697

  15. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay.

    PubMed

    Romaniuk, Paul J

    2016-01-01

    Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.

  16. DNA fingerprinting of Mycobacterium tuberculosis complex culture isolates collected in Brazil and spotted onto filter paper.

    PubMed

    Burger, M; Raskin, S; Brockelt, S R; Amthor, B; Geiss, H K; Haas, W H

    1998-02-01

    The usefulness of filter paper for preservation of bacterial cells was shown by mixed-linker DNA fingerprint analysis of Mycobacterium tuberculosis isolates from 77 Brazilian patients. DNA fingerprints of samples spotted onto filter paper and conventional culture material were identical. Thus, filter paper specimens analyzed by an amplification-based typing method provide a new resource for epidemiological studies of infectious diseases.

  17. Label-free DNA quantification via a 'pipette, aggregate and blot' (PAB) approach with magnetic silica particles on filter paper.

    PubMed

    Li, Jingyi; Liu, Qian; Alsamarri, Hussein; Lounsbury, Jenny A; Haversitick, Doris M; Landers, James P

    2013-03-07

    Reliable measurement of DNA concentration is essential for a broad range of applications in biology and molecular biology, and for many of these, quantifying the nucleic acid content is inextricably linked to obtaining optimal results. In its most simplistic form, quantitative analysis of nucleic acids can be accomplished by UV-Vis absorbance and, in more sophisticated format, by fluorimetry. A recently reported new concept, the 'pinwheel assay', involves a label-free approach for quantifying DNA through aggregation of paramagnetic beads in a rotating magnetic field. Here, we describe a simplified version of that assay adapted for execution using only a pipet and filter paper. The 'pipette, aggregate, and blot' (PAB) approach allows DNA to induce bead aggregation in a pipette tip through exposure to a magnetic field, followed by dispensing (blotting) onto filter paper. The filter paper immortalises the extent of aggregation, and digital images of the immortalized bead conformation, acquired with either a document scanner or a cell phone camera, allows for DNA quantification using a noncomplex algorithm. Human genomic DNA samples extracted from blood are quantified with the PAB approach and the results utilized to define the volume of sample used in a PCR reaction that is sensitive to input mass of template DNA. Integrating the PAB assay with paper-based DNA extraction and detection modalities has the potential to yield 'DNA quant-on-paper' devices that may be useful for point-of-care testing.

  18. Chitosan-Modified Filter Paper for Nucleic Acid Extraction and "in Situ PCR" on a Thermoplastic Microchip.

    PubMed

    Gan, Wupeng; Gu, Yin; Han, Junping; Li, Cai-Xia; Sun, Jing; Liu, Peng

    2017-03-21

    Plastic microfluidic devices with embedded chitosan-modified Fusion 5 filter paper (unmodified one purchased from GE Healthcare) have been successfully developed for DNA extraction and concentration, utilizing two different mechanisms for DNA capture: the physical entanglement of long-chain DNA molecules with the fiber matrix of the filter paper and the electrostatic adsorption of DNA to the chitosan-modified filter fibers. This new method not only provided a high DNA extraction efficiency at a pH of 5 by synergistically combining these two capture mechanisms together, but also resisted the elution of DNA from filters at a pH > 8 due to the entanglement of DNA with fibers. As a result, PCR buffers can be directly loaded into the extraction chamber for "in situ PCR", in which the captured DNA were used for downstream analysis without any loss. We demonstrated that the capture efficiencies of a 3-mm-diameter filter disc in a microchip were 98% and 95% for K562 human genomic DNA and bacteriophage λ-DNA, respectively. The washes with DI water, PCR mixture, and TE buffer cannot elute the captured DNA. In addition, the filter disc can enrich 62% of λ-DNA from a diluted sample (0.05 ng/μL), providing a concentration factor more than 30-fold. Finally, a microdevice with a simple two-chamber structure was developed for on-chip cell lysis, DNA extraction, and 15-plex short tandem repeat amplification from blood. This DNA extraction coupled with "in situ PCR" has great potential to be utilized in fully integrated microsystems for rapid, near-patient nucleic acid testing.

  19. Variables influencing extraction of nucleic acids from microbial plankton (viruses, bacteria, and protists) collected on nanoporous aluminum oxide filters.

    PubMed

    Mueller, Jaclyn A; Culley, Alexander I; Steward, Grieg F

    2014-07-01

    Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥ 100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses.

  20. Variables Influencing Extraction of Nucleic Acids from Microbial Plankton (Viruses, Bacteria, and Protists) Collected on Nanoporous Aluminum Oxide Filters

    PubMed Central

    Mueller, Jaclyn A.; Culley, Alexander I.

    2014-01-01

    Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses. PMID:24747903

  1. DNA Tetrominoes: The Construction of DNA Nanostructures Using Self-Organised Heterogeneous Deoxyribonucleic Acids Shapes

    PubMed Central

    Ong, Hui San; Rahim, Mohd Syafiq; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2015-01-01

    The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner. PMID:26258940

  2. Filter Paper-based Nucleic Acid Storage in High-throughput Solid Tumor Genotyping.

    PubMed

    Stachler, Matthew; Jia, Yonghui; Sharaf, Nematullah; Wade, Jacqueline; Longtine, Janina; Garcia, Elizabeth; Sholl, Lynette M

    2015-01-01

    Molecular testing of tumors from formalin-fixed paraffin-embedded (FFPE) tissue blocks is central to clinical practice; however, it requires histology support and increases test turnaround time. Prospective fresh frozen tissue collection requires special handling, additional storage space, and may not be feasible for small specimens. Filter paper-based collection of tumor DNA reduces the need for histology support, requires little storage space, and preserves high-quality nucleic acid. We investigated the performance of tumor smears on filter paper in solid tumor genotyping, as compared with paired FFPE samples. Whatman FTA Micro Card (FTA preps) smears were prepared from 21 fresh tumor samples. A corresponding cytology smear was used to assess tumor cellularity and necrosis. DNA was isolated from FTA preps and FFPE core samples using automated methods and quantified using SYBR green dsDNA detection. Samples were genotyped for 471 mutations on a mass spectrophotometry-based platform (Sequenom). DNA concentrations from FTA preps and FFPE correlated for untreated carcinomas but not for mesenchymal tumors (Spearman σ=0.39 and σ=-0.1, respectively). Average DNA concentrations were lower from FTA preps as compared with FFPE, but DNA quality was higher with less fragmentation. Seventy-six percent of FTA preps and 86% of FFPE samples generated adequate DNA for genotyping. FTA preps tended to perform poorly for collection of DNA from pretreated carcinomas and mesenchymal neoplasms. Of the 16 paired DNA samples that were genotyped, 15 (94%) gave entirely concordant results. Filter paper-based sample preservation is a feasible alternative to FFPE for use in automated, high-throughput genotyping of carcinomas.

  3. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  4. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  5. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  6. Quantitative analysis of the DNA distribution on cigarette butt filter paper.

    PubMed

    Casey, Lisa; Engen, Sarah; Frank, Greg

    2013-03-01

    The distribution of DNA on the filter paper of smoked cigarette butts was quantitatively mapped using real-time quantitative polymerase chain reaction. The filter papers from smoked cigarette butts collected from indoor and outdoor sources were sliced into equal pieces and the amount of DNA on each slice was determined. This study found that the cigarette butt filter papers sliced parallel to the seam of the cigarette had more uniformly distributed DNA on the slices and in most cases, there was enough DNA on each slice to obtain a complete DNA profile. The perpendicular slices had a less uniform pattern of distribution and some slices did not have enough DNA to obtain an interpretable DNA profile. Cigarette butts found indoors also had more DNA per cigarette on average than cigarette butts found outdoors.

  7. A filter microplate assay for quantitative analysis of DNA binding proteins using fluorescent DNA.

    PubMed

    Yang, William C; Swartz, James R

    2011-08-15

    We present a rapid method for quantifying the apparent DNA binding affinity and capacity of recombinant transcription factors (TFs). We capture His6-tagged TFs using nickel-nitrilotriacetic acid (Ni-NTA) agarose and incubate the immobilized TFs with fluorescently labeled cognate DNA probes. After washing, the strength of the fluorescence signal indicates the extent of DNA binding. The assay was validated using two pluripotency-regulating TFs: SOX2 and NANOG. Using competitive binding analysis with nonlabeled competitor DNA, we show that SOX2 and NANOG specifically bind to their consensus sequences. We also determined the apparent affinity of SOX2 and NANOG for their consensus sequences to be 54.2±9 and 44.0±6nM, respectively, in approximate agreement with literature values. Our assay does not require radioactivity, but radioactively labeling the TFs enables the measurement of absolute amounts of immobilized SOX2 and NANOG and, hence, a DNA-to-protein binding ratio. SOX2 possesses a 0.95 DNA-to-protein binding ratio, whereas NANOG possesses a 0.44 ratio, suggesting that most of the SOX2 and approximately half of the NANOG are competent for DNA binding. Alternatively, the NANOG dimer may be capable of binding only one DNA target. This flexible DNA binding assay enables the analysis of crude or purified samples with or without radioactivity.

  8. Laboratory studies on the retention of nitric acid, hydrochloric acid and ammonia on aerosol filters

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Wittmaack, Klaus

    Retention efficiencies of nitric acid, hydrochloric acid and ammonia were measured for different filters, with particular emphasis on cellulose (CE) and cellulose acetate-nitrate (CA) materials. Gases were produced either by nebulising aqueous solutions or by a novel technique based on the desorption from ammonium salts deposited on quartz fibre (QF) filters. Efficiencies for pure acidic gases and ammonia on CE and CA ranged from very low (⩽3.6%) to low (˜10% for HNO 3 on CE). In contrast, if acidic gases and ammonia were supplied in equimolar concentrations, they were retained (almost) completely on CE, with high efficiency on CA (60-80% for NH 3+HNO 3; 20-45% for NH 3+HCl), also with high efficiency on glass fibre filter, but with very low efficiency on QF and Teflon (Tf) filters (<1%). For CA, retention efficiencies were found to increase with increasing relative humidity and to decrease with decreasing mean pressure at which the filters were exposed to the gases. Once retained on CA filters, the retained gases may be lost again during subsequent exposure to clean air.

  9. Bioaerosol DNA Extraction Technique from Air Filters Collected from Marine and Freshwater Locations

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Crandall, S. G.; Barnes, A.; Paytan, A.

    2015-12-01

    Bioaerosols are composed of microorganisms suspended in air. Among these organisms include bacteria, fungi, virus, and protists. Microbes introduced into the atmosphere can drift, primarily by wind, into natural environments different from their point of origin. Although bioaerosols can impact atmospheric dynamics as well as the ecology and biogeochemistry of terrestrial systems, very little is known about the composition of bioaerosols collected from marine and freshwater environments. The first step to determine composition of airborne microbes is to successfully extract environmental DNA from air filters. We asked 1) can DNA be extracted from quartz (SiO2) air filters? and 2) how can we optimize the DNA yield for downstream metagenomic sequencing? Aerosol filters were collected and archived on a weekly basis from aquatic sites (USA, Bermuda, Israel) over the course of 10 years. We successfully extracted DNA from a subsample of ~ 20 filters. We modified a DNA extraction protocol (Qiagen) by adding a beadbeating step to mechanically shear cell walls in order to optimize our DNA product. We quantified our DNA yield using a spectrophotometer (Nanodrop 1000). Results indicate that DNA can indeed be extracted from quartz filters. The additional beadbeating step helped increase our yield - up to twice as much DNA product was obtained compared to when this step was omitted. Moreover, bioaerosol DNA content does vary across time. For instance, the DNA extracted from filters from Lake Tahoe, USA collected near the end of June decreased from 9.9 ng/μL in 2007 to 3.8 ng/μL in 2008. Further next-generation sequencing analysis of our extracted DNA will be performed to determine the composition of these microbes. We will also model the meteorological and chemical factors that are good predictors for microbial composition for our samples over time and space.

  10. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    USGS Publications Warehouse

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-09-29

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  11. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction

    PubMed Central

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. PMID:24834966

  12. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction.

    PubMed

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol-chloroform-isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  13. Helix-Dependent Spin Filtering through the DNA Duplex.

    PubMed

    Zwang, Theodore J; Hürlimann, Sylvia; Hill, Michael G; Barton, Jacqueline K

    2016-12-07

    Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different yield and that spin selectivity requires charge transport through the DNA duplex. Significantly, shifting the same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like switch in spin selectivity; which spin moves more efficiently through the duplex depends upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, rather than the chirality of the individual monomers, determines the selectivity in spin, and thus a conformational change can switch the spin selectivity.

  14. Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.

    PubMed

    Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Umeo, Miyuki; Honma, Tetsuo; Asaoka, Satoshi

    2012-01-01

    Given that the supply of several rare earth elements (REEs) is sometimes limited, recycling REEs used in various advanced materials, such as Nd magnets, is important for realizing efficient use of REE resources. In the present work, the feasibility of using DNA for REE recovery and separation was examined, along with the identification of the binding site of REEs in DNA. In particular, a DNA-cellulose filter paper hybrid was prepared so that DNA-based materials can be used for the separation of REEs using columns loaded with DNA. N,N'-Disuccinimidyl was used as a cross-linker reagent for the fixation of DNA onto a fibrous cellulose filter. The results showed that (i) the DNA-filter hybrid has a sufficiently high affinity to adsorb REEs; (ii) the adsorption capacity was 0.182 mg/g for Nd; and (iii) the affinity of REEs for DNA was stronger for REEs with larger atomic numbers. The difference of the affinity among REEs in the third result was compared with the adsorption patterns of REEs discussed in the literature. The comparison suggests that phosphate in the DNA-filter paper hybrid was responsible for REE adsorption onto the hybrid. The results were supported by the Nd, Dy, and Lu L(III)-edge EXAFS; the REE-P shell was identified for the second neighboring atom, showing the importance of the phosphate site as REE binding sites. The difference in the affinity among REEs suggest that group separation of REEs (such as La, Ce, (Pr and Nd), (Ho, Dy, and Er), (Tb and Gd), (Sm, Eu), Tm, Yb, and Lu) is possible, although complete isolation of each REE from a solution containing all REEs may be difficult. For practical applications, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste using columns loaded with the DNA-filter hybrid.

  15. Utility of Filter Paper for Preserving Insects, Bacteria, and Host Reservoir DNA for Molecular Testing

    PubMed Central

    Karimian, F; Sedaghat, MM; Oshaghi, MA; Mohtarami, F; Dehkordi, A Sanei; Koosha, M; Akbari, S; Hashemi-Aghdam, SS

    2011-01-01

    Background: Appropriate methodology for storage biological materials, extraction of DNA, and proper DNA preservation is vital for studies involving genetic analysis of insects, bacteria, and reservoir hosts as well as for molecular diagnostics of pathogens carried by vectors and reservoirs. Here we tried to evaluate the utility of a simple filter paper-based for storage of insects, bacteria, rodent, and human DNAs using PCR assays. Methods: Total body or haemolymph of individual mosquitoes, sand flies or cockroaches squashed or placed on the paper respectively. Extracted DNA of five different bacteria species as well as blood specimens of human and great gerbil Rhombomys opimus was pipetted directly onto filter paper. The papers were stored in room temperature up to 12 months during 2009 until 2011. At monthly intervals, PCR was conducted using a 1-mm disk from the DNA impregnated filter paper as target DNA. PCR amplification was performed against different target genes of the organisms including the ITS2-rDNA of mosquitoes, mtDNA-COI of the sand flies and cockroaches, 16SrRNA gene of the bacteria, and the mtDNA-CytB of the vertebrates. Results: Successful PCR amplification was observed for all of the specimens regardless of the loci, taxon, or time of storage. The PCR amplification were ranged from 462 to 1500 bp and worked well for the specified target gene/s. Time of storage did not affect the amplification up to one year. Conclusion: The filter paper method is a simple and economical way to store, to preserve, and to distribute DNA samples for PCR analysis. PMID:22808417

  16. Amino Acid Racemization and the Preservation of Ancient DNA

    NASA Technical Reports Server (NTRS)

    Poinar, Hendrik N.; Hoss, Matthias

    1996-01-01

    The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.

  17. Glycine as a d-amino acid surrogate in the K+-selectivity filter

    PubMed Central

    Valiyaveetil, Francis I.; Sekedat, Matthew; MacKinnon, Roderick; Muir, Tom W.

    2004-01-01

    The K+ channel-selectivity filter consists of two absolutely conserved glycine residues. Crystal structures show that the first glycine in the selectivity filter, Gly-77 in KcsA, is in a left-handed helical conformation. Although the left-handed helical conformation is not favorable for the naturally occurring l-amino acids, it is favorable for the chirally opposite d-amino acids. Here, we demonstrate that Gly-77 can be replaced by d-Ala with almost complete retention of function. In contrast, substitution with an l-amino acid results in a nonfunctional channel. This finding suggests that glycine is used as a surrogate d-amino acid in the selectivity filter. The absolute conservation of glycine in the K+-selectivity filter can be explained as a result of glycine being the only natural amino acid that can play this role. PMID:15563591

  18. Treatment of odorous volatile fatty acids using a biotrickling filter.

    PubMed

    Tsang, Y F; Chua, H; Sin, S N; Chan, S Y

    2008-02-01

    In this study, a novel fibrous bioreactor was developed for treating odorous compounds present in contaminated air. The first stage of this work was a preliminary study which aimed at investigating the feasibility of using the fibrous bioreactor for the removal of malodorous volatile fatty acids (VFA) that is a common odorous contaminant generated from anaerobic degradation of organic compounds. The kinetics of microbial growth and VFA degradation in the selected culture, and the performance of the submerged bioreactor at different VFA mass loadings were studied. Above 95% of VFA removal efficiencies were achieved at mass loadings up to 22.4 g/m(3)/h. In the second stage, the odour treatment process was scaled up with system design and operational considerations. A trickling biofilter with synthetic fibrous packing medium was employed. The effects of inlet VFA concentration and empty bed retention time (EBRT) on the process performance were investigated. The bioreactor was effective in removing VFA at mass loadings up to 32 g/m(3)/h, beyond which VFA started to accumulate in the recirculation liquid, indicating the biofilm was unable to degrade all of the VFA introduced. Although VFA accumulated in the liquid phase, the removal efficiency remained above 99%. This suggested that the biochemical reaction rather than gas-liquid mass transfer was the limiting step of the treatment process. In addition, the biotrickling filter was stable for long-term operation with relatively low and steady pressure drop, no clogging and degeneration of the packing material occurred during the four-month study.

  19. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  20. Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence.

    PubMed Central

    Law, S W; Grant, S M; Higuchi, K; Hospattankar, A; Lackner, K; Lee, N; Brewer, H B

    1986-01-01

    Human apolipoprotein B-100 (apoB-100), the ligand on low density lipoproteins that interacts with the low density lipoprotein receptor and initiates receptor-mediated endocytosis and low density lipoprotein catabolism, has been cloned, and the complete nucleic acid and derived amino acid sequences have been determined. ApoB-100 cDNAs were isolated from normal human liver cDNA libraries utilizing immunoscreening as well as filter hybridization with radiolabeled apoB-100 oligodeoxynucleotides. The apoB-100 mRNA is 14.1 kilobases long encoding a mature apoB-100 protein of 4536 amino acids with a calculated amino acid molecular weight of 512,723. ApoB-100 contains 20 potential glycosylation sites, and 12 of a total of 25 cysteine residues are located in the amino-terminal region of the apolipoprotein providing a potential globular structure of the amino terminus of the protein. ApoB-100 contains relatively few regions of amphipathic helices, but compared to other human apolipoproteins it is enriched in beta-structure. The delineation of the entire human apoB-100 sequence will now permit a detailed analysis of the conformation of the protein, the low density lipoprotein receptor binding domain(s), and the structural relationship between apoB-100 and apoB-48 and will provide the basis for the study of genetic defects in apoB-100 in patients with dyslipoproteinemias. PMID:3464946

  1. Safer DNA extraction from plant tissues using sucrose buffer and glass fiber filter.

    PubMed

    Takakura, Koh-Ichi; Nishio, Takayuki

    2012-11-01

    For some plant species, DNA extraction and downstream experiments are inhibited by various chemicals such as polysaccharides and polyphenols. This short communication proposed an organic-solvent free (except for ethanol) extraction method. This method consists of an initial washing step with STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA), followed by DNA extraction using a piece of glass fiber filter. The advantages of this method are its safety and low cost. The purity of the DNA solution obtained using this method is not necessarily as high as that obtained using the STE/CTAB method, but it is sufficient for PCR experiments. These points were demonstrated empirically with two species, Japanese speedwell and common dandelion, for which DNA has proven difficult to amplify via PCR in past studies.

  2. Potential use of dissolved cyanobacterial DNA for monitoring toxic Microcystis cyanobacteria in filtered water

    NASA Astrophysics Data System (ADS)

    Mbukwa, Elbert A.; Boussiba, Sammy; Wepener, Victor; Leu, Stefan; Yuval, Kaye; Msagati, Titus A. M.; Mamba, Bhekie B.

    Toxic and non-toxic Microcystis sp. are morphologically indistinguishable cyanobacteria that are increasingly posing health problems in fresh water systems by producing odours and/or toxins. Toxic Microcystis sp. produces toxicologically stable water soluble toxic compounds called microcystins (MCs) that have been associated with cases of aquatic life and wildlife poisoning and kills including some cases of human illnesses/deaths around the world. Thus, the need for rapid detection of toxic Microcystis sp. in surface water is imperatively a necessity for early mitigation purposes. Genomic DNA from potentially toxic Microcystis sp. comprises of ten microcystin synthetase (mcy) genes of which six major ones are directly involved in MCs biosynthesis. In Polymerase Chain Reaction (PCR) methodsmcy genes can be amplified from intracellular/extracellular genomic DNA using PCR primers. However, little is known about the limitations of sourcing genomic DNA templates from extracellular DNA dissolved in water. In this work, filtered water (0.45 μM) from a Microcystis infested Dam (South Africa) was re-filtered on 0.22 μM syringe filters followed by genomic DNA isolation and purification from micro-filtrates (9 mL). Six major mcy genes (mcyABCDEG) from the isolated DNA were amplified using newly designed as well as existing primers identified from literature. PCR products were separated by gel electrophoresis and visualized after staining with ethidium bromide. The limitation of using dissolved DNA for amplification of mcy genes was qualitatively studied by establishing the relationship between input DNA concentrations (10.0-0.001 ng/μL) and the formation of respective PCR products. The amplification of mcyA gene using new primers with as little as 0.001 ng/μL of DNA was possible. Other mcy gene sensitivities reached 0.1 ng/μL DNA dilution limits. These results demonstrated that with appropriately optimized PCR conditions the method can provide accurate cost

  3. Nucleic acid nanomaterials: Silver-wired DNA

    NASA Astrophysics Data System (ADS)

    Auffinger, Pascal; Ennifar, Eric

    2017-10-01

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.

  4. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations.

    PubMed

    Wagler, Patrick; Minero, Gabriel Antonio S; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S

    2015-10-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self-assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid-DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence-dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information-processing systems.

  5. Methods of introducing nucleic acids into cellular DNA

    DOEpatents

    Lajoie, Marc J.; Gregg, Christopher J.; Mosberg, Joshua A.; Church, George M.

    2017-06-27

    A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.

  6. Measurements by filter elution of DNA single- and double-strand breaks in rat hepatocytes: effects of nitrosamines and gamma-irradiation

    SciTech Connect

    Bradley, M.O.; Dysart, G.; Fitzsimmons, K.; Harbach, P.; Lewin, J.; Wolf, G.

    1982-07-01

    This work presents a filter elution method for measuring DNA single- and double-strand breaks in primary rat hepatocytes without radioactive labeling of DNA. Researchers have studied the effects of a series of nitrosamines and of gamma-irradiation on DNA single- and double-strand break induction. The repair of DNA single-strand breaks in the hepatocytes was measured after treatment with /sup 60/Co, 1-methyl-1-nitrosourea, and N-nitrosodimethylamine. The hepatocytes were isolated by ethylene glycol-bis(beta-aminoethyl ether)-N,N'-tetra acetic acid-collagenase perfusion and had a mean viability of 91 +/- 4% (S.D.). The isolated cells were treated for varying lengths of time with nitrosamines in suspension culture in L-15 medium containing 10% fetal bovine serum. After treatment, the cells were chilled, loaded onto 2 micrometers polycarbonate filters, and lysed in a 2% sodium dodecyl sulfate-proteinase K solution, pH 9.6. The DNA was eluted from the filter at either native or denaturing pH with fractions collected every 3 hr. The quantity of DNA in each fraction was determined by measuring the fluorescent product formed between it and diaminobenzoic acid after ethanol-sodium acetate precipitation and trapping of the DNA on 0.2-micrometer polycarbonate filters. The results show that the carcinogens, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodipropylamine, N-nitrosodibutylamine, and 1-nitrosopiperidine all made dose- and time-related increases in the number of single-strand breaks in rat hepatocytes. N-Nitrosodiphenylamine produced small numbers of single-strand breaks. No double-strand breaks were formed by any of the nitrosamines. Single-strand breaks induced by N-nitrosodimethylamine were repaired very slowly relative to repair of either gamma-ray of 1-methyl-1-nitrosourea-induced single-strand breaks. This system has many advantages for studying carcinogen metabolism and DNA damage in hepatocytes, one of the major target cells for many carcinogens.

  7. Salicylic Acid Activates DNA Damage Responses to Potentiate Plant Immunity

    PubMed Central

    Yan, Shunping; Wang, Wei; Marqués, Jorge; Mohan, Rajinikanth; Saleh, Abdelaty; Durrant, Wendy E.; Song, Junqi; Dong, Xinnian

    2013-01-01

    SUMMARY DNA damage is normally detrimental to living organisms. Here we show that it can also serve as a signal to promote immune responses in plants. We found that the plant immune hormone salicylic acid (SA) can trigger DNA damage in the absence of a genotoxic agent. The DNA damage sensor proteins, RAD17 and ATR, are required for effective immune responses. These sensor proteins are negatively regulated by a key immune regulator SNI1 (suppressor of npr1-1, inducible 1), which we discovered as a missing subunit of the Structural Maintenance of Chromosome (SMC) 5/6 complex required for controlling DNA damage. Elevated DNA damage caused by the sni1 mutation or treatment with a DNA-damaging agent markedly enhances SA-mediated defense gene expression. Our study suggests that activation of DNA damage responses is an intrinsic component of the plant immune responses. PMID:24207055

  8. Chemical mapping of DNA and counter-ion content inside phage by energy-filtered TEM.

    PubMed

    Nevsten, Pernilla; Evilevitch, Alex; Wallenberg, Reine

    2012-03-01

    Double-stranded DNA in many bacterial viruses (phage) is strongly confined, which results in internal genome pressures of tens of atmospheres. This pressure is strongly dependent on local ion concentration and distribution within the viral capsid. Here, we have used electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM) and X-ray energy dispersive spectroscopy to provide such chemical information from the capsid and the phage tail through which DNA is injected into the cell. To achieve this, we have developed a method to prepare thin monolayers of self-supporting virus/buffer films, suitable for EELS and EFTEM analysis. The method is based on entrapment of virus particles at air-liquid interfaces; thus, the commonly used method of staining by heavy metal salts can be avoided, eliminating the risk for chemical artifacts. We found that Mg(2 + ) concentration was approximately 2-4 times higher in the DNA-filled capsid than in the surrounding TM buffer (containing 10 mM Mg(2 + )). Furthermore, we also analyzed the DNA content inside the phage tail by mapping phosphorus and magnesium.

  9. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA

  10. Differential interactions of plasmid DNA, RNA and genomic DNA with amino acid-based affinity matrices.

    PubMed

    Sousa, Angela; Sousa, Fani; Queiroz, João A

    2010-09-01

    The development of a strategy to plasmid DNA (pDNA) purification has become necessary for the development of gene therapy and DNA vaccine production processes in recent years, since this nucleic acid and most of contaminants, such as RNA, genomic DNA and endotoxins, are negatively charged. An ideal separation methodology may be achieved with the use of affinity interactions between immobilized amino acids and nucleic acids. In this study, the binding behaviour of nucleic acids under the influence of different environmental conditions, such as the composition and ionic strength of elution buffer, and the temperature, is compared with various amino acids immobilized on chromatography resins. Supercoiled (sc) plasmid isoform was isolated with all matrices used, but in some cases preferential interactions with other nucleic acids were found. Particularly, lysine chromatography showed to be an ideal technology mainly on RNA purification using low salt concentration. On the other hand, arginine ligands have shown a greater ability to retain the sc isoform comparatively to the other nucleic acids retention, becoming this support more adequate to sc pDNA purification. The temperature variation, competitive elution and oligonucleotides affinity studies also allowed to recognize the dominant interactions inherent to biorecognition of pDNA molecule and the affinity matrices.

  11. Nucleic Acid Engineering: RNA Following the Trail of DNA.

    PubMed

    Kim, Hyejin; Park, Yongkuk; Kim, Jieun; Jeong, Jaepil; Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2016-02-08

    The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.

  12. Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.

    PubMed

    Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S

    2011-01-01

    This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner. Published by Elsevier B.V.

  13. Nucleic acid sensing with enzyme-DNA binding protein conjugates cascade and simple DNA nanostructures.

    PubMed

    Aktas, Gülsen Betül; Skouridou, Vasso; Masip, Lluis

    2017-03-22

    A versatile and universal DNA sensing platform is presented based on enzyme-DNA binding protein tags conjugates and simple DNA nanostructures. Two enzyme conjugates were thus prepared, with horseradish peroxidase linked to the dimeric single-chain bacteriophage Cro repressor protein (HRP-scCro) and glucose oxidase linked to the dimeric headpiece domain of Escherichia coli LacI repressor protein (GOx-dHP), and used in conjunction with a hybrid ssDNA-dsDNA detection probe. This probe served as a simple DNA nanostructure allowing first for target recognition through its target-complementary single-stranded DNA (ssDNA) part and then for signal generation after conjugate binding on the double-stranded DNA (dsDNA) containing the specific binding sites for the dHP and scCro DNA binding proteins. The DNA binding proteins chosen in this work have different sequence specificity, high affinity, and lack of cross-reactivity. The proposed sensing system was validated for the detection of model target ssDNA from high-risk human papillomavirus (HPV16) and the limits of detection of 45, 26, and 21 pM were achieved using the probes with scCro/dHP DNA binding sites ratio of 1:1, 2:1, and 1:2, respectively. The performance of the platform in terms of limit of detection was comparable to direct HRP systems using target-specific oligonucleotide-HRP conjugates. The ratio of the two enzymes can be easily manipulated by changing the number of binding sites on the detection probe, offering further optimization possibilities of the signal generation step. Moreover, since the signal is obtained in the absence of externally added hydrogen peroxide, the described platform is compatible with paper-based assays for molecular diagnostics applications. Finally, just by changing the ssDNA part of the detection probe, this versatile nucleic acid platform can be used for the detection of different ssDNA target sequences or in a multiplex detection configuration without the need to change any of the

  14. Reticuloendotheliosis Virus Nucleic Acid Sequences in Cellular DNA

    PubMed Central

    Kang, Chil-Yong; Temin, Howard M.

    1974-01-01

    Reticuloendotheliosis virus 60S RNA labeled with 125I, or reticuloendotheliosis virus complementary DNA labeled with 3H, were hybridized to DNAs from infected chicken and pheasant cells. Most of the sequences of the viral RNA were found in the infected cell DNAs. The reticuloendotheliosis viruses, therefore, replicate through a DNA intermediate. The same labeled nucleic acids were hybridized to DNA of uninfected chicken, pheasant, quail, turkey, and duck. About 10% of the sequences of reticuloendotheliosis virus RNA were present in the DNA of uninfected chicken, pheasant, quail, and turkey. None were detected in DNA of duck. The specificity of the hybridization was shown by competition between unlabeled and 125I-labeled viral RNAs and by determination of melting temperatures. In contrast, 125I-labeled RNA of Rous-associated virus-O, an avian leukosis-sarcoma virus, hybridized 55% to DNA of uninfected chicken, 20% to DNA of uninfected pheasant, 15% to DNA of uninfected quail, 10% to DNA of uninfected turkey, and less than 1% to DNA of uninfected duck. PMID:4372393

  15. Interactions of carcinogens with DNA (deoxyribonucleic acid)

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1989-10-01

    The principal goal of this research has been the determination of the conformational changes produced in DNA by the covalent binding of a carcinogenic aromatic amine, and the correlation of these changes with the mutations and carcinogenic effects initiated by the same substances. To this end, we have devised new synthetic methods for the preparation of oligonucleotides modified by derivatives af 4-aminobiphenyl and aniline. We have also performed potential energy minimization studies on the above substances and on single and double stranded DNA fragments bearing the above amines as well as acetylaminofluorene, aminofluorene, aminopyrene and the antibiotic mitomycin. Our computations have been carried out on DOE supercomputers using our program, DUPLEX. We have defined a number of novel structures for these modified DNAs, including Hoogsteen, wedge'' (see below) denatured, cross-linked and intercalated forms. Some suggestions have been made about the relation of these forms to mutagenesis. 7 refs.

  16. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  17. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper.

    PubMed

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-10

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150mM of ammonium hydroxide, 50mM of silver nitrate, 500mM of glucose, 12min of the reaction time, 45°C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2μm). The average size of silver nanoparticles deposited on the paper substrate was 180nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  18. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  19. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology.

    PubMed

    Michelotti, Nicole; Johnson-Buck, Alexander; Manzo, Anthony J; Walter, Nils G

    2012-01-01

    Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy.

  20. Laccaic Acid A Is a Direct, DNA-competitive Inhibitor of DNA Methyltransferase 1*

    PubMed Central

    Fagan, Rebecca L.; Cryderman, Diane E.; Kopelovich, Levy; Wallrath, Lori L.; Brenner, Charles

    2013-01-01

    Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2′-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1. PMID:23839987

  1. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.

  2. Interaction of glycyrrhizin and glycyrrhetinic acid with DNA.

    PubMed

    Nafisi, Shohreh; Bonsaii, Mahyar; Manouchehri, Firouzeh; Abdi, Khosrou

    2012-01-01

    Glycyrrhizin (GL), a molecule of glycyrrhetinic acid (GA), is an aqueous extract from licorice root. These compounds are well known for their anti-inflammatory, hepatocarcinogenesis, antiviral, and interferon-inducing activities. This study is the first attempt to investigate the binding of GL and GA with DNA. The effect of ligand complexation on DNA aggregation and condensation was investigated in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various ligands/polynucleotide (phosphate) ratios of 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2, and 1/1. Fourier transform infrared and ultraviolet (UV)-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-DNA complexes in aqueous solution. Spectroscopic evidence showed that GL and GA bind DNA via major and minor grooves as well as the backbone phosphate group with overall binding constants of K(GL-DNA)=5.7×10(3) M(-1), K(GA-DNA)=5.1×10(3) M(-1). The affinity of ligand-DNA binding is in the order of GL>GA. DNA remained in the B-family structure, whereas biopolymer aggregation occurred at high triterpenoid concentrations.

  3. Detection of parametric changes in the Peyrard-Bishop- Dauxois model of DNA using nonlinear Kalman filtering.

    PubMed

    Rigatos, G; Rigatou, E; Djida, J D

    2015-01-01

    The derivative-free nonlinear Kalman filter is proposed for state estimation and fault diagnosis in distributed parameter systems of the wave-type and particularly in the Peyrard-Bishop-Dauxois model of DNA dynamics. At a first stage, a nonlinear filtering approach is introduced for estimating the dynamics of the Peyrard-Bishop-Dauxois 1D nonlinear wave equation, through the processing of a small number of measurements. It is shown that the numerical solution of the associated partial differential equation results in a set of nonlinear ordinary differential equations. With the application of a diffeomorphism that is based on differential flatness theory it is shown that an equivalent description of the system is obtained in the linear canonical (Brunovsky) form. This transformation enables to obtain local estimates about the state vector of the DNA model through the application us of the standard Kalman filter recursion. At a second stage, the local statistical approach to fault diagnosis is used to perform fault diagnosis for this distributed parameter system by processing with statistical tools the differences (residuals) between the output of the Kalman filter and the measurements obtained from the distributed parameter system. Optimal selection of the fault threshold is succeeded by using the local statistical approach to fault diagnosis. The efficiency of the proposed filtering approach in the problem of fault diagnosis for parametric change detection, in nonlinear wave-type models of DNA dynamics, is confirmed through simulation experiments.

  4. Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid.

    PubMed

    Min, Ji Hyun; Woo, Mi-Kyung; Yoon, Ha Young; Jang, Jin Woo; Wu, Jun Hua; Lim, Chae-Seung; Kim, Young Keun

    2014-02-15

    Lately, the isolation of DNA using magnetic nanoparticles has received increased attention owing to their facile manipulation and low costs. Although methods involving their magnetic separation have been extensively studied, there is currently a need for an efficient technique to isolate DNA for highly sensitive diagnostic applications. We describe herein a method to isolate and purify DNA using biofunctionalized superparamagnetic nanoparticles synthesized by a modified polyol method to obtain the desired monodispersity, followed by surface modification with meso-2,3-dimercaptosuccinic acid (DMSA) containing carboxyl groups for DNA absorption. The DMSA-coated magnetic nanoparticles (DMSA-MNPs) were used for the isolation of DNA, with a maximum yield of 86.16%. In particular, we found that the isolation of DNA using small quantities of DMSA-MNPs was much more efficient than that using commercial microbeads (NucliSENS-easyMAG, BioMérieux). Moreover, the DMSA-MNPs were successfully employed in the isolation of genomic DNA from human blood. In addition, the resulting DNA-nanoparticle complex was directly subjected to PCR amplification without prior elution, which could eventually lead to simple, rapid, sensitive and integrated diagnostic systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies.

    PubMed

    Baidjoe, Amrish; Stone, Will; Ploemen, Ivo; Shagari, Shehu; Grignard, Lynn; Osoti, Victor; Makori, Euniah; Stevenson, Jennifer; Kariuki, Simon; Sutherland, Colin; Sauerwein, Robert; Cox, Jonathan; Drakeley, Chris; Bousema, Teun

    2013-08-02

    Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not homogenously distributed throughout

  6. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies

    PubMed Central

    2013-01-01

    Background Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Methods Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Results Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not

  7. Radioprotection of DNA by glycyrrhizic acid through scavenging free radicals.

    PubMed

    Gandhi, Nitin Motilal; Maurya, Dharmendra Kumar; Salvi, Veena; Kapoor, Sudhir; Mukherjee, Tulsi; Nair, Cherupally Krishnan K

    2004-09-01

    Gamma-radiation induced strand breaks in plasmid pBR322 DNA. Glycyrrhizic acid (GZA) protected plasmid DNA from radiation-induced strand breaks, as the disappearance of super-coiled (ccc) form was prevented by the compound with a dose-reduction factor of 2.04 at 2.5 mM concentration. Studies of comet assay on human peripheral blood leukocytes exposed to gamma radiation in the presence and absence of glycyrrhizic acid ex vivo revealed that this compound protected the cellular DNA from radiation-induced strand breaks in a concentration-dependent manner. An intraperitoneal administration of the GZA to mice one hour before exposure to gamma radiation protected cellular DNA from radiation-induced strand breaks in peripheral blood leucocytes and bone marrow cells, as revealed by comet assay. Pulse radiolysis studies indicated that glycyrrhizic acid offered radioprotection by scavenging free radicals. The rate constants for the reaction of glycyrrhizic acid with OH* and e(aq)- are 1.2 x 10(10 ) M(-1) s(-1) and 3.9 x 10(9 ) M(-1) s(-1), respectively.

  8. DNA damage and mutations induced by arachidonic acid peroxidation.

    PubMed

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  9. Kinetics of DNA Strand Displacement Systems with Locked Nucleic Acids.

    PubMed

    Olson, Xiaoping; Kotani, Shohei; Yurke, Bernard; Graugnard, Elton; Hughes, William L

    2017-03-30

    Locked nucleic acids (LNAs) are conformationally restricted RNA nucleotides. Their increased thermal stability and selectivity toward their complements make them well-suited for diagnostic and therapeutic applications. Although the structural and thermodynamic properties of LNA-LNA, LNA-RNA, and LNA-DNA hybridizations are known, the kinetic effects of incorporating LNA nucleotides into DNA strand displacement systems are not. Here, we thoroughly studied the strand displacement kinetics as a function of the number and position of LNA nucleotides in DNA oligonucleotides. When compared to that of an all-DNA control, with an identical sequence, the leakage rate constant was reduced more than 50-fold, to an undetectable level, and the invasion rate was preserved for a hybrid DNA/LNA system. The total performance enhancement ratio also increased more than 70-fold when calculating the ratio of the invading rate to the leakage rate constants for a hybrid system. The rational substitution of LNA nucleotides for DNA nucleotides preserves sequence space while improving the signal-to-noise ratio of strand displacement systems. Hybrid DNA/LNA systems offer great potential for high-performance chemical reaction networks that include catalyzed hairpin assemblies, hairpin chain reactions, motors, walkers, and seesaw gates.

  10. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  11. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    PubMed

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  12. Flexibility of nucleic acids: From DNA to RNA

    NASA Astrophysics Data System (ADS)

    Lei, Bao; Xi, Zhang; Lei, Jin; Zhi-Jie, Tan

    2016-01-01

    The structural flexibility of nucleic acids plays a key role in many fundamental life processes, such as gene replication and expression, DNA-protein recognition, and gene regulation. To obtain a thorough understanding of nucleic acid flexibility, extensive studies have been performed using various experimental methods and theoretical models. In this review, we will introduce the progress that has been made in understanding the flexibility of nucleic acids including DNAs and RNAs, and will emphasize the experimental findings and the effects of salt, temperature, and sequence. Finally, we will discuss the major unanswered questions in understanding the flexibility of nucleic acids. Project supported by the National Basic Research Program of China (Grant No. 2011CB933600), the National Natural Science Foundation of China (Grant Nos. 11175132, 11575128, and 11374234), and the Program for New Century Excellent Talents, China (Grant No. NCET 08-0408).

  13. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid.

    PubMed

    Onuki, Janice; Chen, Yiming; Teixeira, Priscila C; Schumacher, Robert I; Medeiros, Marisa H G; Van Houten, Bennett; Di Mascio, Paolo

    2004-12-15

    5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage. Using a quantitative polymerase chain reaction assay, we demonstrated that ALA induces a dose-dependent damage in nuclear and mitochondrial DNA in human SVNF fibroblasts and rat PC12 cells. CHO cells treated with ALA also show nuclear DNA damage and human HepG2 cells entered in apoptosis and necrosis induced by ALA and its dimerization product, DHPY. The present data provide additional information on the genotoxicity of ALA, reinforcing the hypothesis that it may be involved in the development of HCC in AIP patients.

  14. Associations between Serum Perfluoroalkyl Acids and LINE-1 DNA Methylation

    PubMed Central

    Watkins, Deborah J.; Wellenius, Gregory A.; Butler, Rondi A.; Bartell, Scott M.; Fletcher, Tony; Kelsey, Karl T.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age ± SD=42 ± 11 years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of −0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active. PMID:24263140

  15. Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation.

    PubMed

    Watkins, Deborah J; Wellenius, Gregory A; Butler, Rondi A; Bartell, Scott M; Fletcher, Tony; Kelsey, Karl T

    2014-02-01

    Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age±SD=42±11years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of -0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active. © 2013.

  16. Fundamental Interaction Between Au Nanoparticles and Deoxyribonucleic Acid (DNA)

    DTIC Science & Technology

    2010-06-01

    Fundamental Interaction Between Au Nanoparticles and Deoxyribonucleic Acid (DNA) by Molly Karna, Govind Mallick, and Shashi P. Karna ARL...Karna Science and Mathematics Academy at Aberdeen High School Govind Mallick and Shashi P. Karna Weapons and Materials Research Directorate, ARL...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Molly Karna, Govind Mallick, and Shashi P. Karna 5d. PROJECT NUMBER 5e. TASK NUMBER

  17. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  18. DNA solution(R) in cigarette filters reduces polycyclic aromatic hydrocarbon (PAH) levels in mainstream tobacco smoke.

    PubMed

    Lodovici, M; Akpan, V; Caldini, S; Akanju, B; Dolara, P

    2007-09-01

    Tobacco consumption represents a major health hazard to humans and, despite anti-smoking campaigns, the number of smokers remains high; thus the reduction of toxic compounds from tobacco smoke may reduce the health hazards of smoking. In the last 25 years cigarette manufacturers have introduced a variety of filter designs to reduce toxic and carcinogenic substances in tobacco smoke (normal filters, NF). However, large quantities of harmful constituents are inefficiently retained by commonly used cigarette filters. Following a patented method we modified commercial cigarette filters (modified filter, MF) by injecting a DNA solution into the filter tips; we then evaluated the reduced polycyclic aromatic hydrocarbon (PAH) levels in mainstream tobacco smoke of MF relative to NF. The PAH measured were: fluoranthene (FLUO), pyrene (PY), benzo(a)anthracene (B(a)A), chrysene (CRY), benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene (B(k)F), benzo(g,h,i)perylene (BGP), dibenzo(a,h)anthracene (DBA). The levels of PAH in cigarette smoke after MF were significantly reduced (P<0.001) compared to NF, using a variety of cigarette brands in a smoking machine (44.5%+/-8.4 % and 41.8%+/-5% for total and carcinogenic PAH, respectively, means+/-SE). Using B(a)P(TEF) values the reduction in PAH concentrations were similar for all cigarette brands with the exception of Camel, where the reduction was lower considering B(a)P(TEF) values. Amongst carcinogenic PAH, B(a)A, B(b)F and B(k)F) were reduced by 50-58%, CRY, B(a)P and DBA by about 40%. In conclusion MF filters treated with DNA have the potential of decreasing the exposure to PAH in cigarette smoke. Since, unlike some previously proposed biological filters MF do not retain additional nicotine, the main addictive compound of tobacco smoke, these filters may not induce increased smoking to compensate for the reduction in the nicotine delivery to smokers.

  19. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  20. Hyaluronic acid as a molecular filter and friction-reducing lubricant in the human inner ear.

    PubMed

    Anniko, M; Arnold, W

    1995-01-01

    Immunofluorescence for hyaluronic acid occurred intracellularly in morphologically highly specialized areas in the adult human inner ear, for instance in the cuticular plates of all types of hair cells, at the apposition between outer hair cells and Deiter's cell bodies and in the near-surface area of Hensen's cells. The cytoskeletal organization in these regions is characterized by tightly packed filamentous proteins. Under physiological stimulus these regions undergo micromechanical change, either actively moving (force generation) or passively vibrating with changes in elasticity. Hyaluronic acid might therefore act as a friction-reducing molecular lubricant. In the lateral wall of the cochlea an accumulation of hyaluronic acid occurred in the loose connective tissue of the spiral ligament, in particular close to the stria vascularis. Due to its complex molecular network, hyaluronic acid offers considerable resistance to bulk flow of water and may exclude molecules. The basal cell region of the stria vascularis is thus given additional support to minimize (seal?) the stria vascularis towards all other areas except the endolymphatic space. Here, hyaluronic acid could act as a molecular filter.

  1. Design, Synthesis and DNA Interaction Study of New Potential DNA Bis-Intercalators Based on Glucuronic Acid

    PubMed Central

    Zhao, Jiuyang; Li, Wei; Ma, Rui; Chen, Shaopeng; Ren, Sumei; Jiang, Tao

    2013-01-01

    A series of novel potential DNA bis-intercalators were designed and synthesized, in which two glucuronic acids were linked by ethylenediamine, and the glucuronic acid was coupled with various chromophores, including quinoline, acridine, indole and purine, at the C-1 position. The preliminary binding properties of these compounds to calf thymus DNA (CT-DNA) have been investigated by UV-absorption and fluorescence spectroscopy. The results indicated that all the target compounds can interact with CT-DNA, and the acridine derivative, 3b, showed the highest key selection vector (KSV) value, which suggested that compound 3b binds most strongly to CT-DNA. PMID:23955268

  2. An expedited method to isolate DNA for PCR from Magnaporthe oryzae stored on filter paper

    USDA-ARS?s Scientific Manuscript database

    The fungus Magnaporthe oryzae is the causal agent for a wide range of cereal diseases. For long-term preservation, the fungus is grown and stored desiccated on filter papers at -20° C. Inoculated filter papers were cut into pieces from 0.5-1 cm diameter prior to storage. In the present study, a quic...

  3. Performance evaluation of biofilters and biotrickling filters in odor control of n-butyric acid.

    PubMed

    Ding, Ying; Han, Zhiying; Wu, Weixiang; Shi, Dezhi; Chen, Yingxu; Li, Wenhong

    2011-01-01

    With the rapid development of swine production in China, odor pollution associated with piggery facilities has become an increasing environmental concern. N-butyric acid (n-BA) is one of the key odor compounds selected to represent volatile fatty acids (VFAs) found in piggery facilities. In this study, two biofilters (BFs) packed with compost (BFC) or sludge (BFS) and two biotrickling filters (BTFs) packed with pall rings (BTFP) or multidimensional hollow balls (BTFM), respectively, were compared with regard to their performances in the removal of n-BA. The non-biological removal capacities of packing material of the bioreactors on a per unit volume basis were BFS>BFC>BTFM>BTFP. Maximum biological removal capacities per unit volume of packing material of the bioreactors all exceeded 9.1 kg/m(3)·d and in the order of BFC>BTFM>BFS>BTFP. Kinetic analysis as well as overall evaluation by radar graphs showed that the BTFs achieved superior removal rates to the BFs in the order of BTFM>BTFP>BFC>BFS. The biotrickling filter packed with multidimensional hollow balls could be an effective technology for VFAs removal. Results from this research provide economical and effective alternatives for odor control in piggery facilities.

  4. [Effect of particle size distribution and the filtering on the free silica measurement result by pyrophosphoric acid method].

    PubMed

    Yan, Yue; Zhu, Xiaojun; Wang, Chao; Chen, Yongqing

    2016-01-01

    To analyze the influence of experimental conditions: Distribution of particulate and the filter condition on the pyrophosphoric acid method for quantitative analysis of free silica in dust. According to Method for determination of dust in the air of workplace Part 3: Distribution of particulate (GBZ/T 192.3-2007) , Part 4: Content of free silica in dust (GBZ/T 192.4-2007) , the distribution of particulate of 5kinds of dust samples were observed. Different filter conditions were used to determinate the Content of free silica in the 4kinds ofdust samples: 1 filter paper, 2 filter papers, 3 filter papers, 2 filter papers with paper pulp in them. The distribution of particulate of 4 kinds of dust sampleswere different. The order from high to low is defined with "I, II, III, IV, V" successively. For dust sample I, II, III, the results with different conditions increase successively (P<0.05) . The result in 2 filter papers with paper pulp were not significantly different compared with the reference value (P>0.05) . For dust sample IV, the resultin 1 filter paper were significantlylower thanthe reference value (P<0.05) . For dust sampleV, The results with different kinds of filter type were not significantly different (P>0.05) . different filter conditions should be considered according to thecontent of free silica and the distribution of particulate in dust sample. For the dust sample which has the higher content of free silica and the distribution of particulate, 2 filter papers with paper pulp in themis the better filter condition compared with the traditional way.

  5. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  6. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    PubMed

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  7. Application of a DNA hybridization-hydrophobic-grid membrane filter method for detection and isolation of verotoxigenic escherichia coli.

    PubMed

    Todd, E C; Szabo, R A; MacKenzie, J M; Martin, A; Rahn, K; Gyles, C; Gao, A; Alves, D; Yee, A J

    1999-11-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required.

  8. Application of a DNA Hybridization–Hydrophobic-Grid Membrane Filter Method for Detection and Isolation of Verotoxigenic Escherichia coli

    PubMed Central

    Todd, E. C. D.; Szabo, R. A.; MacKenzie, J. M.; Martin, A.; Rahn, K.; Gyles, C.; Gao, A.; Alves, D.; Yee, A. J.

    1999-01-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required. PMID:10543785

  9. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  10. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples

    USGS Publications Warehouse

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  11. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    PubMed

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  12. A DNA origami nanorobot controlled by nucleic acid hybridization.

    PubMed

    Torelli, Emanuela; Marini, Monica; Palmano, Sabrina; Piantanida, Luca; Polano, Cesare; Scarpellini, Alice; Lazzarino, Marco; Firrao, Giuseppe

    2014-07-23

    A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.

  13. Ion selectivity in the selectivity filters of acid-sensing ion channels.

    PubMed

    Dudev, Todor; Lim, Carmay

    2015-01-19

    Sodium-selective acid sensing ion channels (ASICs), which belong to the epithelial sodium channel (ENaC) superfamily, are key players in many physiological processes (e.g. nociception, mechanosensation, cognition, and memory) and are potential therapeutic targets. Central to the ASIC's function is its ability to discriminate Na(+) among cations, which is largely determined by its selectivity filter, the narrowest part of an open pore. However, it is unclear how the ASIC discriminates Na(+) from rival cations such as K(+) and Ca(2+) and why its Na(+)/K(+) selectivity is an order of magnitude lower than that of the ENaC. Here, we show that a well-tuned balance between electrostatic and solvation effects controls ion selectivity in the ASIC1a SF. The large, water-filled ASIC1a pore is selective for Na(+) over K(+) because its backbone ligands form more hydrogen-bond contacts and stronger electrostatic interactions with hydrated Na(+) compared to hydrated K(+). It is selective for Na(+) over divalent Ca(2+) due to its relatively high-dielectric environment, which favors solvated rather than filter-bound Ca(2+). However, higher Na(+)-selectivity could be achieved in a narrow, rigid pore lined by three weak metal-ligating groups, as in the case of ENaC, which provides optimal fit and interactions for Na(+) but not for non-native ions.

  14. Treatment of wastewater containing acid rose red dye by biologically aerated filter after chemical oxidation.

    PubMed

    Wang, X; Gu, X; Zhou, X; Wang, W; Lin, D

    2007-08-01

    Combined processes of pre-chemical oxidation and biological aerated filter (BAF) were used to treat wastewater containing non-biodegradable acid rose red dye. Advance oxidation processes (AOPs) of ozone and Fenton reagent were applied for pre-chemical oxidation, which reduced the degree of color and organic matter simultaneously increasing the biodegradability of the wastewater. The majority of the organic matter was removed by BAF. When using ozone as pre-chemical oxidation, the operation is simpler. The combined processes of AOPs, including ozone and Fenton reagent, followed by BAF reduced the color and chemical oxygen demand (COD) to less than 20 degrees and 40 mg l(-1), respectively from the influent concentration of about 4000 degree color and 300 mg l(-1) COD. The effluent water quality could meet the required standard for grey water reuses.

  15. Treatment of the terephthalic acid-containing wastewater using a biological-aerated filter.

    PubMed

    Zhang, Wen-Yi; Zhang, Cai-Qin; Liu, Liang; Shen, Rong-Yan; Han, Xiao-Jing

    2014-01-01

    In this paper, the biological-aerated filter (BAF) was employed to treat the wastewater containing terephthalic acid (TA). Factors that affected the efficiency of TA and CODCr removal were evaluated experimetally, including pH, hydraulic loading, hydraulic retention time (HRT) and TA volume loading. At pH 7-8, hydraulic loading rate 0.067-0.48 m3/(m2 h), HRT more than 3.5h and TA loading 0.04-0.15g/(m3 d), the TA and CODCr removal efficiency was more than 93% and 87%, respectively. The mathematical model of matrix (TA) was obtained by Monod's relation and the experimental parameters of the model were 1.972 g/(m2d) and 9.782 mg/L.

  16. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  17. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  18. Synthesis and DNA-binding properties of novel DNA cyclo-intercalators containing purine-glucuronic acid hybrids.

    PubMed

    Zhang, Renshuai; Chen, Shaopeng; Wang, Xueting; Yu, Rilei; Li, Mingjing; Ren, Sumei; Jiang, Tao

    2016-06-24

    Novel DNA cyclo-intercalators, which incorporated two intercalator subunits linked by two bridges, were synthesized. Binding of the compounds to calf-thymus DNA was studied by fluorescence spectroscopy, and docking simulations were used to predict the binding modes of these cyclic compounds. The spectral data demonstrated that all of these compounds can interact with CT-DNA. The sugar moiety played an important role in the process of binding between the intercalators containing glucuronic acid and DNA. The length and flexibility of the connecting bridges affected the binding affinity of the resultant cyclo-intercalators. Docking simulations showed that compounds 7 and 8 interact with DNA as mono-intercalators.

  19. In Vivo NMR Detection Strategies for γ-Aminobutyric Acid, Utilizing Proton Spectroscopy and Coherence-Pathway Filtering with Gradients

    NASA Astrophysics Data System (ADS)

    Wilman, A. H.; Allen, P. S.

    Seven single-scan editing methods are evaluated, both theoretically and experimentally, for quantifying the neurotransmitter γ-aminobutyric acid (GABA) in the human brain by 1H magnetic resonance spectroscopy. The methods investigated included zero-and double-quantum-coherence filters, two triple-quantum-filter variants, two different combinations of triple- and single-quantum filters, and a longitudinal z-order filter. By providing the best compromise between suppression of the creatine (Cr) singlet intensity and preservation of the GABA A 2 triplet intensity, triple-quantum-coherence filtering with a selective read pulse was found to be the most effective editing method, increasing the GABA/Cr intensity ratio by a factor of ˜450 over that obtainable from a simple spin-echo detection method. Over the seven editing methods, the GABA/Cr intensity ratio (using a concentration ratio equivalent to that of normal brain) ranged from a low of 0.015 (zero-quantum filter) to a high of 14 for the best triple-quantum filter, a variation of ˜10 3.

  20. A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types.

    PubMed

    Gan, Wupeng; Zhuang, Bin; Zhang, Pengfei; Han, Junping; Li, Cai-Xia; Liu, Peng

    2014-10-07

    A plastic microfluidic device that integrates a filter disc as a DNA capture phase was successfully developed for low-cost, rapid and automated DNA extraction and PCR amplification from various raw samples. The microdevice was constructed by sandwiching a piece of Fusion 5 filter, as well as a PDMS (polydimethylsiloxane) membrane, between two PMMA (poly(methyl methacrylate)) layers. An automated DNA extraction from 1 μL of human whole blood can be finished on the chip in 7 minutes by sequentially aspirating NaOH, HCl, and water through the filter. The filter disc containing extracted DNA was then taken out directly for PCR. On-chip DNA purification from 0.25-1 μL of human whole blood yielded 8.1-21.8 ng of DNA, higher than those obtained using QIAamp® DNA Micro kits. To realize DNA extraction from raw samples, an additional sample loading chamber containing a filter net with an 80 μm mesh size was designed in front of the extraction chamber to accommodate sample materials. Real-world samples, including whole blood, dried blood stains on Whatman® 903 paper, dried blood stains on FTA™ cards, buccal swabs, saliva, and cigarette butts, can all be processed in the system in 8 minutes. In addition, multiplex amplification of 15 STR (short tandem repeat) loci and Sanger-based DNA sequencing of the 520 bp GJB2 gene were accomplished from the filters that contained extracted DNA from blood. To further prove the feasibility of integrating this extraction method with downstream analyses, "in situ" PCR amplifications were successfully performed in the DNA extraction chamber following DNA purification from blood and blood stains without DNA elution. Using a modified protocol to bond the PDMS and PMMA, our plastic PDMS devices withstood the PCR process without any leakage. This study represents a significant step towards the practical application of on-chip DNA extraction methods, as well as the development of fully integrated genetic analytical systems.

  1. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    PubMed

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Prooxidant action of chebulinic acid and tellimagrandin I: causing copper-dependent DNA strand breaks.

    PubMed

    Yi, Zong-Chun; Liu, Yan-Ze; Li, Hai-Xia; Wang, Zhao

    2009-04-01

    The prooxidant activity of two hydrolysable tannins, chebulinic acid and tellimagrandin I, on plasmid DNA and genomic DNA of cultured MRC-5 human embryo lung fibroblasts was assessed. The results revealed that both hydrolysable tannins in combination with Cu(II) induced DNA strand breaks in pBR322 plasmid DNA in a concentration-dependent manner. Chebulinic acid and tellimagrandin I also induced genomic DNA strand breaks of MRC-5 human embryo lung fibroblasts in the presence of Cu(II). After treatment with chebulinic acid or tellimagrandin I alone, the pBR322 plasmid DNA and genomic DNA in MRC-5 cells kept intact. In addition, addition of Cu(I) reagent bathocuproinedisulfonic acid or catalase markedly inhibited the copper-dependent DNA strand breaks by both tannins. However, three typical hydroxyl radical scavengers, DMSO, ethanol and mannitol, did not inhibit the DNA strand breaks. Both tannins were able to reduce Cu(II) to Cu(I). These results indicated that chebulinic acid and tellimagrandin I induced the copper-dependent strand breaks of pBR322 plasmid DNA and MRC-5 genomic DNA with prooxidant action, in which Cu(II)/Cu(I) redox cycle and H(2)O(2) were involved and hydroxyl radical formation is important in the hypothetical mechanism by which DNA strand breaks are formed.

  3. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers

    PubMed Central

    Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika

    2014-01-01

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415

  4. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  5. Assessment of morphological changes and DNA quantification: An in vitro study on acid-immersed teeth

    PubMed Central

    Sowmya, K; Sudheendra, US; Khan, Samar; Nagpal, Neelu; Prathamesh, SJ

    2013-01-01

    Context: Acid immersion of victim's body is one of the methods employed to subvert identification of the victim, and hence of the perpetrator. Being hardest and chemically the most stable tissue in the body, teeth can be an important forensic investigative medium in both living and nonliving populations. Teeth are also good reservoirs of both cellular and mitochondrial DNA; however, the quality and quantity of DNA obtained varies according to the environment the tooth has been subjected to. DNA extraction from acid-treated teeth has seldom been reported. Aims: The objectives of the present study were to assess the morphological changes along with DNA recovery from acid-immersed teeth. Materials and Methods: Concentrated hydrochloric acid, nitric acid, and sulfuric acid were employed for tooth decalcification. DNA was extracted on an hourly basis using phenol–chloroform method. Quantification of extracted DNA was done using a spectrophotometer. Results: Results showed that hydrochloric acid had more destructive capacity compared to other acids. Conclusion: Sufficient quantity of DNA was obtainable till the first 2 hours of acid immersion and there was an inverse proportional relation between mean absorbance ratio and quantity of obtained DNA on an hourly basis. PMID:23960414

  6. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  7. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  8. Application of a west Eurasian-specific filter for quasi-median network analysis: Sharpening the blade for mtDNA error detection

    PubMed Central

    Zimmermann, Bettina; Röck, Alexander; Huber, Gabriela; Krämer, Tanja; Schneider, Peter M.; Parson, Walther

    2011-01-01

    The application of quasi-median networks provides an effective tool to check the quality of mtDNA data. Filtering of highly recurrent mutations prior to network analysis is required to simplify the data set and reduce the complexity of the network. The phylogenetic background determines those mutations that need to be filtered. While the traditional EMPOPspeedy filter was based on the worldwide mtDNA phylogeny, haplogroup-specific filters can more effectively highlight potential errors in data of the respective (sub)-continental region. In this study we demonstrate the performance of a new, west Eurasian filter EMPOPspeedyWE for the fine-tuned examination of data sets belonging to macrohaplogroup N that constitutes the main portion of mtDNA lineages in Europe. The effects on the resulting network of different database sizes, high-quality and flawed data, as well as the examination of a phylogenetically distant data set, are presented by examples. The analyses are based on a west Eurasian etalon data set that was carefully compiled from more than 3500 control region sequences for network purposes. Both, etalon data and the new filter file, are provided through the EMPOP database (www.empop.org). PMID:21067984

  9. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  10. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  11. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bio-desulfurization of biogas using acidic biotrickling filter with dissolved oxygen in step feed recirculation.

    PubMed

    Chaiprapat, Sumate; Charnnok, Boonya; Kantachote, Duangporn; Sung, Shihwu

    2015-03-01

    Triple stage and single stage biotrickling filters (T-BTF and S-BTF) were operated with oxygenated liquid recirculation to enhance bio-desulfurization of biogas. Empty bed retention time (EBRT 100-180 s) and liquid recirculation velocity (q 2.4-7.1 m/h) were applied. H2S removal and sulfuric acid recovery increased with higher EBRT and q. But the highest q at 7.1 m/h induced large amount of liquid through the media, causing a reduction in bed porosity in S-BTF and H2S removal. Equivalent performance of S-BTF and T-BTF was obtained under the lowest loading of 165 gH2S/m(3)/h. In the subsequent continuous operation test, it was found that T-BTF could maintain higher H2S elimination capacity and removal efficiency at 175.6±41.6 gH2S/m(3)/h and 89.0±6.8% versus S-BTF at 159.9±42.8 gH2S/m(3)/h and 80.1±10.2%, respectively. Finally, the relationship between outlet concentration and bed height was modeled. Step feeding of oxygenated liquid recirculation in multiple stages clearly demonstrated an advantage for sulfide oxidation.

  13. Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage.

    PubMed

    Ramond, Jean-Baptiste; Welz, Pamela J; Le Roes-Hill, Marilize; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A

    2014-03-01

    In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L⁻¹ Fe(II), 500 mg L⁻¹ Fe(III)] and sulphate-rich (6000 mg L⁻¹ SO₄²⁻) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L⁻¹) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Estrogens protect against hydrogen peroxide and arachidonic acid induced DNA damage.

    PubMed

    Tang, M; Subbiah, M T

    1996-01-19

    The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled OX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17 beta significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17 beta at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.

  15. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters

    NASA Astrophysics Data System (ADS)

    Nott, Timothy J.; Craggs, Timothy D.; Baldwin, Andrew J.

    2016-06-01

    Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell. These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle. Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water. One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized. Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system. A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions. These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles.

  16. Role of Amino Acid Insertions on Intermolecular Forces between Arginine Peptide Condensed DNA Helices

    PubMed Central

    DeRouchey, Jason E.; Rau, Donald C.

    2011-01-01

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads. PMID:21994948

  17. Spherical Nucleic Acids: A New Form of DNA

    NASA Astrophysics Data System (ADS)

    Cutler, Joshua Isaac

    Spherical Nucleic Acids (SNAs) are a new class of nucleic acid-based nanomaterials that exhibit unique properties currently being explored in the contexts of gene-based cancer therapies and in the design of programmable nanoparticle-based materials. The properties of SNAs differ from canonical, linear nucleic acids by virtue of their dense packing into an oriented 3-dimensional array. SNAs can be synthesized from a number of useful nanoparticle templates, such as plasmonic gold and silver, magnetic oxides, luminescent semi-conductor quantum dots, and silica. In addition, by crosslinking the oligonucleotides and dissolving the core, they can be made in a hollow form as well. This dissertation describes the evolution of SNAs from initial studies of inorganic nanoparticle-based materials densely functionalized with oligonucleotides to the proving of a hypothesis that their unique properties can be observed in a core-less structure if the nucleic acids are densely packed and highly oriented. Chapter two describes the synthesis of densely functionalized polyvalent oligonucleotide superparamagnetic iron oxide nanoparticles using the copper-catalyzed azide-alkyne cycloaddition reaction. These particles are shown to exhibit cooperative binding in a density- and salt concentration-dependent fashion, with nearly identical behaviors to those of SNA-functionalized gold nanoparticles. Importantly, these particles are the first non-gold particles shown to be capable of entering cells in high numbers via the SNA-mediated cellular uptake pathway, and provided the first evidence that SNA-mediated cellular uptake is core-independent. In the third chapter, a gold nanoparticle catalyzed alkyne cross-linking reaction is described that is capable of forming hollow organic nanoparticles using polymers with alkyne-functionalized backbones. With this method, the alkyne-modified polymers adsorb to the particle surfaces, cross-link on the surface, allowing the gold nanoparticle to be

  18. A fluorescence-based analysis of aristolochic acid-derived DNA adducts.

    PubMed

    Romanov, Victor; Sidorenko, Victoria; Rosenquist, Thomas A; Whyard, Terry; Grollman, Arthur P

    2012-08-01

    Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.

  19. Uracil misincorporation into DNA and folic acid supplementation.

    PubMed

    Hazra, Aditi; Selhub, Jacob; Chao, Wei-Hsun; Ueland, Per Magne; Hunter, David J; Baron, John A

    2010-01-01

    Folate deficiency decreases thymidylate synthesis from deoxyuridylate, which results in an imbalance of deoxyribonucleotide that may lead to excessive uracil misincorporation (UrMis) into DNA during replication and repair. We evaluated the relation between UrMis in different tissues and the effect of folate supplementation on UrMis. We analyzed UrMis concentrations in rectal mucosa (n = 92) and white blood cells (WBCs; n = 60) among individuals randomly assigned to receive supplementation with 1 mg folate/d or placebo, who were then evaluated for colorectal adenoma recurrence. As expected, total homocysteine was significantly lower among the study participants who received active folate treatment (Wilcoxon's P = 0.003) than among those in the placebo group. The median UrMis concentration in rectal mucosa and WBCs among individuals treated with folate was not significantly lower than that in those who received placebo (Wilcoxon's P = 0.17). UrMis concentrations in both rectal mucosa and WBCs did not correlate significantly with folate measured in plasma and red blood cells. UrMis in rectal mucosa was marginally associated with an increased risk of adenoma recurrence (odds ratio per SD: 1.43; 95% CI: 0.91, 2.25). UrMis measurements in WBCs are not a robust surrogate for UrMis measurements in the rectal mucosa (Spearman correlation coefficient = 0.23, P = 0.08). Furthermore, folate supplementation in an already replete population (half treated with folic acid supplements and all exposed to folic acid fortification of the food supply) was not significantly associated with reduced UrMis in rectal mucosa cells or WBCs. Large-scale studies are needed to evaluate whether excessive UrMis concentrations are an important risk factor for colorectal neoplasia. This trial was registered at clinicaltrials.gov as NCT00272324.

  20. Quinolone resistance-associated amino acid substitutions affect enzymatic activity of Mycobacterium leprae DNA gyrase.

    PubMed

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2017-07-01

    Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.

  1. Gallic acid induces DNA damage and inhibits DNA repair-associated protein expression in human oral cancer SCC-4 cells.

    PubMed

    Weng, Shu-Wen; Hsu, Shu-Chun; Liu, Hsin-Chung; Ji, Bin-Chuan; Lien, Jin-Cherng; Yu, Fu-Shun; Liu, Kuo-Ching; Lai, Kuang-Chi; Lin, Jing-Pin; Chung, Jing-Gung

    2015-04-01

    Gallic acid (GA), a phenolic compound naturally present in plants, used as an antioxidant additive in food and in the pharmaceutical industry, may have cancer chemopreventive properties. In the present study, we investigated whether GA induced DNA damage and affected DNA repair-associated protein expression in human oral cancer SCC-4 cells. Flow cytometry assays were used to measure total viable cells and results indicated that GA decreased viable cells dose-dependently. The comet assay and 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) staining were used to measure DNA damage, as well as condensation and it was shown that GA induced DNA damage (comet tail) and DNA condensation in a dose-dependent manner. DNA gel electrophoresis was used to examine DNA fragmentation and we found that GA induced DNA ladder (fragmentation). Using western blotting it was shown that GA inhibited the protein expressions of MDC1, O(6)-methylguanine-DNA methyltransferase (MGMT), p-H2A.X, p53, DNA-dependent serine/threonine protein kinase (DNA-PK) and 14-3-3 proteins sigma (14-3-3σ) but increased p-p53, phosphate-ataxia-telangiectasia (p-H2A.X) and ataxia telangiectasia mutated and Rad3-related (p-ATR), phosphate-ataxia telangiectasia mutated (p-ATM) and breast cancer susceptibility protein 1 (BRCA1) in a 24-h treatment. The protein translocation was examined by confocal laser microscopy and results indicated that GA increased the levels of p-H2A.X, MDC1 and p-p53 in SCC-4 cells. In conclusion, we found that GA-induced cell death may proceed through the induced DNA damage and suppressed DNA repair-associated protein expression in SCC-4 cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. ArrayExplorer, a program in Visual Basic for robust and accurate filter cDNA array analysis.

    PubMed

    Patriotis, P C; Querec, T D; Gruver, B N; Brown, T R; Patriotis, C

    2001-10-01

    Determining the dynamics in the global regulation of gene expression holds the promise of bringing a better understanding of the processes that govern physiological cell growth regulation and its disruption during the development of disease. The advent for cDNA arrays has created the possibility for the parallel analysis of expression of thousands of genes in a given cell population, simultaneously. The level of expression of a given set of genes within the studied tissue corresponds to the intensity of a labeled cDNA probe synthesized from the studied tissue RNA and bound specifically to the cDNAs of the genes spotted on the array. The accurate extraction of gene expression intensity values is essential for further data analysis and the interpretation of the obtained results. Here, we describe a new array image-processing software developed in Microsoft Visual Basic, the ArrayExplorer, which provides a user-friendly, multiple-window interface and a number of automatic and manual features that facilitate a reliable, robust, and accurate extraction of gene intensity values from filter-array images.

  3. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid.

    PubMed Central

    Dixit, R; Gold, B

    1986-01-01

    Ellagic acid, a naturally occurring plant phenol, inhibits the activity of the direct-acting mutagen N-methyl-N-nitrosourea (MeNU) in Salmonella typhimurium TA100. Ellagic acid at 0.10, 0.25, 0.50, and 1.00 mM inhibited the mutagenicity of MeNU (0.40 mM) by 3%, 13%, 45%, and 60%, respectively. Ellagic acid (3 mM) also inhibited the mutagenic activity of N,N-dimethylnitrosamine (25-200 mM) in the presence of pyrazole-induced rat liver fraction S-9. The effect of ellagic acid on DNA methylation was studied by incubating 0, 0.72, 1.32, 2.64, and 6.60 mM ellagic acid with DNA (0.9 mM nucleotide) and [3H]MeNU (0.66 mM). HPLC analysis of DNA hydrolysates showed that ellagic acid caused a dose-dependent 36-84% decrease in O6-methylguanine but only a 20% decrease in the 7-methylguanine adduct. Under conditions where methylation at the O6 position of guanine in double-stranded DNA was inhibited 65% by ellagic acid, no significant inhibition of either O6- or 7-methylguanine formation was detected in single-stranded DNA. Affinity-binding studies revealed that [3H]ellagic acid binds equally to double-stranded or single-stranded DNA but that poly(dA X dT) binds 1.5 times as much ellagic acid as does poly(dG X dC). The binding of ellagic acid to DNA is dependent on the concentration of both ellagic acid and DNA. The specific inhibition of O6-methylguanine formation only in double-stranded DNA and the relatively low inhibition of 7-methylguanine formation rule out the possibility that ellagic acid prevents DNA alkylation by scavenging the electrophilic intermediate generated in the hydrolysis of MeNU. The results suggest that ellagic acid inhibition of MeNU-induced mutagenicity is due to specific inhibition of methylation at the O6 position of guanine through an ellagic acid-duplex DNA affinity-binding mechanism. PMID:3464940

  4. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  5. Reactions of 4-[Bis(2-chloroethyl)amino]benzenebutanoic acid (chlorambucil) with DNA.

    PubMed

    Florea-Wang, Diana; Pawlowicz, Agnieszka J; Sinkkonen, Jari; Kronberg, Leif; Vilpo, Juhani; Hovinen, Jari

    2009-07-01

    4-[Bis(2-chloroethyl)amino]benzenebutanoic acid (=chlorambucil, 1; 2.5 mM) was allowed to react with single- and double-stranded calf thymus DNA at physiological pH (cacodylic acid, 50% base) at 37 degrees . The DNA-chlorambucil adducts were identified by analyzing the DNA hydrolysates by NMR, UV, HPLC, LC/ESI-MS/MS techniques as well as by spiking with authentic materials. ssDNA was more reactive than dsDNA, and the order of reactivity in ssDNA was Ade-N1>Gua-N7>Cyt-N3>Ade-N3. The most reactive site in dsDNA was Ade-N3. The Gua-N7 and Ade-N3 adducts were hydrolytically labile. Ade-N7 adduct could not be identified in the hydrolysates of ssDNA or dsDNA. The adduct Gua-N7,N7, which consists of two units of Gua bound together with a unit derived from chlorambucil, is a cross-linking adduct, and it was detected in the hydrolysates of ssDNA and dsDNA. Also several other adducts were detected which could be characterized by spiking with previously isolated authentic adducts or tentatively by MS. The role of chlorambucil-DNA adducts on the cytotoxicity and mutagenity of 1 is also discussed.

  6. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    PubMed

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-08

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  7. Single and double stranded DNA detection using locked nucleic acid (LNA) functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    McKenzie, Fiona; Stokes, Robert; Faulds, Karen; Graham, Duncan

    2008-08-01

    Gold and silver nanoparticles functionalized with oligonucleotides can be used for the detection of specific sequences of DNA. We show that gold nanoparticles modified with locked nucleic acid (LNA) form stronger duplexes with a single stranded DNA target and offer better discrimination against single base pair mismatches than analogous DNA probes. Our LNA nanoparticle probes have also been used to detect double stranded DNA through triplex formation, whilst still maintaining selectivity for only complementary targets. Nanoparticle conjugates embedded with suitable surface enhanced resonance Raman scattering (SERRS) labels have been synthesized enabling simultaneous detection and identification of multiple DNA targets.

  8. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  9. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  10. Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2.

    PubMed Central

    Prat, S; Cortadas, J; Puigdomènech, P; Palau, J

    1985-01-01

    The cDNA coding for a glutelin-2 protein from maize endosperm has been cloned and the complete amino acid sequence of the protein derived for the first time. An immature maize endosperm cDNA bank was screened for the expression of a beta-lactamase:glutelin-2 (G2) fusion polypeptide by using antibodies against the purified 28 kd G2 protein. A clone corresponding to the 28 kd G2 protein was sequenced and the primary structure of this protein was derived. Five regions can be defined in the protein sequence: an 11 residue N-terminal part, a repeated region formed by eight units of the sequence Pro-Pro-Pro-Val-His-Leu, an alternating Pro-X stretch 21 residues long, a Cys rich domain and a C-terminal part rich in Gln. The protein sequence is preceded by 19 residues which have the characteristics of the signal peptide found in secreted proteins. Unlike zeins, the main maize storage proteins, 28 kd glutelin-2 has several homologous sequences in common with other cereal storage proteins. Images PMID:3839076

  11. Fluorescent DNA hydrogels composed of nucleic acid-stabilized silver nanoclusters.

    PubMed

    Guo, Weiwei; Orbach, Ron; Mironi-Harpaz, Iris; Seliktar, Dror; Willner, Itamar

    2013-11-25

    Y-shaped DNA units functionalized with Ag-nanoclusters are crosslinked by nucleic acids to yield fluorescent hydrogels with controlled luminescence properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage.

    PubMed

    Ahmed, Wareed; Bhat, Anuradha Gopal; Leelaram, Majety Naga; Menon, Shruti; Nagaraja, Valakunja

    2013-08-01

    Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.

  13. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  14. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  15. HEPA filter dissolution process

    SciTech Connect

    Brewer, K.N.; Murphy, J.A.

    1992-12-31

    This invention is comprised of a process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  16. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    PubMed Central

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  17. DNA Diagnostics: Nanotechnology-enhanced Electrochemical Detection of Nucleic Acids

    PubMed Central

    Wei, Fang; Lillehoj, Peter B.; Ho, Chih-Ming

    2010-01-01

    The detection of mismatched base pairs in DNA plays a crucial role in the diagnosis of genetic-related diseases and conditions, especially for early stage treatment. Among the various biosensors that have been employed for DNA detection, electrochemical sensors show great promise since they are capable of precise DNA recognition and efficient signal transduction. Advancements in micro- and nanotechnologies, specifically fabrication techniques and new nanomaterials, have enabled for the development of highly sensitive, highly specific sensors making them attractive for the detection of small sequence variations. Furthermore, the integration of sensors with sample preparation and fluidic processes enables for rapid, multiplexed DNA detection for point-of-care (POC) clinical diagnostics. PMID:20075759

  18. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  19. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-08-03

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  20. Characterization of DNA Damage in Yeast Apoptosis Induced by Hydrogen Peroxide, Acetic Acid, and Hyperosmotic Shock

    PubMed Central

    Ribeiro, Gabriela F.; Côrte-Real, Manuela

    2006-01-01

    Saccharomyces cerevisiae has been reported to die, under certain conditions, from programmed cell death with apoptotic markers. One of the most important markers is chromosomal DNA fragmentation as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. We found TUNEL staining in S. cerevisiae to be a consequence of both single- and double-strand DNA breaks, whereas in situ ligation specifically stained double-strand DNA breaks. Cells treated with hydrogen peroxide or acetic acid staining positively for TUNEL assay stained negatively for in situ ligation, indicating that DNA damage in both cases mainly consists of single-strand DNA breaks. Pulsed field gel electrophoresis of chromosomal DNA from cells dying from hydrogen peroxide, acetic acid, or hyperosmotic shock revealed DNA breakdown into fragments of several hundred kilobases, consistent with the higher order chromatin degradation preceding DNA laddering in apoptotic mammalian cells. DNA fragmentation was associated with death by treatment with 10 mM hydrogen peroxide but not 150 mM and was absent if cells were fixed with formaldehyde to eliminate enzyme activity before hydrogen peroxide treatment. These observations are consistent with a process that, like mammalian apoptosis, is enzyme dependent, degrades chromosomal DNA, and is activated only at low intensity of death stimuli. PMID:16899507

  1. [Studies on the interaction of the metal complex of hydrazide of podophyllic acid with DNA].

    PubMed

    Wang, Ping-Hong; Zhang, Qi; Wang, Liu-Fang; Song, Yu-Min; Qu, Jian-Qiang; Liu, Ying-Qian

    2006-05-01

    The interaction between the metal complex of hydrazide of podophyllic acid and calf thymus (CT) DNA was studied by using absorption spectra, fluorescence spectra and DNA heat denaturation. It was found that the intensity of the maximal absorption peaks from absorption spectra is weakened in the presence of the metal complex of hydrazide of podophyllic acid compared with that in the absence of the metal complex. All the experimental results show that the intercalation mode was proved to exist between HDPP-Ni complexes and CT DNA.

  2. A prediction of the amino acids and structures involved in DNA recognition by type I DNA restriction and modification enzymes.

    PubMed Central

    Sturrock, S S; Dryden, D T

    1997-01-01

    The S subunits of type I DNA restriction/modification enzymes are responsible for recognising the DNA target sequence for the enzyme. They contain two domains of approximately 150 amino acids, each of which is responsible for recognising one half of the bipartite asymmetric target. In the absence of any known tertiary structure for type I enzymes or recognisable DNA recognition motifs in the highly variable amino acid sequences of the S subunits, it has previously not been possible to predict which amino acids are responsible for sequence recognition. Using a combination of sequence alignment and secondary structure prediction methods to analyse the sequences of S subunits, we predict that all of the 51 known target recognition domains (TRDs) have the same tertiary structure. Furthermore, this structure is similar to the structure of the TRD of the C5-cytosine methyltransferase, Hha I, which recognises its DNA target via interactions with two short polypeptide loops and a beta strand. Our results predict the location of these sequence recognition structures within the TRDs of all type I S subunits. PMID:9254696

  3. Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem

    PubMed Central

    Kim, Youngmi; Yang, Chaoyong James; Tan, Weihong

    2007-01-01

    Hairpin nucleic acid probes have been highly useful in many areas, especially for intracellular and in vitro nucleic acid detection. The success of these probes can be attributed to the ease with which their conformational change upon target binding can be coupled to a variety of signal transduction mechanisms. However, false-positive signals arise from the opening of the hairpin due mainly to thermal fluctuations and stem invasions. Stem invasions occur when the stem interacts with its complementary sequence and are especially problematic in complex biological samples. To address the problem of stem invasions in hairpin probes, we have created a modified molecular beacon that incorporates unnatural enantiomeric l-DNA in the stem and natural d-DNA or 2′-O-Me-modified RNA in the loop. l-DNA has the same physical characteristics as d-DNA except that l-DNA cannot form stable duplexes with d-DNA. Here we show that incorporating l-DNA into the stem region of a molecular beacon reduces intra- and intermolecular stem invasions, increases the melting temperature, improves selectivity to its target, and leads to enhanced bio-stability. Our results suggest that l-DNA is useful for designing functional nucleic acid probes especially for biological applications. PMID:17959649

  4. Individual identification from semen by the deoxyribonucleic acid (DNA) fingerprint technique.

    PubMed

    Honma, M; Yoshii, T; Ishiyama, I; Mitani, K; Kominami, R; Muramatsu, M

    1989-01-01

    For individual identification from semen, the deoxyribonucleic acid (DNA) fingerprint technique was used. In a blind trial, we succeeded in determining the semen donors among several volunteers comparing the DNA fingerprints of the blood and semen samples, respectively. Thereafter, we examined semen in a condom left beside a naked female dead body. The DNA fingerprint of the semen was recognized to be identical to that of the blood from a suspected man arrested later. This is the first report that the DNA fingerprint technique was practically used in a criminal investigation in Japan.

  5. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  6. An ordered Arabidopsis thaliana mitochondrial cDNA library on high-density filters allows rapid systematic analysis of plant gene expression: a pilot study.

    PubMed

    Giegé, P; Konthur, Z; Walter, G; Brennicke, A

    1998-09-01

    The availability of the complete sequence of a genome allows a systematic analysis of its expression. Gene-specific variations of transcription levels and phenomena such as transcript processing and RNA editing require large numbers of clones to be examined. For the completely sequenced mitochondrial genome of Arabidopsis thaliana we adapted robot technology to identify and characterize expressed genes. A cDNA library of about 50,000 clones was constructed, robot-ordered into 384-well microtitre plates and spotted onto high-density filter membranes. These filters permit the isolation of large numbers of specific cDNA clones in a single hybridization step. The cox1, cox2 and cox3 genes were used to evaluate the feasibility and efficiency of this approach. A cluster of RNA editing sites observed outside the cox3 coding region identifies a novel reading frame orf95 in higher plants with significant similarity to a subunit of respiratory chain complex II.

  7. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  8. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  9. 5-Aminolevulinic acid improves DNA damage and DNA Methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings.

    PubMed

    Taspinar, Mahmut Sinan; Aydin, Murat; Arslan, Esra; Yaprak, Muhammet; Agar, Guleray

    2017-09-01

    Deltamethrin, synthetic type II pyrethroid, is one of the most widely used pesticide in agriculture. Intense use of deltamethrin can cause permanant or temporary damages in nontarget plant species. In this study, we aimed to determine DNA methylation change and DNA damage level in Phaseolus vulgaris seedlings subjected to different concentrations of deltamethrin (0.02, 0.1 and 0.5 ppm). Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) was performed to analyze the changes of DNA methylation as well as Randomly Amplified Polymorphic DNA (RAPD) was used for genotoxic influences estimation and genomic stability. The results showed that deltamethrin caused to increase in RAPD profile changes (DNA damage) and reduce in Genomic Template Stability (GTS). GTS declined markedly in relation to increasing concentration of deltamethrin applied. The lowest GTS value (71.4%) observed in 0.5 ppm deltamethrin treatment. Also, DNA hypermethylation was occurred in all treatments. Moreover, alleviative effect of 5-aminolevulinic acid (ALA) (20, 40 and 80 mg/l), one of the plant growth regulators, was tested against the 0.5 ppm deltamethrin. Adverse effects of deltamethrin on GTS decreased after ALA treatments, especially 20 mg/l concentration. As a result, we concluded that ALA has a strong anti-genotoxic agent against deltamethrin and it could be an alternative chemical to reduce genetic damage in plants under deltamethrin stress conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  11. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method

    PubMed Central

    Mudunkotuwa, Imali A.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2016-01-01

    Titanium dioxide (TiO2) particles, including nanoparticles with diameters smaller than 100 nm, are used extensively in consumer products. In a 2011 current intelligence bulletin, the National Institute of Occupational Safety and Health (NIOSH) recommended methods to assess worker exposures to fine and ultrafine TiO2 particles and associated occupational exposure limits for these particles. However, there are several challenges and problems encountered with these recommended exposure assessment methods involving the accurate quantitation of titanium dioxide collected on air filters using acid digestion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Specifically, recommended digestion methods include the use of chemicals, such as perchloric acid, which are typically unavailable in most accredited industrial hygiene laboratories due to highly corrosive and oxidizing properties. Other alternative methods that are used typically involve the use of nitric acid or combination of nitric acid and sulfuric acid, which yield very poor recoveries for titanium dioxide. Therefore, given the current state of the science, it is clear that a new method is needed for exposure assessment. In this current study, a microwave-assisted acid digestion method has been specifically designed to improve the recovery of titanium in TiO2 nanoparticles for quantitative analysis using ICP-OES. The optimum digestion conditions were determined by changing several variables including the acids used, digestion time, and temperature. Consequently, the optimized digestion temperature of 210°C with concentrated sulfuric and nitric acid (2:1 v/v) resulted in a recovery of >90% for TiO2. The method is expected to provide for a more accurate quantification of airborne TiO2 particles in the workplace environment. PMID:26181824

  12. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method.

    PubMed

    Mudunkotuwa, Imali A; Anthony, T Renée; Grassian, Vicki H; Peters, Thomas M

    2016-01-01

    Titanium dioxide (TiO(2)) particles, including nanoparticles with diameters smaller than 100 nm, are used extensively in consumer products. In a 2011 current intelligence bulletin, the National Institute of Occupational Safety and Health (NIOSH) recommended methods to assess worker exposures to fine and ultrafine TiO(2) particles and associated occupational exposure limits for these particles. However, there are several challenges and problems encountered with these recommended exposure assessment methods involving the accurate quantitation of titanium dioxide collected on air filters using acid digestion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Specifically, recommended digestion methods include the use of chemicals, such as perchloric acid, which are typically unavailable in most accredited industrial hygiene laboratories due to highly corrosive and oxidizing properties. Other alternative methods that are used typically involve the use of nitric acid or combination of nitric acid and sulfuric acid, which yield very poor recoveries for titanium dioxide. Therefore, given the current state of the science, it is clear that a new method is needed for exposure assessment. In this current study, a microwave-assisted acid digestion method has been specifically designed to improve the recovery of titanium in TiO(2) nanoparticles for quantitative analysis using ICP-OES. The optimum digestion conditions were determined by changing several variables including the acids used, digestion time, and temperature. Consequently, the optimized digestion temperature of 210°C with concentrated sulfuric and nitric acid (2:1 v/v) resulted in a recovery of >90% for TiO(2). The method is expected to provide for a more accurate quantification of airborne TiO(2) particles in the workplace environment.

  13. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  14. Method Optimization of Deoxyribonucleic Acid (DNA) Thin Films for Biotronics

    DTIC Science & Technology

    2011-09-01

    Added to the Spin-coater ......................................................................4 3.3 Comparison of Spin - Coating Speed and Sample...precipitate after centrifugation. ..............................3 Figure 3. Diagram of spin - coating method. First, the DNA-CTMA solution was pipetted onto... spin - coating speeds. ...................................................................................................................6 Figure 5

  15. Uracil misincorporation into DNA and folic acid supplementation

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Folate deficiency decreases thymidylate synthesis from deoxyuridylate, which results in an imbalance of deoxyribonucleotide that may lead to excessive uracil misincorporation (UrMis) into DNA during replication and repair. OBJECTIVE: We evaluated the relation between UrMis in different ...

  16. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.

    PubMed

    Liu, Xiaoqing; Lu, Chun-Hua; Willner, Itamar

    2014-06-17

    CONSPECTUS: The base sequence in DNA dictates structural and reactivity features of the biopolymer. These properties are implemented to use DNA as a unique material for developing the area of DNA nanotechnology. The design of DNA machines represents a rapidly developing research field in the area of DNA nanotechnology. The present Account discusses the switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines, and it highlights potential applications and future perspectives of the area. Programmed switchable DNA machines driven by various fuels and antifuels, such as pH, Hg(2+) ions/cysteine, or nucleic acid strands/antistrands, are described. These include the assembly of DNA tweezers, walkers, a rotor, a pendulum, and more. Using a pH-oscillatory system, the oscillatory mechanical operation of a DNA pendulum is presented. Specifically, the synthesis and "mechanical" properties of interlocked DNA rings are described. This is exemplified with the preparation of interlocked DNA catenanes and a DNA rotaxane. The dynamic fuel-driven reconfiguration of the catenane/rotaxane structures is followed by fluorescence spectroscopy. The use of DNA machines as functional scaffolds to reconfigurate Au nanoparticle assemblies and to switch the fluorescence features within fluorophore/Au nanoparticle conjugates between quenching and surface-enhanced fluorescence states are addressed. Specifically, the fluorescence features of the different DNA machines are characterized as a function of the spatial separation between the fluorophore and Au nanoparticles. The experimental results are supported by theoretical calculations. The future development of reconfigurable stimuli-responsive DNA machines involves fundamental challenges, such as the synthesis of molecular devices exhibiting enhanced complexities, the introduction of new fuels and antifuels, and the integration of new payloads being reconfigured by the molecular devices, such as enzymes or

  17. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    PubMed Central

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun; Chowdhury, Partha S.; Sims, Gary P.; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo. PMID:24081950

  18. [The effect of spermine on acid-base equilibrium in DNA molecule].

    PubMed

    Slonitskiĭ, S V; Kuptsov, V Iu

    1990-01-01

    The influence of spermine (Sp) on the acid-induced predenaturational and denaturational transitions in the DNA molecule structure has been studied by means of circular dichroism, spectrophotometric and viscometric titration at supporting electrolyte concentration 10 mM NaCl. The data available indicate that at [N]/[P] less than or equal to 0.60 (here [N] and [P] are molar concentrations of Sp nitrogen and DNA phosphours, respectively) the cooperative structural B----B(+)----S transitions are accompanied by the DNA double-helice winding. No competition for proton acceptor sites in the DNA molecule between H+ and Sp4+ cations has been observed when binding to neutral macromolecule. At 0.60 less than or equal to [N]/[P] less than or equal to 0.75 the displacement of the B----B(+)----S transitions midpoints to acidic pH region has been established. This is accompanied by DNA condensation and the appearance of differential scattering of circularly polarized light. The calculations carried out in the framework of the two-variable Manning theory have shown that the acid-induced reduction of the effective polyion charge density facilitates the Sp-induced DNA condensation. It has been shown that the acid-base equilibrium in the DNA molecule is determined by local [H+] in the 2-3 A hydrated monolayer of the macromolecule. An adequate estimation of [H+] can be obtained on the basis of the Poisson-Boltzman approach. The data obtained are consistent with recently proposed hypothesis of polyelectrolyte invariance of the acid-base equilibrium in the DNA molecule.

  19. Analysis of oxidative DNA damage after human dietary supplementation with linoleic acid.

    PubMed

    de Kok, T M C M; Zwingman, I; Moonen, E J; Schilderman, P A E L; Rhijnsburger, E; Haenen, G R M M; Kleinjans, J C S

    2003-03-01

    It has been hypothesized that oxygen radicals generated by peroxidation of dietary linoleic acid may induce genetic damage and thereby increase cancer risk. We examined the effect of dietary supplementation with linoleic acid on the levels of oxidative DNA damage in peripheral lymphocytes and on the blood plasma antioxidant potential. Thirty volunteers received during 6 weeks either a high dose of linoleic acid (15 g/day), an intermediate dose of linoleic acid (7.5 g/day) or an isocaloric supplement without linoleic acid (15 g palmitic acid/day). After the intervention, no significant increase in oxidative DNA damage, measured as relative amounts of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) in DNA from peripheral lymphocytes, was observed in both high and intermediate linoleic acid-supplemented groups (increase of respectively 13 and 21%; P>0.05). Also, the differences between levels of oxidative DNA damage in the high or intermediate linoleic acid-supplemented group and the control group receiving palmitic acid (23% decrease) were not significant. Furthermore, no statistically significant differences were found between the total antioxidant capacities of blood plasma from the different experimental groups. Plasma levels of malondialdehyde, an important end-product of lipid peroxidation, were not increased after supplementation, nor were effects found on the plasma concentrations of retinol, alpha-tocopherol and beta-carotene. Despite the experimental design that excludes several forms of bias introduced in studies based on modulation of dietary composition, our results provide no indication of increased oxidative stress or genetic damage as a result of increased dietary intake of linoleic acid. Therefore, we see no scientific basis to reconsider the public health policy to stimulate the intake of polyunsaturated fatty acids aimed at the reduction of coronary heart diseases.

  20. The nitrosated bile acid DNA lesion O6-carboxymethylguanine is a substrate for the human DNA repair protein O6-methylguanine-DNA methyltransferase

    PubMed Central

    Senthong, Pattama; Millington, Christopher L.; Wilkinson, Oliver J.; Marriott, Andrew S.; Watson, Amanda J.; Reamtong, Onrapak; Eyers, Claire E.; Williams, David M.; Margison, Geoffrey P.; Povey, Andrew C.

    2013-01-01

    The consumption of red meat is a risk factor in human colorectal cancer (CRC). One hypothesis is that red meat facilitates the nitrosation of bile acid conjugates and amino acids, which rapidly convert to DNA-damaging carcinogens. Indeed, the toxic and mutagenic DNA adduct O6-carboxymethylguanine (O6-CMG) is frequently present in human DNA, increases in abundance in people with high levels of dietary red meat and may therefore be a causative factor in CRC. Previous reports suggested that O6-CMG is not a substrate for the human version of the DNA damage reversal protein O6-methylguanine-DNA methyltransferase (MGMT), which protects against the genotoxic effects of other O6-alkylguanine lesions by removing alkyl groups from the O6-position. We now show that synthetic oligodeoxyribonucleotides containing the known MGMT substrate O6-methylguanine (O6-MeG) or O6-CMG effectively inactivate MGMT in vitro (IC50 0.93 and 1.8 nM, respectively). Inactivation involves the removal of the O6-alkyl group and its transfer to the active-site cysteine residue of MGMT. O6-CMG is therefore an MGMT substrate, and hence MGMT is likely to be a protective factor in CRC under conditions where O6-CMG is a potential causative agent. PMID:23335782

  1. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes.

    PubMed

    Wu, Szu-Yuan; Chang, Li-Ting; Peng, Sydeny; Tsai, Hsieh-Chih

    2015-01-01

    In this study, we synthesized a water-soluble poly(amic acid-co-imide) (PA-I) from ethylenediaminetetraacetic dianhydride (EDTA) and 2,2'-(ethylenedioxy)bis(ethylamine) that possesses comparable transfection efficiency to that of polyethylenimine (PEI), when prepared in combination with divalent calcium cations. The polycondensation of monomers afforded poly(amic acid) (PA) precursors, and subsequent thermal imidization resulted in the formation of PA-I. At a polymer/DNA ratio (indicated by the molar ratio of nitrogen in the polymer to phosphate in DNA) of 40, complete retardation of the DNA band was observed by gel electrophoresis, indicating the strong association of DNA with PA-I. A zeta potential of -22 mV was recorded for the PA-I polymer solution, and no apparent cytotoxicity was observed at concentrations up to 500 μg·mL(-1). In the presence of divalent Ca(2+), the transfection efficiency of PA-I was higher than that of PA, due to the formation of a copolymer/Ca(2+)/DNA polyplex and the reduction in negative charge due to thermal cyclization. Interestingly, a synergistic effect of Ca(2+) and the synthesized copolymer on DNA transfection was observed. The use of Ca(2+) or copolymer alone resulted in unsatisfactory delivery, whereas the formation of three-component polyplexes synergistically increased DNA transfection. Our findings demonstrated that a PA-I/Ca(2+)/DNA polyplex could serve as a promising candidate for gene delivery.

  2. Identification of dairy lactic acid bacteria by tRNAAla-23S rDNA-RFLP.

    PubMed

    Mancini, Andrea; Lazzi, Camilla; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2012-12-01

    The aim of this study was to evaluate the potential of target tRNA(Ala)-23S ribosomal DNA for identification of lactic acid bacteria strains associated with dairy ecosystem. For this purpose tRNA(Ala)-23S ribosomal DNA Restriction Fragment Length Polymorphism (tRNA(Ala)-23S rDNA-RFLP) was compared with two widely used DNA fingerprinting methods - P1 Random Amplified Polymorphic DNA (RAPD), (GTG)5 repetitive extragenic palindromic PCR (rep-PCR) - for their ability to identify different species on a set of 10 type and 34 reference strains. Moreover, 75 unknown isolates collected during different stages of Grana Padano cheese production and ripening were identified using tRNA(Ala)-23S rDNA-RFLP and compared to the RFLP profiles of the strains in the reference database. This study demonstrated that the target tRNA(Ala)-23S rDNA has high potential in bacterial identification and tRNA(Ala)-23S rDNA-RFLP is a promising method for reliable species-level identification of lactic acid bacteria (LAB) in dairy products.

  3. Deoxyribonucleic acid (DNA)-Ni-nanostrands composites for EMI shielding

    NASA Astrophysics Data System (ADS)

    Ouchen, Fahima; Wilson, Benjamin G.; Yaney, Perry P.; Salour, Michael M.; Grote, James G.

    2016-09-01

    In this study, we demonstrated the use of DNA-CTMA (DC) in combination with Nickel Nanostrands (NiNs) for application in Electromagnetic Interference (EMI) shielding. The addition of NiNs fillers to DC led to films with higher shielding effectiveness (SE) than when Silver nanoparticles were used. An enhanced EMI shielding effectiveness (SE) was also achieved by the fabrication of the DC-NiNs shielding film structure in a layered architecture. Very thin layer of Guanine ( 60 nm) were inserted between layers of DNA-NiNs ( 100um each) to total a thickness of 500um of the shielding film. An increase of the SE by 6-8 dB for the layered structure as compared to the bulk thick film with NiNs loadings up to 10 wt%. At higher loadings (>10 wt. %), a significant physical degradation of the films was observed for all films regardless of the thickness or the process of fabrication.

  4. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm.

    PubMed

    DeRouchey, Jason E; Rau, Donald C

    2011-12-09

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.

  5. Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis.

    PubMed

    Gernaey, A M; Minnikin, D E; Copley, M S; Dixon, R A; Middleton, J C; Roberts, C A

    2001-01-01

    The underlying trends in the past epidemiology of tuberculosis (TB) are obscure, requiring recourse to the archaeological record. It would therefore be of value to develop methods for reliable TB diagnosis in ancient populations. To test the capability of two biomarkers, Mycobacterium tuberculosis complex mycolic acids and a DNA target (IS6110), for confirming an osteological diagnosis of TB in medieval individuals, based on the presence of Pott's disease and/or rib lesions. Osteological examination of three archaeological individuals (Medieval: approximately 1000 years old) revealed a Pott's disease case, one with no changes consistent with TB and one with rib lesions. Rib samples from these individuals were examined for the presence of Mycobacterium tuberculosis complex mycolic acids and mycobacterial DNA. Mycobacterium tuberculosis complex mycolic acids and the DNA target were detected in the Pott's disease case, whilst mycolic acids (insufficient for confirmation) alone were detected in the rib lesion case. Biomarkers provide a sensitive tool to detect ancient TB. Mycobacterium tuberculosis DNA is not distributed homogeneously, making multiple sampling essential. Mycolic acids seem more reliable for ancient TB diagnosis than IS6110. The demonstrated stability of mycolic acids show that they may be of value in tracing the palaeoepidemiology of tuberculosis back into antiquity.

  6. Switchable mechanical DNA ``arms'' operating on nucleic acid scaffolds associated with electrodes or semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Pelossof, Gilad; Tel-Vered, Ran; Liu, Xiaoqing; Willner, Itamar

    2013-09-01

    Functional footholds linked to DNA scaffolds associated with surfaces provide nano-engineered assemblies acting as switching devices. By the assembly of a β-cyclodextrin receptor on one foothold, and a ferrocene-modified nucleic acid on a second foothold, the switchable and reversible, fuel-driven activation of ``molecular arms'' proceeds, transduced by electrochemical or optical signals.Functional footholds linked to DNA scaffolds associated with surfaces provide nano-engineered assemblies acting as switching devices. By the assembly of a β-cyclodextrin receptor on one foothold, and a ferrocene-modified nucleic acid on a second foothold, the switchable and reversible, fuel-driven activation of ``molecular arms'' proceeds, transduced by electrochemical or optical signals. Electronic supplementary information (ESI) available: Experimental procedures, time-dependent deactivation of a DNA ``arm'' using a DNA anti-fuel, and control experiments, excluding β-cyclodextrin from the systems. See DOI: 10.1039/c3nr02653a

  7. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  8. Beyond DNA origami: A look on the bright future of nucleic acid nanotechnology

    PubMed Central

    Michelotti, Nicole; Johnson-Buck, Alexander; Manzo, Anthony J.

    2012-01-01

    Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA ”staples”. This revolutionary approach has led to the creation of a multitude of 2D and 3D scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy. PMID:22131292

  9. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

  10. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    DTIC Science & Technology

    2010-01-01

    hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research addresses how the...are 5′→3′ and strands with strikethrough are 3′→5′. A dsDNA duplex formed between a strand and its reverse complement is called a Watson - Crick (WC...3’ 5’ 3’ 5’TACGCGACTTTC3’ 5’GAAAGTCGCGTA3’ ATCAAACGATGC GCATCGTTTGAT Watson Crick (WC) Duplexes TACGCGACTTTC

  11. Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids.

    PubMed

    Yao, Dongbao; Song, Tingjie; Sun, Xianbao; Xiao, Shiyan; Huang, Fujian; Liang, Haojun

    2015-11-11

    Programmable and algorithmic behaviors of DNA molecules allow one to control the structures of DNA-assembled materials with nanometer precision and to construct complex networks with digital and analog behaviors. Here we developed a way of integrating a DNA-strand-displacement circuit with self-assembly of spherical nucleic acids, wherein a single DNA strand was used to initiate and catalyze the operation of upstream circuits to release a single strand that subsequently triggers self-assembly of spherical nucleic acids in downstream circuits, realizing a programmable kinetic control of self-assembly of spherical nucleic acids. Through utilizing this method, single-nucleotide polymorphisms or indels occurring at different positions of a sequence of oligonucleotide were unambiguously discriminated. We provide here a sophisticated way of combining the DNA-strand-displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, which may find broad potential applications in the fabrication of a wide range of complex multicomponent devices and architectures.

  12. Associations between whole peripheral blood fatty acids and DNA methylation in humans

    PubMed Central

    de la Rocha, Carmen; Pérez-Mojica, J. Eduardo; León, Silvia Zenteno-De; Cervantes-Paz, Braulio; Tristán-Flores, Fabiola E.; Rodríguez-Ríos, Dalia; Molina-Torres, Jorge; Ramírez-Chávez, Enrique; Alvarado-Caudillo, Yolanda; Carmona, F. Javier; Esteller, Manel; Hernández-Rivas, Rosaura; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio; Lund, Gertrud

    2016-01-01

    Fatty acids (FA) modify DNA methylation in vitro, but limited information is available on whether corresponding associations exist in vivo and reflect any short-term effect of the diet. Associations between global DNA methylation and FAs were sought in blood from lactating infants (LI; n = 49) and adult males (AMM; n = 12) equally distributed across the three conventional BMI classes. AMM provided multiple samples at 2-hour intervals during 8 hours after either a single Western diet-representative meal (post-prandial samples) or no meal (fasting samples). Lipid/glucose profile, HDAC4 promoter and PDK4 5’UTR methylation were determined in AMM. Multiple regression analysis revealed that global (in LI) and both global and PDK4-specific DNA methylation (in AMM) were positively associated with eicosapentaenoic and arachidonic acid. HDAC4 methylation was inversely associated with arachidonic acid post-prandially in AMM. Global DNA methylation did not show any defined within-day pattern that would suggest a short-term response to the diet. Nonetheless, global DNA methylation was higher in normal weight subjects both post-prandially and in fasting and coincided with higher polyunsaturated relative to monounsaturated and saturated FAs. We show for the first time strong associations of DNA methylation with specific FAs in two human cohorts of distinct age, diet and postnatal development stage. PMID:27181711

  13. Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces.

    PubMed Central

    Fojta, M; Vetterl, V; Tomschik, M; Jelen, F; Nielsen, P; Wang, J; Palecek, E

    1997-01-01

    Adsorption behavior of peptide nucleic acid (PNA) and DNA decamers (GTAGATCACT and the complementary sequence) on a mercury surface was studied by means of AC impedance measurements at a hanging mercury drop electrode. The nucleic acid was first attached to the electrode by adsorption from a 5-microliter drop of PNA (or DNA) solution, and the electrode with the adsorbed nucleic acid layer was then washed and immersed in the blank background electrolyte where the differential capacity C of the electrode double layer was measured as a function of the applied potential E. It was found that the adsorption behavior of the PNA with an electrically neutral backbone differs greatly from that of the DNA (with a negatively charged backbone), whereas the DNA-PNA hybrid shows intermediate behavior. At higher surface coverage PNA molecules associate at the surface, and the minimum value of C is shifted to negative potentials because of intermolecular interactions of PNA at the surface. Prolonged exposure of PNA to highly negative potentials does not result in PNA desorption, whereas almost all of the DNA is removed from the surface at these potentials. Adsorption of PNA decreases with increasing NaCl concentration in the range from 0 to 50 mM NaCl, in contrast to DNA, the adsorption of which increases under the same conditions. PMID:9129832

  14. Tyrosine Phosphatase TpbA of Pseudomonas aeruginosa Controls Extracellular DNA via Cyclic Diguanylic Acid Concentrations

    PubMed Central

    Ueda, Akihiro; Wood, Thomas K.

    2010-01-01

    SUMMARY Inactivating the tyrosine phosphatase TpbA of Pseudomonas aeruginosa PA14 induces biofilm formation by 150-fold via increased production of the second messenger cyclic diguanylic acid (c-di-GMP). Here, we show the tpbA mutation reduces extracellular DNA (eDNA) and that increased expression of tpbA increases eDNA; hence, eDNA is inversely proportional to c-di-GMP concentrations. Mutations in diguanylate cyclases PA0169, PA4959, and PA5487 and phosphodiesterase PA4781 corroborate this trend. The tpbA mutation also decreases cell lysis while overexpression of tpbA increases cell lysis. To further link c-di-GMP concentrations and eDNA, the gene encoding phosphodiesterase PA2133 was overexpressed which increased eDNA and decreased biofilm formation by decreasing c-di-GMP. Furthermore, the effect of the tpbB mutation along with the tpbA mutation was examined because loss of TpbB restored the phenotypes controlled by enhanced c-di-GMP in the tpbA mutant. The tpbA tpbB double mutations restored eDNA to that of the PA14 wild-type level. These findings suggest that c-di-GMP, rather than TpbA, controls eDNA. Hence, TpbA acts as a positive regulator of eDNA and cell lysis by reducing c-di-GMP concentrations. PMID:21552365

  15. POD promoted oxidative gelation of water-extractable arabinoxylan through ferulic acid dimers. Evidence for its negative effect on malt filterability.

    PubMed

    Wu, Dianhui; Zhou, Ting; Li, Xiaomin; Cai, Guolin; Lu, Jian

    2016-04-15

    As a major component of non-starch polysaccharide in barley, arabinoxylan (AX) plays an important role in quality traits of malt and the final beer product. The Chinese barley malt has encountered filterability problems for a long time. The main reason caused by barley cultivar has been accepted in the malting and brewing industries. In our previous proteomic study, the peroxidase (POD) BP1 was found to be in quite high abundant in the filterability defect Chinese barley malt. Therefore, the present study tried to verify its negative effect on filterability, by surveying its activity in different malt samples and detecting effects of POD on AX gelation and filterability. The results showed that the activity of POD, as well as the content of AX bounded ferulic acid, were both negatively correlated with filterability, while the feruloyl esterase activity was positively correlated with it. In addition, AX gelation catalyzed by POD caused worse filterability, and the natural inhibitor of POD, vitamin C, could blocked the cross linking catalyzed by POD and thus improve the filterability. These results all suggested the great negative effect of POD on malt filterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Binding of retinoic acid receptor heterodimers to DNA. A role for histones NH2 termini.

    PubMed

    Lefebvre, P; Mouchon, A; Lefebvre, B; Formstecher, P

    1998-05-15

    The retinoic acid signaling pathway is controlled essentially through two types of nuclear receptors, RARs and RXRs. Ligand dependent activation or repression of retinoid-regulated genes is dependent on the binding of retinoic acid receptor (RAR)/9-cis-retinoic acid receptor (RXR) heterodimers to retinoic acid response element (RARE). Although unliganded RXR/RAR heterodimers bind constitutively to DNA in vitro, a clear in vivo ligand-dependent occupancy of the RARE present in the RARbeta2 gene promoter has been reported (Dey, A., Minucci, S., and Ozato, K. (1994) Mol. Cell. Biol. 14, 8191-8201). Nucleosomes are viewed as general repressors of the transcriptional machinery, in part by preventing the access of transcription factors to DNA. The ability of hRXRalpha/hRARalpha heterodimers to bind to a nucleosomal template in vitro has therefore been examined. The assembly of a fragment from the RARbeta2 gene promoter, which contains a canonical DR5 RARE, into a nucleosome core prevented hRXRalpha/hRARalpha binding to this DNA, in conditions where a strong interaction is observed with a linear DNA template. However, histone tails removal by limited proteolysis and histone hyperacetylation yielded nucleosomal RAREs able to bind to hRXRalpha/hRARalpha heterodimers. These data establish therefore the role of histones NH2 termini as a major impediment to retinoid receptors access to DNA, and identify histone hyperacetylation as a potential physiological regulator of retinoid-induced transcription.

  17. Aryldiazomethanes for universal labeling of nucleic acids and analysis on DNA chips.

    PubMed

    Laayoun, Ali; Kotera, Mitsuharu; Sothier, Isabelle; Trévisiol, Emmanuelle; Bernal-Méndez, Eloy; Bourget, Cécile; Menou, Lionel; Lhomme, Jean; Troesch, Alain

    2003-01-01

    DNA and RNA labeling and detection are key steps in nucleic acid-based technologies, used in medical research and molecular diagnostics. We report here the synthesis, reactivity, and potential of a new type of labeling molecule, m-(N-Biotinoylamino)phenylmethyldiazomethane (m-BioPMDAM), that reacts selectively and efficiently with phosphates in nucleotide monomers, oligonucleotides, DNA, and RNA. This molecule contains a biotin as detectable unit and a diazomethyl function as reactive moiety. We demonstrate that this label fulfills the requirements of stability, solubility, reactivity, and selectivity for hybridization-based analysis and especially for detection on high-density DNA chips.

  18. Complete cDNA and derived amino acid sequence of human factor V

    SciTech Connect

    Jenny, R.J.; Pittman, D.D.; Toole, J.J.; Kriz, R.W.; Aldape, R.A.; Hewick, R.M.; Kaufman, R.J.; Mann, K.G.

    1987-07-01

    cDNA clones encoding human factor V have been isolated from an oligo(dT)-primed human fetal liver cDNA library prepared with vector Charon 21A. The cDNA sequence of factor V from three overlapping clones includes a 6672-base-pair (bp) coding region, a 90-bp 5' untranslated region, and a 163-bp 3' untranslated region within which is a poly(A)tail. The deduced amino acid sequence consists of 2224 amino acids inclusive of a 28-amino acid leader peptide. Direct comparison with human factor VIII reveals considerable homology between proteins in amino acid sequence and domain structure: a triplicated A domain and duplicated C domain show approx. 40% identity with the corresponding domains in factor VIII. As in factor VIII, the A domains of factor V share approx. 40% amino acid-sequence homology with the three highly conserved domains in ceruloplasmin. The B domain of factor V contains 35 tandem and approx. 9 additional semiconserved repeats of nine amino acids of the form Asp-Leu-Ser-Gln-Thr-Thr/Asn-Leu-Ser-Pro and 2 additional semiconserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues.

  19. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

    PubMed Central

    šponer, Jiří; Cang, Xiaohui; Cheatham, Thomas E.

    2013-01-01

    The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids. PMID:22525788

  20. Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties.

    PubMed

    Tarushi, Alketa; Psomas, George; Raptopoulou, Catherine P; Kessissoglou, Dimitris P

    2009-06-01

    The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2'-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2'-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.

  1. Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

    PubMed Central

    Wnek, S.M.; Medeiros, M.K.; Eblin, K.E.; Gandolfi, A.J.

    2009-01-01

    Malignant transformation was demonstrated in UROtsa cells following 52 wk exposure to 50 nM monomethylarsonous acid (MMAIII); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMAIII [URO-MSC(+)] and after subsequent removal of MMAIII [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMAIII, URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12 wk exposure; in particular, a significant increase in DNA single strand breaks at 12 wk exposure consistently elevated through 52 wk. The persistence of DNA damage in URO-MSC cells was assessed after a 2 wk removal of MMAIII. URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36 wk MMAIII exposure, suggesting the presence of MMAIII is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMAIII results in: the induction of DNA damage that remains elevated upon removal of MMAIII; increased levels of ROS that play a role in MMAIII induced-DNA damage; and decreased PARP activity in the presence of MMAIII. PMID:19699219

  2. Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7.

    PubMed

    Jeong, Kwang Cheol; Hung, Kai Foong; Baumler, David J; Byrd, Jeffrey J; Kaspar, Charles W

    2008-10-15

    Acid tolerance in Escherichia coli O157:H7 contributes to persistence in its bovine host and is thought to promote passage through the gastric barrier of humans. Dps (DNA-binding protein in starved cells) mutants of E. coli have reduced acid tolerance when compared to the parent strain although the role of Dps in acid tolerance is unclear. This study investigated the mechanism by which Dps contributes to acid tolerance in E. coli O157:H7. The results from this study showed that acid stress lead to damage of chromosomal DNA, which was accentuated in dps and recA mutants. The use of Bal31, which cleaves DNA at nicks and single-stranded regions, to analyze chromosomal DNA extracted from cells challenged at pH 2.0 provided in vivo evidence of acid damage to DNA. The DNA damage in a recA mutant further corroborated the hypothesis that acid stress leads to DNA strand breaks. Under in vitro assay conditions, Dps was shown to bind plasmid DNA directly and protect it from acid-induced strand breaks. Furthermore, the extraction of DNA from Dps-DNA complexes required a denaturing agent at low pH (2.2 and 3.6) but not at higher pH (>pH4.6). Low pH also restored the DNA-binding activity of heat-denatured Dps. Circular dichroism spectra revealed that at pH 3.6 and pH 2.2 Dps maintains or forms alpha-helices that are important for Dps-DNA complex formation. Results from the present work showed that acid stress results in DNA damage that is more pronounced in dps and recA mutants. The contribution of RecA to acid tolerance indicated that DNA repair was important even when Dps was present. Dps protected DNA from acid damage by binding to DNA. Low pH appeared to strengthen the Dps-DNA association and the secondary structure of Dps retained or formed alpha-helices at low pH. Further investigation into the precise interplay between DNA protection and damage repair pathways during acid stress are underway to gain additional insight.

  3. Arachidonic and oleic acid exert distinct effects on the DNA methylome

    PubMed Central

    Silva-Martínez, Guillermo A.; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F. Javier; Moran, Sebastian; Nielsen, Finn C.; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud

    2016-01-01

    ABSTRACT Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456

  4. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps.

    PubMed

    Claus, Aaron W; Sorensen, Peter W

    2017-03-15

    This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.

  5. Anisotropic tubular filtering for automatic detection of acid-fast bacilli in Ziehl-Neelsen stained sputum smear samples

    NASA Astrophysics Data System (ADS)

    Raza, Shan-e.-Ahmed; Marjan, M. Q.; Arif, Muhammad; Butt, Farhana; Sultan, Faisal; Rajpoot, Nasir M.

    2015-03-01

    One of the main factors for high workload in pulmonary pathology in developing countries is the relatively large proportion of tuberculosis (TB) cases which can be detected with high throughput using automated approaches. TB is caused by Mycobacterium tuberculosis, which appears as thin, rod-shaped acid-fast bacillus (AFB) in Ziehl-Neelsen (ZN) stained sputum smear samples. In this paper, we present an algorithm for automatic detection of AFB in digitized images of ZN stained sputum smear samples under a light microscope. A key component of the proposed algorithm is the enhancement of raw input image using a novel anisotropic tubular filter (ATF) which suppresses the background noise while simultaneously enhancing strong anisotropic features of AFBs present in the image. The resulting image is then segmented using color features and candidate AFBs are identified. Finally, a support vector machine classifier using morphological features from candidate AFBs decides whether a given image is AFB positive or not. We demonstrate the effectiveness of the proposed ATF method with two different feature sets by showing that the proposed image analysis pipeline results in higher accuracy and F1-score than the same pipeline with standard median filtering for image enhancement.

  6. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter.

    PubMed

    Grootscholten, T I M; Steinbusch, K J J; Hamelers, H V M; Buisman, C J N

    2013-05-01

    The objective of this investigation was to further increase the medium chain fatty acid (MCFA) production rate by reducing the hydraulic retention time (HRT) in an upflow anaerobic filter. The results showed that the volumetric MCFA production rate was increased to 57.4 g MCFA l(-1) d(-1), more than 3 times higher than previous work. Despite the lower MCFA concentrations at 4h HRT, the MCFA selectivity remained above 80%. Extra carbon dioxide additions and higher yeast extract concentrations were required to increase the MCFA production rate. More research related to substrates and (micro)nutrients in mixed culture continuous reactors needs to be performed to reduce yeast extract use in chain elongation.

  7. Using a gradient in food quality to infer drivers of fatty acid content in two filter-feeding aquatic consumers

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle

    2017-01-01

    Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.

  8. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Kongpeth, Jutatip; Jampasa, Sakda; Chaumpluk, Piyasak; Chailapakul, Orawon; Vilaivan, Tirayut

    2016-01-01

    Electrochemical detection provides a simple, rapid, sensitive and inexpensive method for DNA detection. In traditional electrochemical DNA biosensors, the probe is immobilized onto the electrode. Hybridization with the DNA target causes a change in electrochemical signal, either from the intrinsic signal of the probe/target or through a label or a redox indicator. The major drawback of this approach is the requirement for probe immobilization in a controlled fashion. In this research, we take the advantage of different electrostatic properties between PNA and DNA to develop an immobilization-free approach for highly sequence-specific electrochemical DNA sensing on a screen-printed carbon electrode (SPCE) using a square-wave voltammetric (SWV) technique. Anthraquinone-labeled pyrrolidinyl peptide nucleic acid (AQ-PNA) was employed as a probe together with an SPCE that was modified with a positively-charged polymer (poly quaternized-(dimethylamino-ethyl)methacrylate, PQDMAEMA). The electrostatic attraction between the negatively-charged PNA-DNA duplex and the positively-charged modified SPCE attributes to the higher signal of PNA-DNA duplex than that of the electrostatically neutral PNA probe, resulting in a signal change. The calibration curve of this proposed method exhibited a linear range between 0.35 and 50 nM of DNA target with a limit of detection of 0.13 nM (3SD(blank)/Slope). The sub-nanomolar detection limit together with a small sample volume required (20 μL) allowed detection of <10 fmol (<1 ng) of DNA. With the high specificity of the pyrrolidinyl PNA probe used, excellent discrimination between complementary and various single-mismatched DNA targets was obtained. An application of this new platform for a sensitive and specific detection of isothermally-amplified shrimp's white spot syndrome virus (WSSV) DNA was successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.

    PubMed

    Dunn, Matthew R; Chaput, John C

    2016-10-04

    Recent advances in polymerase engineering have enabled the replication of xenonucleic acid (XNA) polymers with backbone structures distinct from those found in nature. By introducing a selective amplification step into the replication cycle, functional XNA molecules have been isolated by in vitro selection with binding and catalytic activity. Despite these successes, coding and decoding genetic information in XNA polymers remains limited by the fidelity and catalytic efficiency of engineered XNA polymerases. In particular, the process of reverse transcribing XNA back into DNA for amplification by PCR has been problematic. Here, we show that Geobacillus stearothermophilus (Bst) DNA polymerase I functions as an efficient and faithful threose nucleic acid (TNA)-dependent DNA polymerase. Bst DNA polymerase generates ∼twofold more cDNA with threefold fewer mutations than Superscript II (SSII), which was previously the best TNA reverse transcriptase. Notably, Bst also functions under standard magnesium-dependent conditions, whereas SSII requires manganese ions to relax the enzyme's substrate specificity. We further demonstrate that Bst DNA polymerase can support the in vitro selection of TNA aptamers by evolving a TNA aptamer to human α-thrombin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification of amino acid residues of transcription factor AP-2 involved in DNA binding.

    PubMed

    García, M A; Campillos, M; Ogueta, S; Valdivieso, F; Vázquez, J

    2000-08-25

    AP-2 is a cell-type specific, developmentally regulated transcription factor which has been described as a critical regulator of gene expression during vertebrate development and embryogenesis. Although the overall domains of this factor necessary for their activity have been identified, the exact identity of AP-2 amino acid residues responsible for its interaction with the DNA structure has not yet been described. Here, we describe the identification of a region of AP-2 which was protected by an oligonucleotide probe containing its binding site from trypsin digestion, monitored by peptide mapping by MALDI-TOF mass spectrometry. Furthermore, we analyzed the relative in vitro DNA-binding activity, the stimulatory potency on the AP-2-dependent APOE promoter, as well as the ability to inhibit the effect of the wild-type protein of each one of a set of single-site substitution AP-2 mutants spanning the identified region. Taken together, our data clearly demonstrate that the region between amino acid residues 252-260 of AP-2 is essential for its DNA-binding activity. Particularly, the individual substitution in any of the residues 253, 254, 255, 257 or 260 is sufficient for completely abolishing the interaction with DNA and the stimulation of APOE promoter activity. These results indicate a crucial role of this region in the formation of an active DNA-binding domain and strongly suggest that these residues provide direct contacts with the DNA structure at the AP-2 binding site. Copyright 2000 Academic Press.

  11. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  12. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  13. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products.

    PubMed

    Komaki, Yukako; Pals, Justin; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2009-11-01

    Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA > CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.

  14. A Concentrated Hydrochloric Acid-based Method for Complete Recovery of DNA from Bone.

    PubMed

    Huynen, Leon; Lambert, David M

    2015-11-01

    The successful extraction of DNA from historical or ancient animal bone is important for the analysis of discriminating genetic markers. Methods used currently rely on the digestion of bone with EDTA and proteinase K, followed by purification with phenol/chloroform and silica bed binding. We have developed a simple concentrated hydrochloric acid-based method that precludes the use of phenol/chloroform purification and can lead to a several-fold increase in DNA yield when compared to other commonly used methods. Concentrated hydrochloric acid was shown to dissolve most of the undigested bone and allowed the efficient recovery of DNA fragments <100 bases in length. This method should prove useful for the recovery of DNAs from highly degraded animal bone, such as that found in historical or ancient samples. © 2015 American Academy of Forensic Sciences.

  15. Design and synthesis of N-benzoyl amino acid derivatives as DNA methylation inhibitors.

    PubMed

    Garella, Davide; Atlante, Sandra; Borretto, Emily; Cocco, Mattia; Giorgis, Marta; Costale, Annalisa; Stevanato, Livio; Miglio, Gianluca; Cencioni, Chiara; Fernández-de Gortari, Eli; Medina-Franco, José L; Spallotta, Francesco; Gaetano, Carlo; Bertinaria, Massimo

    2016-11-01

    The inhibition of human DNA Methyl Transferases (DNMT) is a novel promising approach to address the epigenetic dysregulation of gene expression in different diseases. Inspired by the validated virtual screening hit NSC137546, a series of N-benzoyl amino acid analogues was synthesized and obtained compounds were assessed for their ability to inhibit DNMT-dependent DNA methylation in vitro. The biological screening allowed the definition of a set of preliminary structure-activity relationships and the identification of compounds promising for further development. Among the synthesized compounds, L-glutamic acid derivatives 22, 23, and 24 showed the highest ability to prevent DNA methylation in a total cell lysate. Compound 22 inhibited DNMT1 and DNMT3A activity in a concentration-dependent manner in the micromolar range. In addition, compound 22 proved to be stable in human serum and it was thus selected as a starting point for further biological studies. © 2016 John Wiley & Sons A/S.

  16. DNA tetrahedron and star trigon nanostructures for target recycling detection of nucleic acid.

    PubMed

    Li, Yueran; Chen, Xifeng; Wang, Bidou; Liu, Guangxing; Tang, Yuguo; Miao, Peng

    2016-06-07

    Human immunodeficiency virus (HIV) is a retrovirus which attacks the human body's immune system and further leads to acquired immunodeficiency syndrome (AIDS). Nucleic acid detection is of great importance in the medical diagnosis of such diseases. Herein, we develop a simple and enzyme-free electrochemical method for the target recycling detection of nuclei acid. DNA tetrahedron and star trigon nanostructures are designed and constructed on the electrode interface for target capture and signal enrichment. This strategy is convenient and sensitive, with a limit of detection as low as 1 fM, and can also successfully distinguish single-base mismatched DNA. Therefore, the proposed method has a promising potential application for HIV DNA detection.

  17. Remote control of lipophilic nucleic acids domain partitioning by DNA hybridization and enzymatic cleavage.

    PubMed

    Schade, Matthias; Knoll, Andrea; Vogel, Alexander; Seitz, Oliver; Liebscher, Jürgen; Huster, Daniel; Herrmann, Andreas; Arbuzova, Anna

    2012-12-19

    Lateral partitioning of lipid-modified molecules between liquid-disordered (ld) and liquid-ordered (lo) domains depends on the type of lipid modification, presence of a spacer, membrane composition, and temperature. Here, we show that the lo domain partitioning of the palmitoylated peptide nucleic acid (PNA) can be influenced by formation of a four-component complex with the ld domain partitioning tocopherol-modified DNA: the PNA-DNA complex partitioned into the ld domains. Enzymatic cleavage of the DNA linker led to the disruption of the complex and restored the initial distribution of the lipophilic nucleic acids into the respective domains. This modular system offers strategies for dynamic functionalization of biomimetic surfaces, for example, in nanostructuring and regulation of enzyme catalysis, and it provides a tool to study the molecular basis of controlled reorganization of lipid-modified proteins in membranes, for example, during signal transduction.

  18. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    PubMed Central

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-01-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera. Images PMID:1901711

  19. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    PubMed

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-02-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera.

  20. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  1. The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats.

    PubMed

    Stiborová, Marie; Bárta, František; Levová, Kateřina; Hodek, Petr; Frei, Eva; Arlt, Volker M; Schmeiser, Heinz H

    2015-11-01

    Exposure to the plant nephrotoxin and carcinogen aristolochic acid (AA) leads to the development of AA nephropathy, Balkan endemic nephropathy (BEN) and upper urothelial carcinoma (UUC) in humans. Beside AA, exposure to ochratoxin A (OTA) was linked to BEN. Although OTA was rejected as a factor for BEN/UUC, there is still no information whether the development of AA-induced BEN/UUC is influenced by OTA exposure. Therefore, we studied the influence of OTA on the genotoxicity of AA (AA-DNA adduct formation) in vivo. AA-DNA adducts were formed in liver and kidney of rats treated with AA or AA combined with OTA, but no OTA-related DNA adducts were detectable in rats treated with OTA alone or OTA combined with AA. Compared to rats treated with AA alone, AA-DNA adduct levels were 5.4- and 1.6-fold higher in liver and kidney, respectively, of rats treated with AA combined with OTA. Although AA and OTA induced quinone oxidoreductase (NQO1) activating AA to DNA adducts, their combined treatment did not lead to either higher NQO1 enzyme activity or higher AA-DNA adduct levels in ex vivo incubations. Oxidation of AA I (8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid) to its detoxification metabolite, 8-hydroxyaristolochic acid, was lower in microsomes from rats treated with AA and OTA, and this was paralleled by lower activities of cytochromes P450 1A1/2 and/or 2C11 in these microsomes. Our results indicate that a decrease in AA detoxification after combined exposure to AA and OTA leads to an increase in AA-DNA adduct formation in liver and kidney of rats.

  2. Nucleic acid determinants for selective deamination of DNA over RNA by activation-induced deaminase.

    PubMed

    Nabel, Christopher S; Lee, Jae W; Wang, Laura C; Kohli, Rahul M

    2013-08-27

    Activation-induced deaminase (AID), a member of the larger AID/APOBEC family, is the key catalyst in initiating antibody somatic hypermutation and class-switch recombination. The DNA deamination model accounting for AID's functional role posits that AID deaminates genomic deoxycytosine bases within the immunoglobulin locus, activating downstream repair pathways that result in antibody maturation. Although this model is well supported, the molecular basis for AID's selectivity for DNA over RNA remains an open and pressing question, reflecting a broader need to elucidate how AID/APOBEC enzymes engage their substrates. To address these questions, we have synthesized a series of chimeric nucleic acid substrates and characterized their reactivity with AID. These chimeric substrates feature targeted variations at the 2'-position of nucleotide sugars, allowing us to interrogate the steric and conformational basis for nucleic acid selectivity. We demonstrate that modifications to the target nucleotide can significantly alter AID's reactivity. Strikingly, within a substrate that is otherwise DNA, a single RNA-like 2'-hydroxyl substitution at the target cytosine is sufficient to compromise deamination. Alternatively, modifications that favor a DNA-like conformation (or sugar pucker) are compatible with deamination. AID's closely related homolog APOBEC1 is similarly sensitive to RNA-like substitutions at the target cytosine. Inversely, with unreactive 2'-fluoro-RNA substrates, AID's deaminase activity was rescued by introducing a trinucleotide DNA patch spanning the target cytosine and two nucleotides upstream. These data suggest a role for nucleotide sugar pucker in explaining the molecular basis for AID's DNA selectivity and, more generally, suggest how other nucleic acid-modifying enzymes may distinguish DNA from RNA.

  3. Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids.

    PubMed

    Xu, Jianguo; Qian, Jun; Li, Hongling; Wu, Zai-Sheng; Shen, Weiyu; Jia, Lee

    2016-01-15

    As DNA is employed to serve as a smart building block, an increasing interest has been devoted to the development of different DNA-based machines for the specific purpose, for example, the exploration of inter- or intramolecular interaction. In the current contribution, we developed an intelligent DNA machine and its operation can be designed to execute the ultrasensitive colorimetric detection of target nucleic acids. The DNA machine consists of a hairpin probe (HP) and an assistant template (AT). Using p53 gene as the target model to trigger the molecular machine operation, cyclic nucleic acid strand displacement polymerization (CNDP) was specifically induced, leading to the DNAzyme mediated catalytic reaction for signal readout. Specifically, with the help of polymerase and nickase, one target molecule was able to drive DNA nano-mechanical devices one-by-one through the hybridization/polymerization displacement cycles, and every initiated machine continued to operate, causing the dramatic accumulation of G-quadruplex-contained products. The G-quadruplex structure after binding to hemin could act as a horseradish peroxidase (HRP)-mimicking DNAzyme and catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by H2O2. As a result, an enhanced color change could be detected because of the generation of oxidation product ABTS•(+). In this way, the DNA machine has no any signal loss and enables the quantitative measurement of p53 DNA with a detection limit of 10fM, indicating great promise for unique application in biomedical research and early clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  5. Nuclear and Mitochondrial DNA Methylation Patterns Induced by Valproic Acid in Human Hepatocytes.

    PubMed

    Wolters, Jarno E J; van Breda, Simone G J; Caiment, Florian; Claessen, Sandra M; de Kok, Theo M C M; Kleinjans, Jos C S

    2017-09-13

    Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis through mitochondrial dysfunction. The aim of this study is to further investigate VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human hepatocytes (PHHs) were exposed to an incubation concentration of VPA that was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered daily for 5 days, and this was followed by a 3 day washout (WO). Methylated DNA regions (DMRs) were identified by using the methylated DNA immunoprecipitation-sequencing (MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed be classified into oxidative stress- and steatosis-related pathways. In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by VPA treatment. Furthermore, we suggest that VPA induces a crosstalk between nDNA hypermethylation and mtDNA hypomethylation that plays a role in oxidative stress and steatosis development. Although most VPA-induced methylation patterns appeared reversible upon terminating VPA treatment, 31 nDNA DMRs (including 5 zinc finger protein genes) remained persistent after the WO period. Overall, we have shown that MeDIP-seq analysis is highly informative in disclosing novel mechanisms of VPA-induced toxicity in PHHs. Our results thus provide a prototype for the novel generation of interesting methylation biomarkers for repeated dose liver toxicity in vitro.

  6. Folic acid attenuates the effects of amyloid β oligomers on DNA methylation in neuronal cells.

    PubMed

    Liu, Huan; Li, Wen; Zhao, Shijing; Zhang, Xumei; Zhang, Meilin; Xiao, Yanyu; Wilson, John X; Huang, Guowei

    2016-08-01

    Alzheimer's disease (AD) is a highly prevalent type of dementia. The epigenetic mechanism of gene methylation provides a putative link between nutrition, one-carbon metabolism, and disease progression because folate deficiency may cause hypomethylation of promoter regions in AD-relevant genes. We hypothesized that folic acid supplementation may protect neuron cells from amyloid β (Aβ) oligomer-induced toxicity by modulating DNA methylation of APP and PS1 in AD models. Primary hippocampal neuronal cells and hippocampal HT-22 cells were incubated for 24 h with a combination of folic acid and either Aβ oligomers or vehicle and were then incubated for 72 h with various concentrations of folic acid. AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with various doses of folic acid (0 or 600 μg/kg). DNA methyltransferase (DNMT) activity, cell viability, methylation potential of cells, APP and PS1 expression, and the methylation of the respective promoters were determined. Aβ oligomers lowered DNMT activity, increased PS1 and APP expression, and decreased cell viability. Folic acid dose-dependently stimulated methylation potential and DNMT activity, altered PS1 and APP promoter methylation, decreased PS1 and APP expression, and partially preserved cell viability. Folic acid increased PS1 and APP promoter methylation in AD transgenic mice. These results suggest a mechanism by which folic acid may prevent Aβ oligomer-induced neuronal toxicity.

  7. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes

    PubMed Central

    Wu, Szu-Yuan; Chang, Li-Ting; Peng, Sydeny; Tsai, Hsieh-Chih

    2015-01-01

    In this study, we synthesized a water-soluble poly(amic acid-co-imide) (PA-I) from ethylenediaminetetraacetic dianhydride (EDTA) and 2,2′-(ethylenedioxy)bis(ethylamine) that possesses comparable transfection efficiency to that of polyethylenimine (PEI), when prepared in combination with divalent calcium cations. The polycondensation of monomers afforded poly(amic acid) (PA) precursors, and subsequent thermal imidization resulted in the formation of PA-I. At a polymer/DNA ratio (indicated by the molar ratio of nitrogen in the polymer to phosphate in DNA) of 40, complete retardation of the DNA band was observed by gel electrophoresis, indicating the strong association of DNA with PA-I. A zeta potential of −22 mV was recorded for the PA-I polymer solution, and no apparent cytotoxicity was observed at concentrations up to 500 μg·mL−1. In the presence of divalent Ca2+, the transfection efficiency of PA-I was higher than that of PA, due to the formation of a copolymer/Ca2+/DNA polyplex and the reduction in negative charge due to thermal cyclization. Interestingly, a synergistic effect of Ca2+ and the synthesized copolymer on DNA transfection was observed. The use of Ca2+ or copolymer alone resulted in unsatisfactory delivery, whereas the formation of three-component polyplexes synergistically increased DNA transfection. Our findings demonstrated that a PA-I/Ca2+/DNA polyplex could serve as a promising candidate for gene delivery. PMID:25767385

  8. Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids.

    PubMed

    Bohländer, Peggy R; Vilaivan, Tirayut; Wagenknecht, Hans-Achim

    2015-09-21

    The so-called acpcPNA system bears a peptide backbone consisting of 4'-substituted proline units with (2'R,4'R) configuration in an alternating combination with (2S)-amino-cyclopentane-(1S)-carboxylic acids. acpcPNA forms exceptionally stable hybrids with complementary DNA. We demonstrate herein (i) strand displacements by single-stranded DNA from acpcPNA-DNA hybrids, and by acpcPNA strands from DNA duplexes, and (ii) strand invasions by acpcPNA into double-stranded DNA. These processes were studied in vitro using synthetic oligonucleotides and by means of our concept of wavelength-shifting fluorescent nucleic acid probes, including fluorescence lifetime measurements that allow quantifying energy transfer efficiencies. The strand displacements of preannealed 14mer acpcPNA-7mer DNA hybrids consecutively by 10mer and 14mer DNA strands occur with rather slow kinetics but yield high fluorescence color ratios (blue : yellow or blue : red), fluorescence intensity enhancements, and energy transfer efficiencies. Furthermore, 14mer acpcPNA strands are able to invade into 30mer double-stranded DNA, remarkably with quantitative efficiency in all studied cases. These processes can also be quantified by means of fluorescence. This remarkable behavior corroborates the extraordinary versatile properties of acpcPNA. In contrast to conventional PNA systems which require 3 or more equivalents PNA, only 1.5 equivalents acpcPNA are sufficient to get efficient double duplex invasion. Invasions also take place even in the presence of 250 mM NaCl which represents an ionic strength nearly twice as high as the physiological ion concentration. These remarkable results corroborate the extraordinary properties of acpcPNA, and thus acpcPNA represents an eligible tool for biological analytics and antigene applications.

  9. Evidence for cell-free nucleic acids as continuously arising endogenous DNA mutagens.

    PubMed

    Basak, Ranjan; Nair, Naveen Kumar; Mittra, Indraneel

    There is extensive literature to show that nucleic acids can be taken up by cells under experimental conditions and that foetal DNA can be detected in maternal tissues. The uptaken DNA can integrate into host cell genomes and can be transcribed and translated into proteins. They can also cause chromosomal damage and karyotype alterations. Cell-free nucleic acids (cfNAs)-based non-invasive DNA diagnostic techniques are being extensively researched in the field of cancer with the potential to advance new prognostic parameters and direct treatment decisions. However, whether extracellular cfNAs that are released into circulation from dying cells as a consequence of normal physiology have any functional significance has not been explored. A recent study has demonstrated that circulating cfNAs have the ability to cause DNA damage and mutagenesis by illegitimately integrating into healthy cells of the body, thereby acting as mobile genetic elements. Fluorescently-labeled cfNAs isolated from sera of cancer patients and healthy volunteers were shown to be readily taken up by host cells followed by activation of a DNA-damage-repair-response which led their large scale integration into the host cell genomes. The latter caused dsDNA breaks and apoptosis in cells in vitro and in those of vital organs when injected intravenously into mice. Cell-free chromatin was consistently more active than cell-free DNA, while cfNAs derived from cancer patients were significantly more active than those from healthy volunteers. This study suggests that circulating extracellular cfNAs act as physiological continuously arising DNA mutagens with implications for ageing, cancer and a host of other degenerative human pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of the stacking interactions between DNA or RNA nucleobases and the aromatic amino acids

    NASA Astrophysics Data System (ADS)

    Rutledge, Lesley R.; Campbell-Verduyn, Lachlan S.; Wetmore, Stacey D.

    2007-08-01

    MP2/6-31G ∗(0.25) gas-phase potential energy surfaces of stacked dimers between the four aromatic amino acids and the natural (DNA or RNA) nucleobases were considered as a function of three variables (vertical separation, angle of rotation, and horizontal displacement). The maximum stacking interaction was found to increase with the amino acid according to PHE < HIS ≈ TYR < TRP, while the stacking energy is generally largest for the purines compared to the pyrimidines. Most notably, the interaction energies are up to -43 kJ mol -1. Comparison of the magnitude of these interactions with, for example, hydrogen-bonding and stacking interactions that stabilize DNA duplexes suggests that π-π stacking between nucleobases and amino acids likely plays a large role in many fundamental biological processes.

  11. Connecting the Dots Between Fatty Acids, Mitochondrial Function, and DNA Methylation in Atherosclerosis.

    PubMed

    Zaina, Silvio; Lund, Gertrud

    2017-09-01

    The quest for factors and mechanisms responsible for aberrant DNA methylation in human disease-including atherosclerosis-is a promising area of research. This review focuses on the role of fatty acids (FAs) as modulators of DNA methylation-in particular the role of mitochondrial beta-oxidation in FA-induced changes in DNA methylation during the progression of atherosclerosis. Recent publications have advanced the knowledge in all areas touched by this review: the causal role of lipids in shaping the DNA methylome, the associations between chronic degenerative disease and mitochondrial function, the lipid composition of the atheroma, and the relevance of DNA hypermethylation in atherosclerosis. Evidence is beginning to emerge, linking the dynamics of FA type abundance, mitochondrial function, and DNA methylation in the atheroma and systemically. In particular, this review highlights mitochondrial beta-oxidation as an important regulator of DNA methylation in metabolic disease. Despite the many questions still unanswered, this area of research promises to identify mechanisms and molecular factors that establish a pathological gene expression pattern in atherosclerosis.

  12. Standardization of DNA extraction from methanol acetic acid fixed cytogenetic cells of cattle and buffalo.

    PubMed

    Kotikalapudi, Rosaiah; Patel, Rajesh K; Katragadda, Sanghamitra

    2013-12-01

    The aim of the study is to standardize the simple method for extracting DNA from cells fixed in fixative (3:1 ratio of methanol and acetic acid glacial) mostly used for chromosomal studies in cattle and buffaloes. These fixed cells were stored for more than 6 months at refrigerated temperature. The fixed cells were washed 2-3 times by the ice cold 1x Phosphate Buffer Saline (PBS) with pH 7.4, so that effect of fixative may be eliminated. The genomic DNA was extracted by adding cell lysis and nucleus lysis buffers. The quality and quantity of DNA were estimated. The readings of nano drop and agarose gel electrophoresis indicate good quality DNA isolated with a rapid and simple protocol routinely using in our laboratory. The method enables us to study the DNA of a cattle and buffaloes after completing cytogenetic investigation or in cases where DNA samples are otherwise not available. This protocol may be useful for molecular analysis of DNA from fixed cells palettes.

  13. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment.

    PubMed

    Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-01-01

    Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids.

  14. Effect of Nalidixic Acid on DNA Replication by Toluene-Treated Escherichia coli

    PubMed Central

    Burger, Richard M.; Glaser, Donald A.

    1973-01-01

    Nalidixic acid inhibits DNA synthesis in toluene-treated E. coli, strain B/r, as it is well known to do in vivo. Both semiconservative and repair syntheses are affected, though to different degrees. Density-transfer experiments indicate that chromosomal replication is reinitiated when nalidixic acid is removed from toluene-treated cells after exposure to the acid for one generation in vivo. For cells in vivo or after toluene-treatment, reinitiation is not seen in asynchronous cultures exposed briefly to nalidixic acid or in cells prevented from synthesizing proteins during their exposure to the acid. Reinitiation occurs at the chromosomal origin but, unlike the effect seen in vivo, replication at the old site persists. PMID:4579007

  15. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation.

    PubMed

    Chan, D; McGraw, S; Klein, K; Wallock, L M; Konermann, C; Plass, C; Chan, P; Robaire, B; Jacob, R A; Greenwood, C M T; Trasler, J M

    2017-02-01

    Do short-term and long-term exposures to low-dose folic acid supplementation alter DNA methylation in sperm? No alterations in sperm DNA methylation patterns were found following the administration of low-dose folic acid supplements of 400 μg/day for 90 days (short-term exposure) or when pre-fortification of food with folic acid and post-fortification sperm samples (long-term exposure) were compared. Excess dietary folate may be detrimental to health and DNA methylation profiles due to folate's role in one-carbon metabolism and the formation of S-adenosyl methionine, the universal methyl donor. DNA methylation patterns are established in developing male germ cells and have been suggested to be affected by high-dose (5 mg/day) folic acid supplementation. This is a control versus treatment study where genome-wide sperm DNA methylation patterns were examined prior to fortification of food (1996-1997) in men with no history of infertility at baseline and following 90-day exposure to placebo (n = 9) or supplement containing 400 μg folic acid/day (n = 10). Additionally, pre-fortification sperm DNA methylation profiles (n = 19) were compared with those of a group of post-fortification (post-2004) men (n = 8) who had been exposed for several years to dietary folic acid fortification. Blood and seminal plasma folate levels were measured in participants before and following the 90-day treatment with placebo or supplement. Sperm DNA methylation was assessed using the whole-genome and genome-wide techniques, MassArray epityper, restriction landmark genomic scanning, methyl-CpG immunoprecipitation and Illumina HumanMethylation450 Bead Array. Following treatment, supplemented individuals had significantly higher levels of blood and seminal plasma folates compared to placebo. Initial first-generation genome-wide analyses of sperm DNA methylation showed little evidence of changes when comparing pre- and post-treatment samples. With Illumina HumanMethylation450 BeadChip arrays

  16. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  17. Selection and characterization of single stranded DNA aptamers for the hormone abscisic Acid.

    PubMed

    Grozio, Alessia; Gonzalez, Victor M; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M; Bellotti, Marta; Zocchi, Elena

    2013-10-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98 ± 0.14 μM and 0.80 ± 0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays.

  18. Novel molecular beacon DNA probes for protein-nucleic acid interaction studies

    NASA Astrophysics Data System (ADS)

    Li, Jianwei J.; Perlette, John; Fang, Xiaohong; Kelley, Shannon; Tan, Weihong

    2000-03-01

    We report a novel approach to study protein-nucleic acid interactions by using molecular beacons (MBs). Molecular beacons are hairpin-shaped DNA oligonucleotide probes labeled with a fluorophore and a quencher, and can report the presence of target DNA/RNA sequences. MBs can also report the existence of single-stranded DNA binding proteins (SSB) through non-sequence specific binding. The interaction between SSB and MB has resulted in significant fluorescence restoration of the MB. The fluorescence enhancement brought by SSB and by complementary DNA is very comparable. The molar ratio of the binding between SSB and the molecular beacon is 1:1 with a binding constant of 2 X 107 M-1. Using the MB-SSB binding, we are able to determine SSB at 2 X 10-10 M with a conventional spectrometer. We have also applied MB DNA probes for the analysis of an enzyme lactic dehydrogenase (LDH), and for the investigation of its binding properties with ssDNA. The biding process between MB and different isoenzymes of LDH has been studied. We also show that there are significant differences in MB binding affinity to different proteins, which will enable selective binding studies of a variety of proteins. This new approach is potentially useful for protein-DNA/RNA interaction studies that require high sensitivity, speed and convenience. The results also open the possibility of using easily obtainable, custom designed, modified DNA molecules for studies of drug interactions and targeting. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has the signal transduction mechanism built within the molecule, and can thus be used for quick protein assay development and for real-time measurements.

  19. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process.

  20. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.

    PubMed

    Rand, D M; Kann, L M

    1996-07-01

    Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.

  1. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-04-05

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  2. Hybridoma anti-DNA autoantibodies from patients with rheumatoid arthritis and systemic lupus erythematosus demonstrate similar nucleic acid binding characteristics.

    PubMed

    Rauch, J; Massicotte, H; Tannenbaum, H

    1985-01-01

    Hybridoma anti-DNA antibodies have been generated from the fusion of the GM 4672 lymphoblastoid line with peripheral blood lymphocytes from four normal subjects, nine patients with rheumatoid arthritis (RA), and 13 patients with systemic lupus erythematosus (SLE). A total of 441 hybridoma clones were obtained, of which 37 secreted anti-DNA autoantibodies. The nucleic acid binding characteristics of the anti-DNA antibodies produced by two hybridomas from normal subjects, nine hybridomas from RA patients, and 18 hybridomas from SLE patients are reported. The hybridoma anti-DNA antibodies from all three groups showed similar antigen-binding characteristics for denatured DNA (dDNA), native DNA (nDNA), poly(I), poly(dT), and cardiolipin, by both direct binding and competitive binding analyses. One difference noted between normal-derived anti-DNA antibodies and autoimmune-derived antibodies was the inability of the former to react with z-DNA. However, this requires further substantiation with larger numbers of normal-derived clones. The broad overlap of reactivity to nucleic acid antigens among individual anti-DNA autoantibodies found in two clinically different autoimmune diseases, namely RA and SLE, suggests that the pathogenicity of anti-DNA autoantibodies may bear no relationship to their nucleic acid antigen-binding characteristics.

  3. X-ray-induced DNA double-strand breaks in mouse l1210 cells: a new computational method for analyzing neutral filter elution data.

    PubMed

    Cedervall, Björn; Edgren, Margareta R; Lewensohn, Rolf

    2003-04-01

    The aim of this article is to present a method for studying the shape of the dose and repair responses for X-ray-induced double-strand breaks (DSBs) as measured by neutral filter elution (NFE). The approach is closely related to a method we developed for the use of specific molecular size markers and used for determination of the absolute number of randomly distributed radiation-induced DSBs by pulsed-field gel electrophoresis (PFGE). Mouse leukemia L1210 cells were X-irradiated with 0-50 Gy. Samples were then evaluated both with PFGE and with NFE. Assuming that with both migration (PFGE) and elution (NFE), a heterogeneous population of double-stranded DNA fragments will start with the smallest fragments and proceed with increasingly larger fragments, it is possible to match the migration behavior of fractions of fragments smaller than a certain size to the fraction eluted at a specific time. This assumption does not exclude the possibility of DNA being sheared in the NFE filter. The yield, as determined by the size markers in PFGE, was used to find the corresponding elution times in the NFE experiment. These experimentally used elution times could then reversely be interpreted as size markers which finally were used to calculate DSBs/Mbp as a function of X-ray dose. The resulting lines were almost straight. The data were also plotted as relative elution and showed that, as expected, the dose response then appears with a more pronounced sigmoid shape.

  4. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.

    PubMed

    Zhou, Zhongwu; Kadam, Ulhas S; Irudayaraj, Joseph

    2013-11-15

    Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly.

  5. Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons

    SciTech Connect

    Rak, Janusz; Mazurkiewicz, Kamil; Kobylecka, Monika; Storoniak, Piotr; Haranczyk, Maciej; Dabkowska, Iwona; Bachorz, Rafal A.; Gutowski, Maciej S.; Radisic, Dunja; Stokes, Sarah T.; Eustis, Soren; Wang, Di; Li, Xiang; Ko, Yeon J.; Bowen, Kit H.

    2008-05-08

    The investigation of structures and properties of nucleic acids has fascinated and challenged researchers ever since the discovery of their relation to genes. Extensive studies have been carried out on these species to unravel the mystery behind the selection of these molecules as genetic material by nature and to explain various physico-chemical properties. However, a vast pool of information is yet to be discovered. DNA constituents, mainly aromatic purine and pyrimidine bases, absorb ultraviolet irradiation efficiently, but the absorbed energy is quickly released in the form of ultrafast nonradiative decays. Recently impressive progress has been made towards the understanding of photophysical and photochemical properties of DNA fragments.

  6. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men

    PubMed Central

    2014-01-01

    Background Previous studies have suggested that DNA methylation contributes to coronary artery disease (CAD) risk variability. DNA hypermethylation at the ATP-binding cassette transporter A1 (ABCA1) gene, an important modulator of high-density lipoprotein cholesterol and reverse cholesterol transport, has been previously associated with plasma lipid levels, aging and CAD, but the association with CAD has yet to be replicated. Results ABCA1 DNA methylation levels were measured in leucocytes of 88 men using bis-pyrosequencing. We first showed that DNA methylation at the ABCA1 gene promoter locus is associated with aging and CAD occurrence in men (P < 0.05). The latter association is stronger among older men with CAD (≥61 years old; n = 19), who showed at least 4.7% higher ABCA1 DNA methylation levels as compared to younger men with CAD (<61 years old; n = 19) or men without CAD (n = 50; P < 0.001). Higher ABCA1 DNA methylation levels in older men were also associated with higher total cholesterol (r = 0.34, P = 0.03), low-density lipoprotein cholesterol (r = 0.32, P = 0.04) and triglyceride levels (r = 0.26, P = 0.09). Furthermore, we showed that acetylsalicylic acid therapy is associated with 3.6% lower ABCA1 DNA methylation levels (P = 0.006), independent of aging and CAD status of patients. Conclusions This study provides new evidence that the ABCA1 epigenetic profile is associated with CAD and aging, and highlights that epigenetic modifications might be a significant molecular mechanism involved in the pathophysiological processes associated with CAD. Acetylsalicylic acid treatment for CAD prevention might involve epigenetic mechanisms. PMID:25093045

  7. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids.

    PubMed

    Zhang, Hongquan; Lai, Maode; Zuehlke, Albert; Peng, Hanyong; Li, Xing-Fang; Le, X Chris

    2015-11-23

    We introduce the concept and operation of a binding-induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three-dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single-stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet-derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self-assembly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Identification of amino acids essential for DNA binding and dimerization in p67SRF: implications for a novel DNA-binding motif.

    PubMed Central

    Sharrocks, A D; Gille, H; Shaw, P E

    1993-01-01

    The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure. Images PMID:8417320

  9. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    PubMed

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  11. Incorporation and/or adduction of formic acid with DNA in vivo studied by HPLC-AMS

    NASA Astrophysics Data System (ADS)

    Zhu, Jiadan; Cheng, Yan; Sun, Hongfang; Wang, Haifang; Li, Yuankai; Liu, Yuanfang; Ding, Xingfang; Fu, Dongpo; Liu, Kexin; Wang, Deqing; Deng, Xiaoyong

    2010-04-01

    The contribution of incorporation and/or adduction of formic acid with liver DNA in mouse was investigated using accelerator mass spectrometry (AMS) associated with high performance liquid chromatography (HPLC). Four kinds of 5'-formylated adducts, which were prepared by the reaction of formic acid and deoxyribonucleosides in vitro, were used as references for the HPLC-AMS analysis of in vivo adduction. After the administration of sodium 14C-formate to mice, the liver DNA pellets were isolated and enzymatically digested to deoxyribonucleosides. A precise analysis of the hydrolysate by HPLC-AMS indicates that a majority of formic acid incorporates directly into DNA, whereas less than 1.5% might form instable formylated DNA adducts in vivo. The results greatly support the important perspective that formic acid is not carcinogenic. Moreover, this study demonstrates that a combination of HPLC with AMS is an essential means for the evaluation of DNA adduction.

  12. Spectrophotometric method for the determination of ascorbic acid with iron (III)-1,10-phenanthroline after preconcentration on an organic solvent-soluble membrane filter.

    PubMed

    Gu, X; Chen, C; Thou, T

    1996-04-01

    A solvent-soluble membrane filter is proposed for the simple and rapid preconcentration and spectrophotometric determination of ascorbic acid based on the reduction of 1, 10-phenanthroline (phen)-iron (III), which is collected on a nitrocellulose membrane filter as an ion-associate of the cationic complex of tri,phen-iron (II) [ferroin, Fe(phen)(2+)(3)] with an anionic surfactant (of dodecyl sulfate). The ion-associate collected is dissolved in a small volume of 2-methoxyethanol together with the filter. The colour intensity is measured at 510 nm against the reagent blank and is proportional to the content of ascorbic acid in the range 2.5-50 microg ascorbic acid in 5 ml of solvent with excellent reproducibility (RSD 3.2% for 200 microg 1(-1) ascorbic acid), the enrichment factor achieves 100-fold and detection limits better than 2.0 microg 1(-1) can be obtained. Diverse components of organic and inorganic compounds normally present in fruits, vegetable, beverages and urine do not interfere. The recoveries of the ascorbic acid added to the samples are quantitative.

  13. Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

    SciTech Connect

    Wnek, S.M.; Medeiros, M.K.; Eblin, K.E.; Gandolfi, A.J.

    2009-12-01

    Malignant transformation was demonstrated in UROtsa cells following 52-weeks of exposure to 50 nM monomethylarsonous acid (MMA{sup III}); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMA{sup III} [URO-MSC(+)] and after subsequent removal of MMA{sup III} [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMA{sup III}, URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12-weeks of exposure; in particular, a significant increase in DNA single-strand breaks at 12-weeks of exposure consistently elevated through 52 weeks. The persistence of DNA damage in URO-MSC cells was assessed after a 2-week removal of MMA{sup III}. URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single-strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36-weeks of MMA{sup III} exposure, suggesting the presence of MMA{sup III} is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMA{sup III} results in: the induction of DNA damage that remains elevated upon removal of MMA{sup III}; increased levels of ROS that play a role in MMA{sup III} induced-DNA damage; and decreased PARP activity in the presence of MMA{sup III}.

  14. Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages.

    PubMed

    Hwang, Won-Sang; Park, Seong-Hoon; Kim, Hyun-Seok; Kang, Hong-Jun; Kim, Min-Ju; Oh, Soo-Jin; Park, Jae-Bong; Kim, Jaebong; Kim, Sung Chan; Lee, Jae-Yong

    2007-01-01

    Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 microM) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-beta-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 microM of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

  15. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The epsilon subunit of DNA polymerase III Is involved in the nalidixic acid-induced SOS response in Escherichia coli.

    PubMed

    Pohlhaus, Jennifer Reineke; Long, David T; O'Reilly, Erin; Kreuzer, Kenneth N

    2008-08-01

    Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.

  17. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.

    PubMed

    Igoudjil, Anissa; Massart, Julie; Begriche, Karima; Descatoire, Véronique; Robin, Marie-Anne; Fromenty, Bernard

    2008-06-01

    The antiretroviral nucleoside reverse-transcriptase inhibitor (NRTI) stavudine (d4T) can induce mild to severe liver injuries such as steatosis (i.e. triglyceride accumulation), steatohepatitis and liver failure. NRTI-induced toxicity has been ascribed to the inhibition of mitochondrial DNA (mtDNA) replication causing mtDNA depletion and respiratory chain dysfunction. This can secondarily impair the tricarboxylic acid cycle and fatty acid oxidation (FAO), thus leading to lactic acidosis and hepatic steatosis. However, NRTIs could also impair mitochondrial function and induce hepatic steatosis through other mechanisms. In this study, we sought to determine whether d4T could inhibit mitochondrial FAO and induce triglyceride accumulation through a mtDNA-independent mechanism. Since human tumoral and non-tumoral hepatic cell lines were unable to efficiently oxidize palmitic acid, the effects of d4T on mitochondrial FAO were assessed on cultured rat hepatocytes. Our results showed that 750 microM of d4T significantly inhibited palmitic acid oxidation after 48 or 72 h of culture, without inducing cell death. Importantly, high concentrations of zidovudine and zalcitabine (two other NRTIs that can induce hepatic steatosis), or beta-aminoisobutyric acid (a d4T metabolite), did not impair FAO in rat hepatocytes. D4T-induced FAO inhibition was observed without mtDNA depletion and lactate production, and was fully prevented with l-carnitine or clofibrate coincubation. l-carnitine also prevented the accretion of neutral lipids within rat hepatocytes. High concentrations of d4T were unable to inhibit FAO on freshly isolated liver mitochondria. Moreover, a microarray analysis was performed to clarify the mechanism whereby d4T can inhibit mitochondrial FAO and induce triglyceride accumulation in rat hepatocytes. The microarray data, confirmed by quantitative real-time PCR analysis, showed that d4T increased the expression of sterol regulatory element-binding protein-1c (SREBP1c

  18. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs

    PubMed Central

    Zhang, Shunhua; Shen, Linyuan; Xia, Yudong; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhu, Li

    2016-01-01

    Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF’s low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition. PMID:27721392

  19. Inhibition of Micrococcus luteus DNA gyrase by norfloxacin and 10 other quinolone carboxylic acids.

    PubMed Central

    Zweerink, M M; Edison, A

    1986-01-01

    The ability of norfloxacin, amifloxacin, cinoxacin, ciprofloxacin, flumequine, nalidixic acid, ofloxacin (OFL), oxolinic acid, perfloxacin, pipemidic acid, and rosoxacin to inhibit the in vitro supercoiling activity of Micrococcus luteus DNA gyrase was compared with the ability of each drug to inhibit the growth of the M. luteus strain from which the gyrase was purified. The potency of the quinolones as DNA gyrase inhibitors did not always correlate with antimicrobial potency. For example, OFL was a less potent inhibitor of gyrase than rosoxacin, yet the MIC of OFL was 16-fold lower than that of rosoxacin. Similarly, the MICs of norfloxacin and ciprofloxacin (the most potent of the antibiotics tested in these assays) were several hundredfold lower than the MIC of nalidixic acid (the least potent of these antibiotics), but the inhibition of purified gyrase by these two quinolones was only 8- to 16-fold lower than that of nalidixic acid. These results suggest that factors in addition to inhibition of gyrase supercoiling activity are important in determining the potency of these drugs. Further studies indicated that the uptake of norfloxacin, OFL, and amifloxacin by M. luteus cells may not account for the large differences in MICs observed for these drugs (MICs of 0.8, 2.0, and 128 micrograms/ml, respectively). Images PMID:3010848

  20. Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA.

    PubMed

    Kurnosov, N V; Leontiev, V S; Karachevtsev, V A

    2016-11-01

    The quantitative analysis of amino acid levels in the human organism is required for the early clinical diagnosis of a variety of diseases. In this work the influence of 13 amino acid doping on the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes (SWNTs) suspended with single-stranded DNA (ssDNA) in water has been studied. Amino acid doping leads to the PL enhancement and the strongest increase was found after cysteine doping of the nanotube suspension while addition of other amino acids yielded the significantly smaller effect. The emphasis of cysteine molecules is attributed to presence of the reactive thiol group that turns cysteine into reducing agent that passivates the p-defects on the nanotube sidewall and increases the PL intensity. The reasons of PL enhancement after doping with other amino acids are discussed. The response of nanotube PL to cysteine addition depends on the nanotube aqueous suspension preparation with tip or bath sonication treatment. The enhancement of the emission from different nanotube species after cysteine doping was analyzed too. It was shown that the increase of the carbon nanotube PL at addition of cysteine allows successful monitoring of the cysteine concentration in aqueous solution in the range of 50-1000 μM.

  1. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    PubMed

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy.

  2. Magnetic Fullerene-DNA/Hyaluronic Acid Nanovehicles with Magnetism/Reduction Dual-Responsive Triggered Release.

    PubMed

    Wang, Ling; Wang, Yitong; Hao, Jingcheng; Dong, Shuli

    2017-03-13

    We created the dual-responsive nanovehicle that can effectively combine and abundantly utilize magnetic and glutathione (GSH)-reductive triggers to control the drug delivery and achieve more intelligent and powerful targeting. In the nanovehicles, paramagnetic fullerene (C60@CTAF) was prepared via one-step modification of fullerene with magnetic surfactant CTAF by hydrophobic interaction for the first time. The perfect conjugation of C60 and CTAF increased the solubility or dispersity of fullerenes and qualified CTAF with more powerful assembly capability with DNA. DNA molecule in the nanovehicles acted as an electrostatic scaffold to load anticancer drug Dox as well as the important building block for assembly with C60@CTAF into C60@CTAF/DNA. The further combination of deshielding and targeting functions in reduction-responsive disulfide modified HA-SS-COOH coating on C60@CTAF/DNA complexes could reduce the agglomeration and regulate the morphology of C60@CTAF/DNA complexes from irregular microstructures to more uniform ones. More importantly, the introduction of HA-SS-COOH provided a response to a simulating reductive extra-tumoral environment by efficient cleavage of disulfide linkages by GSH and site-specific drug delivery to HepG2 cells. Amazingly, the final nanovehicles presented an increased magnetic susceptibility compared with paramagnetic CTAF, and they "walked" under an applied magnetic field. Because of their facile fabrication, rapid responsiveness to extra tumoral environment, and external automatic controllability by external magnet, the drug delivery nanovehicles constructed by magnetic fullerene-DNA/hyaluronic acid might be of great interest for making new functional nucleic-acid-based drug carriers.

  3. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments.

    PubMed

    Ferk, Franziska; Chakraborty, Asima; Jäger, Walter; Kundi, Michael; Bichler, Julia; Mišík, Miroslav; Wagner, Karl-Heinz; Grasl-Kraupp, Bettina; Sagmeister, Sandra; Haidinger, Gerald; Hoelzl, Christine; Nersesyan, Armen; Dušinská, Maria; Simić, Tatjana; Knasmüller, Siegfried

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  4. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  5. Boric Acid Reduces the Formation of DNA Double Strand Breaks and Accelerates Wound Healing Process.

    PubMed

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2016-12-01

    Boron is absorbed by the digestive and respiratory system, and it was considered that it is converted to boric acid (BA), which was distributed to all tissues above 90 %. The biochemical essentiality of boron element is caused by boric acid because it affects the activity of several enzymes involved in the metabolism. DNA damage repair mechanisms and oxidative stress regulation is quite important in the transition stage from normal to cancerous cells; thus, this study was conducted to investigate the protective effect of boric acid on DNA damage and wound healing in human epithelial cell line. For this purpose, the amount of DNA damage occurred with irinotecan (CPT-11), etoposide (ETP), doxorubicin (Doxo), and H2O2 was determined by immunofluorescence through phosphorylation of H2AX((Ser139)) and pATM((Ser1981)) in the absence and presence of BA. Moreover, the effect of BA on wound healing has been investigated in epithelial cells treated with these agents. Our results demonstrated that H2AX((Ser139)) foci numbers were significantly decreased in the presence of BA while wound healing was accelerated by BA compared to that in the control and only drug-treated cells. Eventually, the results indicate that BA reduced the formation of DNA double strand breaks caused by agents as well as improving the wound healing process. Therefore, we suggest that boric acid has important therapeutical effectiveness and may be used in the treatment of inflammatory diseases where oxidative stress and wound healing process plays an important role.

  6. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  7. Inhibition of N-nitrosamine carcinogenesis and aflatoxin DNA damage by ellagic acid

    SciTech Connect

    Mandal-Chaudhuri, S.

    1988-01-01

    The effect of ellagic acid (EA), on the tumorigenicity of N-nitrosobenzylmethylamine (NBMA) in the rat esophagus was investigated. Groups of 30 male F-344 rats were fed a semipurified diet containing EA for 27 weeks. N-nitrosobenzylmethylamine was administered subcutaneously, once a week for 18 weeks. Ellagic acid produced a significant inhibition in the average number of esophageal tumors at both 20 weeks and 27 weeks. To investigate the mechanism(s) of this inhibition, EA was tested for its effect on the metabolism, DNA-binding and DNA-adduct formation of NBMA in cultured explants of rat esophagus. Explants were incubated in medium containing EA at concentrations of 10, 50, and 100 {mu}M for 16 hours, followed by the addition of 1{mu}M ({sup 3}H)NBMA and EA for 12 hours. Explant DNA was isolated by phenol extraction and hydroxylapatite chromatography, and benzaldehyde formation was determined by h.p.l.c. analysis of the culture medium. Finally, EA was examined for its ability to inhibit DNA damage induced by aflatoxin B{sub 1} (AFB{sub 1}) in cultured explants of rat trachea and esophagus, and human tracheobronchus.

  8. Information transfer from DNA to peptide nucleic acids by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Christensen, L.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.

  9. Information transfer from DNA to peptide nucleic acids by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Christensen, L.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.

  10. Acid-base properties of ellipticine bound to DNA, micelles and liposomes.

    PubMed

    Dodin, G; Pantigny, J; Aubard, J; Schwaller, M A

    1990-02-01

    We have determined the acid-base properties of the alkaloid ellipticine, bound to DNA and to micelles and liposomes, taken as models for membranes, in the prospect of characterizing the actual structure of the bound ligand, this being relevant to the mode of action of the drug. The acid-base properties of ellipticine bound to sonicated calf thymus DNA and SDS micelles are similar as regards their pK values and their dependence on NaCl concentrations. This observation is satisfactorily understood in terms of sodium ion condensation around the negative phosphate and sulphate groups. The slope of pK vs log(Na+) is -1, a value predicted by Friedman theory. The pK of ellipticine bound to cationic (CTAB, DDTAB) or to neutral (Triton X100) micelles and to neutral liposomes (PC) is significantly lower than water (7.4), and, in contrast to the situation in DNA and SDS micelles, does not vary with addition of NaCl. Interestingly, this result is good evidence for ellipticine having a specific pK when bound to a hydrophobic structure. This view is likely to hold for ellipticine bound to DNA.

  11. Effects of Altered Maternal Folic Acid, Vitamin B12 and Docosahexaenoic Acid on Placental Global DNA Methylation Patterns in Wistar Rats

    PubMed Central

    Kulkarni, Asmita; Dangat, Kamini; Kale, Anvita; Sable, Pratiksha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2011-01-01

    Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B12 lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta. PMID:21423696

  12. Optimization of the histochemical demonstration of DNA using 3-hydroxy-2-naphthoic acid hydrazide and fast blue B.

    PubMed

    Nöhammer, G

    1989-01-01

    Previous methods for the histochemical demonstration of DNA were optimized. p-Toluene sulfonic acid as catalyst for hydrazone formation between the aldehydes generated after Feulgen hydrolysis and 3-hydroxy-2-naphthoic acid hydrazide (NAH) was used instead of acetic acid. Modifications of the conditions of the coupling reaction with Fast Blue B reduced the background staining. The optimized histochemical staining method for DNA (NAH-FB-DNA staining) can be performed easily and reproducibly. Without prior Feulgen hydrolysis the optimized method can also be used for the histochemical demonstration of reactive carbonyls undissolved under the given histochemical conditions.

  13. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  14. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  15. G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome.

    PubMed

    Shtilbans, A; Shanske, S; Goodman, S; Sue, C M; Bruno, C; Johnson, T L; Lava, N S; Waheed, N; DiMauro, S

    2000-11-01

    We identified a G-->A transition at nt-8363 in the mitochondrial DNA transfer ribonucleic acidLys gene in blood and muscle from a 13-month-old girl who had clinical and neuroradiologic evidence of Leigh syndrome and died at age 27 months. The mutation was less abundant in the same tissues from the patient's mother, who developed myoclonus epilepsy with ragged red fibers (MERRF) in her late 20s. In both mother and daughter, muscle histochemistry showed ragged red and cytochrome c oxidase-negative fibers and biochemical analysis showed partial defects of multiple respiratory-chain enzymes. A maternal half-sister of the proband had died at 2.5 years of age from neuropathologically proven Leigh syndrome. The G8363A mutation, which previously had been associated with cardiomyopathy and hearing loss, MERRF, and multiple lipomas, also should be included in the differential diagnosis of maternally inherited Leigh syndrome.

  16. Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV.

    PubMed

    Nakase, Keisuke; Sakuma, Yui; Nakaminami, Hidemasa; Noguchi, Norihisa

    2016-12-01

    With the aim of elucidating the mechanisms of fluoroquinolones resistance in Propionibacterium acnes, we determined the susceptibility of fluoroquinolones in 211 isolates from patients with acne vulgaris. We identified five isolates (2.4%) with reduced susceptibility to nadifloxacin (minimum inhibitory concentration ≥ 4 μg/ml). Determination of the sequences of the DNA gyrase (gyrA and gyrB) and DNA topoisomerase (parC and parE) genes showed the amino acid substitutions Ser101Leu and Asp105Gly of GyrA in four and one of the isolates, respectively. In vitro mutation experiments showed that low-level fluoroquinolone-resistant mutants with the Ser101Leu or Asp105Gly substitution in GyrA could be obtained from selection with ciprofloxacin and levofloxacin. The pattern of substitution (Ser101Trp in GyrA) caused by nadifloxacin selection was different from that induced by the other fluoroquinolones. In the isolation of further high-level resistant mutants, acquisition of another amino acid substitution of GyrB in addition to those of GyrA was detected, but there were no substitutions of ParC and ParE. In addition, the mutant prevention concentration and mutation frequency of nadifloxacin were lowest among the tested fluoroquinolones. The growth of the Ser101Trp mutant was lower than that of the other mutants. Our findings suggest that the Ser101Trp mutant of P. acnes emerges rarely and disappears immediately, and the risk for the prevalence of fluoroquinolones-resistant P. acnes differs according to the GyrA mutation type. To our knowledge, this study is the first to demonstrate the mechanisms of resistance to fluoroquinolones in P. acnes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tetramer as efficient structural mode for organizing antioxidative carboxylic acids: The case in inhibiting DNA oxidation.

    PubMed

    Zhou, Ri; Liu, Zai-Qun

    2017-10-01

    To overcome the problem on the relationship of antioxidative effect with the branch number in a tetramer, we herein designed a series of antioxidants with pentaerythritol, glycerol, and ethylene glycol as the cores, and gallic, ferulic, caffeic, and p-hydroxybenzoic acids as the antioxidative moieties. In the case of DNA oxidation mediated by 2,2'-azobis(2-amidinopropane hydrochloride, AAPH), it was found that the stoichiometric factor (n) of a carboxylic acid increased rapidly when the acid was esterified with ethylene glycol, glycerol, and pentaerythritol to form a dimer, trimer, and tetramer, respectively. Interestingly, the coefficient in the equation of n∼{branch} ({branch} referred to the number of branches) was higher than one, indicating that the antioxidative effect was enhanced more promptly than the increase of the number of branches. Meanwhile, tetramer exhibited high intercalation effect with DNA strand. Therefore, additionally antioxidative effect was ascribed to the tethering effect resulting from tetrameric structure and strong intercalation with DNA strand generated by tetramer. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer.

    PubMed

    Kandell, R L; Bernstein, C

    1991-01-01

    Two bile salts, sodium chenodeoxycholate and sodium deoxycholate, induced a DNA repair response in the bacterium Escherichia coli. Similarly, a bile acid and a bile salt, chenodeoxycholic acid and sodium deoxycholate, induced DNA repair (indicated by unscheduled DNA synthesis) in human foreskin fibroblasts. Also, DNA repair-deficient Chinese hamster ovary (CHO) cells were found to be more sensitive than normal cells to killing by bile salts. In particular, mutant UV4 CHO cells, defective in DNA excision repair and DNA cross-link removal, were more sensitive to sodium chenodeoxycholate, and mutant EM9 CHO cells, defective in strand-break rejoining, were more sensitive to sodium deoxycholate than wild-type cells. These results indicate that bile salts/acid damage DNA of both bacterial and mammalian cells in vivo. Previous epidemiological studies have shown that colon cancer incidence correlates with fecal bile acid levels. The findings reported here support the hypothesis that bile salts/acids have an etiologic role in colon cancer by causing DNA damage.

  19. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes

    PubMed Central

    Saxena, Rahul; Fingland, Nicholas; Patil, Digvijay; Sharma, Anjali K.; Crooke, Elliott

    2013-01-01

    Anionic (i.e., acidic) phospholipids such as phosphotidylglycerol (PG) and cardiolipin (CL), participate in several cellular functions. Here we review intriguing in vitro and in vivo evidence that suggest emergent roles for acidic phospholipids in regulating DnaA protein-mediated initiation of Escherichia coli chromosomal replication. In vitro acidic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA to replicatively proficient ATP-DnaA, yet both PG and CL also can inhibit the DNA-binding activity of DnaA protein. We discuss how cellular acidic phospholipids may positively and negatively influence the initiation activity of DnaA protein to help assure chromosomal replication occurs once, but only once, per cell-cycle. Fluorescence microscopy has revealed that PG and CL exist in domains located at the cell poles and mid-cell, and several studies link membrane curvature with sub-cellular localization of various integral and peripheral membrane proteins. E. coli DnaA itself is found at the cell membrane and forms helical structures along the longitudinal axis of the cell. We propose that there is cross-talk between acidic phospholipids in the bacterial membrane and DnaA protein as a means to help control the spatial and temporal regulation of chromosomal replication in bacteria. PMID:23595001

  20. Comparison of the hydrophobic grid-membrane filter DNA probe method and the Health Protection Branch standard method for the detection of Listeria monocytogenes in foods.

    PubMed

    Yan, W; Malik, M N; Peterkin, P I; Sharpe, A N

    1996-07-01

    The standard Health Protection Branch (HPB) method for the detection of L. monocytogenes in foods involves lengthy enrichment, selection and biochemical testing, requiring up to 8 days to complete. A hydrophobic grid-membrane filter (HGMF) method employing a digoxigenin-labelled listeriolysin O probe required 5 days to complete, and included an image-analysis system for electronic data acquisition. A total of 200 food samples encompassing 8 high-risk food groups (soft and semi-soft cheeses, packaged raw vegetables, frozen cooked shrimp, ground poultry, ground pork, ground beef, jellied meats, and pâté) were screened for the presence of L. monocytogenes by the two methods. Overall, 32 (16%) and 30 (15%) of the naturally-contaminated food samples tested positive for L. monocytogenes by the HPB and DNA methods, respectively. The DNA probe method was highly specific in discriminating L. monocytogenes from other Listeria spp. present in 50 of the samples tested. Results showed 94% sensitivity and 100% specificity between the two methods. The HGMF DNA probe method is an efficient and reliable alternative to the HPB standard method for detecting L. monocytogenes in foods.

  1. Peroxidation of linoleic, arachidonic and oleic acid in relation to the induction of oxidative DNA damage and cytogenetic effects.

    PubMed

    de Kok, T M; ten Vaarwerk, F; Zwingman, I; van Maanen, J M; Kleinjans, J C

    1994-07-01

    In the present study, the possible role of the polyunsaturated fatty acids linoleic and arachidonic acid in the chemical induction of carcinogenesis has been investigated. Analysis of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) levels in 2'-deoxyguanosine (dG) and isolated DNA has demonstrated that linoleic and arachidonic acid are capable of inducing this specific genotoxic damage. This effect appears to be related to the degree of fatty acid unsaturation, since it was not induced by monounsaturated oleic acid. Enzymatic peroxidation of linoleic and arachidonic acid resulted in a significant increase in oxidative DNA damage. Studies on the interference of radical scavengers with the induction of 8-oxodG in combination with electron spin resonance spectroscopy demonstrated that the superoxide anion was generated during peroxidation of these fatty acids and that singlet oxygen is most likely involved in the formation of oxidative DNA damage. The level of oxidative damage in dG and single-stranded DNA was higher as compared to that in native DNA after equimolar treatment. Exposure of human lymphocytes to linoleic or arachidonic acid did not result in a significant increase in levels of 8-oxodG. This may indicate that the rate of intracellular peroxidation is relatively low and/or that nuclear DNA in intact cells is effectively protected against genetic damage induced by reactive oxygen species. It is therefore concluded that relatively short periods of linoleic or arachidonic acid administration are not likely to impose a direct genotoxic risk. It can, however, not be excluded that chronic exposure to polyunsaturated fatty acids induces oxidative DNA damage or is related to cancer risk by epigenetic mechanisms, as is also indicated by the observed cytotoxic effects of linoleic and arachidonic acid.

  2. Translocation of single stranded DNA through the α-hemolysin protein nanopore in acidic solutions

    PubMed Central

    de Zoysa, Ranulu Samanthi S.; Krishantha, D.M. Milan; Zhao, Qitao; Gupta, Jyoti; Guan, Xiyun

    2012-01-01

    The effect of acidic pH on the translocation of single-stranded DNA through the α-hemolysin pore is investigated. Two significantly different types of events, i.e., deep blockades and shallow blockades, are observed at low pH. The residence times of the shallow blockades are not significantly different from those of the DNA translocation events obtained at or near physiological pH, while the deep blockades have much larger residence times and blockage amplitudes. With a decrease in the pH of the electrolyte solution, the percentage of the deep blockades in the total events increases. Furthermore, the mean residence time of these long-lived events is dependent on the length of DNA, and also varies with the nucleotide base, suggesting that they are appropriate for use in DNA analysis. In addition to be used as an effective approach to affect DNA translocation in the nanopore, manipulation of the pH of the electrolyte solution provides a potential means to greatly enhance the sensitivity of nanopore stochastic sensing. PMID:21997574

  3. Methylmalonic acid administration induces DNA damage in rat brain and kidney.

    PubMed

    Andrade, Vanessa M; Dal Pont, Hugo S; Leffa, Daniela D; Damiani, Adriani P; Scaini, Giselli; Hainzenreder, Giana; Streck, Emilio L; Ferreira, Gustavo C; Schuck, Patrícia F

    2014-06-01

    Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of methylmalonic aciduria. Affected patients present renal failure and severe neurological findings. Considering that the underlying pathomechanisms of tissue damage are not yet understood, in the present work we assessed the in vivo e in vitro effects of MMA on DNA damage in brain and kidney, as well as on p53 and caspase 3 levels, in the presence or absence of gentamicin (acute renal failure model). For in vitro studies, tissue prisms were incubated in the presence of different concentrations of MMA and/or gentamicin for one hour. For in vivo studies, animals received a single injection of gentamicin (70 mg/kg) and/or three injections of MMA (1.67 μmol/g; 11 h interval between injections). The animals were killed 1 h after the last MMA injection. Controls received saline in the same volumes. DNA damage was analyzed by the comet assay. We found that MMA and gentamicin alone or combined in vitro increased DNA damage in cerebral cortex and kidney of rats. Furthermore, MMA administration increased DNA damage in both brain and kidney. Gentamicin per se induced DNA damage only in kidney, and the association of MMA plus gentamicin also caused DNA damage in cerebral cortex and kidney. On the other hand, p53 and caspase 3 levels were not altered by the administration of MMA and/or gentamicin. Our findings provide evidence that DNA damage may contribute to the neurological and renal damage found in patients affected by methylmalonic aciduria.

  4. Proposed binding mechanism of galbanic acid extracted from Ferula assa-foetida to DNA.

    PubMed

    Ahmadi, F; Shokoohinia, Y; Javaheri, Sh; Azizian, H

    2017-01-01

    Recently, galbanic acid (GA), a sesquiterpenoid coumarin, has been introduced as an apoptotic and geno/cytotoxicity agent. In the present study, GA has been extracted from Ferula assa-foetida, a native medicinal plant in Iran, and characterized by (1)H NMR, mass spectroscopy. Additionally, spectroscopic studies have been performed in order to investigate its DNA-interaction mode. The electrochemical behavior of GA has been studied by cyclic voltammetry (CV) in various scan rates. In neutral media (pH=7.3) one irreversible cathodic peak was obtained at -1.46 V, while in higher scan rates an irreversible one was determined at -1.67 V. According to the voltametric data GA can be easily reduced by 2e(-)/2H(+) mechanism at hanging mercury drop electrode (HMDE). The interaction of GA with ct-DNA was evaluated by CV, differential pulse voltammetry (DPV), enhancement fluorescence, UV-Vis, FT-IR spectroscopy and molecular docking. The molecular docking study shows that the GA interacts to DNA on partial intercalation mode via DNA groove binding and forms a complex by van der Waals and electroastatic interactions. In addition, the thermodynamic parameters of GA-DNA complex were investigated with ΔH°, ΔS° and ΔG° values of 15.81KJmol(-1), 133.95Jmol(-1) and -23.10KJmol(-1), respectively. All data revealed that the GA is binding to DNA by van der Waals and electrostatic interactions through the partial intercalations from the DNA's grooves. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples

    PubMed Central

    Fanaei, Hamed; Khayat, Samira; Halvaei, Iman; Ramezani, Vahid; Azizi, Yaser; Kasaeian, Amir; Mardaneh, Jalal; Parvizi, Mohammad Reza; Akrami, Maryam

    2014-01-01

    Background: Oxidative stress in teratozoospermic semen samples caused poor assisted reproductive techniques (ART) outcomes. Among antioxidants, ascorbic acid is a naturally occurring free radical scavenger and as such its presence assists various other mechanisms in decreasing numerous disruptive free radical processes. Objective: The main goal of this study was to evaluate potential protective effects of ascorbic acid supplementation during in vitro culture of teratozoospermic specimens. Materials and Methods: Teratozoospermic semen samples that collected from 15 volunteers were processed, centrifuged and incubated at 37oC until sperm swimmed-up. Supernatant was divided into four groups and incubated at 37oC for one hour under different experimental conditions: Control, 10 µm A23187, 600µm ascorbic acid and 10 µm A23187+600 µm ascorbic acid. After incubation sperm motility, viability, acrosome reaction, DNA damage and malondialdehyde levels were evaluated. Results: Our results indicated that after one hour incubation, ascorbic acid significantly reduced malondialdehyde level in ascorbic acid group (1.4±0.11 nmol/ml) compared to control group (1.58±0.13 nmol/ml) (p<0.001). At the end of incubation, progressive motility and viability in ascorbic acid group (64.5±8.8% and 80.3±6.4%, respectively) were significantly (p<0.05 and p<0.001, respectively) higher than the control group (54.5±6.8% and 70.9±7.3%, respectively). A23187 significantly (p<0.0001) increased acrosome reaction in A23187 group (37.3±5.6%) compared to control group (8.5±3.2%) and this effect of A23187 attenuated by ascorbic acid in ascorbic acid+A23187 group (17.2±4.4%). DNA fragmentation in ascorbic acid group (20±4.1%) was significantly (p<0.001) lower than controls (28.9±4.6%). Conclusion: In vitro ascorbic acid supplementation during teratozoospermic semen processing for ART could protect teratozoospermic specimens against oxidative stress, and it could improve ART outcome. PMID

  6. Nucleic Acid (DNA, RNA) Quantification and RNA/DNA Ratio Determination in Marine Sediments: Comparison of Spectrophotometric, Fluorometric, and HighPerformance Liquid Chromatography Methods and Estimation of Detrital DNA

    PubMed Central

    Dell’Anno, A.; Fabiano, M.; Duineveld, G. C. A.; Kok, A.; Danovaro, R.

    1998-01-01

    In this study, we compared three methods for extraction and quantification of RNA and DNA from marine sediments: (i) a spectrophotometric method using the diphenylamine assay; (ii) a fluorometric method utilizing selective fluorochromes (thiazole orange for total nucleic acids and Hoechst 33258 for DNA); and (iii) a high-pressure liquid chromatography (HPLC) method which uses a specific column to separate RNA and DNA and UV absorption of the nucleic acids for quantification. Sediment samples were collected in the oligotrophic Cretan Sea (eastern Mediterranean, from 40 to 1,540 m in depth) and compared to the distribution and composition of the benthic microbial assemblages (i.e., bacteria and microprotozoa). DNA concentrations measured spectrophotometrically and by HPLC were not significantly different, while fluorometric yields were significantly lower. Such differences appear mainly due to fact that the stain-DNA complex is strongly dependent on the DNA composition and structure. RNA concentrations determined by the three methods displayed some differences; fluorometric and spectrophotometric methods obtain RNA concentration by difference and therefore may be biased by DNA estimates. By contrast, the HPLC method provides independent assessments of RNA and DNA concentrations. We tentatively estimated the contribution of the detrital DNA to the total DNA pools in two ways. The two calculations provided quite similar results indicating that the majority of the DNA pool in the deep-sea sediments was detrital. Microbial RNA generally accounted for almost the entire sedimentary RNA pools below 100-m depth. RNA concentrations were found to decrease along the Cretan shelf and slope. The RNA/DNA ratio calculated by using fluorometric DNA concentrations was significantly correlated with values of sediment community oxygen consumption only below 100-m depth (dominated by the microbial biomass). These data suggest that the RNA/DNA ratio, based on fluorometric estimates of

  7. Evaluation of a new rapid molecular diagnostic system for Plasmodium falciparum combined with DNA filter paper, loop-mediated isothermal amplification, and melting curve analysis.

    PubMed

    Yamamura, Mariko; Makimura, Koichi; Ota, Yasuo

    2009-01-01

    Falciparum malaria is a fatal infection without immediate diagnosability or treatment. There are shortages of clinicians and examiners skilled in the treatment of malaria in non-endemic countries, including Japan. This study was performed to evaluate a novel rapid molecular diagnostic system consisting of loop-mediated isothermal amplification (LAMP) combined with DNA filter paper (FTA card) and melting curve analysis. Combining LAMP with melting curve analysis enabled diagnosis of Plasmodium falciparum more accurately with relative ease. FTA cards could be used to clarify problems regarding storage, infectivity, and transportation. The LAMP assay was carried out at a constant temperature of 63 degrees C for 90 min. The diagnostic system (malaria-LAMP) accurately diagnosed malaria (47 samples from Thailand and 50 from Zimbabwe) with 97.8% sensitivity and 85.7% specificity as compared with microscopic methods, indicating the usefulness of this combined system.

  8. Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification

    PubMed Central

    Poole, Catherine B.; Ettwiller, Laurence; Tanner, Nathan A.; Evans, Thomas C.; Wanji, Samuel; Carlow, Clotilde K. S.

    2015-01-01

    Loa loa infections have emerged as a serious public health problem in patients co-infected with Onchocerca volvulus or Wuchereria bancrofti because of severe adverse neurological reactions after treatment with ivermectin. Accurate diagnostic tests are needed for careful mapping in regions where mass drug administration is underway. Loop-mediated isothermal amplification (LAMP) has become a widely adopted screening method because of its operational simplicity, rapidity and versatility of visual detection readout options. Here, we present a multi-step bioinformatic pipeline to generate diagnostic candidates suitable for LAMP and experimentally validate this approach using one of the identified candidates to develop a species-specific LAMP assay for L. loa. The pipeline identified ~140 new L. loa specific DNA repeat families as putative biomarkers of infection. The consensus sequence of one family, repeat family 4 (RF4), was compiled from ~ 350 sequences dispersed throughout the L. loa genome and maps to a L. loa-specific region of the long terminal repeats found at the boundaries of Bel/Pao retrotransposons. PCR and LAMP primer sets targeting RF4 specifically amplified L. loa but not W. bancrofti, O. volvulus, Brugia malayi, human or mosquito DNA. RF4 LAMP detects the DNA equivalent of one microfilaria (100 pg) in 25–30 minutes and as little as 0.060 pg of L. loa DNA (~1/1600th of a microfilaria) purified from spiked blood samples in approximately 50 minutes. In summary, we have successfully employed a bioinformatic approach to mine the L. loa genome for species-specific repeat families that can serve as new DNA biomarkers for LAMP. The RF4 LAMP assay shows promise as a field tool for the implementation and management of mass drug administration programs and warrants further testing on clinical samples as the next stage in development towards this goal. PMID:26414073

  9. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells.

    PubMed

    Shen, Yan; Takahashi, Masanobu; Byun, Hyang-Min; Link, Alexander; Sharma, Nupur; Balaguer, Francesc; Leung, Hon-Chiu E; Boland, C Richard; Goel, Ajay

    2012-05-01

    Accumulating evidence suggests that chemopreventive effects of some dietary polyphenols may in part be mediated by their ability to influence epigenetic mechanisms in cancer cells. Boswellic acids, derived from the plant Boswellia serrata, have long been used for the treatment of various inflammatory diseases due to their potent anti-inflammatory activities. Recent preclinical studies have also suggested that this compound has anti-cancer potential against various malignancies. However, the precise molecular mechanisms underlying their anti-cancer effects remain elusive. Herein, we report that boswellic acids modulate DNA methylation status of several tumor suppressor genes in colorectal cancer (CRC) cells. We treated RKO, SW48 and SW480 CRC cell lines with the active principle present in boswellic acids, acetyl-keto-β-boswellic acid (AKBA). Using genome-wide DNA methylation and gene expression microarray analyses, we discovered that AKBA induced a modest genome-wide demethylation that permitted simultaneous re-activation of the corresponding tumor suppressor genes. The quantitative methylation-specific PCR and RT-PCR validated the gene demethylation and re-expression in several putative tumor suppressor genes including SAMD14 and SMPD3. Furthermore, AKBA inhibited DNMT activity in CRC cells. Taken together, these results lend further support to the growing notion that anti-cancer effect of boswellic acids may in part be due to its ability to demethylate and reactivate methylation-silenced tumor suppressor genes. These results suggest that not only boswellic acid might be a promising epigenetic modulator in the chemoprevention and treatment of CRC, but also provide a rationale for future investigations on the usefulness of such botanicals for epigenetic therapy in other human malignancies.

  10. Malonic acid based cationic lipids - The way to highly efficient DNA-carriers.

    PubMed

    Wölk, Christian; Janich, Christopher; Bakowsky, Udo; Langner, Andreas; Brezesinski, Gerald

    2017-10-01

    Cationic lipids play an important role as non-viral nucleic acid carriers in gene therapy since 3 decades. This review will introduce malonic acid derived cationic lipids as nucleic acid carriers which appeared in the literature dealing with lipofection 10years ago. The family of amino-functionalized branched fatty acid amides will be presented as well as different generations of malonic acid diamides. Both groups of cationic lipids yield lipid mixtures with highly efficient nucleic acid transfer activities in in-vitro cell culture models. The DNA transfer screening of lipid libraries with directed structural variations in the lipophilic as well as in the hydrophilic part of the amphiphiles yields structure/activity relationships. Furthermore, the detailed characterizations of selected lipid composites at the air/water interface and in bulk systems are summarized with regard to transfection determining physical-chemical properties. The findings are also discussed in comparison to results obtained with other families of cationic lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fluorescence methods to study DNA translocation and unwinding kinetics by nucleic acid motors.

    PubMed

    Fischer, Christopher J; Tomko, Eric J; Wu, Colin G; Lohman, Timothy M

    2012-01-01

    Translocation of nucleic acid motor proteins (translocases) along linear nucleic acids can be studied by monitoring either the time course of the arrival of the motor protein at one end of the nucleic acid or the kinetics of ATP hydrolysis by the motor protein during translocation using pre-steady state ensemble kinetic methods in a stopped-flow instrument. Similarly, the unwinding of double-stranded DNA or RNA by helicases can be studied in ensemble experiments by monitoring either the kinetics of the conversion of the double-stranded nucleic acid into its complementary single strands by the helicase or the kinetics of ATP hydrolysis by the helicase during unwinding. Such experiments monitor translocation of the enzyme along or unwinding of a series of nucleic acids labeled at one position (usually the end) with a fluorophore or a pair of fluorophores that undergo changes in fluorescence intensity or efficiency of fluorescence resonance energy transfer (FRET). We discuss how the pre-steady state kinetic data collected in these ensemble experiments can be analyzed by simultaneous global nonlinear least squares (NLLS) analysis using simple sequential "n-step" mechanisms to obtain estimates of the macroscopic rates and processivities of translocation and/or unwinding, the rate-limiting step(s) in these mechanisms, the average "kinetic step-size," and the stoichiometry of coupling ATP binding and hydrolysis to movement along the nucleic acid.

  12. Relation between the photoreaction of p-nitrobenzoic acid onto silver-coated filters and the surface roughness, as detected by SERS and AFM

    NASA Astrophysics Data System (ADS)

    Muniz-Miranda, Maurizio; Innocenti, Massimo; Foresti, Maria Luisa

    2006-05-01

    The SERS of p-nitrobenzoic acid has been first obtained in Ag hydrosol and compared with those deriving from filtration of colloidal silver. The roughness of the Ag-coated filters has been examined by AFM measurements and related to the SERS enhancement. The addition of chloride anions to the colloidal suspension strongly increases the surface roughness of the solid metal substrates and activates the photoreaction of the adsorbate by irradiation with green laser light.

  13. Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments

    PubMed Central

    Zipper, Hubert; Buta, Christiane; Lämmle, Katrin; Brunner, Herwig; Bernhagen, Jürgen; Vitzthum, Frank

    2003-01-01

    DNA quantification of soils and sediments is useful for the investigation of microbial communities and for the acquisition of their genomes that are exploited for the production of natural products. However, in such samples DNA quantification is impaired by humic acids (HA). Due to its lack of specificity and sensitivity, UV spectrophotometry cannot be applied. Consequently, fluorimetric assays applying Hoechst (H) 33258 or PicoGreen (PG) are used. Here, we investigated the SYBR Green I (SG) assay, which was also affected by HA, but was found to be 25- and 1.7-fold more sensitive compared to the H 33258 and PG assays, respectively. Spectrophotometric, fluorimetric and quenching studies as well as gel mobility shift assays suggested that the effect of HA on the SG assay was based on an inner filter effect, collisional quenching and binding of SG to HA. As to the latter finding, the standard 6250-fold dilution of the SG reagent was optimised to a 2000-fold dilution. Although the sensitivity of the optimised SG assay was reduced by a factor of 1.3, the interfering effect of HA could be reduced up to 22-fold. A significant reduction of HA interferences by lowering the pH of the assay was not observed. Finally, the performance of the modified SG assay and the corresponding evaluation methods were verified by the determination of DNA recoveries and concentrations of standards and environmental samples in comparison to the PG assay. PMID:12655027

  14. Lability to acid hydrolysis in some different DNA-protein complexes of spermatozoa.

    PubMed

    Silva, M J; Mello, M L

    1986-01-01

    The Feulgen hydrolysis kinetics was investigated in spermatozoa with different composition in DNA-protein complexes. The species used were: Bos taurus (arginine rich nuclear protein also containing cystine residues), Pichroplus bergi, Triatoma infestans (arginine-rich nuclear protein), Lytechinus variegatus and Apis mellifera (lysine-rich nuclear protein). The spermatozoa were subjected to Feulgen's reaction, after varying the fixative type and the hydrolysis times. Feulgen-DNA values were obtained with an automatic scanning cytophotometric procedure. Differences were demonstrated in the hydrolysis kinetics as a function of differences in composition of the DNA-protein complexes being present in the spermatozoon chromatin. Differences in the profiles of Feulgen hydrolysis curves, having for basis the fixation, were rather clear for bull, grasshopper, and blood-sucking insect spermatozoa than for the sea-urchin and bee spermatozoa. The different hydrolysis kinetics of chromatin of blood-sucking insect spermatozoa compared to that of grasshopper, sea-urchin, and bee sperm cells suggests that, although the first 2 materials contain an arginine-rich "germinative" protein and the latter 2 ones contain a lysine-rich protein, these differ to each other. The DNA depurination was obtained more quickly for T. infestans (20 min) and P. bergi (10 min) spermatozoa when they were fixed in the ethanol-acetic acid (EA) mixture. Morphologically anomalous bull spermatozoa fixed in the EA mixture presented a quicker depurination (30 min) as compared to the normal cells (1 h). The fast lability to acid hydrolysis in the abnormal cells is certainly due to anomalies in their basic nuclear "germinative" protein. In the formalin fixed materials the maximal depurination was obtained earlier in bull spermatozoa (30 min) followed by sperm cells of P. bergi, T. infestans, L. variegatus (all of them one-hour hydrolysis) and finally Apis mellifera (2 h hydrolysis). The presence of secondary

  15. Functional Analysis of an Acid Adaptive DNA Adenine Methyltransferase from Helicobacter pylori 26695

    PubMed Central

    Banerjee, Arun; Rao, Desirazu N.

    2011-01-01

    HP0593 DNA-(N6-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5′-GCAG-3′and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co2+, Mn2+, and also Mg2+ stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori. PMID:21347417

  16. Bioaugmentation of bromoamine acid degradation with Sphingomonas xenophaga QYY and DNA fingerprint analysis of augmented systems.

    PubMed

    Qu, Yuanyuan; Zhou, Jiti; Wang, Jing; Song, Zhiyong; Xing, Linlin; Fu, Xiang

    2006-02-01

    One high-effective bromoamine acid (1-amino-4-bromoanthraquinone-2-sulfonic acid, BAA) degrading strain was isolated previously with the ability to use BAA as sole source of carbon and nitrogen. It was identified as Sphingomonas xenophaga QYY by 16S rDNA sequence analysis and physio-biochemical tests. In this study, bioaugmentation of BAA degradation with suspended and immobilized cells of strain QYY was investigated. The optimal degradation conditions were as follows: temperature 30 degrees C, pH 6.0-7.0, 150 rev min(-1) and the immobilized cells maintained degradation activity to BAA after 60 days storage at 4 degrees C. The structure of BAA was evidently changed according to the analysis of total organic carbon removal of BAA (about 50%) and the UV-VIS spectra changes during the biodegradation. Bioaugmented systems exhibited stronger abilities degrading BAA than the non-bioaugmented control ones. And microbial community dynamics of augmented systems was revealed by amplified ribosomal DNA restriction analysis (ARDRA), a modern DNA fingerprint technique. The results indicated that the microbial community dynamics was substantially changed throughout the augmentation process. This study suggests that it is feasible and potentially useful to enhance BAA degradation using bioaugmentation with the immobilized cells of BAA-degrading bacterium.

  17. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses

    PubMed Central

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems. PMID:26261984

  18. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses.

    PubMed

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems.

  19. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid.

    PubMed

    Stinefelt, Beth; Leonard, Stephen S; Blemings, Kenneth P; Shi, Xianglin; Klandorf, Hillar

    2005-01-01

    Uric acid (UA) has been proposed to be the dominant antioxidant in birds. The objective of this study was to investigate the quenching effect of varying concentrations of UA, including those found in avian plasma, on specific reactive oxygen species (ROS) and to determine the ability of UA to protect DNA and cellular membranes from ROS-mediated damage. Hydroxyl (OH) and superoxide (O2-) radicals were detected by electron spin resonance (ESR) and their presence was reduced following addition of UA (p <0.05) in a concentration-dependent manner. UA inhibited hydroxyl-mediated DNA damage, indicated by the presence of more precise, dense bands of lambda Hind III DNA after agarose gel electrophoresis and ethidium bromide staining (p <0.05). Lipid peroxidation of silica-exposed RAW 264.7 cell membranes was diminished (p <0.02) after addition of UA to the cell incubation mixture. These studies demonstrate that UA scavenges hydroxyl and superoxide radicals and protects against DNA damage and lipid peroxidation. These results indicate specific antioxidant protection that UA may afford birds against ROS-mediated damage.

  20. Amino acid sequence of band-3 protein from rainbow trout erythrocytes derived from cDNA.

    PubMed Central

    Hübner, S; Michel, F; Rudloff, V; Appelhans, H

    1992-01-01

    In this report we present the first complete band-3 cDNA sequence of a poikilothermic lower vertebrate. The primary structure of the anion-exchange protein band 3 (AE1) from rainbow trout erythrocytes was determined by nucleotide sequencing of cDNA clones. The overlapping clones have a total length of 3827 bp with a 5'-terminal untranslated region of 150 bp, a 2754 bp open reading frame and a 3'-untranslated region of 924 bp. Band-3 protein from trout erythrocytes consists of 918 amino acid residues with a calculated molecular mass of 101 827 Da. Comparison of its amino acid sequence revealed a 60-65% identity within the transmembrane spanning sequence of band-3 proteins published so far. An additional insertion of 24 amino acid residues within the membrane-associated domain of trout band-3 protein was identified, which until now was thought to be a general feature only of mammalian band-3-related proteins. PMID:1637296

  1. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil.

  2. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells

    PubMed Central

    Wang, Jingshuai; Li, Jiyang; Liu, Jie; Xu, Mengjiao; Tong, Xiaowen; Wang, Jianjun

    2016-01-01

    Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases. PMID:27634104

  3. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    NASA Astrophysics Data System (ADS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-09-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.

  4. Amino acid and DNA analyses in a family with ornithine transcarbamylase deficiency.

    PubMed

    Hou, J W; Wang, T R

    1996-02-01

    Ornithine transcarbamylase (OTC) is a hepatic mitochondrial enzyme involved in the detoxification of ammonia by the urea cycle. OTC deficiency is an X-linked genetic disorder, usually causing neonatal or infantile hyperammonemia, coma and death. We attended a male newborn who had poor feeding since 30 hours of age, at which time, he then rapidly progressed to a comatose state. Hyperammonemia and liver dysfunction were noted. Analysis of plasma amino acids showed elevated levels of glutamine and alanine, but a decreased level of arginine and no citrulline. OTC deficiency was diagnosed by family history of early death of newborn males on the maternal side and characteristic biochemical findings. In addition, it was proved by Southern blot analysis of genomic DNA. Although OTC deficiency has been described as the most common inborn error of ureagenesis in humans, to our knowledge, this is the first report in a Chinese family confirmed by biochemical and DNA analyses.

  5. Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.

    SciTech Connect

    James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven; McClain, Jaime; Achyuthan, Komandoor

    2006-11-01

    Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware for field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.

  6. Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids.

    PubMed

    Priestap, Horacio A; Barbieri, Manuel A; Johnson, Francis

    2012-07-27

    2-Methylnaphtho[1,2-d]oxazole-9-carboxylic acid was obtained by reduction of 8-nitro-1-naphthoic acid with zinc-acetic acid. This naphthoxazole is a condensation product between an 8-nitro-1-naphthoic acid reduction intermediate and acetic acid and is a lower homologue of aristoxazole, a similar condensation product of aristolochic acid I with acetic acid that was previously reported. Both oxazoles are believed to arise via a common nitrenium/carbocation ion mechanism that is likely related to that which leads to aristolochic acid-DNA-adducts.

  7. The usefulness of DNA sequencing after extraction by Whatman FTA filter matrix technology and phenotypic tests for differentiation of Candida albicans and Candida dubliniensis.

    PubMed

    Kiraz, Nuri; Oz, Yasemin; Aslan, Huseyin; Muslumanoglu, Hamza

    2014-02-01

    Since C. dubliniensis is similar to C. albicans phenotypically, it can be misidentified as C. albicans. We aimed to investigate the prevalence of C. dubliniensis among isolates previously identified as C. albicans in our stocks and to compare the phenotypic methods and DNA sequencing of D1/D2 region on the ribosomal large subunit (rLSU) gene. A total of 850 isolates included in this study. Phenotypic identification was performed based on germ tube formation, chlamydospore production, colony colors on chromogenic agar, inability of growth at 45 °C and growth on hypertonic Sabouraud dextrose agar. Eighty isolates compatible with C. dubliniensis by at least one phenotypic test were included in the sequence analysis. Nested PCR amplification of D1/D2 region of the rLSU gene was performed after the fungal DNA extraction by Whatman FTA filter paper technology. The sequencing analysis of PCR products carried out by an automated capillary gel electrophoresis device. The rate of C. dubliniensis was 2.35 % (n = 20) among isolates previously described as C. albicans. Consequently, none of the phenotypic tests provided satisfactory performance alone in our study, and molecular methods required special equipment and high cost. Thus, at least two phenotypic methods can be used for identification of C. dubliniensis, and molecular methods can be used for confirmation.

  8. Selection and identification of DNA aptamers against okadaic acid for biosensing application.

    PubMed

    Eissa, Shimaa; Ng, Andy; Siaj, Mohamed; Tavares, Ana C; Zourob, Mohammed

    2013-12-17

    This work describes the selection and identification of DNA aptamers that bind with high affinity and specificity to okadaic acid (OA), a lipophilic marine biotoxin that accumulates in shellfish. The aptamers selected using systematic evolution of ligands by exponential enrichment (SELEX) exhibited dissociation constants in the nanomolar range. The aptamer with the highest affinity was then used for the fabrication of a label-free electrochemical biosensor for okadaic acid detection. The aptamer was first immobilized on the gold electrode by a self-assembly approach through Au-S interaction. The binding of okadaic acid to the aptamer immobilized on the electrode surface induces an alteration of the aptamer conformation causing a significant decrease in the electron-transfer resistance monitored by electrochemical impedance spectroscopy. The aptasensor showed a linear range for the concentrations of OA between 100 pg/mL and 60 ng/mL with a detection limit of 70 pg/mL. The dissociation constant of okadaic acid with the aptamer immobilized on the electrode surface showed good agreement with that determined using fluorescence assay in solution. Moreover, the aptasensor did not show cross-reactivity toward toxins with structures similar to okadaic acid such as dinophysis toxin-1 and 2 (DTX-1, DTX-2). Further biosensing applications of the selected aptamers are expected to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  9. Purification and characterization of a novel human acidic nuclease/intra-cyclobutyl-pyrimidine-dimer-DNA phosphodiesterase.

    PubMed

    Famulski, K S; Liuzzi, M; Bashir, S; Mirzayans, R; Paterson, M C

    2000-02-01

    A novel N-glycosylated, mannose-rich protein has been purified approx. 4000-fold from human liver in a seven-step procedure including ion-exchange chromatography and fractionation on concanavalin A-Sepharose, Sephadex G-75 and oligo(dT)-cellulose matrices. The molecular mass of the protein is 46 kDa when measured by gel filtration (i.e. under non-denaturing conditions) and 60 kDa by SDS/PAGE (i.e. under denaturing conditions). The protein possesses two DNA backbone-incising activities, namely, the random introduction of single-strand breaks in native DNA and the rupture of the phosphodiester linkage internal to cyclobutyl pyrimidine dimers, the major class of DNA lesions induced by solar UV rays. Both activities are optimal at pH 5.0 in vitro, although the non-specific nuclease displays appreciable activity at neutral pH, depending on the buffer composition. The protein has been named acidic nuclease/intra-cyclobutyl-pyrimidine-dimer-DNA phosphodiesterase (AN/IDP). As a nuclease, the protein 'prefers' a linear DNA structure over a covalently closed circular molecule and is more proficient at digesting single-stranded than double-stranded DNA. The polynucleotide cleavage products of the nuclease contain 5'-OH and 3'-PO(4) termini, which are refractory to direct rejoining by DNA ligases. Depending on the substrate, the nuclease activity exhibits a temperature optimum of 50 degrees C or greater, and is neither stimulated by Mg(2+) or Ca(2+) nor inhibited by Zn(2+). AN/IDP is present in human liver and in cultured human cells of both fibroblastic and lymphocytic origins. Intracellularly, the protein can be readily detected in both the cytosolic and nuclear fractions, although much more (approx. 3-fold) is found in the latter fraction. We propose that this bifunctional enzyme may be involved in both apoptotic DNA digestion and metabolism of cyclobutyl pyrimidine dimers in UV-irradiated human cells.

  10. Purification and characterization of a novel human acidic nuclease/intra-cyclobutyl-pyrimidine-dimer-DNA phosphodiesterase.

    PubMed Central

    Famulski, K S; Liuzzi, M; Bashir, S; Mirzayans, R; Paterson, M C

    2000-01-01

    A novel N-glycosylated, mannose-rich protein has been purified approx. 4000-fold from human liver in a seven-step procedure including ion-exchange chromatography and fractionation on concanavalin A-Sepharose, Sephadex G-75 and oligo(dT)-cellulose matrices. The molecular mass of the protein is 46 kDa when measured by gel filtration (i.e. under non-denaturing conditions) and 60 kDa by SDS/PAGE (i.e. under denaturing conditions). The protein possesses two DNA backbone-incising activities, namely, the random introduction of single-strand breaks in native DNA and the rupture of the phosphodiester linkage internal to cyclobutyl pyrimidine dimers, the major class of DNA lesions induced by solar UV rays. Both activities are optimal at pH 5.0 in vitro, although the non-specific nuclease displays appreciable activity at neutral pH, depending on the buffer composition. The protein has been named acidic nuclease/intra-cyclobutyl-pyrimidine-dimer-DNA phosphodiesterase (AN/IDP). As a nuclease, the protein 'prefers' a linear DNA structure over a covalently closed circular molecule and is more proficient at digesting single-stranded than double-stranded DNA. The polynucleotide cleavage products of the nuclease contain 5'-OH and 3'-PO(4) termini, which are refractory to direct rejoining by DNA ligases. Depending on the substrate, the nuclease activity exhibits a temperature optimum of 50 degrees C or greater, and is neither stimulated by Mg(2+) or Ca(2+) nor inhibited by Zn(2+). AN/IDP is present in human liver and in cultured human cells of both fibroblastic and lymphocytic origins. Intracellularly, the protein can be readily detected in both the cytosolic and nuclear fractions, although much more (approx. 3-fold) is found in the latter fraction. We propose that this bifunctional enzyme may be involved in both apoptotic DNA digestion and metabolism of cyclobutyl pyrimidine dimers in UV-irradiated human cells. PMID:10642517

  11. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes.

    PubMed

    Mittra, Indraneel; Khare, Naveen Kumar; Raghuram, Gorantla Venkata; Chaubal, Rohan; Khambatti, Fatema; Gupta, Deepika; Gaikwad, Ashwini; Prasannan, Preeti; Singh, Akshita; Iyer, Aishwarya; Singh, Ankita; Upadhyay, Pawan; Nair, Naveen Kumar; Mishra, Pradyumna Kumar; Dutt, Amit

    2015-03-01

    Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored.We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.

  12. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  13. Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom.

    PubMed

    Wooldridge, B J; Pineda, G; Banuelas-Ornelas, J J; Dagda, R K; Gasanov, S E; Rael, E D; Lieb, C S

    2001-09-01

    The venom composition of Mojave rattlesnakes (Crotalus scutulatus scutulatus) differs in that some individuals have Mojave toxin and others do not. In order to understand the genetic basis for this difference, genomic DNA samples from Mojave rattlesnakes collected in Arizona, New Mexico, and Texas were analyzed for the presence of DNA sequences that relate to the acidic (Mta) and basic (Mtb) subunits of this toxin. DNA samples were subjected to PCR to amplify nucleotide sequences from second to fourth exons of the acidic and basic subunits. These nucleotide sequences were cloned and sequenced. The nucleotide sequences generated aligned exactly to previously published nucleotide sequences of Mojave toxin. All DNA samples analyzed generated product using the basic subunit primers, and aligned identically to the Mtb nucleotide sequence. However, only 11 out of the 14 samples generated a product with the acidic subunit primers. These 11 sequences aligned identically to the Mta nucleotide sequence. The venom from the three snakes whose DNA did not amplify with the acidic subunit primers were not recognized by antibodies to Mojave toxin. This suggests that snakes with venom lacking Mojave toxin also lack the productive nucleotide sequence for the acidic subunit in their DNA.

  14. DNA fingerprinting of thermophilic lactic acid bacteria using repetitive sequence-based polymerase chain reaction.

    PubMed

    De Urraza, P J; Gómez-Zavaglia, A; Lozano, M E; Romanowski, V; De Antoni, G L

    2000-08-01

    DNA fingerprints of lactic acid bacteria were generated by polymerase chain reaction using a primer based on the repetitive elements found in the genome of Streptococcus pneumoniae (BOX-PCR). The method made it possible to identify 37 isolates from raw milk. industrial starters and yogurt. Differentiation at species, subspecies and strain level was possible for Lactobacillus delbrueckii subsp. lactis, Lb. delbrueckii subsp bulgaricus and Str. thermophilus. BOX-PCR was also applied to studying the strain composition of a starter culture and the direct detection of strains in commercial fermented milk.

  15. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    SciTech Connect

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-02-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 {mu}M, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 +- 0.05; MCF7 - 1.16 +- 0.09 and TK6 - 1.17 +- 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  16. Impact of boric acid exposure at different concentrations on testicular DNA and male rats fertility.

    PubMed

    El-Dakdoky, Mai H; Abd El-Wahab, Hanan M F

    2013-06-01

    The aim of this study was to investigate the consequences of exposure to three levels of boric acid (BA) on male rats reproduction, fertility and progeny outcome, with emphasis on testicular DNA level and quality. Adult male rats (12 weeks old) were treated orally with 125, 250 and 500 mg/kg bwt/d of BA for 60 d. The results indicated that BA administration at 125 mg/kg bwt had no adverse effects on fertility, sperm characteristics or prenatal development of the impregnated females. However, at dose 250 mg, BA treatment significantly increased serum nitric oxide, testosterone, estradiol levels and testicular boron and calcium levels and also significantly reduced serum arginase activity, sperm quality and testicular DNA content with minor DNA fragmentation. The impact of BA exposure at dose 250 mg on male rats fertility was translated into increases in pre-implantation loss with a resulting decrease in the number of live fetuses/litter. In addition to the significant alteration of biochemical measurements, observed at dose 250 mg, administration of BA at 500 mg caused testicular atrophy, severe damage of spermatogenesis, spermiation failure and significant reduction of Mg and Zn testicular levels. None of the male rats, treated with 500 mg/kg bwt, could impregnate untreated females, suggesting the occurrence of definitive loss of fertility. In conclusion, BA impaired fertility, in a dose-dependant manner, by targeting the highly proliferative cells, the germ cells, through decreasing DNA synthetic rate rather than the induction of DNA damage.

  17. Influence of plasma DNA on acid-base balance, blood gas measurement, and oxygen transport in health and stroke.

    PubMed

    Konorova, Irina L; Veiko, Natalya N; Novikov, Viktor E

    2008-08-01

    Hyperoxia and alkalemia, as a result of pulmonary hyperventilation and elevation of plasma DNA (pDNA), are seen during the first 24 h after ischemic stroke. In this study we have examined the correlation between pDNA and these blood parameters in health and stroke. Acid-base equilibrium, oxygen status, hemoglobin affinity to oxygen and concentration of pDNA in arterial blood were measured after the intravenous injection of homologous long-chain DNA to healthy rats and rats subjected to common carotid arterial occlusion. In addition the effect of adding homologous DNA to human and rat venous blood samples was studied in vitro. Hyperoxia, alkalemia, and an increase in hemoglobin affinity to oxygen were seen in rats with artificial stroke. A marked decrease in pulmonary hyperventilation and hemoglobin affinity to oxygen was observed after injection of homologous genomic DNA (10(-6) g/mL of blood). After the DNA injection, blood gas measurement and concentration of pDNA were correlated. Addition of DNA at a concentration of 10(-7) g/mL to venous blood samples in vitro increased oxygen saturation that disappeared when the dose of the DNA increased 10-fold. Thus, a change of pDNA concentration or size can alter acid-base equilibrium, oxygen status, and oxygen transport. These results may be important for a better understanding of the mechanisms of stroke and other diseases associated with the elevation of pDNA concentration, and they open the possibility of new therapeutic approaches.

  18. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform

    PubMed Central

    Allen, Peter B.; Arshad, Seyed A.; Li, Bingling; Chen, Xi; Ellington, Andrew D.

    2012-01-01

    This article describes the use of non-enzymatic nucleic acid circuits based on strand exchange reactions to detect target sequences on a paperfluidic platform. The DNA circuits that were implemented include a non-enzymatic amplifier and transduction to a fluorescent reporter; these yield an order of magnitude improvement in detection of an input nucleic acid signal. To further improve signal amplification and detection, we integrated the enzyme-free amplifier with loop-mediated isothermal amplification (LAMP). By bridging the gap between the low concentrations of LAMP amplicons and the limits of fluorescence detection, the non-enzymatic amplifier allowed us to detect as few as 1,200 input templates in a paperfluidic format. PMID:22729075

  19. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs.

    PubMed

    Siristova, Lucie; Melzoch, Karel; Rezanka, Tomas

    2009-01-01

    The composition of fatty acids in 12 strains of the genera Thermus, Meiothermus, Geobacillus and Alicyclobacillus was analyzed by gas chromatography-mass spectrometry. Major FAs found in the profiles included i-15:0, i-17:0, ai-15:0, i-16:0, 16:0, ai-17:0, together with some minor components. Branched FAs were predominant, forming more than 80% of all FAs measured. Fast atom bombardment-mass spectrometry was used for analysis of unusual glycophospholipids, i.e., acylglycosylcardiolipins from genera Geobacillus and Alicyclobacillus and 1-(hydroxy(2-(O-acylglycosyl-oxy)hexadecyloxy)phosphoryloxy) hexadecan-2-yl esters of C15-C17 acids from genera Thermus and Meiothermus. Cloning and preliminary sequence analysis of 16S rDNA showed that these isolates belong to the genera Thermus, Meiothermus, Geobacillus and Alicyclobacillus.

  20. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  1. Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study.

    PubMed

    Sarwar, Tarique; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur; Husain, Mohammed Amir; Rahman, Yusra; Tabish, Mohammad

    2017-05-01

    Caffeic acid (CA) is a plant polyphenol which acts as an antioxidant and has various pharmacological effects. DNA is one of the major cellular targets of therapeutic molecules. Thus, studying the interaction of small molecules with DNA is of great importance. In the current article, we have studied the mode of binding of CA with calf thymus DNA (Ct-DNA) using a series of biophysical techniques. Formation of complex between CA and Ct-DNA is ascertained by analyzing the UV-vis absorbance and fluorescence emission spectra of CA upon successive addition of Ct-DNA. Binding constants of CA with Ct-DNA obtained using multiple experiments was in the order of 103 M-1 which is consistent with known groove binders. Analysis of thermodynamic parameters suggest that hydrogen bonding and van der Waal's forces played major role in the binding process. Competitive displacement studies confirmed that CA binds to the minor groove of Ct-DNA. These observations were further validated by KI quenching experiment, DNA melting studies, CD and viscosity measurements. In silico molecular docking further provided insight into the mode of binding of CA with Ct-DNA. Through in vitro experiments and in silico molecular docking studies, it was concluded that CA binds to the minor groove of Ct-DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  3. Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhynchus mykiss) following a chronic toxicity test.

    PubMed

    Grabicova, Katerina; Fedorova, Ganna; Burkina, Viktoriia; Steinbach, Christoph; Schmidt-Posthaus, Heike; Zlabek, Vladimir; Kocour Kroupova, Hana; Grabic, Roman; Randak, Tomas

    2013-10-01

    UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.

  4. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines.

    PubMed

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the alpha-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C-13C lysine-only correlation experiment.

  5. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

    2012-10-01

    Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

  6. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    PubMed

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  7. [Release of Extracellular DNA after Administration of Radioprotective Combination of α-Tocopherol and Ascorbic Acid].

    PubMed

    Vasilyeval, I N; Bespalov, V G

    2015-01-01

    Radioprotective and apoptotic activities of α-tocopherol acetate (vitamin E) and ascorbic acid (vitamin C) have been studied in 180 Wistar male rats. Rats were administered a single oral dose with vitamin E, vitamin C or their combination at prophylactic doses before or after the single whole body exposure to irradiation at the doses of 2 or 8 Gy. The radioprotective effect was evaluated by the frequency of chromosomal aberrations at metaphase plates of the bone marrow cells, apoptotic--by the level of circulating low-molecular-weight DNA (ImwDNA) in the blood plasma of irradiated rats. Administration of the combination of vitamins E and C before and after the irradiation at the dose of 2 Gy reduced the number of the cells with chromosomal aberrations thus providing the radioprotective effect, but separately administration of these vitamins did not show the significant radioprotective activity. Administration of the combination of vitamins E and C before irradiation with 8 Gy increased the lmwDNA in blood thus providing the apoptotic effect. So, synergy of radioprotective activities has been revealed in vitamins E and C action at prophylactic doses. Radioprotective effect of the combination of vitamins E and C can be associated with the apoptotic activity and can be explained by elimination of the least viable irradiated cells from the cell population.

  8. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model.

    PubMed

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2015-05-01

    The treatment of impaired wounds requires the use of biomaterials that can provide mechanical and biological queues to the surrounding environment to promote angiogenesis, granulation tissue formation, and wound closure. Porous hydrogels show promotion of angiogenesis, even in the absence of proangiogenic factors. It is hypothesized that the added delivery of nonviral DNA encoding for proangiogenic growth factors can further enhance this effect. Here, 100 and 60 μm porous and nonporous (n-pore) hyaluronic acid-MMP hydrogels with encapsulated reporter (pGFPluc) or proangiogenic (pVEGF) plasmids are used to investigate scaffold-mediated gene delivery for local gene therapy in a diabetic wound healing mouse model. Porous hydrogels allow for significantly faster wound closure compared with n-pore hydrogels, which do not degrade and essentially provide a mechanical barrier to closure. Interestingly, the delivery of pDNA/PEI polyplexes positively promotes granulation tissue formation even when the DNA does not encode for an angiogenic protein. And although transfected cells are present throughout the granulation tissue surrounding, all hydrogels at 2 weeks, pVEGF delivery does not further enhance the angiogenic response. Despite this, the presence of transfected cells shows promise for the use of polyplex-loaded porous hydrogels for local gene delivery in the treatment of diabetic wounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA Dendrimer: An Efficient Nanocarrier of Functional Nucleic Acids for Intracellular Molecular Sensing

    PubMed Central

    2015-01-01

    Functional nucleic acid (FNA)-based sensing systems have been developed for efficient detection of a wide range of biorelated analytes by employing DNAzymes or aptamers as recognition units. However, their intracellular delivery has always been a concern, mainly in delivery efficiency, kinetics, and the amount of delivered FNAs. Here we report a DNA dendrimer scaffold as an efficient nanocarrier to deliver FNAs and to conduct in situ monitoring of biological molecules in living cells. A histidine-dependent DNAzyme and an anti-ATP aptamer were chosen separately as the model FNAs to make the FNA dendrimer. The FNA-embedded DNA dendrimers maintained the catalytic activity of the DNAzyme or the aptamer recognition function toward ATP in the cellular environment, with no change in sensitivity or specificity. Moreover, these DNA dendrimeric nanocarriers show excellent biocompatibility, high intracellular delivery efficiency, and sufficient stability in a cellular environment. This FNA dendrimeric nanocarrier may find a broad spectrum of applications in biomedical diagnosis and therapy. PMID:24806614

  10. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-02-20

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity.

  11. Arginine as a general acid catalyst in serine recombinase-mediated DNA cleavage.

    PubMed

    Keenholtz, Ross A; Mouw, Kent W; Boocock, Martin R; Li, Nan-Sheng; Piccirilli, Joseph A; Rice, Phoebe A

    2013-10-04

    Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3'O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3' phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3'O leaving group and is the prime candidate for the general acid that protonates the 3'O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.

  12. Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids.

    PubMed

    Lv, Yifan; Cui, Liang; Peng, Ruizi; Zhao, Zilong; Qiu, Liping; Chen, Huapei; Jin, Cheng; Zhang, Xiao-Bing; Tan, Weihong

    2015-12-01

    Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies.

  13. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior.

  14. Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.

    PubMed

    Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan

    2017-03-01

    A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.

  15. Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris.

    PubMed

    Taspinar, Mahmut Sinan; Aydin, Murat; Sigmaz, Burcu; Yildirim, Nalan; Agar, Guleray

    2017-08-17

    Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.

  16. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9.

    PubMed Central

    Klippel, A; Mertens, G; Patschinsky, T; Kahmann, R

    1988-01-01

    The DNA invertase Gin encoded by bacteriophage Mu catalyses efficient site-specific recombination between inverted repeat sequences (IR) in vivo and in vitro in the presence of the host factor FIS and the recombinational enhancer. We demonstrate that Gin alone is able to introduce single strand breaks into duplex DNA fragments which contain the IR sequence. Strand cleavage is site-specific and can occur on either strand within the IR. Cleaved molecules contain Gin covalently attached to DNA. The covalent complex is formed through linkage of Gin to the 5' DNA phosphate at the site of the break via a phosphoserine. Extensive site-directed mutational analysis showed that all mutants altered at serine position 9 were completely recombination deficient in vivo and in vitro. The mutant proteins bind to DNA but lack topoisomerase activity and are unable to introduce nicks. This holds true even for a conservative amino acid substitution at position 9. We conclude that serine at position 9 is part of the catalytic domain of Gin. The intriguing finding that the DNA invertase Gin has the same catalytic center as the DNA resolvases that promote deletions without recombinational enhancer and host factor FIS is discussed. Images PMID:3042382

  17. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  18. Report of the blind trial of the Cetus Amplitype HLA DQ alpha forensic deoxyribonucleic acid (DNA) amplification and typing kit.

    PubMed

    Walsh, P S; Fildes, N; Louie, A S; Higuchi, R

    1991-09-01

    The AmpliType HLA DQ alpha forensic DNA amplification and typing kit is designed for the qualitative analysis of the human leukocyte antigen (HLA) DQ alpha alleles present in deoxyribonucleic acid (DNA) extracted from forensic samples. The AmpliType kit is the first forensic DNA typing product based on the GeneAmp polymerase chain reaction (PCR) process. The kit was evaluated by five forensic science laboratories (test sites) to assess their ability to perform DNA typing using PCR on sample types typically encountered by forensic laboratories. None of the DNA-containing samples was mistyped. Of the 180 DNA-containing samples analyzed, results were reported for 178 (98.9%). Of the 178 samples with results, all were correctly typed. Two sites did not report a result for one sample each. Four of the five laboratories experienced no significant levels of contamination in the DNA-containing samples. At the one site with the highest number of DNA-containing samples with contamination, the typing results were not compromised. This site was able to correct the contamination problem through simple procedural changes and stricter attention to sterile technique. Blank controls were important to monitor contamination. In conclusion, the trial demonstrated that forensic science laboratories are capable of setting up a PCR-based DNA typing laboratory and successfully using the AmpliType HLA DQ alpha forensic DNA amplification and typing kit to analyze forensic samples.

  19. Chemical kinetic behavior of chlorogenic acid in protecting erythrocyte and DNA against radical-induced oxidation.

    PubMed

    Tang, You-Zhi; Liu, Zai-Qun

    2008-11-26

    As an abundant ingredient in coffee, chlorogenic acid (CGA) is a well-known antioxidant. Although some works have dealt with its radical-scavenging property, the present work investigated the protective effects of CGA on the oxidation of DNA and on the hemolysis of human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) by means of chemical kinetics. The inhibition period (t(inh)) derived from the protective effect of CGA on erythrocyte and DNA was proportional to its concentration, t(inh) = (n/R(i))[CGA], where R(i) refers to the radical-initiation rate, and n indicates the number of radical-propagation chains terminated by CGA. It was found that the n of CGA to protect erythrocytes was 0.77, lower than that of vitamin E (2.0), but higher than that of vitamin C (0.19). Furthermore, CGA facilitated a mutual protective effect with VE and VC on AAPH-induced hemolysis by increasing n of VE and VC. CGA was also found to be a membrane-stabilizer to protect erythrocytes against hemin-induced hemolysis. Moreover, the n of CGA was only 0.41 in the process of protecting DNA. This fact revealed that CGA served as an efficient antioxidant to protect erythrocytes more than to protect DNA. Finally, the reaction between CGA and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+*)) or 2,2'-diphenyl-1-picrylhydrazyl (DPPH) revealed that CGA was able to trap radicals by reducing radicals more than by donating its hydrogen atoms to radicals.

  20. A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: implication for Barrett's oesophagus.

    PubMed

    Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina

    2010-12-01

    Barrett's oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pH(i)) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett's oesophagus (CP-A). Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium-hydrogen exchanger (NHE). Nitric oxide (NO), pH(i) and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett's oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. A dose dependent decrease in pH(i) was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pH(i). The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett's oesophagus but an absence of NHE1 in normal epithelium. The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett's oesophagus.

  1. A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: implication for Barrett’s oesophagus

    PubMed Central

    Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina

    2011-01-01

    Objective Barrett’s oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pHi) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett’s oesophagus (CP-A). Design Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium–hydrogen exchanger (NHE). Nitric oxide (NO), pHi and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett’s oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. Results A dose dependent decrease in pHi was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pHi. The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett’s oesophagus but an absence of NHE1 in normal epithelium. Conclusions The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett’s oesophagus. PMID:20876775

  2. Filter arrays

    DOEpatents

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  3. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  4. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. Biodegradable DNA-brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation

    PubMed Central

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M.; Zhou, Yu; Choi, Chung Hang J.; Xing, Hang; Mirkin, Chad A.

    2015-01-01

    A new strategy for synthesizing spherical nucleic acid (SNA) nanostructures from biodegradable DNA block copolymers is reported. Multiple DNA strands are grafted to one end of a polyester chain (poly-caprolactone) to generate an amphiphilic DNA brush block copolymer (DBBC) structure capable of assembling into spherical micelles in aqueous solution. These novel DBBC-based micelle-SNAs exhibit a higher surface density of nucleic acids compared to micelle structures assembled from an analogous linear DNA block copolymer (DBC), which endows them with the ability to more efficiently enter cells without the need for transfection agents. Importantly, the new SNAs show effective gene regulation without observable cellular toxicity in mammalian cell culture. PMID:26297167

  6. pH gradients and a micro-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine.

    PubMed

    Busche, Roger; von Engelhardt, Wolfgang

    2007-10-01

    A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion.

  7. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Alkylation of nucleic acids by DNA-targeted 4-anilinoquinolinium aniline mustards: kinetic studies.

    PubMed

    O'Connor, C J; Denny, W A; Fan, J Y

    1991-01-01

    The rate of constant for hydrolysis of a series of 4-substituted aniline mustards Ar-X-pC6H4-N(CH2CH2Cl)2, where Ar is 4-anilinoquinolinium and X = O, CH2, CONH and CO, have been measured in water and 0.02 M imidazole buffer at 37 degrees C and in 50% aqueous acetone at 66 degrees C. The equilibrium binding constants of the compounds and their hydrolysis products to nucleic acids of differing base composition have been determined at varying ionic strengths, and the results are consistent with the compounds binding as expected in the DNA minor groove. The alkylating reactivity of the mustards towards these nucleic acids has been measured in water at 37 degrees C and in 0.01 M HEPES buffer over a range of temperatures from 25 degrees C to 60 degrees C. Evaluation of the thermodynamic parameters for these kinetic and equilibrium studies suggests that the interaction with nucleic acids is via an internal SN2 mechanism involving an aziridinium ion.

  9. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding.

  10. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.

    PubMed

    Mai, Wei-jun; Yan, Jun-lun; Wang, Lei; Zheng, Ying; Xin, Yu; Wang, Wei-na

    2010-11-01

    Acid rain and inputs of acidic effluent can result in increased acidity in aquatic ecosystems, where it is known to have a significant impact and possibly, to cause the decline of some populations of aquatic organisms. In previous studies, intracellular acid-induced oxidative stress has been shown to cause DNA damage, and cooperatively activate the expression of the p53 gene. The acute effects of acidic environments on shrimp and fish have been widely studied. However, the molecular mechanism of acid-induced injury remains largely unknown. In this study, we examined the cellular responses of tilapia to acidic exposure-induced oxidative stress and antioxidant enzyme gene expression. Furthermore, we determined how acute acid stress activates the ATM-p53 signal pathway. We measured the upregulation of reactive oxygen species (ROS) production, the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)), the tail DNA values, the malondialdehyde (MDA) level in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in tilapia in conditions where the pH was 5.3. Apoptosis was detected by Hoechst staining, which was mainly associated with changes in cell viability. The parameters that we measured were related to acid-induced DNA damage, and all parameters changed in the blood cells through time. The effects of acute acid exposure (pH 5.3) on the expression of ATM, p53, p21, Bax, manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) were investigated in tilapia blood cells. The results showed that acute acid stress induced upregulation of ATM, p53 and p21, associated with increasing of DNA damage and apoptosis in blood cells. Additionally, the expression of Bax was slightly increased. Moreover, consensus p53-binding sequences were identified in tilapia MnSOD and GPx gene promoter regions and increased levels of ROS in the blood cells coincided with increased mRNA expression of p53, Mn

  11. Enzyme-Free Translation of DNA into Sequence-Defined Synthetic Polymers Structurally Unrelated to Nucleic Acids

    PubMed Central

    Niu, Jia; Hili, Ryan; Liu, David R.

    2014-01-01

    The translation of DNA sequences into corresponding biopolymers enables the production, function, and evolution of the macromolecules of life. In contrast, methods to generate sequence-defined synthetic polymers with similar levels of control have remained elusive. Here we report the development of a DNA-templated translation system that enables the enzyme-free translation of DNA templates into sequence-defined synthetic polymers that have no necessary structural relationship with nucleic acids. We demonstrate the efficiency, sequence-specificity, and generality of this translation system by oligomerizing building blocks including polyethylene glycol (PEG), α-(d)-peptides, and β-peptides in a DNA-programmed manner. Sequence-defined synthetic polymers with molecular weights of 26 kDa containing 16 consecutively coupled building blocks and 90 densely functionalized β-amino acid residues were translated from DNA templates using this strategy. We integrated the DNA-templated translation system developed here into a complete cycle of translation, coding sequence replication, template regeneration, and re-translation suitable for the iterated in vitro selection of functional sequence-defined synthetic polymers unrelated in structure to nucleic acids. PMID:23511416

  12. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids.

    PubMed

    Niu, Jia; Hili, Ryan; Liu, David R

    2013-04-01

    The translation of DNA sequences into corresponding biopolymers enables the production, function and evolution of the macromolecules of life. In contrast, methods to generate sequence-defined synthetic polymers with similar levels of control have remained elusive. Here, we report the development of a DNA-templated translation system that enables the enzyme-free translation of DNA templates into sequence-defined synthetic polymers that have no necessary structural relationship with nucleic acids. We demonstrate the efficiency, sequence-specificity and generality of this translation system by oligomerizing building blocks including polyethylene glycol, α-(D)-peptides, and β-peptides in a DNA-programmed manner. Sequence-defined synthetic polymers with molecular weights of 26 kDa containing 16 consecutively coupled building blocks and 90 densely functionalized β-amino acid residues were translated from DNA templates using this strategy. We integrated the DNA-templated translation system developed here into a complete cycle of translation, coding sequence replication, template regeneration and re-translation suitable for the iterated in vitro selection of functional sequence-defined synthetic polymers unrelated in structure to nucleic acids.

  13. Direct comparison of amino acid and salt interactions with double-stranded and single-stranded DNA from explicit-solvent molecular dynamics simulations

    PubMed Central

    Andrews, Casey T.; Campbell, Brady A.

    2017-01-01

    Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid sidechains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of twenty amino acid sidechain analogs interacting simultaneously with both a 70-base pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid sidechains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged sidechains, all types of amino acid sidechain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic sidechains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged sidechains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged sidechains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt-dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences. PMID:28288277

  14. Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells.

    PubMed

    Lee, Yoon-Jin; Bae, Jin-Ho; Kim, Soo-A; Kim, Sung-Ho; Woo, Kee-Min; Nam, Hae-Seon; Cho, Moon-Kyun; Lee, Sang-Han

    2017-08-01

    The Na(+)/H(+) exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular Na(+) and the extrusion of intracellular H(+). The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent Na(+)/H(+)-exchange inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a sub-G0/G1 peak, and a G2/M phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, p-ATM(Ser1981), p-ATR(Ser428), p-CHK1(Ser345), and p-CHK2(Thr68), as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acid-tolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

  15. An Investigation into the Association between DNA Damage and Dietary Fatty Acid in Men with Prostate Cancer

    PubMed Central

    Bishop, Karen S.; Erdrich, Sharon; Karunasinghe, Nishi; Han, Dug Yeo; Zhu, Shuotun; Jesuthasan, Amalini; Ferguson, Lynnette R.

    2015-01-01

    Prostate cancer is a growing problem in New Zealand and worldwide, as populations adopt a Western style dietary pattern. In particular, dietary fat is believed to be associated with oxidative stress, which in turn may be associated with cancer risk and development. In addition, DNA damage is associated with the risk of various cancers, and is regarded as an ideal biomarker for the assessment of the influence of foods on cancer. In the study presented here, 20 men with prostate cancer adhered to a modified Mediterranean style diet for three months. Dietary records, blood fatty acid levels, prostate specific antigen, C-reactive protein and DNA damage were assessed pre- and post-intervention. DNA damage was inversely correlated with dietary adherence (p = 0.013) and whole blood monounsaturated fatty acids (p = 0.009) and oleic acid (p = 0.020). DNA damage was positively correlated with the intake of dairy products (p = 0.043), red meat (p = 0.007) and whole blood omega-6 polyunsaturated fatty acids (p = 0.015). Both the source and type of dietary fat changed significantly over the course of the dietary intervention. Levels of DNA damage were correlated with various dietary fat sources and types of dietary fat. PMID:25580814

  16. Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents.

    PubMed

    Stanley, Naomi R; Pattison, David I; Hawkins, Clare L

    2010-07-19

    Myeloperoxidase is a heme enzyme released by activated phagocytes that is responsible for the generation of the strong oxidant hypochlorous acid (HOCl). Although HOCl has potent bactericidal properties and plays an important role in the human immune system, this oxidant also causes damage to tissues, particularly under inflammatory conditions. There is a strong link between chronic inflammation and the incidence of many cancers, which may be associated with the ability of HOCl and related oxidants such as N-chloramines to damage DNA. However, in contrast to HOCl, little is known about the reactivity of N-chloramines with DNA and its constituents. In this study, we examine the ability of HOCl and various N-chloramines to form chlorinated base products on nucleosides, nucleotides, DNA, and in cellular systems. Experiments were performed with N-chloramines formed on Nalpha-acetyl-histidine (His-C), Nalpha-acetyl-lysine (Lys-C), glycine (Gly-C), taurine (Tau-C), and ammonia (Mono-C). Treatment of DNA and related materials with HOCl and His-C resulted in the formation of 5-chloro-2'-deoxycytidine (5CldC), 8-chloro-2'-deoxyadenosine (8CldA) and 8-chloro-2'-deoxyguanosine (8CldG). With the nucleosides, 8CldG was the favored product in each case, and HOCl was the most efficient chlorinating agent. 5Cl(d)C was the most abundant product on exposure of the nucleotides and DNA to HOCl and His-C, with only low levels of chlorinated products observed with Lys-C, Gly-C, Tau-C, and Mono-C. 5CldC was also formed on exposure of smooth muscle cells to either HOCl or His-C. Cellular RNA was also a target for HOCl and His-C, with evidence for the formation of 5-chloro-cytidine (5ClC). This study shows that HOCl and the model N-chloramine, His-C, are able to chlorinate cellular genetic material, which may play a role in the development of various inflammatory cancers.

  17. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.

    PubMed

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-15

    A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DNA and RNA "traffic lights": synthetic wavelength-shifting fluorescent probes based on nucleic acid base substitutes for molecular imaging.

    PubMed

    Holzhauser, Carolin; Wagenknecht, Hans-Achim

    2013-08-02

    The DNA base substitute approach by the (S)-3-amino-1,2-propanediol linker allows placing two fluorophores in a precise way inside a given DNA framework. The double helical architecture around the fluorophores, especially the DNA-induced twist, is crucial for the desired photophysical interactions. Excitonic, excimer, and energy transfer interactions yield fluorescent DNA and RNA probes with dual emission color readout. Especially, our DNA and RNA "traffic light" that combines the green emission of TO with the red emission of TR represents an important tool for molecular imaging and can be applied as aptasensors and as probes to monitor the siRNA delivery into cells. The concept can be extended to the synthetically easier to access postsynthetic 2'-modifications and the NIR range. Thereby, the pool of tailor-made fluorescent nucleic acid conjugates can be extended.

  19. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    NASA Technical Reports Server (NTRS)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  20. The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells.

    PubMed

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Pastor, Nuria; Pérez-Guerrero, Concepción; Austin, Caroline; Mateos, Santiago; López-Lázaro, Miguel

    2012-08-01

    Chlorogenic acid (CGA) is a plant polyphenol with known antioxidant properties. Although some studies suggest that CGA has anticancer properties, others indicate that this dietary constituent may cause DNA damage and induce carcinogenic effects. Because CGA is widely consumed in the form of coffee, it is important to further evaluate the putative DNA-damaging activity of CGA. Here we have employed two standard techniques commonly used for DNA damage detection (the comet assay and the γ- H2AX focus assay) and observed that CGA (0.5-5 mM) induces DNA damage in normal and cancer cells. We report for the first time that CGA induces high levels of topoisomerase I- and topoisomerase II-DNA complexes in cells (TARDIS assay). Catalase pretreatment abolished the formation of these topoisomerase-DNA complexes and reduced the cytotoxic activity of CGA, therefore indicating that hydrogen peroxide plays an important role in these activities. Lung cancer cells (A549) were more sensitive than normal lung fibroblasts (MRC5) to the cytotoxic activity of CGA, supporting previous findings that CGA may induce selective killing of cancer cells. Taking into consideration our results and the pharmacokinetic profile of CGA, the possible cancer preventive, carcinogenic and therapeutic potential of this dietary agent are discussed.

  1. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids.

    PubMed

    Robino, C; Pazzi, M; Di Vella, G; Martinelli, D; Mazzola, L; Ricci, U; Testi, R; Vincenti, M

    2015-11-01

    Identification of human remains can be hindered by several factors (e.g., traumatic mutilation, carbonization or decomposition). Moreover, in some criminal cases, offenders may purposely adopt various expedients to thwart the victim's identification, including the dissolution of body tissues by the use of corrosive reagents, as repeatedly reported in the past for Mafia-related murders. By means of an animal model, namely porcine samples, we evaluated standard DNA typing as a method for identifying soft (muscle) and hard (bone and teeth) tissues immersed in strong acids (hydrochloric, nitric and sulfuric acid) or in mixtures of acids (aqua regia). Samples were tested at different time intervals, ranging between 2 and 6h (soft tissues) and 2-28 days (hard tissues). It was shown that, in every type of acid, complete degradation of the DNA extracted from soft tissues preceded tissue dissolution and could be observed within 4h of immersion. Conversely, high molecular weight DNA amenable to STR analysis could be isolated from hard tissues as long as cortical bone fragments were still present (28 days for sulfuric acid, 7 days for nitric acid, 2 days for hydrochloric acid and aqua regia), or the integrity of the dental pulp chamber was preserved (7 days, in sulfuric acid only). The results indicate that DNA profiling of acid-treated body parts (in particular, cortical bone) is still feasible at advanced stages of corrosion, even when the morphological methods used in forensic anthropology and odontology can no longer be applied for identification purposes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA

    PubMed Central

    Yamada, Tetsuji; Palm, Curtis J.; Brooks, Bob; Kosuge, Tsune

    1985-01-01

    We report the nucleotide sequences of iaaM and iaaH, the genetic determinants for, respectively, tryptophan 2-monooxygenase and indoleacetamide hydrolase, the enzymes that catalyze the conversion of L-tryptophan to indoleacetic acid in the tumor-forming bacterium Pseudomonas syringae pv. savastanoi. The sequence analysis indicates that the iaaM locus contains an open reading frame encoding 557 amino acids that would comprise a protein with a molecular weight of 61,783; the iaaH locus contains an open reading frame of 455 amino acids that would comprise a protein with a molecular weight of 48,515. Significant amino acid sequence homology was found between the predicted sequence of the tryptophan monooxygenase of P. savastanoi and the deduced product of the T-DNA tms-1 gene of the octopine-type plasmid pTiA6NC from Agrobacterium tumefaciens. Strong homology was found in the 25 amino acid sequence in the putative FAD-binding region of tryptophan monooxygenase. Homology was also found in the amino acid sequences representing the central regions of the putative products of iaaH and tms-2 T-DNA. The results suggest a strong similarity in the pathways for indoleacetic acid synthesis encoded by genes in P. savastanoi and in A. tumefaciens T-DNA. Images PMID:16593610

  3. SDR-ELISA: Ultrasensitive and high-throughput nucleic acid detection based on antibody-like DNA nanostructure.

    PubMed

    Wen, Junlin; Chen, Junhua; Zhuang, Li; Zhou, Shungui

    2017-04-15

    An ultrasensitive and high-throughput nucleic acid detection system, termed as strand displacement reaction-enzyme linked immunosorbent assay (SDR-ELISA), has been developed on the basis of antibody-like DNA nanostructures. Three digoxigenin or biotin modified hairpin probes are utilized to construct antibody-like DNA nanostructures that feature affinity toward streptavidin and anti-digoxigenin antibody via isothermal target-triggered SDR amplification. These antibody-like nanostructures have been employed to conjugate horseradish-peroxidase-labeled anti-digoxigenin antibody with streptavidin that is immobilized on microliter plate wells for enzyme-linked colorimetric assay. The resulting SDR-ELISA system is ultrasensitive for target DNA with a low detection limit of 5 fM. Moreover, the SDR-ELISA system is capable of discriminating DNA sequences with single base mutations, and do so in a high-throughput manner by detection and quantification of up to 96 or 384 DNA samples in a single shot. This detection system is further applied to detect other DNA targets such as Shewanella oneidensis specific DNA sequence, which indicates the generality of proposed SDR-ELISA system. The integration of SDR amplification and convenient ELISA technique advances an intelligent strategy for ultrasensitive and high-throughput nucleic acid detection, which may be amenable for direct visual detection and quantification using an accompanying quantitative color chart.

  4. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells

    PubMed Central

    Lee, Mak-Soon; Shin, Yoonjin; Moon, Sohee; Kim, Seunghae; Kim, Yangha

    2016-01-01

    Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-1α promoter activity in C2C12 muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-1α, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-1α promoter from −970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-1α, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-1α promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-1α gene expression in C2C12 muscle cells. PMID:28078253

  5. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells.

    PubMed

    Lee, Mak-Soon; Shin, Yoonjin; Moon, Sohee; Kim, Seunghae; Kim, Yangha

    2016-12-01

    Mitochondrial biogenesis is a complex process requiring coordinated expression of nuclear and mitochondrial genomes. The peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis, and it controls mitochondrial DNA (mtDNA) replication within diverse tissues, including muscle tissue. The aim of this study was to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on mtDNA copy number and PGC-1α promoter activity in C2C12 muscle cells. mtDNA copy number and mRNA levels of genes related to mitochondrial biogenesis such as PGC-1α, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam) were assayed by quantitative real-time PCR. The PGC-1α promoter from -970 to +412 bp was subcloned into the pGL3-basic vector, which includes a luciferase reporter gene. Both EPA and DHA significantly increased mtDNA copy number, dose and time dependently, and up-regulated mRNA levels of PGC-1α, NRF1, and Tfam. Furthermore, EPA and DHA stimulated PGC-1α promoter activity in a dose-dependent manner. These results suggest that EPA and DHA may modulate mitochondrial biogenesis, which was partially associated with increased mtDNA replication and PGC-1α gene expression in C2C12 muscle cells.

  6. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2016-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish (Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  7. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2017-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish ( Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  8. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity.

  9. Water Filters

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  10. Validation and scale-up of plasmid DNA purification by phenyl-boronic acid chromatography.

    PubMed

    Gomes, A Gabriela; Azevedo, Ana M; Aires-Barros, M Raquel; Prazeres, D Miguel F

    2012-11-01

    This study addresses the feasibility of scaling-up the removal of host cell impurities from plasmid DNA (pDNA)-containing Escherichia coli lysates by phenyl-boronic (PB) acid chromatography using columns packed with 7.6 and 15.2 cm(3) of controlled porous glass beads (CPG) derivatized with PB ligands. Equilibration was performed with water at 10 cm(3) /min and no conditioning of the lysate feed was required. At a ratio of lysate feed to adsorbent volume of 1.3, 93-96% of pDNA was recovered in the flow through while 66-71% of impurities remained bound (~2.5-fold purification). The entire sequence of loading, washing, elution, and re-equilibration was completed in 20 min. Run-to-run consistency was observed in terms of chromatogram features and performance (yield, purification factor, agarose electrophoresis) across the different amounts of adsorbent (0.75-15.2 cm(3) ) by performing successive injections of lysates prepared independently and containing 3.7 or 6.1 kbp plasmids. The column productivity at large scale was 4 dm(3) of alkaline lysate per hour per dm(3) of PB-CPG resin. The method is rapid, reproducible, simple, and straightforward to scale-up. Furthermore, it is capable of handling heavily contaminated samples, constituting a good alternative to purification techniques such as isopropanol precipitation, aqueous two-phase systems, and tangential flow filtration. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer.

    PubMed

    Konstantinopoulos, Panagiotis A; Wilson, Andrew J; Saskowski, Jeanette; Wass, Erica; Khabele, Dineo

    2014-06-01

    Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not in HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289+BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer. Copyright © 2014. Published by Elsevier Inc.

  12. Suberoylanilide Hydroxamic Acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer

    PubMed Central

    Konstantinopoulos, Panagiotis A.; Wilson, Andrew J.; Saskowski, Jeanette; Wass, Erica; Khabele, Dineo

    2015-01-01

    Objectives Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). Methods Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289 + BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. Results In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. Conclusions These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer. PMID:24631446

  13. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice.

    PubMed

    Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir

    2013-02-01

    Ferulic acid (FA) is a monophenolic phenylpropanoid occurring in plant products such as rice bran, green tea, and coffee beans. It has been shown to have significant antioxidant effects in many studies. In the present study, we show that intraperitoneal administration of FA at a dose of 50 mg/kg body weight 1 hour prior to or immediately after whole-body γ-irradiation of mice with 4 Gy results in considerable reduction in the micronuclei formation in peripheral blood reticulocytes. Administration of the same amount of FA immediately after 4 Gy γ-irradiation showed significant decrease in the amount of DNA strand breaks in murine peripheral blood leukocytes and bone marrow cells as examined by comet assay. Further, immunostaining of mouse splenic lymphocytes for phspho-γH2AX was carried out, and it was observed that FA inhibits the γH2AX foci formation. Finally, the survival of mice upon 6, 8, and 10 Gy γ-ray exposure was monitored. FA enhances the survival of mice by a factor of 2.5 at a dose of 6 Gy γ-radiation but not at higher doses. In conclusion, FA has protective potential in both pre- and postirradiation exposure scenarios and enhances the survival of mice possibly by decreasing DNA damage as examined by γH2AX foci, micronuclei formation, and comet assay.

  14. Spontaneous Assembly of an Organic-Inorganic Nucleic Acid Z-DNA Double-Helix Structure.

    PubMed

    Kulikov, Vladislav; Johnson, Naomi A B; Surman, Andrew J; Hutin, Marie; Kelly, Sharon M; Hezwani, Mohammed; Long, De-Liang; Meyer, Gerd; Cronin, Leroy

    2017-01-19

    Herein, we report a hybrid polyoxometalate organic-inorganic compound, Na2 [(HGMP)2 Mo5 O15 ]⋅7 H2 O (1; where GMP=guanosine monophosphate), which spontaneously assembles into a structure with dimensions that are strikingly similar to those of the naturally occurring left-handed Z-form of DNA. The helical parameters in the crystal structure of the new compound, such as rise per turn and helical twist per dimer, are nearly identical to this DNA conformation, allowing a close comparison of the two structures. Solution circular dichroism studies show that compound 1 also forms extended secondary structures in solution. Gel electrophoresis studies demonstrate the formation of non-covalent adducts with natural plasmids. Thus we show a route by which simple hybrid inorganic-organic monomers, such as compound 1, can spontaneously assemble into a double helix without the need for a covalently connected linear sequence of nucleic acid base pairs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece.

    PubMed

    Asimakopoulos, Alexandros G; Thomaidis, Nikolaos S; Kannan, Kurunthachalam

    2014-02-01

    Biomonitoring of human exposure to bisphenol A diglycidyl ethers (BADGEs; resin coating for food cans), p-hydroxybenzoic acid esters (parabens; preservatives), benzophenone-type UV filters (BP-UV filters; sunscreen agents), triclosan (TCS; antimicrobials), and triclocarban (TCC; antimicrobials) has been investigated in western European countries and North America. Nevertheless, little is known about the exposure of Greek populations to these environmental chemicals. In this study, 100 urine samples collected from Athens, Greece, were analyzed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of total concentrations of five derivatives of BADGEs, six parabens and their metabolite (ethyl-protocatechuate), five derivatives of BP-UV filters, TCS, and TCC. Urinary concentrations of BADGEs, parabens, ethyl-protocatechuate, BP-UV filters, TCS and TCC (on a volume basis) ranged 0.3-20.9 (geometric mean: 0.9), 1.6-1010 (24.2), <2-71.0 (2.1), 0.5-1120 (4.4), <0.5-2580 (8.0) and <0.5-1.9 (0.6) ng/mL, respectively. All 19 target chemicals were found in urine, and the highest detection rates were observed for methyl paraben (100%), bisphenol A bis (2,3-dihydroxypropyl) ether (90%), ethyl paraben (87%), 2,4-dihydroxybenzophenone (78%), propyl paraben (72%), and TCS (71%). Estimated daily intakes (EDIurine), calculated on the basis of the measured urinary concentrations, ranged from 0.023 μg/kg bw/day for Σ5BADGEs to 31.4 μg/kg bw/day for Σ6Parabens. © 2013.

  16. Short-Term Stability of Whole Blood Polyunsaturated Fatty Acid Content on Filter Paper During Storage at -28 °C.

    PubMed

    Pupillo, Daniele; Simonato, Manuela; Cogo, Paola E; Lapillonne, Alexandre; Carnielli, Virgilio P

    2016-02-01

    Finger or heel-pricked blood sampling for fatty acid analysis is suitable especially in newborn infants where blood sampling is difficult and phlebotomy for research can be unethical. The aim of this study was to evaluate dried blood long chain polyunsaturated fatty acids (LC-PUFA) stability during storage at -28 °C. We collected 12 blood cord samples that were analyzed immediately after blood drawing, with and without drying the blood on filter paper. Dried samples were then analyzed 7 days and 1, 3, and 6 months after collection. Butylated hydroxytoluene was added to all samples. Fatty acid composition and (13)C enrichment were measured by gas chromatography and by gas chromatography-isotope ratio mass spectrometry, respectively. The fatty acid composition, expressed in mol%, of the major LC-PUFA at day 7 was not statistically different from time 0, however lower values were found by the first month of storage. The (13)C enrichment of 20:4n-6 and 22:6n-3 did not differ during the whole study period. LC-PUFA analysis from dried umbilical cord blood in neonates should be performed within a week, major losses of LC-PUFA occur afterwards. However, fatty acids obtained from dried blood maintain their (13)C enrichment value for up to 6 months and thus these samples are suitable for natural abundance isotopic studies.

  17. Development of a pH sensor based on a nanostructured filter adding pH-sensitive fluorescent dye for detecting acetic acid in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Itayama, Tomohiro; Nagasaki, Hideaki; Iwami, Kentaro; Yamamoto, Chizuko; Hara, Yukiko; Masuda, Atsushi; Umeda, Norihiro

    2015-08-01

    Acetic acid formed via the hydrolysis of ethylene vinyl acetate (EVA) as an encapsulant in photovoltaic (PV) modules causes a decrease in the conversion efficiency of such modules by grid corrosion. Here, a nondestructive and simple optical method for evaluating the condition of PV modules is proposed. This method uses a dual-wavelength pH-sensitive fluorescent dye to detect acetic acid in PV modules using a change in pH. The change in pH induced by the formation of acetic acid is detected by the change in the ratio of the fluorescent intensities of two peaks of the dye. A pH-sensitive fluorescent dye showed sensitivity for small amounts of acetic acid such as that produced from EVA. Furthermore, a membrane filter dyed with a pH-sensitive fluorescent dye was confirmed to detect acetic acid in aged EVA after a damp-heat test (85 °C, 85%) for 5000 h in PV modules.

  18. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  19. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  20. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  1. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  2. A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA.

    PubMed

    Shen, Li; Gao, Ge; Zhang, Ying; Zhang, He; Ye, Zhiqiang; Huang, Shichao; Huang, Jinyan; Kang, Jiuhong

    2010-10-01

    Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system.

  3. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2017-08-01

    An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae ( V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M ( R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% ( n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% ( n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.

  4. A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases.

    PubMed

    Xie, Ping

    2015-09-07

    DNA helicases are enzymes that use the chemical energy to separate DNA duplex into their single-stranded forms. The ribosome, which catalyzes the translation of messenger RNAs (mRNAs) into proteins, can also unwind mRNA duplex. According to their structures, the DNA helicases can fall broadly into hexameric and monomeric forms. A puzzling issue for the monomeric helicases is that although they have similar structures, in vitro biochemical data showed convincingly that in the monomeric forms some have very weak DNA unwinding activities, some have relatively high unwinding activities while others have high unwinding activities. However, in the dimeric or oligomeric forms all of them have high unwinding activities. In addition, in the monomeric forms all of them can translocate efficiently along the single-stranded DNA (ssDNA). Here, we propose a model of the translocation along the ssDNA and DNA unwinding by the monomeric helicases, providing a consistent explanation of these in vitro experimental data. Moreover, by comparing the present model for the monomeric helicases with the model for the hexameric helicases and that for the ribosome which were proposed before, a unified model of nucleic acid unwinding by the three enzymes is proposed.

  5. A Magnetic Nanoparticle Based Nucleic Acid Isolation and Purification Instrument for DNA Extraction of Escherichia Coli O157: H7.

    PubMed

    Chen, Yahui; Lin, Jianhan; Jiang, Qin; Chen, Qi; Zhang, Shengjun; Li, Li

    2016-03-01

    The objective of this study was to evaluate the performance of a nucleic acid isolation and purification instrument using Escherichia coli O157:H7 as the model. The instrument was developed with magnetic nanoparticles for efficiently capturing nucleic acids and an intelligent mechanical unit for automatically performing the whole nucleic acid extraction process. A commercial DNA extraction kit from Huier Nano Company was used as reference. Nucleic acids in 1 ml of E. coli O157: H7 at a concentration of 5 x 10(8) CFU/mL were extracted by using this instrument and the kit in parallel and then detected by an ultraviolet spectrophotometer to obtain A260 values and A260/A280 values for the determination of the extracted DNA's quantity and purity, respectively. The A260 values for the instrument and the kit were 0.78 and 0.61, respectively, and the A260/A280 values were 1.98 and 1.93. The coefficient of variations of these parallel tests ranged from 10.5% to 16.7%. The results indicated that this nucleic acid isolation and purification instrument could extract a comparable level of nucleic acid within 50 min compared to the commercial DNA extraction kit.

  6. DNA Methylation Perturbations in Genes Involved in Polyunsaturated Fatty Acid Biosynthesis Associated with Depression and Suicide Risk

    PubMed Central

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-yu; Cooper, Thomas B.; Burke, Ainsley K.; Oquendo, Maria A.; Mann, J. John; Sublette, M. Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention. PMID:25972837

  7. Filter validation.

    PubMed

    Madsen, Russell E

    2006-01-01

    Validation of a sterilizing filtration process is critical since it is impossible with currently available technology to measure the sterility of each filled container; therefore, sterility assurance of the filtered product must be achieved through validation of the filtration process. Validating a pharmaceutical sterile filtration process involves three things: determining the effect of the liquid on the filter, determining the effect of the filter on the liquid, and demonstrating that the filter removes all microorganisms from the liquid under actual processing conditions.

  8. Metallic Filters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Filtration technology originated in a mid 1960's NASA study. The results were distributed to the filter industry, an HR Textron responded, using the study as a departure for the development of 421 Filter Media. The HR system is composed of ultrafine steel fibers metallurgically bonded and compressed so that the pore structure is locked in place. The filters are used to filter polyesters, plastics, to remove hydrocarbon streams, etc. Several major companies use the product in chemical applications, pollution control, etc.

  9. Pyridoxal 5'-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid.

    PubMed

    Vermeersch, Jacqueline J; Christmann-Franck, Serge; Karabashyan, Leon V; Fermandjian, Serge; Mirambeau, Gilles; Der Garabedian, P Arsène

    2004-01-01

    The present results demonstrate that pyridoxal, pyridoxal 5'-phosphate (PLP) and pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the epsilon-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (K(i) = 40 microM) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532-PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid.

  10. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences.

  11. Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase

    SciTech Connect

    Rozenberg-Arska, M.; van Strijp, J.A.; Hoekstra, W.P.; Verhoef, J.

    1984-05-01

    Phagocytosis and killing by polymorphonuclear and mononuclear leukocytes are important host resistance factors against invading microorganisms. Evidence showing that killing is rapidly followed by degradation of bacterial components is limited. Therefore, we studied the fate of Escherichia coli DNA following phagocytosis of E. coli by polymorphonuclear and mononuclear leukocytes. (/sup 3/H)Thymidine-labeled, unencapsulated E. coli PC2166 and E. coli 048K1 were incubated in serum, washed, and added to leukocytes. Uptake and killing of the bacteria and degradation of DNA were measured. Although phagocytosis and killing by mononuclear leukocytes was less efficient than that by polymorphonuclear leukocytes, only mononuclear leukocytes were able to degrade E. coli PC2166 DNA. Within 2 h, 60% of the radioactivity added to mononuclear leukocytes was released into the supernate, of which 40% was acid soluble. DNA of E. coli 048K1 was not degraded. To further analyze the capacity of mononuclear leukocytes to degrade E. coli DNA, chromosomal and plasmid DNA was isolated from ingested bacteria and subjected to agarose gel-electrophoresis. Only chromosomal DNA was degraded after phagocytosis. Plasmid DNA of E. coli carrying a gene coding for ampicillin resistance remained intact for a 2-h period after ingestion, and was still able to transform recipient E. coli cells after this period. Although we observed no DNA degradation during phagocytosis by polymorphonuclear leukocytes, lysates of both polymorphonuclear and mononuclear leukocytes contained acid-DNase activity with a pH optimum of 4.9. However, the DNase activity of mononuclear leukocytes was 20 times higher than that of polymorphonuclear leukocytes. No difference was observed between DNase activity from polymorphonuclear and mononuclear leukocytes from a chronic granulomatous disease patient with DNase activity from control polymorphonuclear and mononuclear leukocytes.

  12. In the TTF-1 homeodomain the contribution of several amino acids to DNA recognition depends on the bound sequence.

    PubMed Central

    Fabbro, D; Tell, G; Leonardi, A; Pellizzari, L; Pucillo, C; Lonigro, R; Formisano, S; Damante, G

    1996-01-01

    The thyroid transcription factor-1 homeodomain (TTF-1HD) shows a peculiar DNA binding specificity, preferentially recognizing sequences containing the 5'-CAAG-3' core motif. Most other homeodomains instead recognize sites containing the 5'-TAAT-3' core motif. Here, we show that TTF-1HD efficiently recognizes another sequence, called D1, devoid of the 5'-CAAG-3' core motif. Different experimental approaches indicate that TTF-1HD contacts the D1 sequence in a manner which is different to that used to interact with sequences containing the 5'-CAAG-3' core motif. The binding activities that mutants of TTF-1HD display with the D1 sequence or with the sequence containing the 5'-CAAG-3' core motif indicate that the role of several DNA-contacting amino acids is different. In particular, during recognition of the D1 sequence, backbone-interacting amino acids not relevant in binding to sequences containing the 5'-CAAG-3' core motif play an important role. In the TTF-1HD, therefore, the contribution of several amino acids to DNA recognition depends on the bound sequence. These data indicate that although a common bonding network exists in all of the HD/DNA complexes, peculiarities important for DNA recognition may occur in single cases. PMID:8811078

  13. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  14. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  15. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing.

    PubMed

    Liu, Shufeng; Fang, Li; Wang, Yanqun; Wang, Li

    2017-03-07

    The traditional sensitive electrochemical biosensors are commonly confronted with the cumbersome interface operation and washing procedures and the inclusion of extra exogenous reagents, which impose the challenge on the detection simplicity, reliability, and reusability. Herein, we present the proof-of-principle of a unique biosensor architecture based on dynamic DNA assembly programmed surface hybridization, which confers the single-step, reusable, and enzyme-free amplified electrochemical nucleic acid analysis. To demonstrate the fabrication universality three dynamic DNA assembly strategies including DNA-fueled target recycling, catalytic hairpin DNA assembly, and hybridization chain reaction were flexibly harnessed to convey the homogeneous target recognition and amplification events into various DNA scaffolds for the autonomous proximity-based surface hybridization. The current biosensor architecture features generalizability, simplicity, low cost, high sensitivity, and specificity over the traditional nucleic acid-related amplified biosensors. The lowest detection limit of 50 aM toward target DNA could be achieved by hybridization chain reaction-programmed surface hybridization. The reliable working ability for both homogeneous solution and heterogeneous inteface facilitates the target analysis with a robust reliability and reproducibility, also making it to be readily extended for the integration with the kinds of detecting platforms. Thus, it may hold great potential for the biosensor fabrication served for the point-of-care applications in resource constrained regions.

  16. Comparative analysis of conserved genetic markers and adjacent DNA regions identified in beer-spoilage lactic acid bacteria.

    PubMed

    Suzuki, K; Ozaki, K; Yamashita, H

    2004-01-01

    To conduct an inter-species comparative study on the nucleotide sequences of the conserved DNA regions surrounding ORF5, a genetic marker for differentiating beer-spoilage lactic acid bacteria. The conserved DNA regions surrounding ORF5 were examined by PCR analysis, using three beer-spoilage strains, Lactobacillus brevis ABBC45C, L. paracollinoides LA2T and Pediococcus damnosus ABBC478. As a result, the DNA regions containing ORF1-7, originally found in ABBC45C, appeared to be conserved among the three strains, while the downstream region was not found in L. paracollinoides LA2T and P. damnosus ABBC478. The sequencing analysis of the conserved DNA regions of LA2T and ABBC478 revealed ca 99% nucleotide sequence identities with that of ABBC45C. The nucleotide sequences of the ca 8.2 kb DNA regions containing ORF1-7 were virtually identical among the three strains belonging to different species. The internal organizations of the ORFs were found to be remarkably similar. The level of nucleotide sequence identities suggests the DNA regions surrounding ORF5 were horizontally acquired by these beer-spoilage strains belonging to the three different species of lactic acid bacteria.

  17. Mechanism of Growth Inhibition of Human Cancer Cells by Conjugated Eicosapentaenoic Acid, an Inhibitor of DNA Polymerase and Topoisomerase

    PubMed Central

    Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2007-01-01

    DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We found that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) inhibited the activities of eukaryotic pols and topos in vitro, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC50 values for mammalian pols and human topos of 11.0 – 31.8 and 0.5 – 2.5 μM, respectively. cEPA inhibited the proliferation of two human leukemia cell lines, NALM-6, which is a p53-wild type, and HL-60, which is a p53-null mutant, and the inhibitory effect was stronger than that of normal EPA. In both cell lines, cEPA arrested in the G1 phase, and increased cyclin E protein levels, indicating that it blocks the primary step of in vivo DNA replication by inhibiting the activity of replicative pols rather than topos. DNA replication-related proteins, such as RPA70, ATR and phosphorylated-Chk1/2, were increased by cEPA treatment in the cell lines, suggesting that cEPA led to DNA replication fork stress inhibiting the activities of pols and topos, and the ATR-dependent DNA damage response pathway could respond to the inhibitor of DNA replication. The compound induced cell apoptosis through both p53-dependent and p53-independent pathways in cell lines NALM-6 and HL-60, respectively. These results suggested the therapeutic potential of conjugated PUFA, such as cEPA, as a leading anti-cancer compound that inhibited pols and topos activities.

  18. Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery.

    PubMed

    Peng, Shu-Fen; Hsu, Hung-Kun; Lin, Chun-Cheng; Cheng, Ya-Ming; Hsu, Kuang-Hsing

    2017-01-04

    The efficient delivery of sufficient amounts of nucleic acids into target cells is critical for successful gene therapy and gene knockdown. The DNA/siRNA co-delivery system has been considered a promising approach for cancer therapy to simultaneously express and inhibit tumor suppressor genes and overexpressed oncogenes, respectively, triggering synergistic anti-cancer effects. Polyethylenimine (PEI) has been identified as an efficient non-viral vector for transgene expression. In this study, we created a very high efficient DNA/siRNA co-delivery system by incorporating a negatively-charged poly-γ-glutamic acid (γ-PGA) into PEI/nucleic acid complexes. Spherical nanoparticles with about 200 nm diameter were formed by mixing PEI/plasmid DNA/siRNA/γ-PGA (dual delivery nanoparticles; DDNPs) with specific ratio (N/P/C ratio) and the particles present positive surface charge under all manufacturing conditions. The gel retardation assay shows both nucleic acids were effectively condensed by PEI, even at low N/P ratios. The PEI-based DDNPs reveal excellent DNA/siRNA transfection efficiency in the human hepatoma cell line (Hep 3B) by simultaneously providing high transgene expression efficiency and high siRNA silencing effect. The results indicated that DDNP can be an effective tool for gene therapy against hepatoma.

  19. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper(II) complexes of the antibacterial drug nalidixic acid.

    PubMed

    Loganathan, Rangasamy; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Muruganantham, Amsaveni; Ghosh, Swapan K; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2017-09-01

    The water soluble mixed ligand complexes [Cu(nal)(diimine)(H2O)](ClO4) 1-4, where H(nal) is nalidixic acid and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. The coordination geometry around Cu(II) in 1 and that in the Density Functional Theory optimized structures of 1-4 has been assessed as square pyramidal. The trend in DNA binding constants (Kb) determined using absorption spectral titration (Kb: 1, 0.79±0.1<2, 1.06±0.1<3, 1.79±0.2<4, 1.84±0.2×10(5)M(-1)) is in line with that (Kapp) determined by competitive ethidium bromide binding studies. The large red-shift (10nm) observed for 2 suggests that the phen co-ligand is stacked with a frayed DNA base pair. In contrast, 3 and 4 are involved in intimate hydrophobic interaction with DNA through the methyl substituents on phen ring, which is supported by viscosity and protein binding studies. DNA docking studies imply that 4 is involved preferentially in DNA major groove binding while 1-3 in minor groove binding and that all the complexes, upon removing the axially coordinated water molecule, bind in the major groove. Interestingly, 3 and 4 display prominent double-strand DNA cleavage while 1 and 2 effect only single-strand DNA cleavage in the absence of an activator. The complexes 3 and 4 show cytotoxicity higher than 1 and 2 against human breast cancer cell lines (MCF-7). The complex 4 induces apoptotic mode of cell death in cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Noninvasive measurement of aristolochic acid-DNA adducts in urine samples from aristolochic acid-treated rats by liquid chromatography coupled tandem mass spectrometry: evidence for DNA repair by nucleotide-excision repair mechanisms.

    PubMed

    Leung, Elvis M K; Chan, Wan

    2014-01-01

    Nephrotoxic aristolochic acids (AAs) form covalently bonded DNA adducts upon metabolic activation. In this work, a non-invasive approach to detect AAs exposure by quantifying urinary excreted DNA-AA adducts is presented. The developed method entails solid-phase extraction (SPE) enrichment of the urine-excreted DNA-AAs adducts, addition of internal standard, and quantification by liquid chromatography coupled tandem mass spectrometric (LC-MS/MS) analysis. Quantitative analysis revealed 7-(deoxyadenosine-N(6)-yl)-aristolactam II and 7-(deoxyguanosine-N(2)-yl)-aristolactam I that were previously detected as major DNA-AA adducts in different organs of AA-dosed rats, were detected as the major urine excreted adducts. Lower levels of 7-(deoxyadenosine-N(6)-yl)-aristolactam I and 7-(deoxyguanosine-N(2)-yl)-aristolactam II were also detected in the collected urine samples. The identities of the detected urinary DNA-AA adducts were confirmed by comparing chromatographic retention time with synthetic standards, by high-accuracy MS, and MS/MS analyses. LC-MS/MS analysis of the urine samples collected from the AAs-dosed rats demonstrated a time-dependent decrease in the urinary adduct levels, indicating the urinary DNA-AA adduct levels were reflective of the tissue adduct levels. It is expected that the developed approach of detecting urinary DNA-AA adducts will facilitate further carcinogenesis investigations of AAs.

  1. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells.

    PubMed

    Sharma, Anežka; Bányiová, Katarína; Babica, Pavel; El Yamani, Naouale; Collins, Andrew Richard; Čupr, Pavel

    2017-09-01

    2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25μgmL(-1). trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25μgmL(-1). The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25μgmL(-1). The No observed adverse effect level (NOAEL, mg kg(-1)bwday(-1)) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAELtrans-EHMC=3.07, NOAELcis-EHMC=0.30 for TK-6 and NOAELtrans-EHMC=26.46, NOAELcis-EHMC=20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg(-1)bwday(-1)) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HIcis-EHMC was 7 times higher than HItrans-EHMC. In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfDtrans-EHMC=0.20 and RfDcis-EHMC=0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs. Copyright © 2017 Elsevier B.V. All rights

  2. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation.

    PubMed

    Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2016-01-01

    Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.

  3. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids

    PubMed Central

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S. V. Santhana; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2016-01-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ•-) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance (1H NMR) and liquid chromatography–mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ•- by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ•-. This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol−1 energy gain. The insertion of SQ•- into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ•- and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ•-. Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids, proteins

  4. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids.

    PubMed

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S V Santhana; Buettner, Garry R; Robertson, Larry W; Luthe, Gregor

    2016-02-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids

  5. Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays

    PubMed Central

    Lewis, Christina L.; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-01-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of probe and target DNA, femtomole sensitivity, and sequence specificity. Combined these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  6. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  7. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    PubMed

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection.

  8. Removal of humic acid from peat soils by using AlCl3 prior to DNA extraction

    NASA Astrophysics Data System (ADS)

    Mustafa, Irfan; Hadiatullah, Sustiyah

    2017-05-01

    The amplification of environmental DNA is one of the main steps in microbial diversity profiling of environmental samples. To represent the microbial community in the soil, DNA extraction is initially needed. The major inhibitor in the soil is a humic acid which greatly inhibits the ability of enzymes to amplify DNA. The protocol provided with the commercial kit was not able to resolve the problem. We, therefore, introduced a modification for soil sample treatment with AlCl3 as a flocculating agent that is capable of removing the humic substance contained in peat soil. This technique was superior to the original instruction for extracting DNA with the FastDNA® Spin Kit for Soil (MP Bio, USA).

  9. Fast quantitative PCR, locked nucleic acid probes and reduced volume reactions are effective tools for detecting Batrachochytrium dendrobatidis DNA.

    PubMed

    Ruthig, Gregory R; Deridder, Benjamin P

    2012-01-24

    The fungal pathogen Batrachochytrium dendrobatidis threatens amphibian populations around the world. The ability to detect this pathogen on infected animals and in the environment is critical for understanding and controlling this pandemic. We tested several advances in quantitative PCR (qPCR) techniques to detect B. dendrobatidis DNA. We used a fast PCR thermocycler and enzymes that reduced the volume and the duration of the reaction. We also compared a conventional TaqMan minor groove binding (MGB) probe to an identical locked nucleic acid (LNA) counterpart. The fast qPCR reaction had a high degree of sensitivity to B. dendrobatidis DNA. The LNA probe was effective for detecting B. dendrobatidis DNA and produced results -similar to those of the MGB probe. The modifications that we tested can improve the cost, time efficiency and specificity of quantitative PCR as a tool for detecting pathogen DNA.

  10. Variational filtering.

    PubMed

    Friston, K J

    2008-07-01

    This note presents a simple Bayesian filtering scheme, using variational calculus, for inference on the hidden states of dynamic systems. Variational filtering is a stochastic scheme that propagates particles over a changing variational energy landscape, such that their sample density approximates the conditional density of hidden and states and inputs. The key innovation, on which variational filtering rests, is a formulation in generalised coordinates of motion. This renders the scheme much simpler and more versatile than existing approaches, such as those based on particle filtering. We demonstrate variational filtering using simulated and real data from hemodynamic systems studied in neuroimaging and provide comparative evaluations using particle filtering and the fixed-form homologue of variational filtering, namely dynamic expectation maximisation.

  11. Two step derivatization for the analyses of organic, amino acids and glycines on filter paper plasma by GC-MS/SIM.

    PubMed

    Yoon, Hye-Ran

    2007-03-01

    A rapid dried-filter paper plasma-spot analytical method was developed to quantify organic acids, amino acids, and glycines simultaneously in a two-step derivatization procedure with good sensitivity and specificity. The new method involves a two-step trimethylsilyl (TMS) - trifluoroacyl (TFA) derivatization procedure using GC-MS/ selective ion monitoring (GC-MS/SIM). The dried-filter paper plasma was fortified with an internal standard (tropate) as well as a standard mixture of distilled water and methanol. Methyl orange was added to the residue as an indicator. N-methyl-N-(trimethylsilyl-trifluoroacetamide) and N-methyl-bis-trifluoroacetamide were then added and heated to 60 degrees C for 10 and 15 min to produce the TMS and TFA derivatives, respectively. Using this method, the silylation of carboxylic functional groups was carried out, which was followed by the trifluoroacyl derivatization of the amino functional group. The derivatives were analyzed by GC-MS/SIM. A calibration cure showed a linear relationship for the target compounds between concentrations of 10-500 ng/mL. The limit of detection and quantification on a plasma spot were 10-90 ng/mL (S/N=9) and 80-500 ng/ mL, respectively. The correlation coefficient ranged from 0.938 and 0.999. When applied to the samples from positive patients, the method clearly differentiated normal subjects from the patients with various metabolic disorders such as PKU, MSUD, OTC and a Propionic Aciduria. The new developed method might be useful for making a rapid, sensitive and simultaneous diagnosis of inherited organic and amino acid disorders. In addition, this method is expected to be an alternative method for screening newborns for metabolic disorders in laboratories where expensive MS/MS is unavailable.

  12. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with β-cyclodextrin as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Wang, Lun; Bian, Guirong; Wang, Leyu; Dong, Ling; Chen, Hongqi; Xia, Tingting

    2005-04-01

    A novel ultrasonication method has been successfully developed for the preparation of 1-pyrenebutyric acid (PBAC)/β-cyclodextrin(β-CD) complex nanoparticles. The as-prepared nanoparticles are characterized by transmission electron microscopy (TEM), fluorescence excitation and emission spectroscopy. Complex nanoparticles prepared with ultrasonication are smaller and better dispersed than single PBAC nanoparticles. At pH 3.0, the relative fluorescence intensity of complex nanoparticles of PBAC/β-CD can be quenched by the concentration of DNA. Based on this, a novel fluorimetric method has been developed for rapid determination of DNA. In comparison with single organic fluorophores, these nanoparticle probes are better water-solubility, more stable and do not suffer from blinking. Under optimum conditions, the calibration graphs are linear over the range 0.2-15 μg mL -1 for calf thymus DNA (ct-DNA) and 0.3-12 μg mL -1 for fish sperm DNA (fs-DNA). The corresponding detection limit is 0.01 μg mL -1 for ct-DNA and 0.02 μg mL -1 for fs-DNA. The relative standard deviation of seven replicate measurements is 1.2% for 2.0 μg mL -1 ct-DNA and 1.4% for 2.0 μg mL -1 fs-DNA, respectively. The method is simple and sensitive. The recovery and relative standard deviation are very satisfactory. A mechanism proposed to explain the process also has been studied.

  13. Intracellular ascorbic acid enhances the DNA single-strand breakage and toxicity induced by peroxynitrite in U937 cells.

    PubMed Central

    Guidarelli, A; De Sanctis, R; Cellini, B; Fiorani, M; Dachà, M; Cantoni, O

    2001-01-01

    A well-established protocol to increase the intracellular content of ascorbic acid was used to investigate the effects of the vitamin on DNA single-strand breakage and toxicity mediated by authentic peroxynitrite (ONOO(-)) in U937 cells. This protocol involved exposure for 60 min to 100 microM dehydroascorbic acid, which was taken up by the cells and converted into ascorbic acid via a GSH-independent mechanism. At the time of exposure to ONOO(-), which was performed in fresh saline immediately after loading with dehydroascorbic acid, the vitamin present in the cells was all in its reduced form. It was found that, in cells that are otherwise ascorbate-deficient, an increase in their ascorbic acid content does not prevent, but rather enhances, the DNA-damaging and lethal responses mediated by exogenous ONOO(-). These results therefore suggest that acute supplementation of ascorbic acid can be detrimental for individuals with pathologies associated with a decrease in ascorbic acid and in which ONOO(-) is known to promote deleterious effects. PMID:11368779

  14. Sequence-specific purification of DNA oligomers in hydrophobic interaction chromatography using peptide nucleic acid amphiphiles: extended dynamic range.

    PubMed

    Savard, Jeffrey M; Schneider, James W

    2007-06-01

    We present improvements on a previously reported method (Vernille JP, Schneider JW. 2004. Biotechnol Prog 20(6):1776-1782) to purify DNA oligomers by attachment of peptide nucleic acid amphiphiles (PNAA) to particular sequences on the oligomers, followed by their separation from unbound oligomers using hydrophobic interaction chromatography (HIC). Use of alkyl-modified HIC media (butyl and octyl sepharose) over phenyl-modified media (phenyl sepharose) reduced the elution time of unbound DNA while not affecting the elution time of the PNAA/DNA complex. Modifying the alkane tail length for PNAA from C(12) to C(18) increased slightly the retention of PNAA/DNA duplexes. By combining these two refinements, we show that sequence-specific purifications of DNA oligomers 60 bases in length or more can be achieved with high resolution, even when the PNAA alkane is attached to the center of the target strand. The insensitivity of the PNAA/DNA duplex binding to choice of HIC media appears to be due to a surface-induced aggregation phenomenon that does not occur in the case of untagged DNA. We also report on the use of batch HIC as an adequate predictor of elution profiles in linear gradient HIC, and its potential to considerably reduce purification times by applying step gradients. (c) 2006 Wiley Periodicals, Inc.

  15. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study.

    PubMed

    Yagci, Artay; Murk, William; Stronk, Jill; Huszar, Gabor

    2010-01-01

    During human spermiogenesis, the elongated spermatids undergo a plasma membrane remodeling step that facilitates formation of the zona pellucida and hyaluronic acid (HA) binding sites. Various biochemical sperm markers indicated that human sperm bound to HA exhibit attributes similar to that of zona pellucida-bound sperm, including minimal DNA fragmentation, normal shape, and low frequency of chromosomal aneuploidies. In this work, we tested the hypothesis that HA-bound sperm would be enhanced in sperm of high DNA chain integrity and green acridine orange fluorescence (AOF) compared with the original sperm in semen. Sperm DNA integrity in semen and in their respective HA-bound sperm fractions was studied in 50 men tested for fertility. In the semen samples, the proportions of sperm with green AOF (high DNA integrity) and red AOF (DNA breaks) were 54.9% ± 2.0% and 45.0% ± 1.9%, whereas in the HA-bound sperm fraction, the respective proportions were 99% and 1.0%, respectively. The data indeed demonstrated that HA shows a high degree of selectivity for sperm with high DNA integrity. These findings are important from the points of view of human sperm DNA integrity, sperm function, and the potential efficacy of HA-mediated sperm selection for intracytoplasmic sperm injection.

  16. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection.

    PubMed

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Meng, Yan; Zhou, Cuisong; Long, Yuyin; Zheng, Baozhan; Du, Juan; Guo, Yong; Xiao, Dan

    2016-12-15

    Self-assembly of DNA nanostructures is of great importance in nanomedicine, nanotechnology and biosensing. Herein, a novel target-catalyzed autonomous assembly pathway for the formation of dendrimer-like DNA nanostructures that only employing target DNA and three hairpin DNA probes was proposed. We use the sticky-ended Y shape DNA (Y-DNA) as the assembly monomer and it was synthesized by the catalyzed hairpin assembly (CHA) instead of the DNA strand annealing method. The formed Y-DNA was equipped with three ssDNA sticky ends and two of them were predesigned to be complementary to the third one, then the dendrimer-like DNA nanostructures can be obtained via an autonomous assembly among these sticky-ended Y-DNAs. The resulting nanostructure has been successfully applied to develop an enzyme-free and signal amplified gold nanoparticle (AuNP)-based colorimetric nucleic acids assay.

  17. DNA-LCEB: a high-capacity and mutation-resistant DNA data-hiding approach by employing encryption, error correcting codes, and hybrid twofold and fourfold codon-based strategy for synonymous substitution in amino acids.

    PubMed

    Hafeez, Ibbad; Khan, Asifullah; Qadir, Abdul

    2014-11-01

    Data-hiding in deoxyribonucleic acid (DNA) sequences can be used to develop an organic memory and to track parent genes in an offspring as well as in genetically modified organism. However, the main concerns regarding data-hiding in DNA sequences are the survival of organism and successful extraction of watermark from DNA. This implies that the organism should live and reproduce without any functional disorder even in the presence of the embedded data. Consequently, performing synonymous substitution in amino acids for watermarking becomes a primary option. In this regard, a hybrid watermark embedding strategy that employs synonymous substitution in both twofold and fourfold codons of amino acids is proposed. This work thus presents a high-capacity and mutation-resistant watermarking technique, DNA-LCEB, for hiding secret information in DNA of living organisms. By employing the different types of synonymous codons of amino acids, the data storage capacity has been significantly increased. It is further observed that the proposed DNA-LCEB employing a combination of synonymous substitution, lossless compression, encryption, and Bose-Chaudary-Hocquenghem coding is secure and performs better in terms of both capacity and robustness compared to existing DNA data-hiding schemes. The proposed DNA-LCEB is tested against different mutations, including silent, miss-sense, and non-sense mutations, and provides substantial improvement in terms of mutation detection/correction rate and bits per nucleotide. A web application for DNA-LCEB is available at http://111.68.99.218/DNA-LCEB.

  18. Comparison of manual and automated nucleic acid isolation methods for HBV-DNA and HCV-RNA assays.

    PubMed

    Yagmur, Gulhan; Altun, Hatice Uludag; Gökahmetoglu, Selma; Basok, Ela

    2015-09-01

    In the diagnosis and monitoring of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, it is important to use methods that can provide rapid and reliable results. The present study aimed to compare the automated and manual extraction methods during the nucleic acid isolation phase for HBV-DNA and HCV-RNA assays. The study included 93 serum samples, 49 of which were for the HBV-DNA assay and 44 for the HCV-RNA assay. DNA and RNA isolation from the samples was performed manually with a "QIAmpMin Elute Kit" (Qiagen, Germany) and the automated isolation system, NucliSens easyMAG (BioMérieux, France). All the extraction products were amplified using the iCycler device (Bio-Rad, USA). With both methods, compliance was found in 21 (42.8%) samples in the HBV-DNA assay; nine (18.3%) samples had a higher amount of viral nucleic acid with the manual method, whereas 19 samples (38.7%) were found to have a higher amount of nucleic acid with the automated system. For the HCV-RNA assay, total compliance was found in 31 (70.4%) samples; 12 (27.2%) samples had a higher amount of viral nucleic acid with the manual method whereas one sample (2.2%) was found to have a higher amount of nucleic acid with the automated system. It was concluded that the NucliSens easyMAG automated isolation system can be used with confidence for nucleic acid extraction due to its higher sensitivity, providing results in a shorter time, and assured standardization.

  19. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases

    NASA Astrophysics Data System (ADS)

    Sallam, S. A.; Orabi, A. S.; Abbas, A. M.

    2011-12-01

    Ni(II) complexes of (S,E)-2-(2-OHbenzilydene)aspartic acid; (S,E)-2-(2,3-diOHbenzilydene)aspartic acid-; (S,E)-2-(2,4-diOH-benzilydene)aspartic acid; (S,E)-2-(2,5-diOHbenzilydene)aspartic acid and (S,E)-2-((2-OHnaphthalene-1-yl)methylene)aspartic acid Schiff-bases have been synthesized by template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1H nmr spectra as well as thermal analysis (TG, DTG, DTA). The Schiff-bases are dibasic tridentate or tetradentate donors and the complexes have square planar and octahedral structures. The complexes decompose in two or three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy.

  20. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells.

    PubMed

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X; Huang, Guowei

    2015-10-20

    Alzheimer's disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8-40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production.

  1. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-ethylene glycol Monolayers

    PubMed Central

    Lee, Chi-Ying; Nguyen, Phuong-Cac T.; Grainger, David W.; Gamble, Lara J.; Castner, David G.

    2008-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Orientation of the ssDNA probes was determined by near edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s → π* transition) indicate that the immobilized ssDNA molecules reorient towards a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the “high density” probe surface than on the “high efficiency” probe surface. The amount of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to non-specific serum protein adsorption onto the sensing surface. PMID:17492838

  2. Stimulation of Endomitotic DNA Synthesis and Cell Elongation by Gibberellic Acid in Epicotyls Grown from Gamma-irradiated Pea Seeds 1

    PubMed Central

    Callebaut, Alfons; Van Oostveldt, Patrick; Van Parijs, Roger

    1980-01-01

    Large doses of γ-irradiation, given to air-dried pea seeds, inhibit the endomitotic DNA synthesis in pea epicotyls during germination in darkness. The cortex cells of the etiolated epicotyls reach only the 4 C DNA level, whereas cortex cells of unirradiated seeds reach the 8 C DNA level. Epicotyl elongation and cell elongation are also reduced. Application of gibberellic acid restores the endomitotic DNA synthesis and the cell elongation in epicotyls of irradiated seeds. The cortex cells reach again the 8 C DNA level in darkness. The results suggest that γ-irradiation blocks endomitotic DNA synthesis and cell elongation by lowering the concentration of endogenous gibberellins. PMID:16661127

  3. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  4. [Treatment of mix gas containing butyl acetate, n-butyl alcohol and phenylacetic acid from pharmaceutical factory by bio-trickling filter].

    PubMed

    Wang, Qun-hui; Tian, Shu-lei; Xie, Wei-min; Zhang, Lan-he

    2005-03-01

    The bio-trickling filter packed with ZX02 stuffing is used to treat the mix gases containing butyl acetate, n-butyl alcohol and phenylacetic acid(BBP), which are discharged from Penicillin workshop of Pharmaceutical Factory. The reactor was operated for 110 days to investigate the effect of influent load, retention time and spray water on the removal of BBP and the biodegradation characteristics. The reactor displayed preferential utilization of BBP, when the maximum influent load of BBP were 229.5g/(m3 x h), 275.4 g/(m3 x h) and 42.5g/(m3 x h), the removal efficiencies were 96%, 95% and 100% respectively. The results show that the bio-trickling filter can effectively treat the mix gases and the optimum parameters were as followed: retention time was 31.2 s, the volume of spray water was 4 L/(L x d). The bio- trickling reactor has strong ability to resist shock of high influent load and resistance is maintained at low value, what's more, it doesn't need to carry out back washing frequently. With all these advantages it can be operated steadily for long time.

  5. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues.

    PubMed

    Takamitsu, Emi; Fukunaga, Kazuki; Iio, Yusuke; Moriya, Koko; Utsumi, Toshihiko

    2014-11-01

    To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate†

    PubMed Central

    Liu, Yang; Rokita, Steven E.

    2012-01-01

    The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alkylation of non-complementary sequences is only possible when a template strand is present to co-localize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self adducts formed between the PNA and its attached QM remained active and reversible over more than eight days in aqueous solution prior to reaction with a chosen target added subsequently. PMID:22243337

  8. Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis.

    PubMed

    Burton, N P; Norris, P R

    2000-10-01

    DNA was extracted from water and sediment samples taken from acidic, geothermal pools on the Caribbean island of Montserrat. 16S rRNA genes were amplified by PCR, cloned, sequenced, and examined to indicate some of the organisms that might be significant components of the in situ microbiota. A clone bank representing the lowest temperature pool that was sampled (33 degrees C) was dominated by genes corresponding to two types of acidophiles: Acidiphilium-like mesophilic heterotrophs and thermotolerant Acidithiobacillus caldus. Three clone types with origins in low- and moderate- (48 degrees C) temperature pools corresponded to bacteria that could be involved in metabolism of sulfur compounds: the aerobic A. caldus and putative anaerobic, moderately thermophilic, sulfur-reducing bacteria (from an undescribed genus and from the Desulfurella group). A higher-temperature sample indicated the presence of a Ferroplasma-like organism, distinct from the other strains of these recently recognized acidophilic, iron-oxidizing members of the Euryarchaeota. Acidophilic Archaea from undescribed genera related to Sulfolobus and Acidianus were predicted to dominate the indigenous acidophilic archaeal population at the highest temperatures.

  9. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    SciTech Connect

    Jiang, Zhenzhou Bao, Qingli Sun, Lixin Huang, Xin Wang, Tao Zhang, Shuang Li, Han Zhang, Luyong

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  10. [Preparation of deoxyribonucleic acid (DNA) form salmon milt by the phenol method].

    PubMed

    Gracheva, S F; Bakhvalov, O V; Levagina, G M

    1978-01-01

    The paper presents a modification of the Kirby method for the DNA preparation from salmon milt. The modified procedure includes ethanol pretreatment and subsequent homogenization in 0.01 M. Trylon B. The paper describes the conditions for DNA purification through alkaline treatment and renaturation at 66 degrees C. The modified method can be used to obtain two preparations of DNA viscous solution in water (DNA homogenate), employed as a raw material in the preparation of 5-deoxyribonucleotides, and a dry preparation.

  11. Filtering apparatus

    DOEpatents

    Haldipur, G.B.; Dilmore, W.J.

    1992-09-01

    A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

  12. Filtering apparatus

    DOEpatents

    Haldipur, Gaurang B.; Dilmore, William J.

    1992-01-01

    A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

  13. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  14. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis.

    PubMed

    Benitez, Alvaro; Priest, Jeffrey W; Ehigiator, Humphrey N; McNair, Nina; Mead, Jan R

    2011-11-15

    The Cryptosporidium parvum acidic ribosomal protein P2 (CpP2) is an important immunodominant marker in C. parvum infection. In this study, the CpP2 antigen was evaluated as a vaccine candidate using a DNA vaccine model in adult C57BL/6 IL-12 knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding CpP2 (CpP2-DNA) cloned into the pUMVC4b vector induced a significant anti-CpP2 IgG antibody response that was predominantly of the IgG1 isotype. Compared to control KO mice immunized with plasmid alone, CpP2-immunized mice demonstrated specific in vitro spleen cell proliferation as well as enhanced IFN-γ production to recombinant CpP2. Further, parasite loads in CpP2 DNA-immunized mice were compared to control mice challenged with C. parvum oocysts. Although a trend in reduction of infection was observed in the CpP2 DNA-immunized mice, differences between groups were not statistically significant. These results suggest that a DNA vaccine encoding the C. parvum P2 antigen is able to provide an effective means of eliciting humoral and cellular responses and has the potential to generate protective immunity against C. parvum infection but may require using alternative vectors or adjuvant to generate a more potent and balanced response.

  15. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA

    SciTech Connect

    Mangel, Walter F.; McGrath, William J.; Xiong, Kan; Graziano, Vito; Blainey, Paul C.

    2016-02-02

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a ‘molecular sled’ named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 106 (bp)2 s−1. pVIc is a ‘molecular sled,’ because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Finally, characteristics of the ‘molecular sled’ in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.

  16. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  17. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  18. High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites

    NASA Astrophysics Data System (ADS)

    Levina, Asya S.; Repkova, Marina N.; Ismagilov, Zinfer R.; Shikina, Nadezhda V.; Malygin, Ernst G.; Mazurkova, Natalia A.; Zinov'ev, Victor V.; Evdokimov, Alexei A.; Baiborodin, Sergei I.; Zarytova, Valentina F.

    2012-10-01

    Nanoparticles are used to solve the current drug delivery problem. We present a high-performance method for efficient and selective action on nucleic acid target in cells using unique TiO2.PL-DNA nanocomposites (polylysine-containing DNA fragments noncovalently immobilized onto TiO2 nanoparticles capable of transferring DNA). These nanocomposites were used for inhibition of human influenza A (H3N2) virus replication in infected MDCK cells. They showed a low toxicity (TC50 ~ 1800 μg/ml) and a high antiviral activity (>99.9% inhibition of the virus replication). The specificity factor (antisense effect) appeared to depend on the delivery system of DNA fragments. This factor for nanocomposites is ten-times higher than for DNA in the presence of lipofectamine. IC50 for nanocomposites was estimated to be 1.5 μg/ml (30 nM for DNA), so its selectivity index was calculated as ~1200. Thus, the proposed nanocomposites are prospective for therapeutic application.

  19. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA

    DOE PAGES

    Mangel, Walter F.; McGrath, William J.; Xiong, Kan; ...

    2016-02-02

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a ‘molecular sled’ named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 106 (bp)2 s−1. pVIc is a ‘molecular sled,’ because it can slide heterologous cargos along DNA, for example, amore » streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Finally, characteristics of the ‘molecular sled’ in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.« less

  20. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA

    PubMed Central

    Mangel, Walter F.; McGrath, William J.; Xiong, Kan; Graziano, Vito; Blainey, Paul C.

    2016-01-01

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a ‘molecular sled' named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 106 (bp)2 s−1. pVIc is a ‘molecular sled,' because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Characteristics of the ‘molecular sled' in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry. PMID:26831565

  1. The use of specific binding of peptide-nucleic acid to DNA in the {open_quotes}Achilles heel{close_quotes} method

    SciTech Connect

    Krasil`nikova, M.M.; Izvol`skii, K.I.; Krupnik, O.V.; Lazurkin, Yu.S.

    1995-09-01

    The `Achilles heel` method (AHM) is used in the design of random-cleavage restriction endonucleases. These promising compounds can be widely used in practice, particularly for genomic DNA mapping. DNA is complexed with a site-specific DNA-binding reagent (protein or oligonucleotide) and then treated with methylase. The methylation sites overlapping with or adjacent to the DNA-binding sites of the reagent are protected from methylation. Thereafter, methylase is inactivated, the DNA-binding reagent is removed, and DNA is cleaved by the restriction endonuclease corresponding to the methylase used. As a result, DNA is cleaved only at those restriction sites that were protected by the DNA-binding reagent from methylation. Until now, proteins or oligonucleotides were used as site-specific DNA-binding reagents. Here, we report on the use of a peptide-nucleic acid (PNA) in AHM. 7 refs., 4 figs.

  2. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    PubMed

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A620/A520) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10(-11) M to 9.0 × 10(-10) M, and as low as 1.0 × 10(-11) M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10(-8) M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. DNA Before Proteins? Recent Discoveries in Nucleic Acid Catalysis Strengthen the Case

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Lehman, Niles

    2009-02-01

    An RNA-DNA World could arise from an all-RNA system with the development of as few as three ribozymes -- a DNA-dependent RNA polymerase, an RNA-dependent DNA polymerase, and a catalyst for the production of DNA nucleotides. A significant objection to DNA preceding proteins is that RNA has not been shown to catalyze the production of DNA. However, RNA- and DNAzymes have been recently discovered that catalyze chemical reactions capable of forming deoxyribose, such as mixed aldol condensation of 5'-glyceryl- and 3'-glycoaldehyde-terminated DNA strands. Thus, the only remaining obstacles to RNA-catalyzed in vitro DNA synthesis are alterations of substrate and template specificities of known ribozymes. The RNA-DNA World lessens genomic size constraints through a relaxed error threshold, affording the evolutionary time needed to develop protein synthesis. Separation of information from catalyst enables genotype and phenotype to be readily discriminated by absence or presence, respectively, of the 2'-OH. Novel ribozymes that arise through mutation can be preserved in DNA by reverse transcription, which makes them much more likely to be retained than in an RNA-genome milieu. The extra degree of separation between protein and mRNA, in terms of identifying and then retaining a useful enzyme, may have in fact necessitated storing information in DNA prior to the advent of translation.

  4. Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon.

    PubMed

    Gui, Zhen; Wang, Quanbo; Li, Jinchang; Zhu, Mingchen; Yu, Lili; Xun, Tang; Yan, Feng; Ju, Huangxian

    2016-07-01

    As an emerging noninvasive blood biomarker, circulating free DNA (cfDNA) can be utilized to assess diagnosis, progression and evaluate prognosis of cancer. However, cfDNAs are not "naked", they can be part of complexes, or are bound to the surface of the cells via proteins, which make the detection more challenging. Here, a simple method for the detection of Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) DNA exacted from serum of breast cancer (BC) has been developed using a novel locked nucleic acid molecular beacon (LNA-MB). In order to enhance the stability and detection efficiency of the probe in biofluids, we design a shared-stem molecular beacon containing a 27-mer loop and a 4-mer stem with DNA/LNA alternating bases. The fluorescence is released in the presence of target. The detection procedure is simple and can be completed within 1h. This method shows a sensitive response to UHRF1 DNA with a dynamic range of 3 orders of magnitude. The limit of detection is 11nM (S/N=3) with excellent selectivity. It can discriminate UHRF1 DNA from three-base mismatched DNA with a high specificity. More importantly, this method can distinguish the expression of serum UHRF1 DNA among 5 breast cancer patients and 5 healthy controls. The mentioned superiority may suggest that this assay can be served as a promising noninvasive detection tool for early BC diagnosis and monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative trait loci mapping for conjugated linoleic acid, vaccenic acid and ∆(9) -desaturase in Italian Brown Swiss dairy cattle using selective DNA pooling.

    PubMed

    Strillacci, M G; Frigo, E; Canavesi, F; Ungar, Y; Schiavini, F; Zaniboni, L; Reghenzani, L; Cozzi, M C; Samoré, A B; Kashi, Y; Shimoni, E; Tal-Stein, R; Soller, M; Lipkin, E; Bagnato, A

    2014-08-01

    A selective DNA pooling approach was applied to identify QTL for conjugated linoleic acid (CLA), vaccenic acid (VA) and Δ(9) -desaturase (D9D) milk content in Italian Brown Swiss dairy cattle. Milk samples from 60 animals with higher values (after correction for environmental factors) and 60 animals with lower values for each of these traits from each of five half-sib families were pooled separately. The pools were genotyped using the Illumina BovineSNP50 BeadChip. Sire allele frequencies were compared between high and low tails at the sire and marker level for SNPs for which the sires were heterozygous. An r procedure was implemented to perform data analysis in a selective DNA pooling design. A correction for multiple tests was applied using the proportion of false positives among all test results. BTA 19 showed the largest number of markers in association with CLA. Associations between SNPs and the VA and Δ(9) -desaturase traits were found on several chromosomes. A bioinformatics survey identified genes with an important role in pathways for milk fat and fatty acids metabolism within 1 Mb of SNP markers associated with fatty acids contents. © 2014 Stichting International Foundation for Animal Genetics.

  6. Simple and rapid analytical method for detection of amino acids in blood using blood spot on filter paper, fast-GC/MS and isotope dilution technique.

    PubMed

    Kawana, Shuichi; Nakagawa, Katsuhiro; Hasegawa, Yuki; Yamaguchi, Seiji

    2010-11-15

    A simple and rapid method for quantitative analysis of amino acids, including valine (Val), leucine (Leu), isoleucine (Ile), methionine (Met) and phenylalanine (Phe), in whole blood has been developed using GC/MS. In this method, whole blood was collected using a filter paper technique, and a 1/8 in. blood spot punch was used for sample preparation. Amino acids were extracted from the sample, and the extracts were purified using cation-exchange resins. The isotope dilution method using ²H₈-Val, ²H₃-Leu, ²H₃-Met and ²H₅-Phe as internal standards was applied. Following propyl chloroformate derivatization, the derivatives were analyzed using fast-GC/MS. The extraction recoveries using these techniques ranged from 69.8% to 87.9%, and analysis time for each sample was approximately 26 min. Calibration curves at concentrations from 0.0 to 1666.7 μmol/l for Val, Leu, Ile and Phe and from 0.0 to 333.3 μmol/l for Met showed good linearity with regression coefficients=1. The method detection limits for Val, Leu, Ile, Met and Phe were 24.2, 16.7, 8.7, 1.5 and 12.9 μmol/l, respectively. This method was applied to blood spot samples obtained from patients with phenylketonuria (PKU), maple syrup urine disease (MSUD), hypermethionine and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and the analysis results showed that the concentrations of amino acids that characterize these diseases were increased. These results indicate that this method provides a simple and rapid procedure for precise determination of amino acids in whole blood.

  7. Peptide purification, complementary deoxyribonucleic acid (DNA) and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout.

    PubMed

    Kaiya, Hiroyuki; Kojima, Masayasu; Hosoda, Hiroshi; Moriyama, Shunsuke; Takahashi, Akiyoshi; Kawauchi, Hiroshi; Kangawa, Kenji

    2003-12-01

    We have identified ghrelin from the stomach of rainbow trout. Four isoforms of ghrelin peptide were isolated: the C-terminal amidated type of rainbow trout ghrelin (rt ghrelin) composed of 24 amino acids (GSSFLSPSQKPQVRQGKGKPPRV-amide) is a basic form; des-VRQ-rt ghrelin, which deleted three amino acids (V13R14Q15) from rt ghrelin; and further two types of rt ghrelin that retained the glycine residue at the C terminus, rt ghrelin-Gly, and des-VRQ-rt ghrelin-Gly. The third serine residue was modified by octanoic acid, decanoic acid, or the unsaturated form of those fatty acids. In agreement with the isolated peptides, two cDNAs of different lengths were isolated. The rt ghrelin gene has five exons and four introns, and two different mRNA molecules are predicted to be produced by alternative splicing of the gene. A high level of ghrelin mRNA expression was detected in the stomach, and moderate levels were detected in the brain, hypothalamus, and intestinal tracts. Des-VRQ-rt ghrelin stimulated the release of GH in the rat in vivo. Furthermore, des-VRQ-rt ghrelin stimulated the release of GH, but not the release of prolactin and somatolactin in rainbow trout in vivo and in vitro. These results indicate that ghrelin is a novel GH secretagogue in rainbow trout that may affect somatic growth or osmoregulation through GH. Because ghrelin is expressed in various tissues other than stomach, it may play important role(s) in cellular function as a local regulator.

  8. Ultraviolet filters.

    PubMed

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  9. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    PubMed

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-08-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene.

  10. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA.

    PubMed Central

    Devault, A; Lazure, C; Nault, C; Le Moual, H; Seidah, N G; Chrétien, M; Kahn, P; Powell, J; Mallet, J; Beaumont, A

    1987-01-01

    Neutral endopeptidase (EC 3.4.24.11) is a major constituent of kidney brush border membranes. It is also present in the brain where it has been shown to be involved in the inactivation of opioid peptides, methionine- and leucine-enkephalins. For this reason this enzyme is often called 'enkephalinase'. In order to characterize the primary structure of the enzyme, oligonucleotide probes were designed from partial amino acid sequences and used to isolate clones from kidney cDNA libraries. Sequencing of the cDNA inserts revealed the complete primary structure of the enzyme. Neutral endopeptidase consists of 750 amino acids. It contains a short N-terminal cytoplasmic domain (27 amino acids), a single membrane-spanning segment (23 amino acids) and an extracellular domain that comprises most of the protein mass. The comparison of the primary structure of neutral endopeptidase with that of thermolysin, a bacterial Zn-metallopeptidase, indicates that most of the amino acid residues involved in Zn coordination and catalytic activity in thermolysin are found within highly honmologous sequences in neutral endopeptidase. Images Fig. 1. Fig. 3. PMID:2440677

  11. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    PubMed Central

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-01-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene. Images PMID:3039499

  12. Photophysics and photochemistry of the UV filter kynurenine covalently attached to amino acids and to a model protein.

    PubMed

    Sherin, Peter S; Grilj, Jakob; Kopylova, Lyudmila V; Yanshole, Vadim V; Tsentalovich, Yuri P; Vauthey, Eric

    2010-09-16

    The photophysics and photochemistry of kynurenine (KN) covalently bound to the amino acids lysine, cysteine, and histidine, the antioxidant glutathione, and the protein lysozyme have been studied by optical spectroscopy with femto- and nanosecond time resolution. The fluorescence quantum yield of the adducts of KN to amino acids is approximately 2 times higher than that of the free KN in solution; KN attached to protein exhibits a 7-fold increase in the fluorescence quantum yield. The S(1) state dynamics of KN-modified lysozyme reveals a multiphasic decay with a broad dispersion of time constants from 1 ps to 2 ns. An increase of the triplet yield of KN bound to lysozyme is also observed; the triplet state undergoes fast intramolecular decay. The obtained results reveal an increase of the photochemical activity of KN after its covalent attachment to amino acids and proteins, which may contribute to the development of oxidative stress in the human lenses-the main causative factor for the cataract onset.

  13. Protection of DNA against low-energy electrons by amino acids: a first-principles molecular dynamics study.

    PubMed

    Gu, Bin; Smyth, Maeve; Kohanoff, Jorge

    2014-11-28

    Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

  14. Potential cytoprotection: antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins.

    PubMed

    Wang, Ting; Chen, Lixiang; Wu, Weimin; Long, Yuan; Wang, Rui

    2008-05-01

    Oxidative stress is considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. Caffeic acid phenethyl ester (CAPE), derived from the propolis of honeybee hives, possesses a variety of biological and pharmacological properties including antioxidant and anticancer activity. In the present study, we focused on the diverse antioxidative functionalities of CAPE and its related polyphenolic acid esters on cellular macromolecules in vitro. The effects on human erythrocyte membrane ghost lipid peroxidation, plasmid pBR322 DNA, and protein damage initiated by the water-soluble initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) and hydrogen peroxide (H(2)O(2)) were monitored by formation of hydroperoxides and by DNA nicking assay, single-cell alkaline electrophoresis, and SDS-polyacrylamide gel electrophoresis. Our results showed that CAPE and its related polyphenolic acid esters elicited remarkable inhibitory effects on erythrocyte membrane lipid peroxidation, cellular DNA strand breakage, and protein fragmentation. The results suggest that CAPE is a potent exogenous cytoprotective and antigenotoxic agent against cell oxidative damage that could be used as a template for designing novel drugs to combat diseases induced by oxidative stress components, such as various types of cancer.

  15. DNA Methylation Profiling at Single-Base Resolution Reveals Gestational Folic Acid Supplementation Influences the Epigenome of Mouse Offspring Cerebellum

    PubMed Central

    Barua, Subit; Kuizon, Salomon; Brown, W. Ted; Junaid, Mohammed A.

    2016-01-01

    It is becoming increasingly more evident that lifestyle, environmental factors, and maternal nutrition during gestation can influence the epigenome of the developing fetus and thus modulate the physiological outcome. Variations in the intake of maternal nutrients affecting one-carbon metabolism may influence brain development and exert long-term effects on the health of the progeny. In this study, we investigated whether supplementation with high maternal folic acid during gestation alters DNA methylation and gene expression in the cerebellum of mouse offspring. We used reduced representation bisulfite sequencing to analyze the DNA methylation profile at the single-base resolution level. The genome-wide DNA methylation analysis revealed that supplementation with higher maternal folic acid resulted in distinct methylation patterns (P < 0.05) of CpG and non-CpG sites in the cerebellum of offspring. Such variations of methylation and gene expression in the cerebellum of offspring were highly sex-specific, including several genes of the neuronal pathways. These findings demonstrate that alterations in the level of maternal folic acid during gestation can influence methylation and gene expression in the cerebellum of offspring. Such changes in the offspring epigenome may alter neurodevelopment and influence the functional outcome of neurologic and psychiatric diseases. PMID:27199632

  16. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco.

    PubMed Central

    Payne, G; Ahl, P; Moyer, M; Harper, A; Beck, J; Meins, F; Ryals, J

    1990-01-01

    Complementary DNA clones encoding two isoforms of the acidic endochitinase (chitinase, EC 3.2.1.14) from tobacco were isolated. Comparison of amino acid sequences deduced from the cDNA clones and the sequence of peptides derived from purified proteins show that these clones encode the pathogenesis-related proteins PR-P and PR-Q. The cDNA inserts were not homologous to either the bacterial form of chitinase or the form from cucumber but shared significant homology to the basic form of chitinase from tobacco and bean. The acidic isoforms of tobacco chitinase did not contain the amino-terminal, cysteine-rich "hevein" domain found in the basic isoforms, indicating that this domain, which binds chitin, is not essential for chitinolytic activity. The accumulation of mRNA for the pathogenesis-related proteins PR-1, PR-R, PR-P, and PR-Q in Xanthi.nc tobacco leaves following infection with tobacco mosaic virus was measured by primer extension. The results indicate that the induction of these proteins during the local necrotic lesion response to the virus is coordinated at the mRNA level. Images PMID:2296608

  17. Methylarsonous acid causes oxidative DNA damage in cells independent of the ability to biomethylate inorganic arsenic.

    PubMed

    Tokar, Erik J; Kojima, Chikara; Waalkes, Michael P

    2014-02-01

    Inorganic arsenic (iAs) and its toxic methylated metabolite, methylarsonous acid (MMA(III)), both have carcinogenic potential. Prior study shows iAs-induced malignant transformation in both arsenic methylation-proficient (liver) and methylation-deficient (prostate) cells, but only methylation-proficient cells show oxidative DNA damage (ODD) during this transformation. To further define whether arsenic methylation is necessary for transformation or ODD induction, here we chronically exposed these same liver or prostate cell lines to MMA(III) (0.25-1.0 μM) and tested for acquired malignant phenotype. Various metrics of oncogenic transformation were periodically assessed along with ODD during chronic MMA(III) exposure. Methylation-deficient and methylation-proficient cells both acquired a cancer phenotype with MMA(III) exposure at about 20 weeks, based on increased matrix metalloproteinase secretion, colony formation, and invasion. In contrast, prior work showed iAs-induced transformation took longer in biomethylation-deficient cells (~30 weeks) than in biomethylation-proficient cells (~18 weeks). In the present study, MMA(III) caused similar peak ODD levels at similar concentrations and at similar exposure times (18-22 weeks) in both cell types. At the approximate peak of ODD production, both cell types showed similar alterations in arsenic and oxidative stress adaptation factors (i.e., ABCC1, ABCC2, GST-π, SOD-1). Thus, MMA(III) causes oncogenic transformation associated with ODD in methylation-deficient cells, indicating that further methylation is not required to induce ODD. Together, these results show that MMA(III) and iAs cause an acquired malignant phenotype in methylation-deficient cells, yet iAs does not induce ODD. This indicates iAs likely has both genotoxic and non-genotoxic mechanisms dictated by the target cell's ability to methylate arsenic.

  18. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts.

    PubMed

    Mori, Masanobu; Sugita, Tsuyoshi; Mase, Akinori; Funatogawa, Takahiro; Kikuchi, Masaru; Aizawa, Kazuhiko; Kato, Shigekazu; Saito, Yoichi; Ito, Tsukasa; Itabashi, Hideyuki

    2013-01-01

    This paper reports on the photodecomposition of aqueous humic acid (HA) by a TiO(2)-coated ceramic foam filter (TCF) reactor and on the potential for the formation of disinfection byproducts (DBPs) upon chlorination of the photocatalytically treated solutions. This photocatalytic reactor can also be applied to the removal of natural organic matter (NOM) in swamp waters. The proposed photocatalytic reaction system was operated as per standardized methodologies. First, the ability of the TCF to decompose HA (a representative compound of NOM) was evaluated from the changes in the total organic carbon (TOC) and UV(254) with the reaction time. Remarkably, TOC removal and UV(254) values ranging from 44% to 61% and from 60% to 83%, respectively, were achieved. The potential for the formation of DBPs (total trihalomethane and total haloacetic acid) by chlorination of the phototreated solution was strongly dependent on the TOC removal and UV(254) values in the solution. The degree of photodecomposition of NOMs in the swamp water samples and the DBP formation potential showed similar trends as in the case of the standard solutions containing HA. The method used in this study could be effectively used to evaluate the efficiency of TCF for reducing HA and NOM, while suppressing the formation of DBP products.

  19. Genomic DNA Methylation Changes in Response to Folic Acid Supplementation in a Population-Based Intervention Study among Women of Reproductive Age

    PubMed Central

    Berry, Robert J.; Hao, Ling; Li, Zhu; Maneval, David; Yang, Thomas P.; Rasmussen, Sonja A.; Yang, Quanhe; Zhu, Jiang-Hui; Hu, Dale J.; Bailey, Lynn B.

    2011-01-01

    Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 µg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 µg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (−14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation. PMID:22163281

  20. Amino Acids in the Basic Domain of Epstein-Barr Virus ZEBRA Protein Play Distinct Roles in DNA Binding, Activation of Early Lytic Gene Expression, and Promotion of Viral DNA Replication

    PubMed Central

    Heston, Lee; El-Guindy, Ayman; Countryman, Jill; Dela Cruz, Charles; Delecluse, Henri-Jacques; Miller, George

    2006-01-01

    The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding

  1. A modified acidic approach for DNA extraction from plant species containing high levels of secondary metabolites.

    PubMed

    Cavallari, M M; Siqueira, M V B M; Val, T M; Pavanelli, J C; Monteiro, M; Grando, C; Pinheiro, J B; Zucchi, M I; Gimenes, M A

    2014-08-25

    Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.

  2. Influence of amino acids Shiff bases on irradiated DNA stability in vivo.

    PubMed

    Karapetyan, N H; Malakyan, M H; Bajinyan, S A; Torosyan, A L; Grigoryan, I E; Haroutiunian, S G

    2013-01-01

    To reveal protective role of the new Mn(II) complexes with Nicotinyl-L-Tyrosinate and Nicotinyl-L-Tryptophanate Schiff Bases against ionizing radiation. The DNA of the rats liver was isolated on 7, 14, and 30 days after X-ray irradiation. The differences between the DNA of irradiated rats and rats pre-treated with Mn(II) complexes were studied using the melting, microcalorimetry, and electrophoresis methods. The melting parameters and the melting enthalpy of rats livers DNA were changed after the X-ray irradiation: melting temperature and melting enthalpy were decreased and melting interval was increased. These results can be explained by destruction of DNA molecules. It was shown that pre-treatment of rats with Mn(II) complexes approximates the melting parameters to norm. Agarose gel electrophoresis data confirmed the results of melting studies. The separate DNA fragments were revealed in DNA samples isolated from irradiated animals. The DNA isolated from animals pre-treated with the Mn(II) chelates had better electrophoretic characteristics, which correspond to healthy DNA. Pre-treatment of the irradiated rats with Mn(II)(Nicotinil-L-Tyrosinate) and Mn(II)(Nicotinil-L-Tryptophanate)2 improves the DNA characteristics.

  3. Investigation of irradiated rats DNA in the presence of Cu(II) chelates of amino acids Schiff bases.

    PubMed

    Karapetyan, N H; Torosyan, A L; Malakyan, M; Bajinyan, S A; Haroutiunian, S G

    2016-01-01

    The new synthesized Cu(II) chelates of amino acids Schiff bases were studied as a potential radioprotectors. Male albino rats of Wistar strain were exposed to X-ray whole-body irradiation at 4.8 Gy. This dose caused 30% mortality of the animals (LD30). The survival of animals exposed to radiation after preliminary administration of 10 mg/kg Cu(II)(Nicotinyl-L-Tyrosinate)2 or Cu(II)(Nicotinyl-L-Tryptophanate)2 prior to irradiation was registered about 80 and 100% correspondingly. Using spectrophotometric melting and agarose gel electrophoresis methods, the differences between the DNA isolated from irradiated rats and rats pretreated with Cu(II) chelates were studied. The fragments of DNA with different breaks were revealed in DNA samples isolated from irradiated animals. While, the repair of the DNA structure was observed for animals pretreated with the Cu(II) chelates. The results suggested that pretreatment of the irradiated rats with Cu(II)(Nicotinyl-L-Tyrosinate)2 and Cu(II)(Nicotinyl-L-Tryptophanate)2 compounds improves the liver DNA characteristics.

  4. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  5. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Retinoic acid-related orphan receptor-α is induced in the setting of DNA damage and promotes pulmonary emphysema.

    PubMed

    Shi, Ying; Cao, Jiaofei; Gao, Jane; Zheng, Liang; Goodwin, Andrew; An, Chang Hyoek; Patel, Avignat; Lee, Janet S; Duncan, Steven R; Kaminski, Naftali; Pandit, Kusum V; Rosas, Ivan O; Choi, Augustine M K; Morse, Danielle

    2012-09-01

    The discovery that retinoic acid-related orphan receptor (Rora)-α is highly expressed in lungs of patients with COPD led us to hypothesize that Rora may contribute to the pathogenesis of emphysema. To determine the role of Rora in smoke-induced emphysema. Cigarette smoke extract in vitro and elastase or cigarette smoke exposure in vivo were used to model smoke-related cell stress and airspace enlargement. Lung tissue from patients undergoing lung transplantation was examined for markers of DNA damage and Rora expression. Rora expression was induced by cigarette smoke in mice and in cell culture. Gene expression profiling of Rora-null mice exposed to cigarette smoke demonstrated enrichment for genes involved in DNA repair. Rora expression increased and Rora translocated to the nucleus after DNA damage. Inhibition of ataxia telangiectasia mutated decreased the induction of Rora. Gene silencing of Rora attenuated apoptotic cell death in response to cigarette smoke extract, whereas overexpression of Rora enhanced apoptosis. Rora-deficient mice were protected from elastase and cigarette smoke induced airspace enlargement. Finally, lungs of patients with COPD showed evidence of increased DNA damage even in the absence of active smoking. Taken together, these findings suggest that DNA damage may contribute to the pathogenesis of emphysema, and that Rora has a previously unrecognized role in cellular responses to genotoxicity. These findings provide a potential link between emphysema and features of premature ageing, including enhanced susceptibility to lung cancer.

  7. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  8. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)?

    PubMed

    Shen, Chen-Chao; Shen, Dong-Sheng; Shentu, Jia-Li; Wang, Mei-Zhen; Wan, Ming-Yang

    2015-12-01

    The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA.

  9. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction.

    PubMed

    Göder, Anja; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-08-01

    Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.

  10. No difference in high-magnification morphology and hyaluronic acid binding in the selection of euploid spermatozoa with intact DNA

    PubMed Central

    Mongkolchaipak, Suchada; Vutyavanich, Teraporn

    2013-01-01

    In this study, we compared conventional sperm selection with high-magnification morphology based on the motile sperm organellar morphology examination (MSOME) criteria, and hyaluronic acid (HA) binding for sperm chromosome aneuploidy and DNA fragmentation rates. Semen from 50 severe male factor cases was processed through density gradient centrifugation, and subjected to sperm selection by using the conventional method (control), high magnification at ×6650 or HA binding. Aneuploidy was detected by fluorescence in situ hybridization with probes for chromosomes 13, 18, 21, X and Y, and DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method. Spermatozoa selected under high-magnification had a lower DNA fragmentation rate (2.6% vs. 1.7% P=0.032), with no significant difference in aneuploidy rate (0.8% vs 0.7% P=0.583), than those selected by the HA binding method. Spermatozoa selected by both methods had much lower aneuploidy and DNA fragmentation rate than the controls (7% aneuploidy and 26.8% DNA fragmentation rates, respectively). In the high-magnification group, the aneuploidy rate was lower when the best spermatozoa were selected than when only the second-best spermatozoa were available for selection, but the DNA fragmentation rate was not different. In conclusion, sperm selection under high magnification was more effective than under HA binding in selecting spermatozoa with low DNA fragmentation rate, but the small difference (0.9%) might not be clinically meaningful. Both methods were better than the conventional method of sperm selection. PMID:23435468

  11. No difference in high-magnification morphology and hyaluronic acid binding in the selection of euploid spermatozoa with intact DNA.

    PubMed

    Mongkolchaipak, Suchada; Vutyavanich, Teraporn

    2013-05-01

    In this study, we compared conventional sperm selection with high-magnification morphology based on the motile sperm organellar morphology examination (MSOME) criteria, and hyaluronic acid (HA) binding for sperm chromosome aneuploidy and DNA fragmentation rates. Semen from 50 severe male factor cases was processed through density gradient centrifugation, and subjected to sperm selection by using the conventional method (control), high magnification at ×6650 or HA binding. Aneuploidy was detected by fluorescence in situ hybridization with probes for chromosomes 13, 18, 21, X and Y, and DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method. Spermatozoa selected under high-magnification had a lower DNA fragmentation rate (2.6% vs. 1.7%; P=0.032), with no significant difference in aneuploidy rate (0.8% vs 0.7%; P=0.583), than those selected by the HA binding method. Spermatozoa selected by both methods had much lower aneuploidy and DNA fragmentation rate than the controls (7% aneuploidy and 26.8% DNA fragmentation rates, respectively). In the high-magnification group, the aneuploidy rate was lower when the best spermatozoa were selected than when only the second-best spermatozoa were available for selection, but the DNA fragmentation rate was not different. In conclusion, sperm selection under high magnification was more effective than under HA binding in selecting spermatozoa with low DNA fragmentation rate, but the small difference (0.9%) might not be clinically meaningful. Both methods were better than the conventional method of sperm selection.

  12. Carbonyl J Acid Derivatives Block Protein Priming of Hepadnaviral P Protein and DNA-Dependent DNA Synthesis Activity of Hepadnaviral Nucleocapsids

    PubMed Central

    Wang, Yong-Xiang; Wen, Yu-Mei

    2012-01-01

    Current treatments for chronic hepatitis B are effective in only a fraction of patients. All approved directly antiviral agents are nucleos(t)ide analogs (NAs) that target the DNA polymerase activity of the hepatitis B virus (HBV) P protein; resistance and cross-resistance may limit their long-term applicability. P protein is an unusual reverse transcriptase that initiates reverse transcription by protein priming, by which a Tyr residue in the unique terminal protein domain acts as an acceptor of the first DNA nucleotide. Priming requires P protein binding to the ε stem-loop on the pregenomic RNA (pgRNA) template. This interaction also mediates pgRNA encapsidation and thus provides a particularly attractive target for intervention. Exploiting in vitro priming systems available for duck HBV (DHBV) but not HBV, we demonstrate that naphthylureas of the carbonyl J acid family, in particular KM-1, potently suppress protein priming by targeting P protein and interfering with the formation of P-DHBV ε initiation complexes. Quantitative evaluation revealed a significant increase in complex stability during maturation, yet even primed complexes remained sensitive to KM-1 concentrations below 10 μM. Furthermore, KM-1 inhibited the DNA-dependent DNA polymerase activity of both DHBV and HBV nucleocapsids, including from a lamivudine-resistant variant, directly demonstrating the sensitivity of human HBV to the compound. Activity against viral replication in cells was low, likely due to low intracellular availability. KM-1 is thus not yet a drug candidate, but its distinct mechanism of action suggests that it is a highly useful lead for developing improved, therapeutically applicable derivatives. PMID:22787212

  13. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean.

    PubMed Central

    Broun, P; Somerville, C

    1997-01-01

    A cDNA encoding the oleate 12-hydroxylase from castor bean (Ricinus communis L.) has previously been shown to direct the synthesis of small amounts of ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) in seeds of transgenic tobacco plants. Expression of the cDNA under control of the Brassica napus napin promoter in transgenic Arabidopsis thaliana plants resulted in the accumulation of up to 17% of seed fatty acids as ricinoleate and two novel fatty acids that have been identified by gas chromatography-mass spectrometry as lesquerolic (14-hydroxyeicos-cis-11-enoic acid) and densipolic (12-hydroxyoctadec-cis-9,15-dienoic acid) acids. Traces of auricolic acid were also observed. These results suggest that either the castor hydroxylase can utilize oleic acid and eicosenoic acid as substrates for ricinoleic and lesquerolic acid biosynthesis, respectively, or Arabidopsis contains an elongase that accepts ricinoleic acid as a substrate. These observations are also consistent with indirect biochemical evidence that an n-3 desaturase is capable of converting ricinoleic acid to densipolic acid. Expression of the castor hydroxylase also caused enhanced accumulation of oleic acid and a corresponding decrease in the levels of polyunsaturated fatty acids. Since the steady-state level of mRNA for the oleate-12 desaturase was not affected, it appears that the presence of the hydroxylase, directly or indirectly, causes posttranscriptional inhibition of desaturation. PMID:9085577

  14. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models.

    PubMed

    Du, Ying-Chi; Chang, Fang-Rong; Wu, Tung-Ying; Hsu, Yu-Ming; El-Shazly, Mohamed; Chen, Chieh-Fu; Sung, Ping-Jyun; Lin, Yan-Yu; Lin, Yi-Hsin; Wu, Yang-Chang; Lu, Mei-Chin

    2012-06-15

    Antrodia camphorata (AC) is a native Taiwanese mushroom which is used in Asian folk medicine as a chemopreventive agent. The triterpenoid-rich fraction (FEA) was obtained from the ethanolic extract of AC and characterized by high performance liquid chromatography (HPLC). FEA caused DNA damage in leukemia HL 60 cells which was characterized by phosphorylation of H2A.X and Chk2. It also exhibited apoptotic effect which was correlated to the enhancement of PARP cleavage and to the activation of caspase 3. Five major triterpenoids, antcin K (1), antcin C (2), zhankuic acid C (3), zhankuic acid A (4), and dehydroeburicoic acid (5) were isolated from FEA. The cytotoxicity of FEA major components (1-5) was investigated showing that dehydroeburicoic acid (DeEA) was the most potent cytotoxic component. DeEA activated DNA damage and apoptosis biomarkers similar to FEA and also inhibited topoisomerase II. In HL 60 cells xenograft animal model, DeEA treatment resulted in a marked decrease of tumor weight and size without any significant decrease in mice body weights. Taken together, our results provided the first evidence that pure AC component inhibited tumor growth in vivo model backing the traditional anticancer use of AC in Asian countries.

  15. Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase.

    PubMed

    Naggert, J; Witkowski, A; Mikkelsen, J; Smith, S

    1988-01-25

    A cloned cDNA containing the entire coding sequence for the long-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase I) component as well as the 3'-noncoding region of the fatty acid synthetase has been isolated using an expression vector and domain-specific antibodies. The coding region was assigned to the thioesterase I domain by identification of sequences coding for characterized peptide fragments, amino-terminal analysis of the isolated thioesterase I domain and the presence of the serine esterase active-site sequence motif. The thioesterase I domain is 306 amino acids long with a calculated molecular mass of 33,476 daltons; its DNA is flanked at the 5'-end by a region coding for the acyl carrier protein domain and at the 3'-end by a 1,537-base pairs-long noncoding sequence with a poly(A) tail. The thioesterase I domain exhibits a low, albeit discernible, homology with the discrete medium-chain S-acyl fatty acid synthetase thioester hydrolases (thioesterase II) from rat mammary gland and duck uropygial gland, suggesting a distant but common evolutionary ancestry for these proteins.

  16. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    SciTech Connect

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fracti