Science.gov

Sample records for acid dnase activity

  1. Effect of marine pollutants on the acid DNase activity in the hemocytes and digestive gland of the mussel Mytilus galloprovincialis.

    PubMed

    Fafandel, Maja; Bihari, Nevenka; Perić, Lorena; Cenov, Arijana

    2008-03-26

    The level of the acid DNase activity in the hemocytes and digestive gland of the mussel Mytilus galloprovincialis after exposure to model marine pollutants, a detergent, gasoline and a copper salt, as well as to unknown environmental mixture at selected sampling sites, was investigated. The specific enzyme activity in unexposed mussels from mariculture area was higher in hemocytes than in digestive gland. Concentration and time effect patterns of DNase activity revealed tissue- and pollutant-specific responses to model marine pollutants. Since in some cases the pollutant effect could not be detected by measurement of acid DNase in single tissue only, digestive gland/hemocyte (Hep/Hem) ratio was introduced. The Hep/Hem ratio enabled the detection of pollutant effect at the significance level. Field investigations indicated that the digestive gland is a suitable tissue for discrimination of polluted areas from maricultured area. Additionally, the Hep/Hem ratio enabled differentiation within a group of polluted sampling sites that differ in the type of pollutants and/or environmental conditions. PMID:18276021

  2. Methylene Salicylicacidyl Hexamer (MSH) Has DNAse Activity.

    PubMed

    Tiwari, Ankit; Gade, Chandrasekhar Reddy; Dixit, Manjusha; Sharma, Nagendra K

    2015-07-01

    Salicylic acid and formaldehyde form heterogenous methyl/methylene salicylicacidyl oligomers and polymers in presence of sulfuric acid (H2SO4) and sodium nitrite (NaNO2). One of the oligomers as aurintricarboxylic acid (ATA), methelene bridged salicylic acid trimer, has been identified and explored in biochemical research, which is a potent inhibitor of many biological processes. A very few reports are also available on dimer, trimer, and tetramer of methelene bridged salicylic acids from same reaction mixture. Herein, we report the isolation and biochemical screening of partial purified low-molecular component as methylene salicylicacidyl hexamer (MSH) from the above reaction mixture. The interaction of methylene salicylicacidyl oligomer with DNA was studied by agarose and polyacrylamide gel electrophoresis, which suggest that methylene salicylicacidyl oligomer has DNAse activity. So far, no such significant reports are available on low-molecular oligomer of methelene bridged salicylic acids. In further, we also attempted to investigate the nature of nuclease activity, which clearly indicates DNA exonuclease type of activity. Further studies are needed to establish the mechanism of actions. PMID:26077682

  3. [Assessment of DNAse activity by the rivanol clot method].

    PubMed

    Generalova, A G; Generalov, I I

    1997-11-01

    A method for assessing DNAse activity in various biological substrata is offered. It is based on the capacity of rivanol to form a clot with DNA inversely proportionate to depolymeraization of DNAse under the effect of nucleases of different origin. The sensitivity of the method is more than 10 times higher than of viscosimetry and the alcohol clot formation test. In addition, the new method permits quantitative assessment of the clot, with the detection performed by any colorimetric or fluorimetric method. The method is adapted to measurement of the activities of commercial DNAse preparations, serum and immunoglobulin DNAse, and bacterial nuclease activities. PMID:9471317

  4. Inhalable DNase I microparticles engineered with biologically active excipients.

    PubMed

    Osman, Rihab; Al Jamal, Khuloud T; Kan, Pei-Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-12-01

    Highly viscous mucus poses a big challenge for the delivery of particulates carrying therapeutics to patients with cystic fibrosis. In this study, surface modifying DNase I loaded particles using different excipients to achieve better lung deposition, higher enzyme stability or better biological activity had been exploited. For the purpose, controlled release microparticles (MP) were prepared by co-spray drying DNase I with the polymer poly-lactic-co-glycolic acid (PLGA) and the biocompatible lipid surfactant 1,2-dipalmitoyl-Sn-phosphatidyl choline (DPPC) using various hydrophilic excipients. The effect of the included modifiers on the particle morphology, size, zeta potential as well as enzyme encapsulation efficiency, biological activity and release had been evaluated. Powder aerosolisation performance and particle phagocytosis by murine macrophages were also investigated. The results showed that more than 80% of enzyme activity was recovered after MP preparation and that selected surface modifiers greatly increased the enzyme encapsulation efficiency. The particle morphology was greatly modified altering in turn the powders inhalation indices where dextran, ovalbumin and chitosan hydrochloride increased considerably the respirable fraction compared to the normal hydrophilic carriers lactose and PVP. Despite of the improved aerosolisation caused by chitosan hydrochloride, yet retardation of chitosan coated particles in artificial mucus samples discouraged its application. On the other hand, dextran and polyanions enhanced DNase I effect in reducing cystic fibrosis mucus viscosity. DPPC proved good ability to reduce particles phagocytic uptake even in the presence of the selected adjuvants. The prepared MP systems were biocompatible with lung epithelial cells. To conclude, controlled release DNase I loaded PLGA-MP with high inhalation indices and enhanced mucolytic activity on CF sputum could be obtained by surface modifying the particles with PGA or dextran. PMID

  5. Nucleotidase and DNase activities in Brazilian snake venoms.

    PubMed

    Sales, Paulo Bruno Valadão; Santoro, Marcelo L

    2008-01-01

    Among the myriad of enzymes present in animal venoms, nucleotidases and nucleases are poorly investigated. Herein, we studied such enzymes in 28 crude venoms of animals found in Brazil. Higher levels of ATPase, 5'-nucleotidase, ADPase, phosphodiesterase and DNase activities were observed in snake venoms belonging to Bothrops, Crotalus and Lachesis genera than to Micrurus genus. The venom of Bothrops brazili snake showed the highest nucleotidase and DNase activities, whereas that of Micrurus frontalis snake the highest alkaline phosphatase activity. On the other hand, the venoms of the snake Philodryas olfersii and the spider Loxosceles gaucho were devoid of most nucleotidase and DNase activities. Species that exhibited similar nucleotidase activities by colorimetric assays showed different banding pattern by zymography, suggesting the occurrence of structural differences among them. Hydrolysis of nucleotides showed that 1 mol of ATP is cleaved in 1 mol of pyrophosphate and 1 mol of orthophosphate, whereas 1 mol of ADP is cleaved exclusively in 2 mol of orthophosphates. Pyrophosphate is barely hydrolyzed by snake venoms. Phosphodiesterase activity was better correlated with 5'-nucleotidase, ADPase and ATPase activities than with DNase activity, evidencing that phosphodiesterases are not the main agent of DNA hydrolysis in animal venoms. The omnipresence of nucleotidase and DNase activities in viperid venoms implies a role for them within the repertoire of enzymes involved in immobilization and death of preys. PMID:17904425

  6. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  7. Comparison of methods for determining DNase and phosphatase activities of staphylococci.

    PubMed Central

    Langlois, B E; Harmon, R J; Akers, K; Aaron, D K

    1989-01-01

    A greater percentage of DNase-positive strains was detected with DNase test agar than with DNase test agar containing 0.005% methyl green or 0.005% toluidine blue (P less than 0.01). No significant differences were obtained in the percentage of phosphatase-positive strains with the four methods compared. On the basis of ease of use, P agar containing para-nitrophenylphosphate disodium (0.495 mg/ml) would be the preferred method for determining phosphatase activity of staphylococci. PMID:2545741

  8. Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase

    SciTech Connect

    Rozenberg-Arska, M.; van Strijp, J.A.; Hoekstra, W.P.; Verhoef, J.

    1984-05-01

    Phagocytosis and killing by polymorphonuclear and mononuclear leukocytes are important host resistance factors against invading microorganisms. Evidence showing that killing is rapidly followed by degradation of bacterial components is limited. Therefore, we studied the fate of Escherichia coli DNA following phagocytosis of E. coli by polymorphonuclear and mononuclear leukocytes. (/sup 3/H)Thymidine-labeled, unencapsulated E. coli PC2166 and E. coli 048K1 were incubated in serum, washed, and added to leukocytes. Uptake and killing of the bacteria and degradation of DNA were measured. Although phagocytosis and killing by mononuclear leukocytes was less efficient than that by polymorphonuclear leukocytes, only mononuclear leukocytes were able to degrade E. coli PC2166 DNA. Within 2 h, 60% of the radioactivity added to mononuclear leukocytes was released into the supernate, of which 40% was acid soluble. DNA of E. coli 048K1 was not degraded. To further analyze the capacity of mononuclear leukocytes to degrade E. coli DNA, chromosomal and plasmid DNA was isolated from ingested bacteria and subjected to agarose gel-electrophoresis. Only chromosomal DNA was degraded after phagocytosis. Plasmid DNA of E. coli carrying a gene coding for ampicillin resistance remained intact for a 2-h period after ingestion, and was still able to transform recipient E. coli cells after this period. Although we observed no DNA degradation during phagocytosis by polymorphonuclear leukocytes, lysates of both polymorphonuclear and mononuclear leukocytes contained acid-DNase activity with a pH optimum of 4.9. However, the DNase activity of mononuclear leukocytes was 20 times higher than that of polymorphonuclear leukocytes. No difference was observed between DNase activity from polymorphonuclear and mononuclear leukocytes from a chronic granulomatous disease patient with DNase activity from control polymorphonuclear and mononuclear leukocytes.

  9. Characterisation of eye-lens DNases: long term persistence of activity in post apoptotic lens fibre cells.

    PubMed

    Arruti, C; Chaudun, E; De Maria, A; Courtois, Y; Counis, M F

    1995-01-01

    Fibre cells in the ocular lens exhibit a constitutive apoptotic process of nuclear degradation that includes chromatin breakage, generating a ladder pattern of DNA fragments. This process is intrinsic to the normal terminal differentiation program. Despite the loss of nucleus and cytoplasmic organelles, the terminal differentiated fibre cells remain in the lens during the whole life span of the individual. The lens cells thus provide a unique system in which to determine the presence and fate of endonucleases once the chromatin has been cleaved. We report here on the presence of DNase activity in nucleated and anucleated lens cells. Using a nuclease gel assay and double-stranded DNA as substrate, we found active 30 and 60 kDa DNases. The enzymatic activities were Ca(2+), Mg(2+) dependent, and active at neutral pH. The relative amount of these forms changed during development and aging of the lens fibre cells. Both forms were inhibited by Zn(2+), aurintricarboxylic acid, and G-actin. The proteins were also separated by SDS-PAGE, renatured after removing SDS and incubated in the presence of native DNA adsorbed to a membrane. Therefore it was possible to demonstrate, by means of a nick translation reaction, that the enzymes produced single strand cuts. Based on these findings we propose that these chick lens nucleases are probably related to DNase I. PMID:17180015

  10. Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor

    PubMed Central

    2014-01-01

    Background The Gram-positive bacterium Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent. Multilocus sequence typing allowed dividing S. suis serotype 2 into sequence types (STs). The three major STs of S. suis serotype 2 from North America are 1 (most virulent), 25 (intermediate virulence) and 28 (less virulent). Although the presence of DNase activity in S. suis has been previously reported, little data is available. The aim of this study was to investigate DNase activity in S. suis according to STs, to characterize the activity and gene, and to provide evidence for a potential role in virulence. Results We showed that ST1 and ST28 strains exhibited DNase activity that was absent in ST25 strains. The lack of activity in ST25 isolates was associated with a 14-bp deletion resulting in a shifted reading frame and a premature stop codon. The DNase of S. suis P1/7 (ST1) was cell-associated and active on linear DNA. A DNase-deficient mutant of S. suis P1/7 was found to be less virulent in an amoeba model. Stimulation of macrophages with the DNase mutant showed a decreased secretion of pro-inflammatory cytokines and matrix metalloproteinase-9 compared to the parental strain. Conclusions This study further expands our knowledge of S. suis DNase and its potential role in virulence. PMID:24996230

  11. Identification of a DNA-binding domain and an active-site residue of pseudorabies virus DNase.

    PubMed Central

    Ho, T Y; Wu, S L; Hsiang, C H; Chang, T J; Hsiang, C Y

    2000-01-01

    The pseudorabies virus (PRV) DNase gene has an open reading frame of 1476 nt, capable of coding a 492-residue protein. A previous study showed that PRV DNase is an alkaline exonuclease and endonuclease, exhibiting an Escherichia coli RecBCD-like catalytic function. To analyse its catalytic mechanism further, we constructed a set of clones truncated at the N-terminus or C-terminus of PRV DNase. The deleted mutants were expressed in E. coli with the use of pET expression vectors, then purified to homogeneity. Our results indicate that (1) the region spanning residues 274-492 exhibits a DNA-binding ability 7-fold that of the intact DNase; (2) the N-terminal 62 residues and the C-terminal 39 residues have important roles in 3'-exonuclease activity, and (3) residues 63-453 are responsible for 5'- and 3'-exonuclease activities. Further chemical modification of PRV DNase revealed that the inactivation of DNase by diethyl pyrocarbonate, which was reversible on treatment with hydroxylamine, seemed to be attributable solely to the modification of histidyl residues. Because the herpesviral DNases contained only one well-conserved histidine residue, site-directed mutagenesis was performed to replace His(371) with Ala. The mutant lost most of its nuclease activity; however, it still exhibited a wild-type level of DNA-binding ability. In summary, these results indicate that PRV DNase contains an independent DNA-binding domain and that His(371) is the active-site residue that has an essential role in PRV DNase activity. PMID:10677364

  12. Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis.

    PubMed

    Torriglia, Alicia; Leprêtre, Chloé; Padrón-Barthe, Laura; Chahory, Sabine; Martin, Elisabeth

    2008-12-01

    The discovery of caspase activation counts as one of the most important finds in the biochemistry of apoptosis. However, targeted disruption of caspases does not impair every type of apoptosis. Other proteases can replace caspases and several so called "caspase independent" pathways are now described. Here we review our current knowledge on one of these pathways, the LEI/L-DNase II. It is a serine protease-dependent pathway and its key event is the transformation of LEI (leukocyte elastase inhibitor, a serine protease inhibitor) into L-DNase II (an endonuclease). The molecular events leading to this change of enzymatic function as well as the cross-talk and interactions of this molecule with other apoptotic pathway, including caspases, are discussed. PMID:18761000

  13. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction

    PubMed Central

    Katkar, Gajanan D.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Swethakumar, Basavarajaiah; Sharma, Rachana D.; Paul, Manoj; Vishalakshi, Gopalapura J.; Devaraja, Sannaningaiah; Girish, Kesturu S.; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  14. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction.

    PubMed

    Katkar, Gajanan D; Sundaram, Mahalingam S; NaveenKumar, Somanathapura K; Swethakumar, Basavarajaiah; Sharma, Rachana D; Paul, Manoj; Vishalakshi, Gopalapura J; Devaraja, Sannaningaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  15. Novel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy.

    PubMed

    Gao, Lu; Huang, Kun; Jiang, Ding-Sheng; Liu, Xiaoxiong; Huang, Dan; Li, Hongliang; Zhang, Xiao-Dong; Huang, Kai

    2015-04-01

    Caspase-activated DNase (CAD) is a double-strand-specific endonuclease that is responsible for the cleavage of nucleosomal spacer regions and subsequent chromatin condensation during apoptosis. Given that several endonucleases (eg, DNase I, DNase II, and Endog) have been shown to regulate pathological cardiac hypertrophy, we questioned whether CAD, which is critical for the induction of DNA fragmentation, plays a pivotal role in pressure overload-elicited cardiac hypertrophy. A CAD-knockout mouse model was generated and subjected to aortic banding for 8 weeks. The extent of cardiac hypertrophy was evaluated by echocardiography and pathological and molecular analyses. Our results demonstrated that the disruption of CAD attenuated pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Conversely, transgenic mice with cardiac-specific overexpression of CAD showed an aggravated cardiac hypertrophic response to chronic pressure overload. Mechanistically, we discovered that the expression and activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 was significantly reduced in the CAD-knockout hearts compared with the control hearts; however, they were greatly increased in the CAD-overexpressing hearts after aortic banding. Similar results were observed in ex vivo cultured neonatal rat cardiomyocytes after treatment with angiotensin II for 48 hours. These data indicate that CAD functions as a necessary modulator of the hypertrophic response by regulating the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 signaling pathway in the heart. Our study suggests that CAD might be a novel target for the treatment of pathological cardiac hypertrophy and heart failure. PMID:25646292

  16. Treatment with rhDNase in patients with cystic fibrosis alters in-vitro CHIT-1 activity of isolated leucocytes.

    PubMed

    Weckmann, M; Schultheiss, C; Hollaender, A; Bobis, I; Rupp, J; Kopp, M V

    2016-09-01

    Recent data suggest a possible relationship between cystic fibrosis (CF) pharmacotherapy, Aspergillus fumigatus colonization (AC) and/or allergic bronchopulmonary aspergillosis (ABPA). The aim of this study was to determine if anti-fungal defence mechanisms are influenced by CF pharmacotherapy, i.e. if (1) neutrophils form CF and non-CF donors differ in their ability to produce chitotriosidase (CHIT-1); (2) if incubation of isolated neutrophils with azithromycin, salbutamol, prednisolone or rhDNase might influence the CHIT-1 activity; and (3) if NETosis and neutrophil killing efficiency is influenced by rhDNase. Neutrophils were isolated from the blood of CF patients (n = 19; mean age 26·8 years or healthy, non-CF donors (n = 20; 38·7 years) and stimulated with phorbol-12-myristate-13-acetate (PMA), azithromycin, salbutamol, prednisolone or rhDNase. CHIT-1 enzyme activity was measured with a fluorescent substrate. NETosis was induced by PMA and neutrophil killing efficiency was assessed by a hyphae recovery assay. Neutrophil CHIT-1 activity was comparable in the presence or absence of PMA stimulation in both CF and non-CF donors. PMA stimulation and preincubation with rhDNase increased CHIT-1 activity in culture supernatants from non-CF and CF donors. However, this increase was significant in non-CF donors but not in CF patients (P < 0·05). RhDNase reduced the number of NETs in PMA-stimulated neutrophils and decreased the killing efficiency of leucocytes in our in-vitro model. Azithromycin, salbutamol or prednisolone had no effect on CHIT-1 activity. Stimulation of isolated leucocytes with PMA and treatment with rhDNase interfered with anti-fungal defence mechanisms. However, the impact of our findings for treatment in CF patients needs to be proved in a clinical cohort. PMID:27324468

  17. Fungal mitochondrial DNases: Effectors with the potential to activate plant defenses in nonhost resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli (Fsph) and pea endocarp tissue, have described the signaling role of a fungal DNase1-like protein. This enzyme termed, FsphDNase, induced complete resistance in pea tissue against pea pathogens, no ...

  18. Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca(2+)-independent, Mg(2+)-dependent DNase I activity.

    PubMed

    Kwon, Young Chul; Kim, Sinil; Lee, Yong Seok; Lee, Je Chul; Cho, Myung-Je; Lee, Woo-Kon; Kang, Hyung-Lyun; Song, Jae-Young; Baik, Seung Chul; Ro, Hyeon Su

    2016-05-01

    HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentration-dependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0-8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells. PMID:27095458

  19. Domain organization of DNase from Thioalkalivibrio sp. provides insights into retention of activity in high salt environments

    PubMed Central

    Alzbutas, Gediminas; Kaniusaite, Milda; Grybauskas, Algirdas; Lagunavicius, Arunas

    2015-01-01

    Our study indicates that DNA binding domains are common in many halophilic or halotolerant bacterial DNases and they are potential activators of enzymatic activity at high ionic strength. Usually, proteins adapt to high ionic strength by increasing the number of negatively charged residues on the surface. However, in DNases such adaptation would hinder the binding to negatively charged DNA, a step critical for catalysis. In our study we demonstrate how evolution has solved this dilemma by engaging the DNA binding domain. We propose a mechanism, which enables the enzyme activity at salt concentrations as high as 4 M of sodium chloride, based on collected experimental data and domain structure analysis of a secreted bacterial DNase from the extremely halotolerant bacterium Thioalkalivibrio sp. K90mix. The enzyme harbors two domains: an N-terminal domain, that exhibits DNase activity, and a C-terminal domain, comprising a duplicate DNA binding helix-hairpin-helix motif. Here we present experimental data demonstrating that the C-terminal domain is responsible for the enzyme's resistance to high ionic strength. PMID:26191053

  20. Caspase-Activated DNase is Required to Maintain Tolerance to Lupus Nuclear AutoAntigens

    PubMed Central

    Jog, Neelakshi R.; Frisoni, Lorenza; Shi, Qin; Monestier, Marc; Hernandez, Sairy; Craft, Joe; Luning Prak, Eline T.; Caricchio, Roberto

    2011-01-01

    Objective Caspase Activated DNase (CAD) is an endonuclease that is activated by active caspase 3 during apoptosis and is responsible for degradation of chromatin into nucleosomal units. These nucleosomal units are then included in apoptotic bodies. The presence of apoptotic bodies is considered important for the generation of auto-antigens in autoimmune diseases such as lupus, which are characterized by the presence of anti-nuclear antibodies. Methods The present study was carried out to determine the role of CAD in Sle1, Sle123 and 3H9 spontaneous models of lupus, where autoimmunity is genetically pre-determined. We also determined the ability of lupus auto-antibodies to bind to CAD deficient or sufficient apoptotic cells. Results The deficiency of CAD resulted in higher anti-dsDNA antibody titers in lupus-prone mice. Surprisingly, the absence of CAD only exacerbated genetically pre-determined autoimmune responses. To further determine whether nuclear modifications are required to maintain tolerance to nuclear auto-antigens, we used the 3H9 mouse, an anti-DNA heavy chain knock-in. In this model, the autoreactive B cells are tolerized by anergy. In line with the Sle1 and Sle123 CAD mutant mice, CAD deficient 3H9 mice spontaneously generated anti-DNA antibodies. We finally show that auto-antibodies with specificities towards histone/DNA complexes bind more to CAD deficient apoptotic cells compared to CAD sufficient apoptotic cells. Conclusions We propose that in mice genetically predisposed to lupus, nuclear apoptotic modifications are required to maintain tolerance. In the absence of these modifications, apoptotic chromatin is abnormally exposed, facilitating the autoimmune response. PMID:22127758

  1. Safety and Efficacy of Intrapleural Tissue Plasminogen Activator and DNase during Extended Use in Complicated Pleural Space Infections

    PubMed Central

    McClune, Jason R.; Wilshire, Candice L.; Gorden, Jed A.; Louie, Brian E.; Farviar, Alexander S.; Stefanski, Michael J.; Vallieres, Eric; Aye, Ralph W.

    2016-01-01

    The use of intrapleural therapy with tissue plasminogen activator and DNase improves outcomes in patients with complicated pleural space infections. However, little data exists for the use of combination intrapleural therapy after the initial dosing period of six doses. We sought to describe the safety profile and outcomes of intrapleural therapy beyond this standard dosing. A retrospective review of patients receiving intrapleural therapy with tissue plasminogen activator and DNase was performed at two institutions. We identified 101 patients from January 2013 to August 2015 receiving intrapleural therapy for complicated pleural space infection. The extended use of intrapleural tissue plasminogen activator and DNase therapy beyond six doses was utilized in 20% (20/101) of patients. The mean number of doses in those undergoing extended dosing was 9.8 (range of 7–16). Within the population studied there appears to be no statistically significant increased risk of complications, need for surgical referral, or outcome differences when comparing those receiving standard or extended dosing intrapleural therapy. Future prospective study of intrapleural therapy as an alternative option for patients who fail initial pleural drainage and are unable to tolerate/accept a surgical intervention appears a potential area of study. PMID:27445574

  2. Safety and Efficacy of Intrapleural Tissue Plasminogen Activator and DNase during Extended Use in Complicated Pleural Space Infections.

    PubMed

    McClune, Jason R; Wilshire, Candice L; Gorden, Jed A; Louie, Brian E; Farviar, Alexander S; Stefanski, Michael J; Vallieres, Eric; Aye, Ralph W; Gilbert, Christopher R

    2016-01-01

    The use of intrapleural therapy with tissue plasminogen activator and DNase improves outcomes in patients with complicated pleural space infections. However, little data exists for the use of combination intrapleural therapy after the initial dosing period of six doses. We sought to describe the safety profile and outcomes of intrapleural therapy beyond this standard dosing. A retrospective review of patients receiving intrapleural therapy with tissue plasminogen activator and DNase was performed at two institutions. We identified 101 patients from January 2013 to August 2015 receiving intrapleural therapy for complicated pleural space infection. The extended use of intrapleural tissue plasminogen activator and DNase therapy beyond six doses was utilized in 20% (20/101) of patients. The mean number of doses in those undergoing extended dosing was 9.8 (range of 7-16). Within the population studied there appears to be no statistically significant increased risk of complications, need for surgical referral, or outcome differences when comparing those receiving standard or extended dosing intrapleural therapy. Future prospective study of intrapleural therapy as an alternative option for patients who fail initial pleural drainage and are unable to tolerate/accept a surgical intervention appears a potential area of study. PMID:27445574

  3. A rapid and sensitive method for kinetic study and activity assay of DNase I in vitro based on a GO-quenched hairpin probe.

    PubMed

    Xu, Wei; Xie, Zhenhua; Tong, Chunyi; Peng, Lan; Xiao, Changhui; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-05-01

    As a waste-management endonuclease, DNase I has been suggested to be one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis. We report here an alternative fluorescence method for DNase I assay with high accuracy and sensitivity by applying a DNA/GO (graphene oxide) probe. The method with a detection limit of 1 U mL(-1) was then applied to investigate the effects of external factors including antibiotics and heavy metal ions on DNase I. The results demonstrated that gentamicin sulfate was a strong inhibitor with an IC50 value of 0.57 ± 0.12 mM. The investigated heavy metal ions showed an inhibitory effect on DNase I activity in a concentration dependent manner with IC50 values of 0.04 μg/mL (Hg(2+)), 0.10 μg/mL (Pb(2+)), 1.35 μg/mL (Cd(2+)), 1.20 μg/mL (As(2+)), and 1.80 μg/mL (Cu(2+)). Finally, the new method was applied to detect DNase levels in complicated tumor tissue and cell samples and the results showed that DNase levels increased in tumor tissues compared with that of adjacent tissue. From the above results, we conclude that the method can be widely used for high - throughput assay of DNase I in biological samples as well as drug screening in vitro. Graphical Abstract The schematic of real-time monitoring of DNase I using GO - quenched hairpin probe as the substrate. The process of nucleotide digestion catalyzed by DNase I produces short fragments of hairpin probe and accordingly causes a significant increase in fluorescence. At first, GO can absorb the hairpin probes and quenched their fluorescence. When there is DNase I, the DNase can cleave the double strands of DNA. Fluorescence is restored due to the significantly weaker binding ability of small DNA fragments to GO compared with long DNA fragments. So, we can detect the increase in fluorescence to study the activity of DNase. PMID:27038057

  4. Mutational analysis of human DNase I at the DNA binding interface: implications for DNA recognition, catalysis, and metal ion dependence.

    PubMed

    Pan, C Q; Ulmer, J S; Herzka, A; Lazarus, R A

    1998-03-01

    Human deoxyribonuclease I (DNase I), an enzyme used to treat cystic fibrosis patients, has been systematically analyzed by site-directed mutagenesis of residues at the DNA binding interface. Crystal structures of bovine DNase I complexed with two different oligonucleotides have implicated the participation of over 20 amino acids in catalysis or DNA recognition. These residues have been classified into four groups based on the characterization of over 80 human DNase I variants. Mutations at any of the four catalytic amino acids His 134, His 252, Glu 78, and Asp 212 drastically reduced the hydrolytic activity of DNase I. Replacing the three putative divalent metal ion-coordinating residues Glu 39, Asp 168, or Asp 251 led to inactive variants. Amino acids Gln 9, Arg 41, Tyr 76, Arg 111, Asn 170, Tyr 175, and Tyr 211 were also critical for activity, presumably because of their close proximity to the active site, while more peripheral DNA interactions stemming from 13 other positions were of minimal significance. The relative importance of these 27 positions is consistent with evolutionary relationships among DNase I across different species, DNase I-like proteins, and bacterial sphingomyelinases, suggesting a fingerprint for a family of DNase I-like proteins. Furthermore, we found no evidence for a second active site that had been previously implicated in Mn2+-dependent DNA degradation. Finally, we correlated our mutational analysis of human DNase I to that of bovine DNase I with respect to their specific activity and dependence on divalent metal ions. PMID:9541395

  5. Characterization of a DNA binding activity in DNAse I hypersensitive site 4 of the human globin locus control region.

    PubMed Central

    Walters, M; Kim, C; Gelinas, R

    1991-01-01

    A portion of the beta-globin Locus Control Region (LCR), which included DNAse I hypersensitive site 4 (HS4), was analyzed for its interactions with nuclear extracts and its contribution to LCR activity in a functional assay. In gel retardation assays, a short fragment from HS4 formed complexes with nuclear extracts from both erythroid and nonerythroid cells, and a core protected sequence 5'GACTGGC3' was revealed by DNAse I protection and methylation interference studies. This sequence resembles the binding sites of CCAAT-family members. Purified CP-2 but not CP-1 was shown to bind this HS4 sequence in a gel shift reaction, suggesting that the HS4 binding activity shares some sequence specificity with the CCAAT-factor family. Utilizing a transient expression assay in murine erythroleukemia cells, steady-state RNA levels were measured from pairs of LCR constructs linked to distinguishable beta-globin reporter genes. A short DNA fragment from HS4 which included the binding site for this novel binding activity accounted for most of the contribution to high level expression made by the entire HS4 region. Images PMID:1923823

  6. Synthesis and antiproliferative activity of benzophenone tagged pyridine analogues towards activation of caspase activated DNase mediated nuclear fragmentation in Dalton's lymphoma.

    PubMed

    Al-Ghorbani, Mohammed; Thirusangu, Prabhu; Gurupadaswamy, H D; Girish, V; Shamanth Neralagundi, H G; Prabhakar, B T; Khanum, Shaukath Ara

    2016-04-01

    A series of benzophenones possessing pyridine nucleus 8a-l were synthesized by multistep reaction sequence and evaluated for antiproliferative activity against DLA cells by in vitro and in vivo studies. The results suggested that, compounds 8b with fluoro group and 8e with chloro substituent at the benzoyl ring of benzophenone scaffold as well as pyridine ring with hydroxy group exhibited significant activity. Further investigation in mouse model suggests that compounds 8b and 8e have the potency to activate caspase activated DNase (endonuclease) which is responsible for DNA fragmentation, a primary hallmark of apoptosis and thereby inhibits the Dalton's lymphoma ascites tumour growth. PMID:26874345

  7. Functional Analysis of a Type-I Ribosome Inactivating Protein Balsamin from Momordica balsamina with Anti-Microbial and DNase Activity.

    PubMed

    Ajji, Parminder Kaur; Walder, Ken; Puri, Munish

    2016-09-01

    Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity was conducted using purified balsamin. DNase-like activity of balsamin towards plasmid DNA was pH, incubation time and temperature dependent. Moreover, the presence of Mg(2+) (10-50 mM) influenced the DNA cleavage activity. Balsamin also demonstrated reducing power and a capacity to scavenge free radicals in a dose dependent manner. Furthermore, the protein exhibited antibacterial activity against Staphylococcus aureus, Salmonella enterica, Staphylococcus epidermidis and Escherichia coli, which suggests potential utility of balsamin as a nutraceutical. PMID:27319013

  8. Anti-DNase B

    MedlinePlus

    ... antibodies to a substance produced by Group A Streptococcus. This is the bacteria that causes strep throat. ... DNase B levels indicate exposure to group A Streptococcus . Risks Veins and arteries vary in size from ...

  9. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed Central

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-01-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7772036

  10. DNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa.

    PubMed Central

    Baum, J A; Giles, N H

    1986-01-01

    DNase I hypersensitive regions were mapped within the 17.3-kilobase qa (quinic acid) gene cluster of Neurospora crassa. The 5'-flanking regions of the five qa structural genes and the two qa regulatory genes each contain DNase I hypersensitive sites under noninducing conditions and generally exhibit increases in DNase I cleavage upon induction of transcription with quinic acid. The two large intergenic regions of the qa gene cluster appear to be similarly organized with respect to the positions of constitutive and inducible DNase I hypersensitive sites. Inducible hypersensitive sites on the 5' side of one qa gene, qa-x, appear to be differentially regulated. Employing these and previously published data, we have identified a conserved sequence element that may mediate the activator function of the qa-1F regulatory gene. Variants of the 16-base-pair consensus sequence are consistently found within DNase I-protected regions adjacent to inducible DNase I hypersensitive sites within the gene cluster. Images PMID:2944110

  11. Analysis of DNase 1 sensitivity and methylation of active and inactive X chromosomes of kangaroos (Macropus robustus) by in situ nick translation.

    PubMed

    Loebel, D A; Johnston, P G

    1993-01-01

    The overall nuclease sensitivity and methylation of active and inactive X chromosomes of kangaroos were examined by in situ nick translation. Cultured fibroblasts of subspecies wallaroo-euro (Macropus robustus robustus; Macropus robustus erubescens) hybrids were used, enabling the paternally and maternally derived X chromosomes to be distinguished. No difference was found between the active and inactive X chromosomes with DNase I or MspI digestion. When chromosomes were digested with the methylation sensitive restriction enzymes HpaII and HhaI, the inactive X chromosome was labelled to a greater extent. These results indicate no overall difference in chromatin condensation between the active and inactive X chromosomes and greater overall methylation of the active X chromosome. This relative undermethylation of the inactive X chromosome may be important in X chromosome inactivation, but its function, if any, remains to be determined. PMID:8381740

  12. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    PubMed Central

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. Conclusion To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively. PMID:24920373

  13. How Cations Can Assist DNase I in DNA Binding and Hydrolysis

    PubMed Central

    Guéroult, Marc; Picot, Daniel; Abi-Ghanem, Joséphine; Hartmann, Brigitte; Baaden, Marc

    2010-01-01

    DNase I requires Ca2+ and Mg2+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca2+ while the other two sites coordinate Mg2+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca2+ stabilizes the functional DNase I structure. The presence of Mg2+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions. PMID:21124947

  14. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form

    PubMed Central

    Thiyagarajan, Dhivya; Rekvig, Ole Petter; Seredkina, Natalya

    2015-01-01

    I gene activation. Nuclear translocated DNaseI is shown to be enzymatically inactive, which may point at a new, yet unknown function of renal DNaseI. PMID:26065428

  15. L-DNase II, a Molecule That Links Proteases and Endonucleases in Apoptosis, Derives from the Ubiquitous Serpin Leukocyte Elastase Inhibitor

    PubMed Central

    Torriglia, Alicia; Perani, Paolo; Brossas, Jean Yves; Chaudun, Elisabeth; Treton, Jacques; Courtois, Yves; Counis, Marie-France

    1998-01-01

    The most widely recognized biochemical change associated with the majority of apoptotic systems is the degradation of genomic DNA. Among the enzymes that may participate in this cleavage, the acidic cation-independent DNase II is a likely candidate since it is activated in many apoptotic cells. To better understand its role, we purified and sequenced a DNase II extracted from porcine spleen. Protein sequencing of random peptides demonstrated that this enzyme is derived from a ubiquitous serpin, the leukocyte elastase inhibitor (LEI), by an acidic-dependent posttranslational modification or by digestion with elastase. We call this novel enzyme L-DNase II. In vitro experiments with purified recombinant LEI show that the native form has no effect on purified nuclei whereas its posttranslationally activated form induces pycnosis and DNA degradation. Antibodies directed against L-DNase II showed, in different cell lines, an increased expression and a nuclear translocation of this enzyme during apoptosis. Since the appearance of the endonuclease activity results in a loss of the anti-protease properties of LEI, the transformation from LEI to L-DNase II may act as a switch of protease and nuclease pathways, each of which is activated during apoptosis. PMID:9584202

  16. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase

    PubMed Central

    Nijland, Reindert; Hall, Michael J.; Burgess, J. Grant

    2010-01-01

    Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. While studying marine biofilms, we observed that supernatant produced by a marine isolate of Bacillus licheniformis was capable of dispersing bacterial biofilms. We investigated the source of this activity and identified the active compound as an extracellular DNase (NucB). We have shown that this enzyme rapidly breaks up the biofilms of both Gram-positive and Gram-negative bacteria. We demonstrate that bacteria can use secreted nucleases as an elegant strategy to disperse established biofilms and to prevent de novo formation of biofilms of competitors. DNA therefore plays an important dynamic role as a reversible structural adhesin within the biofilm. PMID:21179489

  17. DNase I aggravates islet β-cell apoptosis in type 2 diabetes

    PubMed Central

    ZHU, BIN; ZHANG, LEI; ZHANG, YUE-YING; WANG, LEI; LI, XIN-GANG; LIU, TENG; FU, YU-KE; ZHENG, YAN-FEI; LI, PING; ZHAO, ZHI-GANG

    2016-01-01

    Deoxyribonuclease I (DNase I) is an endonuclease responsible for the destruction of chromatin during apoptosis. However, its role in diabetes remains unclear. The aim of the current study was to investigate the role of DNase I combined with high glucose levels in β-cell apoptosis. Human samples were collected and the DNase I activity was examined. High glucose-cultured INS-1 cells were transfected with DNase I small interfering RNA (siRNA) and the cell apoptosis was examined by western blotting and flow cytometry. Cell viability was analyzed by the Cell Counting Kit-8 assay. Cell apoptosis resulting from 50 mU/μl DNase I was also observed by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick-end labeling stain and western blotting. Compared with healthy controls, the serum DNase I activity of patients with diabetes was significantly increased (P<0.05). In addition, DNase I expression was observed to be significantly increased in human pancreatic tissues. The addition of high glucose upregulated the cell apoptotic rate, whereas DNase I knockdown significantly reduced apoptosis in cells treated with high glucose. In addition, the western blotting results indicated that caspase-3 was increased subsequent to treatment of cells with 30 mM high glucose, however, this increase can be reversed by transfection with DNase I siRNA (P<0.05). Compared with cells cultured in normal conditions and high glucose, 50 mU/μl DNase I was able to significantly increase the cell apoptotic rate and level of caspase-3. DNase I activity was observed to be increased in type 2 diabetes, and high glucose combined with increased DNase I is suggested to aggravate β-cell apoptosis. PMID:27082840

  18. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci

    PubMed Central

    Kaplan, Jeffrey B.; LoVetri, Karen; Cardona, Silvia T.; Madhyastha, Srinivasa; Sadovskaya, Irina; Jabbouri, Saïd; Izano, Era A.

    2011-01-01

    Extracellular DNA is an adhesive component of staphylococcal biofilms. The aim of this study was to evaluate the antibiofilm activity of recombinant human DNase I (rhDNase) against Staphylococcus aureus and Staphylococcus epidermidis. Using a 96-well microtiter plate crystal violet binding assay, we found that biofilm formation by S. aureus was efficiently inhibited by rhDNase at 1–4 μg l−1, and pre-formed S. aureus biofilms were efficiently detached in 2 min by rhDNase at 1 mg l−1. Pre-treatment of S. aureus biofilms for 10 min with 10 mg l−1 rhDNase increased their sensitivity to biocide killing by 4–5 log units. rhDNase at 10 mg l−1 significantly inhibited biofilm formation by S. epidermidis in medium supplemented with subminimal inhibitory concentrations of antibiotics. We also also found rhDNase significantly increased the survival of S. aureus-infected C. elegans nematodes treated with tobramycin compared to nematodes treated with tobramycin alone. We concluded that rhDNase exhibits potent antibiofilm and antimicrobial-sensitizing activities against S. aureus and S. epidermidis at clinically achievable concentrations. rhDNase, either alone or in combination with antimicrobial agents, may have applications in treating or preventing staphylococcal biofilm-related infections. PMID:22167157

  19. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.

    PubMed

    Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J

    2013-05-15

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities. PMID:23431033

  20. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix

    PubMed Central

    Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas

    2016-01-01

    In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122

  1. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix.

    PubMed

    Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas

    2016-01-01

    In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently "donated" the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature's evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122

  2. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily.

    PubMed

    Parsiegla, Goetz; Noguere, Christophe; Santell, Lydia; Lazarus, Robert A; Bourne, Yves

    2012-12-21

    Recombinant human DNase I (Pulmozyme, dornase alfa) is used for the treatment of cystic fibrosis where it improves lung function and reduces the number of exacerbations. The physiological mechanism of action is thought to involve the reduction of the viscoelasticity of cystic fibrosis sputum by hydrolyzing high concentrations of DNA into low-molecular mass fragments. Here we describe the 1.95 Å resolution crystal structure of recombinant human DNase I (rhDNase I) in complex with magnesium and phosphate ions, both bound in the active site. Complementary mutagenesis data of rhDNase I coupled to a comprehensive structural analysis of the DNase I-like superfamily argue for the key catalytic role of Asn7, which is invariant among mammalian DNase I enzymes and members of this superfamily, through stabilization of the magnesium ion coordination sphere. Overall, our combined structural and mutagenesis data suggest the occurrence of a magnesium-assisted pentavalent phosphate transition state in human DNase I during catalysis, where Asp168 may play a key role as a general catalytic base. PMID:23215638

  3. Recombinant pseudorabies virus DNase exhibits a RecBCD-like catalytic function.

    PubMed Central

    Hsiang, C Y; Ho, T Y; Hsiang, C H; Chang, T J

    1998-01-01

    The pseudorabies virus (PRV) DNase gene has previously been mapped within the PRV genome. To characterize further the enzymic properties of PRV DNase, this enzyme was expressed in Escherichia coli with the use of a pET expression vector. The protein was purified to homogeneity and assayed for nuclease activity in vitro. Recombinant PRV DNase exhibited an alkaline pH preference and an absolute requirement for Mg2+ ions that could not be replaced by Ca2+ and Na+ ions. Further studies showed that PRV DNase exhibited endonuclease, 5'-exonuclease and 3'-exonuclease activities in both single-stranded and double-stranded DNA. This activity occurred randomly and no significant base preference was demonstrated. The multiple biochemical activities of PRV DNase are similar to the activities of Neurospora crassa endo-exonuclease and E. coli RecBCD, two additional enzymes that are involved in recombination. Taken together, the similarity of action between N. crassa endo-exonuclease, E. coli RecBCD, and PRV DNase suggests that PRV DNase might have a role in the process of recombination that occurs during PRV infection. PMID:9461490

  4. Cloning and Characterization of a Novel Drosophila Stress Induced DNase

    PubMed Central

    Seong, Chang-Soo; Varela-Ramirez, Armando; Tang, Xiaolei; Anchondo, Brenda; Magallanes, Diego; Aguilera, Renato J.

    2014-01-01

    Drosophila melanogaster flies mount an impressive immune response to a variety of pathogens with an efficient system comprised of both humoral and cellular responses. The fat body is the main producer of the anti-microbial peptides (AMPs) with anti-pathogen activity. During bacterial infection, an array of secreted peptidases, proteases and other enzymes are involved in the dissolution of debris generated by pathogen clearance. Although pathogen destruction should result in the release a large amount of nucleic acids, the mechanisms for its removal are still not known. In this report, we present the characterization of a nuclease gene that is induced not only by bacterial infection but also by oxidative stress. Expression of the identified protein has revealed that it encodes a potent nuclease that has been named Stress Induced DNase (SID). SID belongs to a family of evolutionarily conserved cation-dependent nucleases that degrade both single and double-stranded nucleic acids. Down-regulation of sid expression via RNA interference leads to significant reduction of fly viability after bacterial infection and oxidative stress. Our results indicate that SID protects flies from the toxic effects of excess DNA/RNA released by pathogen destruction and from oxidative damage. PMID:25083901

  5. DNase-activatable fluorescence probes visualizing the degradation of exogenous DNA in living cells

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Shi, Bihua; Zhang, Pengfei; Hu, Dehong; Zheng, Mingbin; Zheng, Cuifang; Gao, Duyang; Cai, Lintao

    2012-03-01

    This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the occurrence of a red fluorescence signal due to fluorescence resonance energy transfer (FRET). DNase in biological samples was detected using DFProbes and the fluorescence imaging in living cells was performed using DFprobe-modified Au nanoparticles. The results show that DFProbes have good responses to DNase, and can clearly visualize the degradation of exogenous DNA in cells in real time. The well-designed probes might be useful in tracing the dynamic changes of exogenous DNA and nanocarriers in vitro and in vivo.This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the

  6. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    PubMed

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections. PMID:25913364

  7. Prevention of Biofilm Formation and Removal of Existing Biofilms by Extracellular DNases of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Hanman, Kate; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments. PMID:25803828

  8. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites. PMID:26772197

  9. Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines

    PubMed Central

    Noges, Laura E.; White, Janice; Cambier, John C.; Kappler, John W.

    2016-01-01

    Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum’s adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host’s immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum’s adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing. PMID:27357147

  10. In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis.

    PubMed Central

    Shah, P. L.; Scott, S. F.; Knight, R. A.; Marriott, C.; Ranasinha, C.; Hodson, M. E.

    1996-01-01

    BACKGROUND: Viscoelastic secretions in cystic fibrosis cause impaired mucus clearance and persistence of bacteria within the lung. The abnormal rheology is partly due to the presence of high molecular weight deoxyribonucleic acid (DNA). Recombinant human DNase I (rhDNase) has been shown to depolymerise DNA and thereby reduce the in vitro viscoelasticity of sputum in patients with cystic fibrosis. A phase II double blind placebo controlled study showed that rhDNase improved pulmonary function in patients with cystic fibrosis. The object of the present study was to evaluate the in vivo effects of rhDNase on sputum rheology and to determine whether these were correlated with changes in pulmonary function. METHODS: Patients were randomised to receive either placebo or rhDNase 2.5 mg twice daily for 10 days. Sputum samples were collected in sterile containers during screening and during treatment with the study drug. Pulmonary function and rheological analysis were the primary outcomes evaluated. Other parameters assessed were quantitative sputum bacteriology, sputum DNA concentration, and change in molecular mass of DNA polymers. RESULTS: The viscoelasticity of the sputum in untreated patients with cystic fibrosis was high and treatment with rhDNase reduced all the rheological parameters measured: dynamic storage modulus (a measure of elasticity), dynamic loss modulus (a measure of viscosity), and log complex modulus (a measure of mucus rigidity). The calculated cough clearance index was also improved following treatment with rhDNase. These rheological parameters showed a correlation with forced expiratory volume in one second (FEV1) which was improved by a mean (SE) of 13.3 (5.6)% on day 10 of treatment with rhDNase compared with a change of 0.2 (3.1)% in the placebo group. There was no change in bacterial colony counts or sputum DNA concentrations following treatment with rhDNase, but a small decrease in high molecular weight DNA was observed. CONCLUSIONS: Patients

  11. DNase I induced DNA degradation is inhibited by neomycin.

    PubMed

    Woegerbauer, M; Burgmann, H; Davies, J; Graninger, W

    2000-03-01

    Preparations of antimicrobials from biotechnological sources containing nucleic acids may serve as vector for the dissemination of resistance genes. An essential prerequisite for the acquisition of a new resistance phenotype in a transformational scenario is the availability of physically intact DNA molecules capable of transforming competent microorganisms. DNA is thought to be an easy target for catabolic processes when present in the natural habitat of bacteria (e.g. gastrointestinal tract, soil) due to the overall presence of nucleolytic enzymes. Aminoglycoside antibiotics are known to display a strong affinity to nucleic acids rendering these compounds to be primary candidates for exerting DNA protective functions in the gastrointestinal tract when applied orally during antibiotic chemotherapy. Using a DNase I protection assay it could be demonstrated that neomycin B at a concentration of 2 mM completely inhibited degradation of plasmid DNA in vitro. No inhibition of degradation was observed with streptomycin and kanamycin and the non-aminoglycoside antibiotics oxytetracycline and ampicillin under identical assay conditions. Thus, neomycin preparations may be able to promote structural integrity of contaminating DNA-fragments in DNase-rich environments. PMID:10819299

  12. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.

    PubMed

    Jin, Wenfei; Tang, Qingsong; Wan, Mimi; Cui, Kairong; Zhang, Yi; Ren, Gang; Ni, Bing; Sklar, Jeffrey; Przytycka, Teresa M; Childs, Richard; Levens, David; Zhao, Keji

    2015-12-01

    DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells. Conventional DNase sequencing (DNase-seq) for genome-wide DHSs profiling is limited by the requirement of millions of cells. Here we report an ultrasensitive strategy, called single-cell DNase sequencing (scDNase-seq) for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single-cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and enhancers associated with multiple active histone modifications display constitutive DHS whereas chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply scDNase-seq to pools of tumour cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded tissue slides from patients with thyroid cancer, and detect thousands of tumour-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one mutation (chr18: 52417839G>C) in the tumour cells of a patient with follicular thyroid carcinoma, which affects the binding of the tumour suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, scDNase-seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis both for basic and for translational research, and may provide critical information for personalized medicine. PMID:26605532

  13. Expression of the DNase encoded by the BGLF5 gene of Epstein-Barr virus in nasopharyngeal carcinoma epithelial cells.

    PubMed

    Sbih-Lammali, F; Berger, F; Busson, P; Ooka, T

    1996-08-01

    In contrast with most Epstein-Barr virus (EBV)-infected healthy carriers, nasopharyngeal carcinoma patients frequently have increased serum levels of antibodies directed against EBV-DNase. These antibodies are potentially interesting serological markers for the diagnosis and the follow-up of nasopharyngeal carcinoma (NPC). In this context, it is important to determine whether malignant EBV-infected cells are the source of significant amounts of EBV-DNase contributing to antigenic stimulation. Therefore EBV-DNase expression has been investigated in several NPC specimens. A significant expression of this viral enzyme was demonstrated in both fresh biopsies and transplanted tumor lines. The DNase isolated from tumor has a molecular weight varying between 52 and 60 kDa and its activity eluted from a single-stranded DNA affinity column was specifically inhibited by both NPC sera and the rabbit polyclonal antibody against EBV-DNase. The enzyme activity was functional in the presence of 300 mM KCl, with which cellular DNases are completely inhibited. The DNase was mainly localized in epithelial tumor cells of both NPC biopsies and nude mice-derived NPC cells. PMID:8806488

  14. Actin-resistant DNAse I Expression From Oncolytic Adenovirus Enadenotucirev Enhances Its Intratumoral Spread and Reduces Tumor Growth.

    PubMed

    Tedcastle, Alison; Illingworth, Sam; Brown, Alice; Seymour, Leonard W; Fisher, Kerry D

    2016-04-01

    Spread of oncolytic viruses through tumor tissue is essential to effective virotherapy. Interstitial matrix is thought to be a significant barrier to virus particle convection between "islands" of tumor cells. One way to address this is to encode matrix-degrading enzymes within oncolytic viruses, for secretion from infected cells. To test the hypothesis that extracellular DNA provides an important barrier, we assessed the ability of DNase to promote virus spread. Nonreplicating Ad5 vectors expressing actin-resistant DNase (aDNAse I), proteinase K (PK), hyaluronidase (rhPH20), and chondroitinase ABC (CABC) were injected into established DLD human colorectal adenocarcinoma xenografts, transcomplemented with a replicating Ad5 virus. Each enzyme improved oncolysis by the replicating adenovirus, with no evidence of tumor cells being shed into the bloodstream. aDNAse I and rhPH20 hyaluronidase were then cloned into conditionally-replicating group B adenovirus, Enadenotucirev (EnAd). EnAd encoding each enzyme showed significantly better antitumor efficacy than the parental virus, with the aDNAse I-expressing virus showing improved spread. Both DNase and hyaluronidase activity was still measurable 32 days postinfection. This is the first time that extracellular DNA has been implicated as a barrier for interstitial virus spread, and suggests that oncolytic viruses expressing aDNAse I may be promising candidates for clinical translation. PMID:26708004

  15. DNase I and II present in avian oocytes: a possible involvement in sperm degradation at polyspermic fertilisation.

    PubMed

    Stepińska, Urszula; Olszańska, Bozenna

    2003-02-01

    During polyspermic fertilisation in birds numerous spermatozoa enter the eggs, in contrast to the situation in mammals where fertilisation is monospermic. However, in birds only one of the spermatozoa which have entered an egg participates in zygote nucleus formation, while the supernumerary spermatozoa degenerate at early embryogenesis. Our previous work has demonstrated the presence in preovulatory quail oocytes of DNase I and II activities able to digest naked lambdaDNA/HindIII substrate in vitro. In the present studies, the activities of both DNases in quail oocytes at different stages of oogenesis and in ovulated mouse oocytes were assayed in vitro using the same substrate. Degradation of quail spermatozoa by quail oocyte extracts was also checked. Digestion of the DNA substrate was evaluated by electrophoresis on agarose gels. The activities of DNase I and II in quail oocytes increased during oogenesis and were the highest in mature oocytes. The activities were present not only in germinal discs but also in a thin layer of cytoplasm adhering to the perivitelline layer surrounding the yolk. At all stages of oogenesis the activity of DNase II was much higher than that of DNase I. DNA contained in spermatozoa was also degraded by the quail oocyte extracts under conditions optimal for both DNases. In contrast to what is observed in quail oocytes, no DNase activities were detected in ovulated mouse eggs; this is logical as they would be useless or even harmful in monospermic fertilisation. The possible role of DNase activities in avian oocytes, in degradation of accessory spermatozoa during polyspermic fertilisation, is discussed. PMID:12625527

  16. Genome-scale Mapping of DNaseI Hypersensitivity

    PubMed Central

    John, Sam; Sabo, Peter J.; Canfield, Theresa K.; Lee, Kristen; Vong, Shinny; Weaver, Molly; Wang, Hao; Vierstra, Jeff; Reynolds, Alex P.; Thurman, Robert E.; Stamatoyannopoulos, John A.

    2014-01-01

    DNaseI-seq is a global and high-resolution method that uses the non-specific endonuclease DNaseI to map chromatin accessibility. These accessible regions, designated as DNaseI hypersensitive sites (DHSs), define the regulatory features, (eg. promoters, enhancers, insulators, locus control regions) of complex genomes. In this unit, we will describe systematic methods for nuclei isolation, digestion of nuclei with limiting concentrations of DNaseI and the biochemical fractionation of DNaseI hypersensitive sites in preparation for high-throughput sequencing. DNaseI-seq is an unbiased and robust method that is not predicated on an a priori understanding of regulatory patterns or chromatin features. PMID:23821440

  17. Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos

    PubMed Central

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Lo, Szecheng J.

    2015-01-01

    Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA. PMID:26182365

  18. Determining (/sup 3/H)thymidine incorporation into bacterioplankton DNA: improvement of the method by DNase treatment

    SciTech Connect

    Servais, P.; Martinez, J.; Vives-Rego, J.

    1987-08-01

    Determination of (/sup 3/H)thymidine incorporation into bacterial DNA versus other macromolecules is usually achieved by NaOH and hot trichloroacetic acid hydrolysis. This procedure was found not to be specific enough. An alternative method founded on DNase treatment is proposed. Under the new method, the fraction of thymidine incorporated into DNA ranged from 10 to 83%.

  19. DNase I digestion as a tool for the quantitative evaluation of C-heterochromatic-DNA in situ.

    PubMed

    Bottone, M G

    1992-12-01

    The amount of DNA resisting the C-banding pre-treatments (C-heterochromatic-DNA) was found to account for the interspecific differences of genome size in different Primate groups. The evaluation of this parameter is therefore of great interest in cytotaxonomy. In this work, DNase I digestion was used instead of the pre-treatments C-banding, in an attempt to set up a suitable method for the quantitative evaluation of C-heterochromatic-DNA in both metaphase chromosomes and interphase chromatin. In fact DNase I is known to preferentially digest "active or potentially active" chromatin, and the highly repetitive and inactive DNA in C-heterochromatin should characteristically resist DNase I cleavage. As a model system, differently fixed mouse splenocytes were treated with DNase I for various times, and the digestion was monitored by flow cytometry after propidium iodide staining. In addition, mouse metaphase preparations from lymphocyte cultures were also digested with DNase I, and the amount of residual DNA was evaluated by static microfluorometry. Under controlled conditions of fixation, enzyme concentration, time and temperature, the same limit-digest can be obtained in both interphase nuclei and metaphases, which corresponds to the amount of residual DNA after C-banding and has a C-banding-like pattern in chromosomes. PMID:1477606

  20. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    PubMed

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  1. The in vivo expression of actin/salt-resistant hyperactive DNase I inhibits the development of anti-ssDNA and anti-histone autoantibodies in a murine model of systemic lupus erythematosus

    PubMed Central

    Manderson, Anthony P; Carlucci, Francesco; Lachmann, Peter J; Lazarus, Robert A; Festenstein, Richard J; Cook, H Terence; Walport, Mark J; Botto, Marina

    2006-01-01

    Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic over-expression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt.DNase I) or a mutant DNase I (ash.DNase I), engineered for three new properties – resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control non-transgenic littermates or wt.DNase I transgenic mice, the ash.DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors. PMID:16606442

  2. Purification and characterization of DNase VII, a 3'. -->. 5'-directed exonuclease from human placenta

    SciTech Connect

    Hollis, G.F.; Grossman, L.

    1981-01-01

    An exonuclease, DNase VII, has been purified 6000-fold from human placenta. The enzyme has an apparent molecular weight of 43,000, requires Mg/sup 2 +/ for activity, and has a pH optimum of 7.8. The enzyme hydrolyzes single-stranded and nicked duplex DNA at the same rate proceeding in a 3' ..-->.. 5' direction liberating 5'-mononucleotides. It does not measurably hydrolyze polyribonucleotides.

  3. Thioredoxin and dihydrolipoic acid inhibit elastase activity in cystic fibrosis sputum.

    PubMed

    Lee, Rees L; Rancourt, Raymond C; del Val, Greg; Pack, Kami; Pardee, Churee; Accurso, Frank J; White, Carl W

    2005-11-01

    Excessive neutrophil elastase activity within airways of cystic fibrosis (CF) patients results in progressive lung damage. Disruption of disulfide bonds on elastase by reducing agents may modify its enzymatic activity. Three naturally occurring dithiol reducing systems were examined for their effects on elastase activity: 1) Escherichia coli thioredoxin (Trx) system, 2) recombinant human thioredoxin (rhTrx) system, and 3) dihydrolipoic acid (DHLA). The Trx systems consisted of Trx, Trx reductase, and NADPH. As shown by spectrophotometric assay of elastase activity, the two Trx systems and DHLA inhibited purified human neutrophil elastase as well as the elastolytic activity present in the soluble phase (sol) of CF sputum. Removal of any of the three Trx system constituents prevented inhibition. Compared with the monothiols N-acetylcysteine and reduced glutathione, the dithiols displayed greater elastase inhibition. To streamline Trx as an investigational tool, a stable reduced form of rhTrx was synthesized and used as a single component. Reduced rhTrx inhibited purified elastase and CF sputum sol elastase without NADPH or Trx reductase. Because Trx and DHLA have mucolytic effects, we investigated changes in elastase activity after mucolytic treatment. Unprocessed CF sputum was directly treated with reduced rhTrx, the Trx system, DHLA, or DNase. The Trx system and DHLA did not increase elastase activity, whereas reduced rhTrx treatment increased sol elastase activity by 60%. By contrast, the elastase activity after DNase treatment increased by 190%. The ability of Trx and DHLA to limit elastase activity combined with their mucolytic effects makes these compounds potential therapies for CF. PMID:16214824

  4. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Liu, Chaoqun; Bing, Wei; Wang, Zhenzhen; Qu, Xiaogang

    2016-08-26

    Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4  /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms. PMID:27484616

  5. Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes.

    PubMed

    Hasegawa, Tadao; Minami, Masaaki; Okamoto, Akira; Tatsuno, Ichiro; Isaka, Masanori; Ohta, Michio

    2010-01-01

    We investigated culture supernatant proteins from the M1 serotype of Streptococcus pyogenes by two-dimensional gel electrophoresis and peptide mass mapping analysis, and characterized the single protein spots. Among them, we analysed the Spy0747 protein. This protein is homologous to the SsnA protein, a cell-wall-located DNase expressed in Streptococcus suis serotype 2. We designated the Spy0747 protein as SpnA. SpnA protein was also detected in the insoluble fraction of whole-cell lysates using shotgun proteomic analysis, suggesting that SpnA is also located in the cell wall. SpnA was expressed as a glutathione S-transferase-fusion protein in Escherichia coli. We confirmed that the recombinant protein had DNase activity that was dependent on Ca(2+) and Mg(2+), like SsnA. Blood bactericidal assays and mouse infection model experiments showed that the spnA knockout strain was less virulent than the parental strain, thus suggesting that SpnA could play an important role in virulence. Using PCR, we found that the spnA gene was present in all clinical S. pyogenes strains we examined. Our results, together with a previous report identifying Spy0747 as a surface-associated protein, suggest that SpnA is an important cell-wall-located DNase that is generally produced in S. pyogenes and is involved in virulence. PMID:19850619

  6. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data

    PubMed Central

    Jankowski, Aleksander; Tiuryn, Jerzy; Prabhakar, Shyam

    2016-01-01

    Motivation: Computational prediction of transcription factor (TF) binding sites in the genome remains a challenging task. Here, we present Romulus, a novel computational method for identifying individual TF binding sites from genome sequence information and cell-type–specific experimental data, such as DNase-seq. It combines the strengths of previous approaches, and improves robustness by reducing the number of free parameters in the model by an order of magnitude. Results: We show that Romulus significantly outperforms existing methods across three sources of DNase-seq data, by assessing the performance of these tools against ChIP-seq profiles. The difference was particularly significant when applied to binding site prediction for low-information-content motifs. Our method is capable of inferring multiple binding modes for a single TF, which differ in their DNase I cut profile. Finally, using the model learned by Romulus and ChIP-seq data, we introduce Binding in Closed Chromatin (BCC) as a quantitative measure of TF pioneer factor activity. Uniquely, our measure quantifies a defining feature of pioneer factors, namely their ability to bind closed chromatin. Availability and Implementation: Romulus is freely available as an R package at http://github.com/ajank/Romulus. Contact: ajank@mimuw.edu.pl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153645

  7. [rhDNase: scientific background, cloning and production].

    PubMed

    Shak, S

    1995-07-01

    Despite the hopes raised by the first attempts in gene therapy, direct correction of the defect in CFTR protein associated with cystic fibrosis is still beyond clinical reach. Therefore we have to set upon the consequences of the defect. Respiratory distress and progressive lung destruction in cystic fibrosis can be accounted for by infectious exacerabations and the accumulation of viscous purulent secretions in the airways. For a long time we have known that purulent secretions that accumulate in the airways of patients with cystic fibrosis contain large amounts of DNA, a complex macromolecule that contributes mostly to the viscosity and hinders the mucociliary function. Hence we hypothesized that enzymatic cleaving of DNA molecules by desoxyribonuclease (DNase) should reduce the viscosity of sputum, and slow or prevent the deterioration of pulmonary function. Using the techniques of molecular biology and genetic engineering, we identified the gene of human DNase I, which was cloned in mammalian cells to produce large amounts of a glycosylated protein for therapeutic use. Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid. This effect was associated with a decrease in size of DNA fragments in the sputum. Our studies suggested that inhalation of a rhDNase aerosol might be a simple direct approach to reduce the viscosity of purulent secretions and thereby help patients with cystic fibrosis clear their airways and breathe more easily. PMID:7663657

  8. Mi2β Shows Chromatin Enzyme Specificity by Erasing a DNase I-hypersensitive Site Established by ACF*S⃞

    PubMed Central

    Ishii, Haruhiko; Du, Hansen; Zhang, Zhaoqing; Henderson, Angus; Sen, Ranjan; Pazin, Michael J.

    2009-01-01

    ATP-dependent chromatin-remodeling enzymes are linked to changes in gene expression; however, it is not clear how the multiple remodeling enzymes found in eukaryotes differ in function and work together. In this report, we demonstrate that the ATP-dependent remodeling enzymes ACF and Mi2β can direct consecutive, opposing chromatin-remodeling events, when recruited to chromatin by different transcription factors. In a cell-free system based on the immunoglobulin heavy chain gene enhancer, we show that TFE3 induces a DNase I-hypersensitive site in an ATP-dependent reaction that requires ACF following transcription factor binding to chromatin. In a second step, PU.1 directs Mi2β to erase an established DNase I-hypersensitive site, in an ATP-dependent reaction subsequent to PU.1 binding to chromatin, whereas ACF will not support erasure. Erasure occurred without displacing the transcription factor that initiated the site. Other tested enzymes were unable to erase the DNase I-hypersensitive site. Establishing and erasing the DNase I-hypersensitive site required transcriptional activation domains from TFE3 and PU.1, respectively. Together, these results provide important new mechanistic insight into the combinatorial control of chromatin structure. PMID:19158090

  9. Using Pulmozyme DNase treatment in lentiviral vector production.

    PubMed

    Shaw, Aaron; Bischof, Daniela; Jasti, Aparna; Ernstberger, Aaron; Hawkins, Troy; Cornetta, Kenneth

    2012-02-01

    In the production of lentiviral vector for clinical studies the purity of the final product is of vital importance. To remove plasmid and producer cell line DNA, investigators have incubated the vector product with Benzonase, a bacterially derived DNase. As an alternative we investigated the use of Pulmozyme, a U.S. Food and Drug Administration-approved human DNase for the treatment of cystic fibrosis, by comparing the efficiency of DNA removal from lentiviral vector preparations. A green fluorescent protein-expressing lentiviral vector was prepared by transient calcium phosphate transfection of HEK 293T cells and DNA removal was compared when treating vector after harvest or immediately after transfection. The effectiveness of DNase treatment was measured by quantitative PCR using primers for vesicular stomatitis virus glycoprotein G viral envelope plasmid. When treating the final product, 1-hr incubations (37°C) with Pulmozyme at 20 U/ml reduced plasmid DNA to undetectable levels. Longer incubations (up to 4 hr) did not improve DNA removal at lower concentrations and the effectiveness was equivalent to or better than Benzonase at 50 U/ml. Attempting to use Pulmozyme immediately after transfection, but before final medium change, as a means to decrease Pulmozyme concentration in the final product provided a 2-log reduction in DNA but was inferior to treatment at the end of production. Pulmozyme, at concentrations up to 100 U/ml, had no measurable effect on infectious titer of the final vector product. The use of Pulmozyme is likely to increase the cost of DNase treatment when preparing vector product and should be considered when generating clinical-grade vector products. PMID:22428981

  10. [RNA responsible for conferring a DNase I sensitive structure on albumin gene in assembled chromatin].

    PubMed

    Lv, Zhan-Jun; Wang, Xiu-Fang; Zhai, Yu; Song, Shu-Xia

    2003-01-01

    Although the set of genes is virtually the same in all tissues,differential gene expression is appeared in cells of different kinds. Differentiation and ageing are associated with regulation of gene expression that is a fundamental mechanism in eukaryotic development and survival. The sensitivity to DNase I of actively transcribed genes seems to be a general phenomenon. The purpose of the study is to test whether RNAs obtained from different organs or cells can enhance susceptibility of albumin gene to DNase I digestion in BALB/c mouse brain chromatin assembled.RNAs extracted from rat liver, lung, kidney, brain, tRNA from yeast and synthesized RNAs (23 nt completed with mouse alb gene) were added to a system of chromatin reconstitution that was achieved by dialysis from high ionic strength solution. Assembled chromatin was digested with DNase I (12.5 microg/mL) at 20 degrees for 1 min, then PCR assay was used to detect the level of albumin gene digested. PCR products (1200 bp) were run on a 6% polyacylamide gel and analyzed by silver stain assay. RNAs from different organs and synthesized RNAs all increased the sensitivity of albumin gene to DNase I attack in mouse assembled chromatin. The effect was more obvious in liver and lung RNAs than in kidney and brain ones. tRNA from yeast did not enhance the sensitivity of albumin gene to DNase I digestion. RNA increased albumin gene sensitivity to DNase I in a dose-dependent manner. We report here for the first time that RNAs can enhance susceptibility of albumin gene to DNase I digestion. The effect is associated with RNA sources or sequences. It is generally agreed that the formation of gene sensitivity to DNase I, by unfolding of a tightly packed chromatin fiber, is the first step in gene activation, then RNAs that recognize complementary DNA sequences may be the specific factors that affect DNA supercoiling and determine the sensitivity of gene to DNase I digestion. Here we describes "RNA Population Gene Activating

  11. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    PubMed Central

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments. PMID:26217328

  12. Eradication of Human Ovarian Cancer Cells by Transgenic Expression of Recombinant DNASE1, DNASE1L3, DNASE2, and DFFB Controlled by EGFR Promoter: Novel Strategy for Targeted Therapy of Cancer

    PubMed Central

    Malecki, Marek; Dahlke, Jessica; Haig, Melissa; Wohlwend, Lynn; Malecki, Raf

    2014-01-01

    Introduction Ovarian cancer is the most deadly among all gynecological cancers. Patients undergoing systemic therapies of advanced ovarian cancers suffer from horrendous side effects. Cancer survivors and their offspring suffer from iatrogenic consequences of systemic therapies: genetic mutations. The ultimate goal of our work is development of therapies, which selectively and completely eliminate cancer cells, but do not harm healthy cells. An important consideration for attaining this goal is the fact that ovarian cancer cells over-express EGFR or its mutants, what becomes the factor discriminating them from healthy cells - a potential facilitator of personalized therapy. Specific aim The specific aim of this project was threefold: (1) to bioengineer suicide genes’ carrying vectors guided by synthetic antibodies for EGFRvIII and EGFR; (2) to genetically engineer DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, and DFFB controlled by the EGFR promoter; (3) to selectively eradicate ovarian cancer cells by intranuclear targeting of the transgenically expressed recombinant DNases. Methods Synthetic antibodies for EGFR and EGFRvIII were selected from the human library and used to bioengineer biotag-guided transgenes’ vectors. Coding sequences for the human DNASE1, DNASE1L3, DNASE2, DFFB controlled by the EGFR promoter were amplified from the human cDNA and genetically engineered into the plasmid constructs also coding for the fusions with NLS and GFP. The vectors carrying transgenes for the DNases were delivered in vitro into human ovarian cancer cells from ascites and cultures. Results Synthetic antibody guided vectors delivered the transgenes for the recombinant DNases efficiently into the ovarian cancer cells. Transgenic expression and nuclear targeting of the DNases in those cells resulted in destruction of their genomes and led to their death, as validated by labeling with the molecular death tags. In healthy cells, which did not over

  13. The TatD-like DNase of Plasmodium is a virulence factor and a potential malaria vaccine candidate

    PubMed Central

    Chang, Zhiguang; Jiang, Ning; Zhang, Yuanyuan; Lu, Huijun; Yin, Jigang; Wahlgren, Mats; Cheng, Xunjia; Cao, Yaming; Chen, Qijun

    2016-01-01

    Neutrophil extracellular traps (NETs), composed primarily of DNA and proteases, are released from activated neutrophils and contribute to the innate immune response by capturing pathogens. Plasmodium falciparum, the causative agent of severe malaria, thrives in its host by counteracting immune elimination. Here, we report the discovery of a novel virulence factor of P. falciparum, a TatD-like DNase (PfTatD) that is expressed primarily in the asexual blood stage and is likely utilized by the parasite to counteract NETs. PfTatD exhibits typical deoxyribonuclease activity, and its expression is higher in virulent parasites than in avirulent parasites. A P. berghei TatD-knockout parasite displays reduced pathogenicity in mice. Mice immunized with recombinant TatD exhibit increased immunity against lethal challenge. Our results suggest that the TatD-like DNase is an essential factor for the survival of malarial parasites in the host and is a potential malaria vaccine candidate. PMID:27151551

  14. The TatD-like DNase of Plasmodium is a virulence factor and a potential malaria vaccine candidate.

    PubMed

    Chang, Zhiguang; Jiang, Ning; Zhang, Yuanyuan; Lu, Huijun; Yin, Jigang; Wahlgren, Mats; Cheng, Xunjia; Cao, Yaming; Chen, Qijun

    2016-01-01

    Neutrophil extracellular traps (NETs), composed primarily of DNA and proteases, are released from activated neutrophils and contribute to the innate immune response by capturing pathogens. Plasmodium falciparum, the causative agent of severe malaria, thrives in its host by counteracting immune elimination. Here, we report the discovery of a novel virulence factor of P. falciparum, a TatD-like DNase (PfTatD) that is expressed primarily in the asexual blood stage and is likely utilized by the parasite to counteract NETs. PfTatD exhibits typical deoxyribonuclease activity, and its expression is higher in virulent parasites than in avirulent parasites. A P. berghei TatD-knockout parasite displays reduced pathogenicity in mice. Mice immunized with recombinant TatD exhibit increased immunity against lethal challenge. Our results suggest that the TatD-like DNase is an essential factor for the survival of malarial parasites in the host and is a potential malaria vaccine candidate. PMID:27151551

  15. Acid Rain: Activities for Science Teachers.

    ERIC Educational Resources Information Center

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  16. Recombinant Human DNase I Reduces the Viscosity of Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Shak, Steven; Capon, Daniel J.; Hellmiss, Renate; Marsters, Scot A.; Baker, Carrie L.

    1990-12-01

    Respiratory distress and progressive lung destruction in cystic fibrosis can be attributed to bacterial persistence and the accumulation of viscous purulent secretions in the airways. More than 30 yr ago it was suggested that the large amounts of DNA in purulent secretions contribute to its viscosity and that bovine pancreatic DNase I could reduce the viscosity. To evaluate the potential clinical utility of recombinant human DNase I (rhDNase) in the treatment of cystic fibrosis, we have cloned, sequenced, and expressed rhDNase. Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid. The reduction in viscosity is associated with a decrease in size of DNA in the sputum. Inhalation of a rhDNase aerosol may be a simple direct approach that will help individuals with cystic fibrosis and other patients with pneumonia or bronchitis to clear their airways of purulent secretions.

  17. Lipoxygenase inhibitory activity of anacardic acids.

    PubMed

    Ha, Tae Joung; Kubo, Isao

    2005-06-01

    6[8'(Z)-pentadecenyl]salicylic acid, otherwise known as anacardic acid (C15:1), inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) with an IC50 of 6.8 microM. The inhibition of the enzyme by anacardic acid (C15:1) is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Dixon plots indicates that anacardic acid (C15:1) is a competitive inhibitor and the inhibition constant, KI, was obtained as 2.8 microM. Although anacardic acid (C15:1) inhibited the linoleic acid peroxidation without being oxidized, 6[8'(Z),11'(Z)-pentadecadienyl]salicylic acid, otherwise known as anacardic acid (C15:2), was dioxygenated at low concentrations as a substrate. In addition, anacardic acid (C15:2) was also found to exhibit time-dependent inhibition of lipoxygenase-1. The alk(en)yl side chain of anacardic acids is essential to elicit the inhibitory activity. However, the hydrophobic interaction alone is not enough because cardanol (C15:1), which possesses the same side chain as anacardic acid (C15:1), acted neither as a substrate nor as an inhibitor. PMID:15913294

  18. TERATOGENIC ACTIVITY OF TRICHLOROACETIC ACID

    EPA Science Inventory

    Trichloroacetic acid (TCA)is a by-product of the chlorine disinfection of water containing natural organic material. It is detectable finished drinking water at levels comparable to the trihalomethanes (30-60). TCA is also formed in vivo after ingestion of hypochlorite and has be...

  19. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  20. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli.

    PubMed

    Crane, John K; Broome, Jacqueline E; Lis, Agnieszka

    2016-04-01

    In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli(EPEC) and Shiga-toxigenic E. coli(STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage. PMID:26787720

  1. Simultaneous analysis of biologically active aminoalkanephosphonic acids.

    PubMed

    Kudzin, Zbigniew H; Gralak, Dorota K; Andrijewski, Grzegorz; Drabowicz, Józef; Luczak, Jerzy

    2003-05-23

    A new approach for simultaneous analysis of biologically active aminoalkanephosphonic acids, namely glyphosate, phosphonoglycine, phosphonosarcosine, phosphonoalanine, phosphono-beta-alanine, phosphonohomoalanine, phosphono-gamma-homoalanine and glufosinate, is presented. This includes a preliminary 31p NMR analysis of these amino acids, their further derivatization to volatile phosphonates (phosphinates) by means of trifluoroacetic acid-trifluoroacetic anhydride-trimethyl orthoacetate reagent and subsequent analysis of derivatization products using MS and/or GC-MS (chemical ionization and/or electron impact ionization). PMID:12862383

  2. DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes

    PubMed Central

    Zetzmann, Marion; Okshevsky, Mira; Endres, Jasmin; Sedlag, Anne; Caccia, Nelly; Auchter, Marc; Waidmann, Mark S.; Desvaux, Mickaël; Meyer, Rikke L.; Riedel, Christian U.

    2015-01-01

    Listeria monocytogenes is able to form biofilms on various surfaces and this ability is thought to contribute to persistence in the environment and on contact surfaces in the food industry. Extracellular DNA (eDNA) is a component of the biofilm matrix of many bacterial species and was shown to play a role in biofilm establishment of L. monocytogenes. In the present study, the effect of DNaseI treatment on biofilm formation of L. monocytogenes EGD-e was investigated under static and dynamic conditions in normal or diluted complex medium at different temperatures. Biofilm formation was quantified by crystal violet staining or visualized by confocal laser scanning microscopy. Biomass of surface-attached L. monocytogenes varies depending on temperature and dilution of media. Interestingly, L. monocytogenes EGD-e forms DNase-sensitive biofilms in diluted medium whereas in full strength medium DNaseI treatment had no effect. In line with these observations, eDNA is present in the matrix of biofilms grown in diluted but not full strength medium and supernatants of biofilms grown in diluted medium contain chromosomal DNA. The DNase-sensitive phenotype could be clearly linked to reduced ionic strength in the environment since dilution of medium in PBS or saline abolished DNase sensitivity. Several other but not all species of the genus Listeria display DNase-sensitive and -resistant modes of biofilm formation. These results indicate that L. monocytogenes biofilms are DNase-sensitive especially at low ionic strength, which might favor bacterial lysis and release of chromosomal DNA. Since low nutrient concentrations with increased osmotic pressure are conditions frequently found in food processing environments, DNaseI treatment represents an option to prevent or remove Listeria biofilms in industrial settings. PMID:26733972

  3. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum.

    PubMed

    Shak, S; Capon, D J; Hellmiss, R; Marsters, S A; Baker, C L

    1990-12-01

    Respiratory distress and progressive lung destruction in cystic fibrosis can be attributed to bacterial persistence and the accumulation of viscous purulent secretions in the airways. More than 30 yr ago it was suggested that the large amounts of DNA in purulent secretions contribute to its viscosity and that bovine pancreatic DNase I could reduce the viscosity. To evaluate the potential clinical utility of recombinant human DNase I (rhDNase) in the treatment of cystic fibrosis, we have cloned, sequenced, and expressed rhDNase. Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid. The reduction in viscosity is associated with a decrease in size of DNA in the sputum. Inhalation of a rhDNase aerosol may be a simple direct approach that will help individuals with cystic fibrosis and other patients with pneumonia or bronchitis to clear their airways of purulent secretions. PMID:2251263

  4. Antidepressant activity of aspartic acid derivatives.

    PubMed

    Petrov, V I; Sergeev, V S; Onishchenko, N V; Piotrovskii, L B

    2001-04-01

    Antidepressant activity of N-phenyl(benzyl)amino derivatives of aspartic acid was studied on various experimental models of depression. IEM-1770 (30 mg/kg) and IEM-1944 (20 mg/kg) exhibited antidepressant activity after single injection in the forced swimming and tail suspension tests. Antidepressant effect of 14-day administration of these compounds and reference drugs maprotiline (10 mg/kg) and citalopram (10 mg/kg) was confirmed on the model of learned helplessness. PMID:11550022

  5. On the anticonvulsant activity of kaurenic acid.

    PubMed

    Daló, Nelson L; Sosa-Sequera, Miriam C; Usubillaga, Alfredo

    2007-09-01

    Kaurenic acid [(-)-kaur-16-en-19-oic acid] is a diterpene isolated from the aerial parts of Espeletia semiglobulata, one of 85 species of Espeletiinae found in Venezuela. Its anticonvulsive activity was studied using two different models of experimental seizures: spinal seizures induced by sudden cooling (SSSC) in amphibians and seizures induced by pentylenetetrazol (PTZ) in mice. In SSSC, kaurenic acid (KA) inhibited the tonic hind-limb extension with an ED50 of 2.5 mg/kg. It was 4-fold more potent than known anticonvulsant drugs such as carbamazepine and phenytoin and 100-fold more potent than valproic acid. However, KA as well as valproic acid were ineffective against the clonic phase of SSSC. In the PTZ-induced seizures, KA at doses of 0.625 and 1.25 mg/kg increased the latency of seizure onset and protected against generalized clonic-tonic seizures by 45% and 65%, respectively. The sedative effects of KA had an ED50 of 8.5 mg/kg in mice and 75 mg/kg in amphibians. This work provides experimental evidence supporting the potential value of kaurenic acid as an anticonvulsive drug. PMID:17853794

  6. Activated sludge degradation of adipic acid esters.

    PubMed Central

    Saeger, V W; Kalley, R G; Hicks, O; Tucker, E S; Mieure, J P

    1976-01-01

    The biodegradability of three aliphatic adipic acid diesters and a 1,3-butylene glycol adipic acid polyester was determined in acclimated, activated sludge systems. Rapid primary biodegradation from 67 to 99+% was observed at 3- and 13-mg/liter feed levels for di-n-hexyl adipate, di(2-ethylhexyl) adipate, and di(heptyl, nonyl) adipate in 24 h. When acclimated, activated sludge microorganisms were employed as the seed for two carbon dioxide evolution procedures, greater than 75% of the theoretical carbon dioxide was evolved for the three diesters and the polyester in a 35-day test period. The essentially complete biodegradation observed in these studies suggests that these esters would not persist when exposed to similar mixed microbial populations in the environment. PMID:1275494

  7. Rapid and unambiguous detection of DNase I hypersensitive site in rare population of cells.

    PubMed

    Zeng, Wei-Ping; McFarland, Margaret M

    2014-01-01

    DNase I hypersensitive (DHS) sites are important for understanding cis regulation of gene expression. However, existing methods for detecting DHS sites in small numbers of cells can lead to ambiguous results. Here we describe a simple new method, in which DNA fragments with ends generated by DNase I digestion are isolated and used as templates for two PCR reactions. In the first PCR, primers are derived from sequences up- and down-stream of the DHS site. If the DHS site exists in the cells, the first PCR will not produce PCR products due to the cuts of the templates by DNase I between the primer sequences. In the second PCR, one primer is derived from sequence outside the DHS site and the other from the adaptor. This will produce a smear of PCR products of different sizes due to cuts by DNase I at different positions at the DHS site. With this design, we detected a DHS site at the CD4 gene in two CD4 T cell populations using as few as 2×10(4) cells. We further validated this method by detecting a DHS site of the IL-4 gene that is specifically present in type 2 but not type 1 T helper cells. Overall, this method overcomes the interference by genomic DNA not cut by DNase I at the DHS site, thereby offering unambiguous detection of DHS sites in the cells. PMID:24465674

  8. DNase I hypersensitivity mapping and promoter polymorphism analysis of human C4

    SciTech Connect

    Vaishnaw, A.K.; Hargreaves, R.; Morley, B.J.

    1995-04-01

    Human complement component C4 is encoded by two structurally distinct loci in the major histocompatibility complex (MHC) class III region. The two isotypes, C4A and C4B, differ at only four residues in the C4d fragment, but C4 constitutes the most polymorphic of the complement components. It is not known, however, whether the regions involved in the regulation of C4 expression also display polymorphic variation. By using the technique of DNase I hypersensitivity mapping, we established that the only area of transcriptional activity for C4 in the hepatocyte cell line, HepG2, occurs approximately 500 base pairs upstream of the transcriptional start site. This region was found to be remarkably constant in sequence when analyzed in the context of differing MHC haplotypes including HLA B57, C4A6, C4B1, DR7, which has been correlated with reduced expression of the C4A isotype. Similarly, polymerase chain reaction followed by single-strand conformation polymorphism analysis failed to demonstrate any promoter polymorphisms in 103 individuals comprising 52 systemic lupus erythermatosus patients and 51 healthy controls. 36 refs., 3 figs., 2 tabs.

  9. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    PubMed Central

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation. PMID:26425553

  10. Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy.

    PubMed

    Kohles, Nikolaus; Nagel, Dorothea; Jüngst, Dietrich; Stieber, Petra; Holdenrieder, Stefan

    2012-12-01

    Transarterial chemoembolization (TACE) therapy is an effective locoregional anticancer treatment for liver cancer patients. Serum biomarkers involved in immunogenic cell death may be valuable for early predicting therapy response and estimating prognosis. Sera of 50 prospectively and consecutively included hepatocellular carcinoma (HCC) patients, undergoing TACE therapy, were taken before and 24 h after TACE application. In these samples, soluble biomarkers involved in immunogenic cell death, and among them, high-mobility group box 1 (HMGB1), soluble receptor of advanced glycation end products (sRAGE), and DNase activity were measured. They were compared with radiological response to therapy. A total of 71 TACE therapies were evaluated, of which 32 were classified as "no progression," and 39, as "progression." While HMGB1 levels increased already 24 h after TACE, there was an early decrease of sRAGE and DNase activity. Pretherapeutic and 24-h values of sRAGE were significantly higher in the no progression group than those in the progression group. There was no difference with respect to treatment response for DNase and HMGB1. Soluble RAGE is a new parameter with predictive relevance in primary liver cancer patients undergoing TACE therapy. PMID:22965881

  11. Three-dimensional structure of the complex of actin and DNase I at 4.5 A resolution.

    PubMed Central

    Kabsch, W; Mannherz, H G; Suck, D

    1985-01-01

    The shape of an actin subunit has been derived from an improved 6 A map of the complex of rabbit skeletal muscle actin and bovine pancreatic DNase I obtained by X-ray crystallographic methods. The three-dimensional structure of DNase I determined independently at 2.5 A resolution was compared with the DNase I electron density in the actin:DNase map. The two structures are very similar at 6 A resolution thus leading to an unambiguous identification of actin as well as DNase I electron density. Furthermore the correct hand of the actin structure is determined from the DNase I atomic structure. The resolution of the actin structure was extended to 4.5 A by using a single heavy-atom derivative and the knowledge of the atomic coordinates of DNase I. The dimensions of an actin subunit are 67 A X 40 A X 37 A. It consists of a small and a large domain, the small domain containing the N terminus. Actin is an alpha,beta-protein with a beta-pleated sheet in each domain. These sheets are surrounded by several alpha-helices, comprising at least 40% of the structure. The phosphate peak of the adenine nucleotide is located between the two domains. The complex of actin and DNase I as found in solution (i.e., the actin:DNase I contacts which do not depend on crystal packing) was deduced from a comparison of monoclinic with orthorhombic crystals. Residues 44-46, 51, 52, 60-62 of DNase I are close to a loop region in the small domain of actin. At a distance of approximately 15 A there is a second contact in the large domain in which Glu13 of DNase I is involved. A possible binding region for myosin is discussed. Images Fig. 1. Fig. 2. Fig. 3. PMID:4065103

  12. A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells.

    PubMed

    Fombonne, J; Padrón, L; Enjalbert, A; Krantic, S; Torriglia, A

    2006-03-01

    We have recently reported that EGF triggers an original form of cell death in pituitary cell line (GH4C1) with a phenotype sharing some characteristics of both apoptosis (internucleosomal DNA fragmentation) and paraptosis (caspase-independence and cytoplasmic vacuolization). However, the endonuclease involved in EGF-induced DNA fragmentation has not been assessed so far. In the present work we therefore further explored the putative paraptosis involvement in EGF-induced cell death and asked whether L-DNaseII might be involved. Indeed, this endonuclease is known to mediate internucleosomal DNA fragmentation in caspase independent manner. Our Western blot, immunocytochemistry and enzymatic measurement assays show that EGF triggers a cleavage of Leukocyte Elastase Inhibitor (LEI) precursor into L-DNaseII, its subsequent enzymatic activation and nuclear translocation thus pointing to the involvement of this endonuclease pathway in caspase-independent DNA fragmentation. In addition, EGF-induced cell death can be blocked by paraptosis inhibitor AIP-1/Alix, but not with its anti-apoptotic C-terminal fragment (Alix-CT). Altogether these data suggest that EGF-induced cell death defines a novel, L-DNaseII-mediated form of paraptosis. PMID:16538380

  13. Mobile Element Insertions Causing Mutations in the Drosophila Suppressor of Sable Locus Occur in Dnase I Hypersensitive Subregions of 5'-Transcribed Nontranslated Sequences

    PubMed Central

    Voelker, R. A.; Graves, J.; Gibson, W.; Eisenberg, M.

    1990-01-01

    The locations of 16 mobile element insertions causing mutations at the Drosophila suppressor of sable [su(s)] locus were determined by restriction mapping and DNA sequencing of the junction sites. The transposons causing the mutations are: P element (5 alleles), gypsy (3 alleles), 17.6, HMS Beagle, springer, Delta 88, prygun, Stalker, and a new mobile element which was named roamer (2 alleles). Four P element insertions occur in 5' nontranslated leader sequences, while the fifth P element and all 11 non-P elements inserted into the 2053 nucleotide, 5'-most intron that is spliced from the 5' nontranslated leader ~100 nucleotides upstream of the translation start. Fifteen of the 16 mobile elements inserted within a ~1900 nucleotide region that contains seven 100-200-nucleotide long DNase I-hypersensitive subregions that alternate with DNase I-resistant intervals of similar lengths. The locations of these 15 insertion sites correlate well with the roughly estimated locations of five of the DNase I-hypersensitive subregions. These findings suggest that the features of chromatin structure that accompany gene activation may also make the DNA susceptible to insertion of mobile elements. PMID:1963868

  14. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization.

    PubMed

    Islan, Germán A; Tornello, Pablo Cortez; Abraham, Gustavo A; Duran, Nelson; Castro, Guillermo R

    2016-07-01

    Levofloxacin (LV) is a hydrophilic broad-spectrum antibiotic commonly used in pulmonary treatment against recurrent infections of Pseudomonas aeruginosa, and particularly in cystic fibrosis (CF) disease. In order to study feasible carriers for LV, solid lipid nanoparticles (SLN) of myristyl myristate were prepared by the ultrasonication method in the presence of Pluronic(®)F68 under different experimental conditions and characterized by dynamic light scattering, optical, transmission and scanning electron microscopy for size and morphology. Alternatively, nanostructured lipid carriers (NLCs) were developed to improve LV encapsulation and storage. SLN showed 20.1±1.4% LV encapsulation efficiency, while the NLCs encapsulated 55.9±1.6% LV. NLC formulation exhibited a more controlled release profile than SLN formulation, but both showed a biphasic drug release pattern with burst release at the first 5h and prolonged release afterwards, demonstrated by in vitro tests. The hydrodynamic average diameter and zeta potential of NLC were 182.6±3.2nm and -10.2±0.2mV, respectively, and were stable for at least 3 months. Additionally, DNase type I was incorporated into the formulations as a "smart" component, since the enzyme could help to decrease the viscoelasticity found in the lungs of CF patients and improves the antibiotic diffusion. FTIR, XRD, DSC, TGA and nitrogen adsorption isotherms of the nanoparticles indicate the presence of the loads in a noncrystalline state. The developed formulation showed an active antimicrobial activity against P. aeruginosa and even against other opportunistic pathogens such as Staphylococcus aureus. The presence of LV-loaded NLCs reduced the formation of a bacterial biofilm, which highlighted the significance of the nanodevice as a new alternative for CF treatment. PMID:27003467

  15. Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA.

    PubMed Central

    Van Dyke, M W; Dervan, P B

    1983-01-01

    DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA. Images PMID:6225070

  16. Metallo-beta-lactamase inhibitory activity of phthalic acid derivatives.

    PubMed

    Hiraiwa, Yukiko; Morinaka, Akihiro; Fukushima, Takayoshi; Kudo, Toshiaki

    2009-09-01

    4-Butyl-3-methylphthalic acid was recognized as a metallo-beta-lactamase inhibitor. The structure-activity relationship study of substituted phthalic acids afforded 3-phenylphthalic acid derivatives as potent IMP-1 inhibitors. On the other hand, 3-substituted with 4-hydroxyphenyl phthalic acid derivative displayed a potent combination effect with biapenem (BIPM) against Pseudomonas aeruginosa that produce IMP-1. PMID:19632114

  17. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  18. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  19. Loss of DNase II function in the gonad is associated with a higher expression of antimicrobial genes in Caenorhabditis elegans.

    PubMed

    Yu, Hsiang; Lai, Huey-Jen; Lin, Tai-Wei; Chen, Chang-Shi; Lo, Szecheng J

    2015-08-15

    Three waves of apoptosis shape the development of Caenorhabditis elegans. Although the exact roles of the three DNase II genes (nuc-1, crn-6 and crn-7), which are known to mediate degradation of apoptotic DNA, in the embryonic and larval phases of apoptosis have been characterized, the DNase II acting in the third wave of germ cell apoptosis remains undetermined. In the present study, we performed in vitro and in vivo assays on various mutant nematodes to demonstrate that NUC-1 and CRN-7, but not CRN-6, function in germ cell apoptosis. In addition, in situ DNA-break detection and anti-phosphorylated ERK (extracellular-signal-regulated kinase) staining illustrated the sequential and spatially regulated actions of NUC-1 and CRN-7, at the pachytene zone of the gonad and at the loop respectively. In line with the notion that UV-induced DNA fragment accumulation in the gonad activates innate immunity responses, we also found that loss of NUC-1 and CRN-7 lead to up-regulation of antimicrobial genes (abf-2, spp-1, nlp-29, cnc-2, and lys-7). Our observations suggest that an incomplete digestion of DNA fragments resulting from the absence of NUC-1 or CRN-7 in the gonad could induce the ERK signalling, consequently activating antimicrobial gene expression. Taken together, the results of the present study demonstrate for the first time that nuc-1 and crn-7 play a role in degrading apoptotic DNA in distinct sites of the gonad, and act as negative regulators of innate immunity in C. elegans. PMID:26251453

  20. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed. PMID:22512578

  1. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures. PMID:24770718

  2. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  3. Cell viability of bovine spermatozoa subjected to DNA electroporation and DNAse I treatment.

    PubMed

    Cavalcanti, Paulo Varoni; Milazzotto, Marcella Pecora; Simões, Renata; Nichi, Marcilio; de Oliveira Barros, Flavia Regina; Visintin, Jose Antonio; Assumpção, Mayra Elena Ortiz D'Avila

    2016-04-15

    Many mechanisms involved in sperm-mediated gene transfer (SMGT) are still unknown. It is still a matter of debate whether exogenous DNA fragments incorporated by the embryo are originated from those bound to the sperm membrane or by those that penetrated the intracellular compartment. In an attempt to elucidate the transmission mechanism of exogenous DNA molecules by sperm, some authors suggested a treatment with DNAse I to remove DNA molecules outside the sperm. But little is known regarding the effects of DNAse I treatment on sperm viability and its impact on sperm organelles. An important aspect of the SMGT technique is the amount of exogenous DNA incubated with sperm, which may influence the internalization rate. Due to the inconsistencies found in literature, this work aimed to contribute to bovine sperm physiology knowledge evaluating the effects of different DNA concentrations, electroporation, and DNAse I treatments on sperm viability characteristics, DNA uptake, and IVF. For that, the effects of different concentrations of exogenous DNA (250, 500 and 1000 ng/10(6) cells) and incubation or electroporation were tested on sperm functional characteristics and in vitro embryo production. No effect of DNA concentration was observed on uptake, plasma membrane integrity, and mitochondrial membrane potential. The addition of exogenous DNA induced a decrease on acrosomal lesion in the 500-ng group when compared to the control. Cells incubated with DNA, electroporated, and treated with DNAse I presented a deleterious influence on mitochondrial membrane potential. In vitro fertilization was made with 1000 ng of DNA, sperm cells incubated or electroporated followed by DNAse I treatment. No significant difference was found in cleavage rate. Blastocyst rates were 24.36% for the control; 19.65% for incubated; 3.5% for electroporated control; and 17.40% for electroporated. There is a significant difference in blastocyst rate between the control and electroporated

  4. Molecular cloning and characterization of a Streptococcus sanguis DNase necessary for repair of DNA damage induced by UV light and methyl methanesulfonate

    SciTech Connect

    Lindler, L.E.; Macrina, F.L.

    1987-07-01

    We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.

  5. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  6. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH.

    PubMed

    Guha, Samit; Shaw, Gillian Karen; Mitcham, Trevor M; Bouchard, Richard R; Smith, Bradley D

    2016-01-01

    Absorption of 808 nm laser light by liposomes containing a pH sensitive, near-infrared croconaine rotaxane dye increases dramatically in weak acid. A stealth liposome composition permits acid activated, photothermal heating and also acts as an effective nanoparticle probe for ratiometric photoacoustic imaging of acidic pH in deep sample locations, including a living mouse. PMID:26502996

  7. NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

    PubMed

    Boetzel, R; Czisch, M; Kaptein, R; Hemmings, A M; James, R; Kleanthous, C; Moore, G R

    2000-09-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed. PMID:11045617

  8. NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

    PubMed Central

    Boetzel, R.; Czisch, M.; Kaptein, R.; Hemmings, A. M.; James, R.; Kleanthous, C.; Moore, G. R.

    2000-01-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed. PMID:11045617

  9. Uncoupling of the recBC ATPase from DNase by DNA Crosslinked with Psoralen

    PubMed Central

    Karu, Alexander E.; Linn, Stuart

    1972-01-01

    Exonucleolytic cleavage of DNA by the recBC DNase is accompained by a DNA-dependent ATP hydrolysis that ceases when the DNA that has been digested to a limit. On the other hand, DNA that has been crosslinked by 4,5′,8-trimethylpsoralen in the presence of 360-nm light remains an effective cofactor in the ATPase reaction, but is resistant to digestion by the enzyme. Psoralentreated DNA is degraded by pancreatic DNase, micrococcal nuclease, and Escherichia coli B restriction enzyme, but not by Neurospora crassa nuclease, suggesting that crosslinking did not grossly distort the duplex structure of the DNA. The psoralen-DNA is not a potent inhibitor, but competes with single-stranded DNA from bacteriophage fd for the recBC DNase to roughly the same extent as does normal duplex DNA. DNA treated with psoralen in the dark, exposed to 360-nm light in the absence of psoralen, or treated with the intercalating agents ethidium bromide, 9-aminoacridine, ICR-191, or actinomycin D, responds to the enzyme no differently from untreated DNA. However, DNA crosslinked with mitomycin C or nitrogen mustard behaves similarly to psoralen-treated DNA. The relationship of these findings to models for the function and control of the recBC ATPase and nuclease, and the advantages of psoralen as a DNA crosslinking agent, are discussed. PMID:4263506

  10. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-01-01

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships. PMID:25429559

  11. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases

  12. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    PubMed

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  13. Identification of Regulatory DNA Elements Using Genome-wide Mapping of DNase I Hypersensitive Sites during Tomato Fruit Development.

    PubMed

    Qiu, Zhengkun; Li, Ren; Zhang, Shuaibin; Wang, Ketao; Xu, Meng; Li, Jiayang; Du, Yongchen; Yu, Hong; Cui, Xia

    2016-08-01

    Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which depends on the orchestrated accessibility of regulatory proteins to promoters and other cis-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the developmental process. To understand the regulatory mechanism and functional elements modulating morphological and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening. PMID:27250572

  14. Lipoic acid - biological activity and therapeutic potential.

    PubMed

    Gorąca, Anna; Huk-Kolega, Halina; Piechota, Aleksandra; Kleniewska, Paulina; Ciejka, Elżbieta; Skibska, Beata

    2011-01-01

    α-Lipoic acid (LA; 5-(1,2-dithiolan-3-yl)pentanoic acid) was originally isolated from bovine liver by Reed et al. in 1951. LA was once considered a vitamin. Subsequently, it was found that LA is not a vitamin and is synthesized by plants and animals. LA is covalently bound to the ε-amino group of lysine residues and functions as a cofactor for mitochondrial enzymes by catalyzing the oxidative decarboxylation of pyruvate, α-ketoglutarate and branched-chain α-keto acids. LA and its reduced form - dihydrolipoic acid (DHLA), meet all the criteria for an ideal antioxidant because they can easily quench radicals, can chelate metals, have an amphiphlic character and they do not exhibit any serious side effects. They interact with other antioxidants and can regenerate them. For this reason, LA is called an antioxidant of antioxidants. LA has an influence on the second messenger nuclear factor κB (NF-κB) and attenuates the release of free radicals and cytotoxic cytokines. The therapeutic action of LA is based on its antioxidant properties. Current studies support its use in the ancillary treatment of many diseases, such as diabetes, cardiovascular, neurodegenerative, autoimmune diseases, cancer and AIDS. This review was undertaken to gather the most recent information regarding the therapeutic properties of LA and its possible utility in disease treatment. PMID:22001972

  15. Perfluoroalkyl acids : Recent activities and research progress

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of man-made fluorinated organic chemicals consisting of a carbon backbone typically of four to fourteen in length and a charged functional moiety (primarily carboxylate, sulfonate or phosphonate). The two most widely known PFAAs are ...

  16. Acute effect of ascorbic acid on fibrinolytic activity.

    PubMed

    Bordia, A; Paliwal, D K; Jain, K; Kothari, L K

    1978-08-01

    The acute effect of 1 g oral ascorbic acid on serum fibrinolytic activity was studied in 40 adult males. In Group I (healthy adults) administration of ascorbic acid raised the serum level by about 71%, while the fibrinolytic activity increased to a peak of 137% at 6 h. In patients with CAD (Group II) an essentially similar increase in FA was observed. In Group III, simultaneous administration of ascorbic acid with 100 g fat effectively prevented a fall in fibrinolytic activity and actually raised it by 64% above the fasting level. PMID:568476

  17. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  18. Radical scavenging activity and cytotoxicity of ferulic acid.

    PubMed

    Ogiwara, Takako; Satoh, Kazue; Kadoma, Yoshinori; Murakami, Yukio; Unten, Senwa; Atsumi, Toshiko; Sakagami, Hiroshi; Fujisawa, Seiichiro

    2002-01-01

    Ferulic acid and eugenol were examined for their superoxide (O2-), hydroxyl radical (.OH) and nitric oxide (NO)-scavenging ability, using ESR spectroscopy with spin trap agents DMPO and carboxy-PTIO/NOC-7. Ferulic acid more efficiently scavenged .OH and NO than eugenol. The O2- scavenging activity of ferulic acid was comparable with that of eugenol. Ferulic acid significantly reduced the NO production by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells (Raw 264.7 cells) compared to eugenol. The cytotoxic activity of ferulic acid against Raw 264.7 cells was comparable with that against human submandibular gland carcinoma (HSG) cells and the cytotoxicity of ferulic acid was about 10-fold smaller than that of eugenol. The stoichiometric factor (n) (number of moles of peroxy radical trapped by moles of the relevant phenol) of ferulic acid and eugenol was investigated, using the induction period methods of the methyl methacrylate polymerization system. The n-value of ferulic acid (1.5) was higher than that of eugenol (1.0) and was similar to that of 2, 6-di-t-butyl-4-methylphenol (BHT). Ferulic acid as well as eugenol may produce a dimer during the induction period due to an n-value less than 2. These results suggested that ferulic acid may be useful for preventing cell damage perhaps caused by O2-, and in particular by .OH and NO, in living systems. PMID:12529986

  19. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.

    PubMed

    Broeders, Evie P M; Nascimento, Emmani B M; Havekes, Bas; Brans, Boudewijn; Roumans, Kay H M; Tailleux, Anne; Schaart, Gert; Kouach, Mostafa; Charton, Julie; Deprez, Benoit; Bouvy, Nicole D; Mottaghy, Felix; Staels, Bart; van Marken Lichtenbelt, Wouter D; Schrauwen, Patrick

    2015-09-01

    The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. PMID:26235421

  20. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  1. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity.

    PubMed Central

    Yamagishi, J; Furutani, Y; Inoue, S; Ohue, T; Nakamura, S; Shimizu, M

    1981-01-01

    In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were much higher than those for cell growth inhibition but similar to those for inhibition of lambda phage multiplication. Transduction analysis with lambda phages carrying the chromosomal fragment of the tnaA-gyrB region suggested that one of the mutations, nal-31, was located on the gyrB gene. PMID:6271730

  2. ANALYSIS OF ARACHIDONIC ACID METABOLITE AND PLATELET ACTIVATING FACTOR PRODUCTION

    EPA Science Inventory

    Metabolites of arachidonic acid ("eicosanoids") and platelet activating factor are important bioactive lipids that may be involved in the pathobiological alterations in animals induced by pollutant exposure. nalysis of these substances in biological tissue and fluids is important...

  3. Bovine DNase I: gene organization, mRNA expression, and changes in the topological distribution of the protein during apoptosis in lens epithelial cells.

    PubMed

    De María, Alicia; Arruti, Cristina

    2003-12-19

    Genomic DNA sequencing and alignment with the known DNase I mRNA showed that the bovine gene consists of 9 exons and that only the last 8 encode the protein, since initial ATG was found at exon II. RT-PCR was used to identify DNase I mRNA in lens epithelium in vivo and in cultured epithelial cells. We found DNase I transcripts having the same nucleotide sequence as the pancreas form and others lacking almost all exon V. The lens protein presented a slightly higher relative molecular weight than the pancreatic enzyme. Lens DNase I was located in secretory pathway organelles and excluded from the nucleus. Nevertheless, in apoptotic lens epithelial cells in vitro, DNase I translocated to the nucleus and co-localized with TUNEL positive chromatin aggregates. These results indicate that cells in the lens epithelium constitutively express DNase I, and suggest a direct involvement of this nuclease in the final phases of chromatin degradation. PMID:14680812

  4. Structural Requirements for the Procoagulant Activity of Nucleic Acids

    PubMed Central

    Gansler, Julia; Jaax, Miriam; Leiting, Silke; Appel, Bettina; Greinacher, Andreas; Fischer, Silvia; Preissner, Klaus T.

    2012-01-01

    Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects. PMID:23226277

  5. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. PMID:25510639

  6. C-value paradox in angiosperm plant species. I. Sensitivity to DNase I in species with different 2C DNA content.

    PubMed

    Olszewska, M J

    1992-01-01

    The experimental conditions for DNAase I digestion in situ for plant nuclei have been presented. Cytophotometric measurements of DNA loss performed on Feulgen-stained nuclei of three species differing in 2C DNA, heterochromatin and condensed euchromatin contents have shown that the lower 2C DNA amount the higher is DNase I sensitivity. Heterochromatin and some fractions of euchromatin are DNase I resistant. Microdensitometric measurements along M chromosome in Vicia faba have demonstrated the sites hypersensitive to DNase I. PMID:1483532

  7. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  8. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  9. Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities

    PubMed Central

    Cot, Marlène; Ray, Aurélie; Gilleron, Martine; Vercellone, Alain; Larrouy-Maumus, Gérald; Armau, Elise; Gauthier, Sophie; Tiraby, Gérard; Puzo, Germain; Nigou, Jérôme

    2011-01-01

    Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents. PMID:22028855

  10. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties. PMID:24813273

  11. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  12. Isolation of episomal bovine papillomavirus chromatin and identification of a DNase I-hypersensitive region.

    PubMed Central

    Rösl, F; Waldeck, W; Sauer, G

    1983-01-01

    The investigation of papillomavirus chromatin has been hampered by the unavailability of a tissue culture system for vegetative growth of these viruses. We have used, therefore, bovine papillomavirus type 1-transformed hamster embryo fibroblasts containing 200 to 250 episomal genome equivalents per cell as a source of viral chromatin. The selectively isolated chromatin was shown to be slightly larger (80S) than the mature simian virus 40 chromatin, which was cosedimented in a sucrose density gradient. Both Fo I and Fo II were present in the bovine papillomavirus type 1 chromatin. A fast-sedimenting fraction, whose structure is still unknown, also contained oligomeric bovine papillomavirus type 1 DNA. By in situ DNase digestion of isolated nuclei and subsequent cleavage of the bovine papillomavirus type 1 DNA with various restriction endonucleases, a major DNase-hypersensitive region was detected in the chromatin. This region, comprising approximately 320 base pairs, is located between the relative physical map positions 0.88 and 0.92. Images PMID:6302320

  13. Antiviral activity of carnosic acid against respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Human respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study. Methods Effects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs. Results Among the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV. Conclusions The current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic

  14. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  15. PeaKDEck: a kernel density estimator-based peak calling program for DNaseI-seq data.

    PubMed

    McCarthy, Michael T; O'Callaghan, Christopher A

    2014-05-01

    Hypersensitivity to DNaseI digestion is a hallmark of open chromatin, and DNaseI-seq allows the genome-wide identification of regions of open chromatin. Interpreting these data is challenging, largely because of inherent variation in signal-to-noise ratio between datasets. We have developed PeaKDEck, a peak calling program that distinguishes signal from noise by randomly sampling read densities and using kernel density estimation to generate a dataset-specific probability distribution of random background signal. PeaKDEck uses this probability distribution to select an appropriate read density threshold for peak calling in each dataset. We benchmark PeaKDEck using published ENCODE DNaseI-seq data and other peak calling programs, and demonstrate superior performance in low signal-to-noise ratio datasets. PMID:24407222

  16. Synthesis and antihyperlipidemic activity of piperic acid derivatives.

    PubMed

    A, Rong; Bao, Narisu; Sun, Zhaorigetu; Borjihan, Gereltu; Qiao, Yanjiang; Jin, Zhuang

    2015-02-01

    A series of piperic acid derivatives were designed and synthesized from piperine/piperlonguminine, and their antihyperlipidemic activities evaluated in diet-induced hyperlipidemic rats with respect to simvastatin. Two promising analogues 3 and 10 were discovered and their antihyperlipidemic activities were comparable to or better than those of simvastatin. PMID:25920263

  17. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  18. Design and characterization of an acid-activated antimicrobial peptide.

    PubMed

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  19. First total synthesis of prasinic acid and its anticancer activity.

    PubMed

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  20. Sequence specificity of actinomycin D and Netropsin binding to pBR322 DNA analyzed by protection from DNase I.

    PubMed Central

    Lane, M J; Dabrowiak, J C; Vournakis, J N

    1983-01-01

    A direct approach to determining the sequence specificities of equilibrium binding drugs by using the DNase protection technique is described. The method utilizes singly end-labeled restriction fragments and partial digestion of the drug fragment complex with DNase I. Microdensitometry of autoradiograms produced after electrophoretic separation of digestion products allows determination of sequences that are affected by drug binding. The feasibility of the technique for locating small ligands bound to DNA and its eventual use as a quantitative thermodynamic approach to studying ligand binding to heterogeneous DNA as a function of sequence is illustrated by using actinomycin D and Netropsin. Images PMID:6304702

  1. Inhibition of urease activity by dipeptidyl hydroxamic acids.

    PubMed

    Odake, S; Nakahashi, K; Morikawa, T; Takebe, S; Kobashi, K

    1992-10-01

    A series of dipeptidyl hydroxamic acids (H-X-Gly-NHOH: X = amino acid residues) was synthesized, and the inhibitory activity against Jack bean and Proteus mirabilis ureases [EC 3.5.1.5] was examined. A number of H-X-Gly-NHOH inhibited Jack bean urease with an I50 of the order of 10(-6) M and inhibited Proteus mirabilis urease with an I50 of the order of 10(-5) M. The inhibition against Jack bean urease was more potent than that with the corresponding aminoacyl hydroxamic acids (H-X-NHOH). PMID:1464106

  2. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species.

    PubMed

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2009-03-01

    Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC(50) 6.5 microg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC(50) 3.2 microg/ml) and trypanocidal (16.5 microg/ml) activities, respectively. PMID:19361822

  3. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  4. EtpE Binding to DNase X Induces Ehrlichial Entry via CD147 and hnRNP-K Recruitment, Followed by Mobilization of N-WASP and Actin

    PubMed Central

    Mohan Kumar, Dipu; Lin, Mingqun; Xiong, Qingming; Webber, Mathew James; Kural, Comert

    2015-01-01

    ABSTRACT Obligate intracellular bacteria, such as Ehrlichia chaffeensis, perish unless they can enter eukaryotic cells. E. chaffeensis is the etiological agent of human monocytic ehrlichiosis, an emerging infectious disease. To infect cells, Ehrlichia uses the C terminus of the outer membrane invasin entry-triggering protein (EtpE) of Ehrlichia (EtpE-C), which directly binds the mammalian cell surface glycosylphosphatidyl inositol-anchored protein, DNase X. How this binding drives Ehrlichia entry is unknown. Here, using affinity pulldown of host cell lysates with recombinant EtpE-C (rEtpE-C), we identified two new human proteins that interact with EtpE-C: CD147 and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). The interaction of CD147 with rEtpE-C was validated by far-Western blotting and coimmunoprecipitation of native EtpE with endogenous CD147. CD147 was ubiquitous on the cell surface and also present around foci of rEtpE-C-coated-bead entry. Functional neutralization of surface-exposed CD147 with a specific antibody inhibited Ehrlichia internalization and infection but not binding. Downregulation of CD147 by short hairpin RNA (shRNA) impaired E. chaffeensis infection. Functional ablation of cytoplasmic hnRNP-K by a nanoscale intracellular antibody markedly attenuated bacterial entry and infection but not binding. EtpE-C also interacted with neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is activated by hnRNP-K. Wiskostatin, which inhibits N-WASP activation, and cytochalasin D, which inhibits actin polymerization, inhibited Ehrlichia entry. Upon incubation with host cell lysate, EtpE-C but not an EtpE N-terminal fragment stimulated in vitro actin polymerization in an N-WASP- and DNase X-dependent manner. Time-lapse video images revealed N-WASP recruitment at EtpE-C-coated bead entry foci. Thus, EtpE-C binding to DNase X drives Ehrlichia entry by engaging CD147 and hnRNP-K and activating N-WASP-dependent actin polymerization. PMID:26530384

  5. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity.

    PubMed

    Kong, Lingbao; Li, Shanshan; Liao, Qingjiao; Zhang, Yanni; Sun, Ruina; Zhu, Xiangdong; Zhang, Qinghua; Wang, Jun; Wu, Xiaoyu; Fang, Xiaonan; Zhu, Ying

    2013-04-01

    Hepatitis C virus (HCV) infects up to 170 million people worldwide and causes significant morbidity and mortality. Unfortunately, current therapy is only curative in approximately 50% of HCV patients and has adverse side effects, which warrants the need to develop novel and effective antivirals against HCV. We have previously reported that the Chinese herb Fructus Ligustri Lucidi (FLL) directly inhibited HCV NS5B RNA-dependent RNA polymerase (RdRp) activity (Kong et al., 2007). In this study, we found that the FLL aqueous extract strongly suppressed HCV replication. Further high-performance liquid chromatography (HPLC) analysis combined with inhibitory assays indicates that oleanolic acid and ursolic acid are two antiviral components within FLL aqueous extract that significantly suppressed the replication of HCV genotype 1b replicon and HCV genotype 2a JFH1 virus. Moreover, oleanolic acid and ursolic acid exhibited anti-HCV activity at least partly through suppressing HCV NS5B RdRp activity as noncompetitive inhibitors. Therefore, our results for the first time demonstrated that natural products oleanolic acid and ursolic acid could be used as potential HCV antivirals that can be applied to clinic trials either as monotherapy or in combination with other HCV antivirals. PMID:23422646

  6. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  7. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  8. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in pneumococcus

    SciTech Connect

    Shoemaker, N.B.; Smith, M.D.; Guild, W.R.

    1980-01-01

    Genes for chloramphenicol resistance, Cm(r) and tetracycline resistance, Tc(r), which are present as heterologous insertions in the chromosomes of some clinical isolates of Streptococcus pneumoniae (pneumococcus) and derivative strains, were transferred at a low frequency to other pneumococci by a DNase-resistant filter mating process that resembles conjugation. Cotransfer of Cm(r) and Tc(r) was the most common event. Neither the donor strains nor the transconjugants contained detectable plasmids. Transconjugants acted as donors for transformation and for filter mating and had properties similar to those of the parent strain. The presence of the conjugative plasmid pIP501 in the donor did not appear to influence the transfer properties of the Cm(r) or Tc(r) determinants.

  9. The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage.

    PubMed Central

    Murchie, A I; Carter, W A; Portugal, J; Lilley, D M

    1990-01-01

    The accessibility of phosphodiester bonds in the DNA of four-way helical junctions has been probed with the nuclease DNase I. Regions of protection were observed on all four strands of the junctions, that tended to be longer on the strands that are exchanged between the coaxially stacked pairs of helices. The protected regions on the continuous strands of the stacked helices were not located exactly at the junction, but were displaced towards the 3' side of the strand. This is the region of backbone that becomes located in the major groove of the opposed helix in the non-crossed, right-handed structure for the junction, and might therefore be predicted to be protected against cleavage by an enzyme. However, the major grooves of the structure remain accessible to the much smaller probe dimethyl sulphate. Images PMID:2339051

  10. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    PubMed Central

    Ali Mohammed, Marwan Mansoor; Nerland, Audun H.; Al-Haroni, Mohammed; Bakken, Vidar

    2013-01-01

    Background Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. Methods F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions. PMID:23372876

  11. Synthesis and biological activity of tetralone abscisic acid analogues.

    PubMed

    Nyangulu, James M; Nelson, Ken M; Rose, Patricia A; Gai, Yuanzhu; Loewen, Mary; Lougheed, Brenda; Quail, J Wilson; Cutler, Adrian J; Abrams, Suzanne R

    2006-04-01

    Bicyclic analogues of the plant hormone abscisic acid (ABA) were designed to incorporate the structural elements and functional groups of the parent molecule that are required for biological activity. The resulting tetralone analogues were predicted to have enhanced biological activity in plants, in part because oxidized products would not cyclize to forms corresponding to the inactive catabolite phaseic acid. The tetralone analogues were synthesized in seven steps from 1-tetralone and a range of analogues were accessible through a second route starting with 2-methyl-1-naphthol. Tetralone ABA 8 was found to have greater activity than ABA in two bioassays. The absolute configuration of (+)-8 was established by X-ray crystallography of a RAMP hydrazone derivative. The hydroxymethyl compounds 10 and 11, analogues for studying the roles of 8- and 9-hydroxy ABA 3 and 6, were also synthesized and found to be active. PMID:16557330

  12. Development of amino acid uptake activity in Neurospora.

    PubMed

    Railey, R M; Kinsey, J A

    1976-02-01

    During the germination and growth of Neurospora conidia, amino acid permease systems I (neutral) and II (general) increase in specific activity. System III (basic) decreases in specific activity with the onset of germination. System I shows two peaks of activity during the logarithmic phase of growth. One peak occurs at 6 h, the other at 12 h of growth. Both peaks are abolished in the mtr mutant. Both peaks have a Km for phenylalanine of 40 muM. The peaks of system I activity appear to correlate with morphological changes. PMID:4208

  13. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  16. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  17. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  18. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides.

    PubMed

    Begum, Parvin; Hashidoko, Yasuyuki; Islam, Md Tofazzal; Ogawa, Yuko; Tahara, Satoshi

    2002-01-01

    The EtOAc soluble constituents of the unripe fruits of Ginkgo biloba showed motility inhibition followed by lysis of zoospores of the phytopathogenic Aphanomyces cochlioides. We purified 22:1-omega7-anacardic acid (1), 24:1-omega9-anacardic acid (2) and 22:0-anacardic acid (3), together with other related compounds, 21:1-omega7-cardol (4) and 21:1-omega7-cardanol (5) from the crude extracts of Ginkgo fruits. Amongst them, compound 1 was a major active agent in quality and quantity, and showed potent motility inhibition (98% in 30 min) followed by lysis (55% in 3 h) of the zoospores at 1 x 10(-7) M. The 2-O-methyl derivative (1-c) of 1 displayed antibacterial activity against Bacillus subtilis, but practically inactive to Escherichia coli. A brief study on structure-activity relationships revealed that a carboxyl group on the aromatic ring and an unsaturated side chain in the anacardic acid derivative are important for strong motility inhibitory and lytic activities against the zoospore. PMID:12440727

  19. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2' and bck1'), Aspergil...

  20. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  1. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  2. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  3. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0. PMID:25351717

  4. Impairment of NFkappaB activity by unsaturated fatty acids.

    PubMed

    Schumann, Julia; Fuhrmann, Herbert

    2010-08-01

    Using a luciferase reporter gene assay, we identified polyunsaturated fatty acids (PUFA) to impair NF kappaB signaling. Furthermore, we could demonstrate the PUFA ability to derogate NF kappaB activity to be independent from the family the fatty acid belongs to. Instead, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the NF kappaB activity of stimulated, long-term supplemented cells. The data presented provide new insights into the biological mechanisms PUFA exert their anti-inflammatory effects. Since suppression of NF kappaB activity could be of benefit in a number of inflammatory diseases as well as cancer, our findings are of clinical implication. According to our data dietary supplementation with PUFA-containing oils is likely to provide an at least palliative therapy for disorders linked to inappropriate NF kappaB signaling. PMID:20580946

  5. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  6. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  7. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  8. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  9. Deoxyribonuclease activity of polyclonal IgGs: a putative serological marker in patients with spondyloarthritides.

    PubMed

    Kundzer, Alena V; Volkova, Margarita V; Bogdanos, Dimitrios P; Rödiger, Stefan; Schierack, Peter; Generalov, I; Nevinsky, Georgy A; Roggenbuck, Dirk

    2013-07-01

    Antibodies executing catalytic activity are referred to as antibody enzymes or short "abzymes" and may have diagnostic relevance. Abzymes with deoxyribonuclease (DNase) activity have been demonstrated in patients with autoimmune and infectious diseases. Despite several reports on the occurrence of DNase abzymes in systemic autoimmune rheumatic diseases, conclusive data about DNase activity of antibodies in patients with spondyloarthritides (SpAs) are lacking. In recent cross-sectional studies evaluating levels of IgG DNase activity in patients with psoriatic arthritis (PsA), reactive arthritis (ReA), and ankylosing spondylitis (AS), DNase activity of IgG has been assessed by the rivanol clot method and confirmed by agarose gel electrophoresis. Remarkably, levels of IgG DNase activity were significantly higher in sera of SpA patients than those in control subjects. In patients with PsA, ReA, and AS, a positive correlation of DNase IgG activity with synovitis, disease activity, and stage of spondylitis was observed, respectively. Given the involvement of autoimmune reactions in cytolysis and connective tissue degradation in PsA, ReA, and to a lesser extent in AS, abzymes might have an impact on the pathophysiology of SpAs. Detection of IgG DNase activity in patients suffering from SpA represents an exciting new research field and may assist in the differential diagnosis of SpA. PMID:23592052

  10. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  11. Fatty Acid-Elongating Activity in Rapidly Expanding Leek Epidermis.

    PubMed Central

    Evenson, K. J.; Post-Beittenmiller, D.

    1995-01-01

    A microsomal fatty acid elongase activity measured in epidermis of rapidly expanding leek (Allium porrum L.) was 10-fold higher in specific activity than preparations from store-bought leek. These preparations elongated acyl chains effectively using endogenous or supplied primers. Elongation of C20:0 was specifically inhibited by 2 [mu]M cerulenin, and labeling experiments with [3H]cerulenin labeled two polypeptides (65 and 88 kD). ATP was required for maximal elongase activity in expanding leaves but was lost in nonexpanding tissues. Both [14C]stearoyl-coenzyme A (CoA) and [14C]stearate were maximally elongated in the presence of ATP. Addition of fully reduced CoA, however, inhibited [14C]stearate elongation, suggesting that stearoyl-CoA synthesis was not a prerequisite for elongation. Furthermore, microsomes preincubated with [14C]stearoyl-CoA plus ATP resulted in loss of radiolabel from the acyl-CoA pool without a corresponding loss in elongating activity. The lack of correlation between elongating activity and the label retained in the putative acyl-CoA substrate pool suggests that acyl-CoAs may not be the immediate precursors for elongation and that ATP plays a critical, yet undefined, role in the elongation process. We propose that an ATP-dependent elongating activity may generate the long-chain fatty acids required for wax biosynthesis. PMID:12228624

  12. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  13. Immune Activation in the Liver by Nucleic Acids

    PubMed Central

    Sun, Qian; Wang, Qingde; Scott, Melanie J.; Billiar, Timothy R.

    2016-01-01

    Abstract Viral infection in the liver, including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, is a major health problem worldwide, especially in developing countries. The infection triggers a pro-inflammatory response in patients that is crucial for host defense. Recent studies have identified multiple transmembrane and cytosolic receptors that recognize pathogen-derived nucleic acids, and these receptors are essential for driving immune activation in the liver. In addition to sensing DNA/RNA from pathogens, these intracellular receptors can be activated by nucleic acids of host origin in response to sterile injuries. In this review, we discuss the expanding roles of these receptors in both immune and nonimmune cells in the liver. PMID:27350945

  14. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives. PMID:26827629

  15. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    PubMed Central

    Ma, De-Lu; Chen, Mai; Su, Chen X.; West, Brett J.

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  16. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    PubMed

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  17. Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    PubMed Central

    Cartron, Michaël L.; England, Simon R.; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon

    2014-01-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. PMID:24709265

  18. Toxocara canis: Larvicidal activity of fatty acid amides.

    PubMed

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  19. N-Amino acid linoleoyl conjugates: anti-inflammatory activities.

    PubMed

    Burstein, Sumner; McQuain, Catherine; Salmonsen, Rebecca; Seicol, Benjamin

    2012-01-15

    Several N-linked amino acid-linoleic acid conjugates were studied for their potential as anti inflammatory agents. The parent molecule, N-linoleoylglycine was tested in an in vivo model, the mouse peritonitis assay where it showed activity in reducing leukocyte migration at doses as low as 0.3mg/kg when administered by mouth in safflower oil. Harvested peritoneal cells produced elevated levels of the inflammation-resolving eicosanoid 15-deoxy-Δ(13,14)-PGJ(2). These results are similar to those obtained in earlier studies with N-arachidonoylglycine. An in vitro model using mouse macrophage RAW cells was used to evaluate a small group of structural analogs for their ability to stimulate 15-deoxy-Δ(13,14)-PGJ(2) production. The d-alanine derivative was the most active while the d-phenylalanine showed almost no response. A high degree of stereo specificity was observed comparing the d and l alanine isomers; the latter being the less active. It was concluded that linoleic acid conjugates could provide suitable templates in a drug discovery program leading to novel agents for promoting the resolution of chronic inflammation. PMID:22217875

  20. Intraluminal acid activates esophageal nodose C fibers after mast cell activation.

    PubMed

    Zhang, Shizhong; Liu, Zhenyu; Heldsinger, Andrea; Owyang, Chung; Yu, Shaoyong

    2014-02-01

    Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2-3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation. PMID:24264049

  1. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  2. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations. PMID:25915112

  3. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling. PMID:26772186

  4. Functional compensation among HMGN variants modulates the DNase I hypersensitive sites at enhancers

    PubMed Central

    Deng, Tao; Zhu, Z. Iris; Zhang, Shaofei; Postnikov, Yuri; Huang, Di; Horsch, Marion; Furusawa, Takashi; Beckers, Johannes; Rozman, Jan; Klingenspor, Martin; Amarie, Oana; Graw, Jochen; Rathkolb, Birgit; Wolf, Eckhard; Adler, Thure; Busch, Dirk H.; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; van der Velde, Arjan; Tessarollo, Lino; Ovcherenko, Ivan; Landsman, David; Bustin, Michael

    2015-01-01

    DNase I hypersensitive sites (DHSs) are a hallmark of chromatin regions containing regulatory DNA such as enhancers and promoters; however, the factors affecting the establishment and maintenance of these sites are not fully understood. We now show that HMGN1 and HMGN2, nucleosome-binding proteins that are ubiquitously expressed in vertebrate cells, maintain the DHS landscape of mouse embryonic fibroblasts (MEFs) synergistically. Loss of one of these HMGN variants led to a compensatory increase of binding of the remaining variant. Genome-wide mapping of the DHSs in Hmgn1−/−, Hmgn2−/−, and Hmgn1−/−n2−/− MEFs reveals that loss of both, but not a single HMGN variant, leads to significant remodeling of the DHS landscape, especially at enhancer regions marked by H3K4me1 and H3K27ac. Loss of HMGN variants affects the induced expression of stress-responsive genes in MEFs, the transcription profiles of several mouse tissues, and leads to altered phenotypes that are not seen in mice lacking only one variant. We conclude that the compensatory binding of HMGN variants to chromatin maintains the DHS landscape, and the transcription fidelity and is necessary to retain wild-type phenotypes. Our study provides insight into mechanisms that maintain regulatory sites in chromatin and into functional compensation among nucleosome binding architectural proteins. PMID:26156321

  5. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I.

    PubMed Central

    Romanowski, G; Lorenz, M G; Wackernagel, W

    1991-01-01

    The adsorption of [3H]thymidine-labeled plasmid DNA (pHC314; 2.4 kb) of different conformations to chemically pure sand was studied in a flowthrough microenvironment. The extent of adsorption was affected by the concentration and valency of cations, indicating a charge-dependent process. Bivalent cations (Mg2+, Ca2+) were 100-fold more effective than monovalent cations (Na+, K+, NH4+). Quantitative adsorption of up to 1 microgram of negatively supercoiled or linearized plasmid DNA to 0.7 g of sand was observed in the presence of 5 mM MgCl2 at pH 7. Under these conditions, more than 85% of DNA adsorbed within 60 s. Maximum adsorption was 4 micrograms of DNA to 0.7 g of sand. Supercoil molecules adsorbed slightly less than linearized or open circular plasmids. An increase of the pH from 5 to 9 decreased adsorption at 0.5 mM MgCl2 about eightfold. It is concluded that adsorption of plasmid DNA to sand depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations. The results are discussed on the grounds of the polyelectrolyte adsorption model. Sand-adsorbed DNA was 100 times more resistant against DNase I than was DNA free in solution. The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats. PMID:1647748

  6. Which Genetics Variants in DNase-Seq Footprints Are More Likely to Alter Binding?

    PubMed

    Moyerbrailean, Gregory A; Kalita, Cynthia A; Harvey, Chris T; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2016-02-01

    Large experimental efforts are characterizing the regulatory genome, yet we are still missing a systematic definition of functional and silent genetic variants in non-coding regions. Here, we integrated DNaseI footprinting data with sequence-based transcription factor (TF) motif models to predict the impact of a genetic variant on TF binding across 153 tissues and 1,372 TF motifs. Each annotation we derived is specific for a cell-type condition or assay and is locally motif-driven. We found 5.8 million genetic variants in footprints, 66% of which are predicted by our model to affect TF binding. Comprehensive examination using allele-specific hypersensitivity (ASH) reveals that only the latter group consistently shows evidence for ASH (3,217 SNPs at 20% FDR), suggesting that most (97%) genetic variants in footprinted regulatory regions are indeed silent. Combining this information with GWAS data reveals that our annotation helps in computationally fine-mapping 86 SNPs in GWAS hit regions with at least a 2-fold increase in the posterior odds of picking the causal SNP. The rich meta information provided by the tissue-specificity and the identity of the putative TF binding site being affected also helps in identifying the underlying mechanism supporting the association. As an example, the enrichment for LDL level-associated SNPs is 9.1-fold higher among SNPs predicted to affect HNF4 binding sites than in a background model already including tissue-specific annotation. PMID:26901046

  7. Which Genetics Variants in DNase-Seq Footprints Are More Likely to Alter Binding?

    PubMed Central

    Moyerbrailean, Gregory A.; Kalita, Cynthia A.; Harvey, Chris T.; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2016-01-01

    Large experimental efforts are characterizing the regulatory genome, yet we are still missing a systematic definition of functional and silent genetic variants in non-coding regions. Here, we integrated DNaseI footprinting data with sequence-based transcription factor (TF) motif models to predict the impact of a genetic variant on TF binding across 153 tissues and 1,372 TF motifs. Each annotation we derived is specific for a cell-type condition or assay and is locally motif-driven. We found 5.8 million genetic variants in footprints, 66% of which are predicted by our model to affect TF binding. Comprehensive examination using allele-specific hypersensitivity (ASH) reveals that only the latter group consistently shows evidence for ASH (3,217 SNPs at 20% FDR), suggesting that most (97%) genetic variants in footprinted regulatory regions are indeed silent. Combining this information with GWAS data reveals that our annotation helps in computationally fine-mapping 86 SNPs in GWAS hit regions with at least a 2-fold increase in the posterior odds of picking the causal SNP. The rich meta information provided by the tissue-specificity and the identity of the putative TF binding site being affected also helps in identifying the underlying mechanism supporting the association. As an example, the enrichment for LDL level-associated SNPs is 9.1-fold higher among SNPs predicted to affect HNF4 binding sites than in a background model already including tissue-specific annotation. PMID:26901046

  8. PlantDHS: a database for DNase I hypersensitive sites in plants

    PubMed Central

    Zhang, Tao; Marand, Alexandre P.; Jiang, Jiming

    2016-01-01

    Gene expression is regulated by orchestrated binding of regulatory proteins to promoters and other cis-regulatory DNA elements (CREs). Several plant databases have been developed for mapping promoters or DNA motifs associated with promoters. However, there is a lack of databases that allow investigation for all CREs. Here we present PlantDHS (http://plantdhs.org), a plant DNase I hypersensitive site (DHS) database that integrates histone modification, RNA sequencing, nucleosome positioning/occupancy, transcription factor binding sites, and genomic sequence within an easily navigated user interface. DHSs are indicative of all CREs, including promoters, enhancers, silencers, insulators and transcription factor binding sites; all of which play immense roles in global gene expression regulation. PlantDHS provides a platform to predict all CREs associated with individual genes from three model plant species, including Arabidopsis thaliana, Brachypodium distachyon and rice (Oryza sativa). PlantDHS is especially valuable in the detection of distant CREs that are located away from promoters. PMID:26400163

  9. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  10. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  11. Nick translation of HeLa cell nuclei as a probe for locating DNase I-sensitive nucleosomes

    SciTech Connect

    Javaherian, K.; Fasman, G.D.

    1984-03-10

    The technique of nick translation of nuclei has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion. 36 references, 7 figures.

  12. Real-time PCR mapping of DNaseI-hypersensitive sites using a novel ligation-mediated amplification technique

    PubMed Central

    Follows, George A.; Janes, Mary E.; Vallier, Ludovic; Green, Anthony R.; Gottgens, Berthold

    2007-01-01

    Mapping sites within the genome that are hypersensitive to digestion with DNaseI is an important method for identifying DNA elements that regulate transcription. The standard approach to locating these DNaseI-hypersensitive sites (DHSs) has been to use Southern blotting techniques, although we, and others, have recently published alternative methods using a range of technologies including high-throughput sequencing and genomic array tiling paths. In this article, we describe a novel protocol to use real-time PCR to map DHS. Advantages of the technique reported here include the small cell numbers required for each analysis, rapid, relatively low-cost experiments with minimal need for specialist equipment. Presented examples include comparative DHS mapping of known TAL1/SCL regulatory elements between human embryonic stem cells and K562 cells. PMID:17389645

  13. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  14. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    PubMed

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  15. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    PubMed

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  16. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  17. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  18. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  19. Analysis of Mice Lacking DNaseI Hypersensitive Sites at the 5′ End of the IgH Locus

    PubMed Central

    Manis, John P.; Zarrin, Ali A.; Brodeur, Peter H.; Alt, Frederick W.

    2010-01-01

    The 5′ end of the IgH locus contains a cluster of DNaseI hypersensitive sites, one of which (HS1) was shown to be pro-B cell specific and to contain binding sites for the transcription factors PU.1, E2A, and Pax5. These data as well as the location of the hypersensitive sites at the 5′ border of the IgH locus suggested a possible regulatory function for these elements with respect to the IgH locus. To test this notion, we generated mice carrying targeted deletions of either the pro-B cell specific site HS1 or the whole cluster of DNaseI hypersensitive sites. Lymphocytes carrying these deletions appear to undergo normal development, and mutant B cells do not exhibit any obvious defects in V(D)J recombination, allelic exclusion, or class switch recombination. We conclude that deletion of these DNaseI hypersensitive sites does not have an obvious impact on the IgH locus or B cell development. PMID:21085586

  20. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific

    SciTech Connect

    Levy-Wilson, B.; Fortier, C.; Blackhart, B.D.; McCarthy, B.J.

    1988-01-01

    The authors mapped the DNase I- and micrococcal nuclease-hypersensitive sites present in the 5' end of the human apolipoprotein B (apo-B) gene in nuclei from cells expressing or not expressing the gene. Four DNase I-hypersensitive sites were found in nuclei from liver-derived HepG2 cells and intestine-derived CaCo-2 cells, which express the apo-B gene, but not in HeLa cells, which do not. These sites are located near positions -120, -440, -700, and +760 base pairs relative to the transcriptional start site. Undifferentiated CaCo-2 cells exhibited another site, near position -540. Six micrococcal nuclease-hypersensitive sites were found in nuclei from HepG2 and CaCo-2 cells, but not in HeLa cells or free DNA. These sites are located near positions -120, -390, -530, -700, -850, and +210. HepG2 cells exhibited another site, near position +460. Comparison of the DNA sequence of the 5' flanking regions of the human and mouse apo-B genes revealed a high degree of evolutionary conservation of short stretches of sequences in the immediate vicinity of each of the DNase I- and most of the micrococcal nuclease-hypersensitive sites.

  1. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  2. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  3. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid. PMID:23499846

  4. Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress.

    PubMed

    Snodgrass, Ryan G; Huang, Shurong; Namgaladze, Dmitry; Jandali, Ola; Shao, Tiffany; Sama, Spandana; Brüne, Bernhard; Hwang, Daniel H

    2016-06-01

    Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume. PMID:27142735

  5. Antiproliferative Activity of β-Hydroxy-β-Arylalkanoic Acids

    PubMed Central

    Dilber, Sanda P.; Žižak, Željko S.; Stanojković, Tatjana P.; Juranić, Zorica D.; Drakulić, Branko J.; Juranić, Ivan O.

    2007-01-01

    Article describes the synthesis of fifteen β-hydroxy-β-arylalkanoic acids by Reformatsky reaction using the 1-ethoxyethyl-2-bromoalkanoates, aromatic or cycloalkyl ketones or aromatic aldehydes. The short survey of previously reported synthetic procedures for title compounds, is given. The majority of obtained compounds exert antiproliferative activity in vitro toward human: HeLa, Fem-X cells, K562, and LS174 cells, having IC50 values from 62.20 to 205 μM. The most active compound is 3-OH-2,2-di-Me-3-(4- biphenylyl)-butanoic acid, having the IC50 value 62.20 μM toward HeLa cells. Seven examined compounds did not affect proliferation of healthy human blood peripheral mononuclear cells (PBMC and PBMC+ PHA), IC50 > 300 μM. The preliminary QSAR results show that estimated lipophilicity of compounds influences their antiproliferative activity in the first place. The ability of dehydration, and the spatial arrangement of hydrophobic portion, HBD and HBA in molecules are has almost equal importance as lipophilicity.

  6. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF. PMID:12504106

  7. Biocatalytic amidation of carboxylic acids and their antinemic activity.

    PubMed

    Bose, Abinesh; Shakil, Najam Akhtar; Pankaj; Kumar, Jitendra; Singh, Manish K

    2010-04-01

    A series of novel N-alkyl substituted amides, synthesized by enzyme catalysis, were evaluated against root-knot nematode, Meloidogyne incognita and found to have potential antinemic activity. The corresponding amides were prepared by the condensation of equimolar amounts of carboxylic acids with different alkyl amines in the presence of Candida antarctica lipase at 60-90 degrees C in 16-20 h. The reactions were carried out in a non - solvent system without the use of any activating agents. All the products were obtained in appreciable amounts and the yields for different compounds varied between 77.4-82.3%. The synthesized compounds were characterized using spectroscopy techniques namely Infra Red (IR) and Nuclear Magnetic Resonance (NMR) ((1)H and (13)C). Nematicidal activity of synthesized amides was evaluated against J(2)s of Meloidogyne incognita at 500, 250, 125 and 62.5 ppm concentrations after 24 h, 48 h and 72 h of exposure. Among all the tested compounds, N-propyl-butyramide, N-propyl-pentanamide and N-propyl-hexanamide were found to possess significant activity with LC(50) values of 67.46, 83.49 and 96.53 respectively. N-propyl-butyramide with LC(50) value of 67.46 ppm was found to be most active amide against J(2)s of Meloidogyne incognita. The bioactivity study showed that an increase in alkyl chain significantly decreased the activity of amides against root-knot nematode. PMID:20390959

  8. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth. PMID:26037611

  9. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity

    PubMed Central

    Khan, Md. Abdul Hye; Liu, Jing; Kumar, Ganesh; Skapek, Stephen X.; Falck, John R.; Imig, John D.

    2013-01-01

    Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40–80% along with a 50–70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50–90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin.—Khan, Md. A. H., Liu, J., Kumar, G., Skapek, S. X., Falck, J. R., Imig, J. D. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. PMID:23603837

  10. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    PubMed

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  11. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives.

    PubMed

    Gonçalves, Bruno M F; Salvador, Jorge A R; Marín, Silvia; Cascante, Marta

    2016-05-23

    A series of novel fluorinated Asiatic Acid (AA) derivatives were successfully synthesized, tested for their antiproliferative activity against HeLa and HT-29 cell lines, and their structure activity relationships were evaluated. The great majority of fluorinated derivatives showed stronger antiproliferative activity than AA in a concentration dependent manner. The most active compounds have a pentameric A-ring containing an α,β-unsaturated carbonyl group. The compounds with better cytotoxic activity were then evaluated against MCF-7, Jurkat, PC-3, A375, MIA PaCa-2 and BJ cell lines. Derivative 14 proved to be the most active compound among all tested derivatives and its mechanism of action was further investigated in HeLa cell line. The results showed that compound 14 induced cell cycle arrest in G0/G1 stage as a consequence of up-regulation of p21(cip1/waf1) and p27(kip1) and down-regulation of cyclin D3 and Cyclin E. Furthermore, compound 14 was found to induce caspase driven-apoptosis with activation of caspases-8 and caspase-3 and the cleavage of PARP. The cleavage of Bid into t-Bid, the up-regulation of Bax and the down-regulation of Bcl-2 were also observed after treatment of HeLa cells with compound 14. Taken together, these mechanistic studies revealed the involvement of extrinsic and intrinsic pathways in the apoptotic process induced by compound 14. Importantly, the antiproliferative activity of this compound on the non-tumor BJ human fibroblast cell line is weaker than in the tested cancer cell lines. The enhanced potency (between 45 and 90-fold more active than AA in a panel of cancer cell lines) and selectivity of this new AA derivative warrant further preclinical evaluation. PMID:26974379

  12. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I

    SciTech Connect

    Romanowski, G.; Lorenz, M.G.; Wackernagel, W. )

    1991-04-01

    The adsorption of ({sup 3}H)thymidine-labeled plasmid DNA (pHC314; 2.4 kb) of different conformations to chemically pure sand was studied in a flowthrough microenvironment. The extent of adsorption was affected by the concentration and valency of cations, indicating a charge-dependent process. Bivalent cations (Mg{sup 2+}, Ca{sup 2+}) were 100-fold more effective than monovalent cations (Na{sup +}, K{sup +}, NH{sub 4}{sup +}). Quantitative adsorption of up to 1 {mu}g of negatively supercoiled or linearized plasmid DNA to 0.7 g of sand was observed in the presence of 5 mm MgCl{sub 2} at pH 7. Under these conditions, more than 85% of DNA adsorbed within 60 s. Maximum adsorption was 4 {mu}g of DNA to 0.7 g of sand. Supercoil molecules adsorbed slightly less than linearized or open circular plasmids. An increase of the pH from 5 to 9 decreased adsorption at 0.5 mM MgCl{sub 2} about eightfold. It is concluded that adsorption of plasmid DNA to sand depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations. The results are discussed on the grounds of the polyelectrolyte adsorption model. Sand-adsorbed DNA was 100 times more resistant against DNase I than was DNA free in solution. The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats.

  13. In vivo analysis of DNase I hypersensitive sites in the human CFTR gene.

    PubMed Central

    Moulin, D. S.; Manson, A. L.; Nuthall, H. N.; Smith, D. J.; Huxley, C.; Harris, A.

    1999-01-01

    BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:10448643

  14. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR.

    PubMed Central

    Tanimoto, K; Liu, Q; Bungert, J; Engel, J D

    1999-01-01

    The polyoma virus enhancer (PyE) is capable of conferring integration position-independent expression to linked genes in stably transfected erythroid cells after joining to DNase I hypersensitive site (HS) 5 of the human beta-globin locus control region (LCR). In attempting to separate the chromatin opening activity of the LCR from its enhancer activity and to investigate contributions of the individual HS core elements to LCR function, the human beta-globin LCR HS2, HS3 and HS4 core elements were replaced with the PyE within the context of a yeast artificial chromosome (YAC) bearing the whole locus. We show here that, in contrast to its function in cultured cells, the PyE is unable to replace HS core element function in vivo. We found that the PyE substitution mutant LCR is unable to provide either chromatin opening or transcriptional potentiating activity at any erythroid developmental stage in transgenic mice. These data provide direct evidence that the human beta-globin LCR core elements specify unique functions that cannot be replaced by a ubiquitous enhancer activity. PMID:10454609

  15. Activity of capryloyl collagenic acid against bacteria involved in acne.

    PubMed

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  16. Elevation of Serum Acid Sphingomyelinase Activity in Acute Kawasaki Disease.

    PubMed

    Konno, Yuuki; Takahashi, Ikuko; Narita, Ayuko; Takeda, Osamu; Koizumi, Hiromi; Tamura, Masamichi; Kikuchi, Wataru; Komatsu, Akira; Tamura, Hiroaki; Tsuchida, Satoko; Noguchi, Atsuko; Takahashi, Tsutomu

    2015-01-01

    Kawasaki disease (KD) is an acute systemic vasculitis that affects both small and medium-sized vessels including the coronary arteries in infants and children. Acid sphingomyelinase (ASM) is a lysosomal glycoprotein that hydrolyzes sphingomyelin to ceramide, a lipid, that functions as a second messenger in the regulation of cell functions. ASM activation has been implicated in numerous cellular stress responses and is associated with cellular ASM secretion, either through alternative trafficking of the ASM precursor protein or by means of an unidentified mechanism. Elevation of serum ASM activity has been described in several human diseases, suggesting that patients with diseases involving vascular endothelial cells may exhibit a preferential elevation of serum ASM activity. As acute KD is characterized by systemic vasculitis that could affect vascular endothelial cells, the elevation of serum ASM activity should be considered in these patients. In the present study, serum ASM activity in the sera of 15 patients with acute KD was determined both before and after treatment with infusion of high-dose intravenous immunoglobulin (IVIG), a first-line treatment for acute KD. Serum ASM activity before IVIG was significantly elevated in KD patients when compared to the control group (3.85 ± 1.46 nmol/0.1 ml/6 h vs. 1.15 ± 0.10 nmol/0.1 ml/6 h, p < 0.001), suggesting that ASM activation may be involved in the pathophysiology of this condition. Serum ASM activity before IVIG was significantly correlated with levels of C-reactive protein (p < 0.05). These results suggest the involvement of sphingolipid metabolism in the pathophysiology of KD. PMID:26447086

  17. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter. PMID:25900811

  18. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  19. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    PubMed

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  20. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  1. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  2. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  3. The antiviral activity of tetrazole phosphonic acids and their analogues.

    PubMed Central

    Hutchinson, D W; Naylor, M

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phosphonomethyl)-1H-tetrazole were also devoid of significant antiviral activity. Only 5-(phosphonomethyl)-1H-tetrazole and 5-(thiophosphonomethyl)-1H-tetrazole inhibited the influenza virus transcriptase, and both were more effective as inhibitors than phosphonoacetic acid under the same conditions. The DNA polymerases induced by HSV-1 and HSV-2 were inhibited slightly by 5-(phosphonomethyl)-1H-tetrazole and to a lesser extent by its N-ethyl analogue and 3-(phosphonomethyl)-1H-1,2,4-triazole. None of these compounds were as effective as phosphonoacetic acid. 5-(Thiophosphonomethyl)-1H-tetrazole was a better inhibitor of the DNA polymerase induced by HSV-1 than 5-(phosphonomethyl)-1H-tetrazole. PMID:2417198

  4. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    PubMed

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  5. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  6. REACTIONS OF CHLORITE WITH ACTIVATED CARBON AND WITH VANILLIC ACID AND INDAN ADSORBED ON ACTIVATED CARBON

    EPA Science Inventory

    The reaction between chlorite (CO2(-1)) and vanillic acid, at pH 6.0 in the presence of granular activated carbon (GAC), yielded several reaction products identifiable by GC/MS; no products were found in the absence of GAC. Indan and ClO2 or ClO2(-1) reacted in aqueous solution a...

  7. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  8. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity.

    PubMed

    Khan, Md Abdul Hye; Liu, Jing; Kumar, Ganesh; Skapek, Stephen X; Falck, John R; Imig, John D

    2013-08-01

    Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40-80% along with a 50-70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50-90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin. PMID:23603837

  9. Structure and activity of the acid-sensing ion channels

    PubMed Central

    Sherwood, Thomas W.; Frey, Erin N.

    2012-01-01

    The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity. PMID:22843794

  10. Structure-activity relationship studies of microbiologically active thiosemicarbazides derived from hydroxybenzoic acid hydrazides.

    PubMed

    Plech, Tomasz; Paneth, Agata; Kaproń, Barbara; Kosikowska, Urszula; Malm, Anna; Strzelczyk, Aleksandra; Stączek, Paweł

    2015-03-01

    Forty-five derivatives of thiosemicarbazide were synthesized, and their antibacterial activity against Gram-positive and Gram-negative bacteria was evaluated. Some of the described compounds exhibited interesting activity against reference strains of Gram-positive bacteria, whereas only two derivatives had the ability to inhibit the growth of Gram-negative species (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Proteus mirabilis ATCC 12453). The most potent antimicrobial activity was observed in the cases of salicylic acid hydrazide derivatives. The differences in activity inspired us to conduct conformational analysis using molecular mechanics level. The obtained results suggest that the molecule geometry, especially at the N4-terminus of thiosemicarbazide skeleton, determines the antibacterial activity. Unfortunately, in opposition to what we expected, only one of the tested compounds inhibited the activity of the topoIV enzyme, and none of them was active against DNA gyrase. PMID:25043121

  11. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  12. Anti-Thrombosis Activity of Sinapic Acid Isolated from the Lees of Bokbunja Wine.

    PubMed

    Kim, Mi-Sun; Shin, Woo-Chang; Kang, Dong-Kyoon; Sohn, Ho-Yong

    2016-01-01

    From the lees of bokbunja wine (LBW) made from Rubus coreanus Miquel, we have identified six compounds (1: trans-4-hydroxycinnamic acid; 2: trans-4-hydroxy-3-methoxycinnamic acid; 3: 3,4-dihydroxycinnamic acid; 4: 4-hydroxy-3-methoxybenzoic acid; 5: 3,5-dimethoxy-4- hydroxybenzoic acid; and 6: 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid)) through silica gel chromatography and UHPLC-MS. The compounds 1-6 showed strong anticoagulation and platelet aggregation inhibitory activities without hemolytic effect against human red blood cells. To date, this is the first report of the in vitro anti-thrombosis activity of sinapic acid. Our results suggest that different cinnamic and benzoic acid derivatives are closely linked to the anti-thrombosis activity of LBW, and sinapic acid could be developed as a promising anti-thrombosis agent. PMID:26387815

  13. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  14. Acid Rain: A Teacher's Guide. Activities for Grades 4 to 12.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This guide on acid rain for elementary and secondary students is divided into three study areas: (1) What Causes Acid Rain; (2) What Problems Acid Rain Has Created; (3) How You and Your Students Can Help Combat Acid Rain. Each section presents background information and a series of lessons pertaining to the section topic. Activities include…

  15. Acid Rain. Activities for Grades 4 to 12. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wood, David; Bryant, Jeannette

    This teacher's guide on acid rain is divided into three study areas to explain: (1) what causes acid rain; (2) what problems acid rain has created; and (3) what teachers and students can do to help combat acid rain. Instructions for activities within the study areas include suggested grade levels, objectives, materials needed, and directions for…

  16. Metabolically Active Eukaryotic Communities in Extremely Acidic Mine Drainage

    PubMed Central

    Baker, Brett J.; Lutz, Michelle A.; Dawson, Scott C.; Bond, Philip L.; Banfield, Jillian F.

    2004-01-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50°C), metal-rich (up to 269 mM Fe2+, 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name “Acidomyces richmondensis” for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure. PMID:15466574

  17. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2007-01-01

    The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim. PMID:18062653

  18. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity.

    PubMed

    Liu, Jun; Meng, Chen-Guang; Yan, Ye-Hua; Shan, Ya-Na; Kan, Juan; Jin, Chang-Hai

    2016-08-01

    In this study, protocatechuic acid (PA) was grafted onto chitosan (CS) by a carbodiimide mediated cross-linking reaction. The structural characterization, physical property and antioxidant activity of PA grafted CS (PA-g-CS) was investigated. As results, three copolymers with different grafting ratios (61.64, 190.11 and 279.69mg PAE/g) were obtained by varying the molar ratios of reaction substrates. PA-g-CS showed the same UV absorption peaks as PA at 258 and 292nm. As compared to CS, PA-g-CS exhibited a decreased band at 1596cm(-1) and a new band at 1716cm(-1), suggesting the formation of amide and ester linkages between PA and CS. New proton signals at δ6.77-7⋅33ppm were observed on (1)H NMR spectrum of PA-g-CS, assigning to the methine protons of PA. Signals at δ 150.8-116.6 ppm on (13)C NMR spectrum of PA-g-CS was assigned to the aromatic ring carbon of PA moieties. All the structural information confirmed the successful grafting of PA onto CS. SEM observation showed CS had a smooth surface, while PA-g-CS had a rough surface. TGA revealed the thermal stability of PA-g-CS was lower than CS. Antioxidant activity assays further verified the reducing power and DDPH radical scavenging activity of PA-g-CS was much higher than CS. PMID:27164501

  19. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  20. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  1. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-01-01

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated). PMID:26287131

  2. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis.

    PubMed

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34(+) human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  3. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  4. Antifungal Activity of Ellagic Acid In Vitro and In Vivo.

    PubMed

    Li, Zhi-Jian; Guo, Xin; Dawuti, Gulina; Aibai, Silafu

    2015-07-01

    Ellagic acid (EA) has been shown to have antioxidant, antibacterial, and anti-inflammatory activities. In Uighur traditional medicine, Euphorbia humifusa Willd is used to treat fungal diseases, and recent studies suggest that it is the EA content which is responsible for its therapeutic effect. However, the effects of EA on antifungal activity have not yet been reported. This study aimed to investigate the inhibitory effect of EA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the National Committee for Clinical Laboratory Standards (M38-A and M27-A2) standard method in vitro. EA had a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 18.75 and 58.33 µg/ml. EA was also active against two Candida strains, with MICs between 25.0 and 75.0 µg/ml. It was inactive against Candida glabrata. The susceptibility of six species of dermatophytes to EA was comparable with that of the commercial antifungal, fluconazole. The most sensitive filamentous species was Trichophyton rubrum (MIC = 18.75 µg/ml). Studies on the mechanism of action using an HPLC-based assay and an enzyme linked immunosorbent assay showed that EA inhibited ergosterol biosynthesis and reduced the activity of sterol 14α-demethylase P450 (CYP51) in the Trichophyton rubrum membrane, respectively. An in vivo test demonstrated that topical administration of EA (4.0 and 8.0 mg/cm(2) ) significantly enhanced the cure rate in a guinea-pig infection model of Trichophyton rubrum. The results suggest that EA has the potential to be developed as a natural antifungal agent. PMID:25919446

  5. Potentiation of phenobarbital-induced anticonvulsant activity by pipecolic acid.

    PubMed

    Takahama, K; Miyata, T; Okano, Y; Kataoka, M; Hitoshi, T; Kasé, Y

    1982-07-01

    Pipecolic acid (PA) is an intermediate of lysine metabolism in the mammalian brain. Recent findings suggest a functional connection of PA as neuromodulator in GABAergic transmission. Since many drugs are postulated to produce their effects by interaction with the central GABA system, the influence of PA on the anticonvulsant activity of phenobarbital was examined. Pretreatment of mice with 50 mg . kg-1 of PA potentiated the suppressing effects of the barbiturate on electrically and chemically induced convulsions. However, there was no potentiation of the behavioral effects and hypothermia induced by phenobarbital. PA itself had no or only little effect on the convulsions, motor function and rectal temperature when given in i.p. doses up to 500 mg . kg-1. Intraventricular administration of 500 microgram of PA also did not suppress either type of convulsion, although it produced ptosis, hypotonia, sedation and hypothermia. The results are discussed in relation to GABA system. PMID:6288409

  6. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils. PMID:25172460

  7. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-06-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  8. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed Central

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-01-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  9. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids.

    PubMed

    Kashiwada, Y; Wang, H K; Nagao, T; Kitanaka, S; Yasuda, I; Fujioka, T; Yamagishi, T; Cosentino, L M; Kozuka, M; Okabe, H; Ikeshiro, Y; Hu, C Q; Yeh, E; Lee, K H

    1998-09-01

    Oleanolic acid (1) was identified as an anti-HIV principle from several plants, including Rosa woodsii (leaves), Prosopis glandulosa (leaves and twigs), Phoradendron juniperinum (whole plant), Syzygium claviflorum (leaves), Hyptis capitata (whole plant), and Ternstromia gymnanthera (aerial part). It inhibited HIV-1 replication in acutely infected H9 cells with an EC50 value of 1.7 microg/mL, and inhibited H9 cell growth with an IC50 value of 21.8 microg/mL [therapeutic index (T. I.) 12.8]. Pomolic acid, isolated from R. woodsii and H. capitata, was also identified as an anti-HIV agent (EC50 1.4 microg/mL, T. I. 16.6). Although ursolic acid did show anti-HIV activity (EC50 2.0 microg/mL), it was slightly toxic (IC50 6.5 microg/mL, T. I. 3.3). A new triterpene (11) was also isolated from the CHCl3-soluble fraction of R. woodsii, though it showed no anti-HIV activity. The structure of 11 was determined to be 1beta-hydroxy-2-oxopomolic acid by spectral examination. Based on these results, we examined the anti-HIV activity of oleanolic acid- or pomolic acid-related triterpenes isolated from several plants. In addition, we previously demonstrated that derivatives of betulinic acid, isolated from the leaves of S. claviflorum as an anti-HIV principle, exhibited extremely potent anti-HIV activity. Accordingly, we prepared derivatives of oleanolic acid and evaluated their anti-HIV activity. Among the oleanolic acid derivatives, 18 demonstrated most potent anti-HIV activity, with an EC50 value of 0. 0005 microg/mL and a T. I. value of 22 400. PMID:9748372

  10. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    PubMed Central

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  11. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  12. Spectroscopic studies on the antioxidant activity of p-coumaric acid.

    PubMed

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. PMID:23892112

  13. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  14. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  15. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25508797

  16. Analgesic and antiinflammatory activity of kaur-16-en-19-oic acid from Annona reticulata L. bark.

    PubMed

    Chavan, Machindra J; Kolhe, Dinesh R; Wakte, Pravin S; Shinde, Devanand B

    2012-02-01

    Kaur-16-en-19-oic acid was isolated from the bark of Annona reticulata and studied for its analgesic and antiinflammatory activity. Analgesic activity was assessed using the hot plate test and acetic acid-induced writhing, and the antiinflammatory activity using the carrageenan induced rat paw oedema method. Kaur-16-en-19-oic acid, at doses of 10 and 20 mg/kg, exhibited significant (p < 0.05) analgesic and antiinflammatory activity. These activities were comparable to the standard drugs used, and furthermore the analgesic effect of kaur-16-en-19-oic acid was blocked by naloxone (2 mg/kg) in both analgesic models. PMID:21674631

  17. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  18. Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling.

    PubMed

    Fang, Zhongxiang; Hu, Yuxia; Liu, Donghong; Chen, Jianchu; Ye, Xingqian

    2008-06-01

    Phenolic acids in potherb mustard (Brassica juncea, Coss.) were determined and the effects of pickling methods on the contents of total free phenolic acids, total phenolic acids, total phenolics, and antioxidant activities were investigated. Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid were identified in the present study. The contents of total free phenolic acids, total phenolic acids and total phenolics in fresh potherb mustard were 84.8±0.58μg/g dry weight (DW), 539±1.36μg/g DW, and 7.95±0.28mg/g DW, respectively. The total free phenolic acids increased during the pickling processes, but the total phenolic acids, total phenolics, and antioxidant activities decreased. However, after 5 weeks of fermentation, all the pickling methods retained over 70% of total phenolic contents and above 65% of antioxidant capacities. The results indicated that pickling processes were relatively good methods for the preservation of phenolic acids and antioxidants for potherb mustard. PMID:26065739

  19. Biological Activities of Toninia candida and Usnea barbata Together with Their Norstictic Acid and Usnic Acid Constituents

    PubMed Central

    Ranković, Branislav; Kosanić, Marijana; Stanojković, Tatjana; Vasiljević, Perica; Manojlović, Nedeljko

    2012-01-01

    The aim of this study was to investigate the chemical composition of acetone extracts of the lichens Toninia candida and Usnea barbata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts together with some of their major metabolites. The chemical composition of T. candida and U. barbata extracts was determined using HPLC-UV analysis. The major phenolic compounds in these extracts were norstictic acid (T. candida) and usnic acid (U. barbata). Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. Results of the study proved that norstictic acid had the largest antioxidant activity. The total content of phenols in the extracts was determined as the pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration using the broth microdilution method. The most active was usnic acid with minimum inhibitory concentration values ranging from 0.0008 to 0.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using the microculture tetrazolium test. Usnic acid was found to have the strongest anticancer activity towards both cell lines with IC50 values of 12.72 and 15.66 μg/mL. PMID:23203090

  20. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  1. Protein-binding sites within the 5' DNase I-hypersensitive region of the chicken alpha D-globin gene.

    PubMed Central

    Kemper, B; Jackson, P D; Felsenfeld, G

    1987-01-01

    We mapped at high resolution and as a function of development the hypersensitive domain in the 5'-flanking region of the chicken alpha D-globin gene and determined the specific protein-binding sites within the domain. The domain extends from -130 to +80 nucleotides (nt) relative to the cap site. DNase I footprinting within intact embryonic erythrocyte nuclei revealed a strongly protected area from -71 to -52 nt. The same area was weakly protected in adult nuclei. A factor was present in extracts of erythrocyte nuclei from both embryos and adults that protected the sequence AAGATAAGG (-63 to -55 nt) in DNase I footprinting experiments; at higher concentrations of extract, sequences immediately adjacent (-73 to -64 and -53 to -38) were also protected. The same pattern of binding was revealed by gel mobility shift assays. The identical AAGATAAGG sequence is found in the 5'-flanking region of the beta rho gene; it competed for binding of the alpha D-specific factor, suggesting that regulatory elements are shared. Images PMID:3600658

  2. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  3. Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant.

    PubMed

    Masuda, Toshiya; Inaba, Yuzuru; Maekawa, Tomomi; Takeda, Yoshio; Tamura, Hirotoshi; Yamaguchi, Hidemasa

    2002-10-01

    A solution of carnosic acid quinone, which is a radical chain-termination product having no antioxidant activity in the antioxidant reaction of carnosic acid, recovers potent antioxidant activity upon standing. The HPLC analysis of an aged solution of carnosic acid quinone revealed that several antioxidants are produced in the solution. From the time-course and quantitative analyses of the formation of the products and their structural analysis, an antioxidant mechanism from carnosic acid quinone is proposed that includes a redox reaction of carnosic acid quinone in addition to the isomerization to lactone derivatives. In the first stage of antioxidation, carnosic acid, the reduction product from carnosic acid quinone, contributes to the potent antioxidant activity of the solution. This proposed mechanism can explain one of the reasons for the strong antioxidant activity of the extract of the popular herbs sage and rosemary. PMID:12358451

  4. Terminal Amino Acids Disturb Xylanase Thermostability and Activity*

    PubMed Central

    Liu, Liangwei; Zhang, Guoqiang; Zhang, Zhang; Wang, Suya; Chen, Hongge

    2011-01-01

    Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)8 because the general structure consists of ∼10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ∼2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (Topt) 6 °C, but the C-terminal deletion increased its Topt 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme Topt but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG0) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities. PMID:22072708

  5. Pleiotropic activity of lysophosphatidic acid in bone metastasis.

    PubMed

    Peyruchaud, Olivier; Leblanc, Raphael; David, Marion

    2013-01-01

    Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. PMID:22710393

  6. Benzoic acid derivatives from Piper species and their antiparasitic activity.

    PubMed

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2008-09-01

    Piper glabratum and P. acutifolium were analyzed for their content of main secondary constituents, affording nine new benzoic acid derivatives (1, 2, 4, 5, 7, and 10-13), in addition to four known compounds (3, 6, 8, and 9). Their structures were elucidated on the basis of spectroscopic data. Riguera ester reactions and optical rotation measurements established the new compounds as racemates. In the search for antiparasitic agents, the compounds were evaluated in vitro against the promastigote forms of Leishmania spp., Trypanosoma cruzi, and Plasmodium falciparum. Among the evaluated compounds, methyl 3,4-dihydroxy-5-(3'-methyl-2'-butenyl)benzoate (7) exhibited leishmanicidal effect (IC50 13.8-18.5 microg/mL) against the three Leishmania strains used, and methyl 3,4-dihydroxy-5-(2-hydroxy-3-methylbutenyl)benzoate (1), methyl 4-hydroxy-3-(2-hydroxy-3-methyl-3-butenyl)benzoate (3), and methyl 3,4-dihydroxy-5-(3-methyl-2-butenyl) benzoate (7) showed significant trypanocidal activity, with IC50 values of 16.4, 15.6, and 18.5 microg/mL, respectively. PMID:18712933

  7. Organ- and species-specific biological activity of rosmarinic acid.

    PubMed

    Iswandana, R; Pham, B T; van Haaften, W T; Luangmonkong, T; Oosterhuis, D; Mutsaers, H A M; Olinga, P

    2016-04-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal slices (PCIS) prepared from human, mouse, and rat tissue. PCLS and PCIS were cultured up to 48h in the absence or presence of RA. Gene expression of the inflammatory markers: IL-6, IL-8/CXCL1/KC, and IL-1β, as well as the fibrosis markers: pro-collagen 1a1, heat shock protein 47, α-smooth muscle actin, fibronectin (Fn2) and plasminogen activator inhibitor-1 (PAI-1) were evaluated by qPCR. RA was only toxic in murine PCIS. RA failed to mitigate the inflammatory response in most models, while it clearly reduced IL-6 and CXCL1/KC gene expression in murine PCIS at non-toxic concentrations. With regard to fibrosis, RA decreased the gene levels of Fn2 and PAI-1 in murine PCLS, and Fn2 in murine PCIS. Yet, no effect was observed on the gene expression of fibrosis markers in human and rat PCIS. In conclusion, we observed clear organ- and species-specific effects of RA. RA had little influence on inflammation. However, our study further establishes RA as a potential candidate for the treatment of liver fibrosis. PMID:26804033

  8. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products. PMID:26910999

  9. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.

    PubMed

    Zimmer, G; Mainka, L; Krüger, E

    1991-08-01

    Investigations with dihydrolipoic acid in rat heart mitochondria and mitoplasts reveal an activation of ATP-synthase up to 45%, whereas ATPase activities decrease by 36%. In parallel with an increase in ATP synthesis oligomycin-sensitive mitochondrial -SH groups are activated at 2-4 nmol dihydrolipoic acid/mg protein. ATPase activation by the uncouplers carbonylcyanide-p-trifluoromethoxyphenylhydrazone and oleate is diminished by dihydrolipoic acid, and ATP synthesis depressed by oleate is partially restored. No such efficiency of dihydrolipoic acid is seen with palmitate-induced ATPase activation or decrease of ATP synthesis. This indicates different interference of oleate and palmitate with mitochondria. In addition to its known coenzymatic properties dihydrolipoic acid may act as a substitute for coenzyme A, thereby diminishing the uncoupling efficiency of oleate. Furthermore, dihydrolipoic acid is a very potent antioxidant, shifting the -SH-S-S- equilibrium in mitochondria to the reduced state and improving the energetic state of cells. PMID:1832845

  10. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids. PMID:25475328

  11. Antioxidant and Antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant activity of three major polyamine conjugates, N,N'-dicoumaroyl- putrescine (DCP), N-p-coumaroyl-N'-feruloylputrescine (CFP) and N,N'-diferuloyl- putrescine (DFP) isolated from corn bran, and their related hydroxycinnamic acids, p-coumaric acid (CA) and ferulic acid (FA), were evaluat...

  12. DOES IRON OR HEME CONTROL RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE ACTIVITY

    EPA Science Inventory

    Disodium ethylenediamine tetraacetic acid and/or allylisopropylacetamide administration to rat pups did not evoke a premature induction of hepatic d-aminolevulinic acid synthetase. Administration of iron to adult rats did not alter d-aminolevulinic acid synthetase activity and ha...

  13. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells.

    PubMed

    Muangman, Pornprom; Spenny, Michelle L; Tamura, Richard N; Gibran, Nicole S

    2003-06-01

    Neutral endopeptidase (NEP), a membrane-bound metallopeptidase enzyme that degrades neuropeptides, bradykinin, atrial natriuretic factor, enkephalins, and endothelin may regulate response to injury. We have previously demonstrated increased NEP localization and enzyme activity in diabetic wounds and skin compared with normal controls. We hypothesized that hyperlipidemia and hyperglycemia associated with type 2 diabetes mellitus may induce excessive NEP activity and thereby diminish normal response to injury. Human microvascular endothelial cells were treated with five different fatty acids (40 microM) with varying degrees of saturation, including oleic acid, linoleic acid, palmitic acid, stearic acid, and linolenic acid and/or glucose (40 mM) for 48 h. The effect of the antioxidative agents vitamin E and C on NEP enzyme activation was determined by treating the cultured cells with alpha-tocopherol succinate and/or L-ascorbic acid. Cell membrane preparations were assayed for NEP activity by incubation with glutaryl-Ala-Ala-Phe-4-methoxy-beta naphthylamide to generate a fluorescent degradation product methoxy 2 naphthylamine. High glucose or fatty acid concentration upregulated NEP activity. The highest NEP activity was observed with combined elevated glucose, linoleic acid, and oleic acid (P < 0.05). Antioxidant vitamin E and C treatment significantly reduced NEP enzyme activity after fatty acid exposure (P < 0.05). Thus, hyperglycemia and hyperlipidemia associated with type 2 diabetes mellitus may increase endothelial cell NEP activity and thereby decrease early pro-inflammatory responses. The modulator effect of vitamin E and C on NEP membrane enzyme activity after exposure to fatty acid stimulation suggests that lipid oxidation may activate NEP. PMID:12785004

  14. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  15. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  16. Study on the effect of different acids on the structure and photocatalytic activity of mesoporous titania

    NASA Astrophysics Data System (ADS)

    Ao, Yanhui; Xu, Jingjing; Fu, Degang

    2009-10-01

    Nanocrystalline mesoporous titania was synthesized via a combined sol-gel process with surfactant-assisted templating method using cetyltrimethyl ammonium bromide (CTAB) as the structure-directing agent. The process was catalyzed by different acid (hydrochloric acid, nitric acid, sulfuric acid, or phosphoric acid). The prepared samples were characterized by XRD, TEM, BET and FT-IR. The photocatalytic activity of the samples was determined by degradation of phenol in aqueous solution. Results showed that different acid had different effect on the structure and crystal phase of the samples. The sample adjusted by phosphoric acid showed highest surface area and photocatalytic activity. The formation mechanism of the samples catalyzed by different acid was also discussed.

  17. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  18. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. PMID:27288853

  19. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  20. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  1. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data.

    PubMed

    Castañeda-Arriaga, Romina; Alvarez-Idaboy, J Raul

    2014-06-23

    The free radical scavenging activity of lipoic acid (LA) and dihydrolipoic acid (DHLA) has been studied in nonpolar and aqueous solutions, using the density functional theory and several oxygen centered radicals. It was found that lipoic acid is capable of scavenging only very reactive radicals, while the dehydrogenated form is an excellent scavenger via a hydrogen transfer mechanism. The environment plays an important role in the free radical scavenging activity of DHLA because in water it is deprotonated, and this enhances its activity. In particular, the reaction rate constant of DHLA in water with an HOO(•) radical is close to the diffusion limit. This has been explained on the basis of the strong H-bonding interactions found in the transition state, which involve the carboxylate moiety, and it might have implications for other biological systems in which this group is present. PMID:24881907

  2. Photochemical synthesis and anticancer activity of barbituric acid, thiobarbituric acid, thiosemicarbazide, and isoniazid linked to 2-phenyl indole derivatives.

    PubMed

    Laxmi, S Vijaya; Rajitha, G; Rajitha, B; Rao, Asha Jyothi

    2016-04-01

    2-Phenyl-1H-indole-3-carbaldehyde-based barbituric acid, thiobarbituric acid, thiosemicarbazide, isoniazid, and malononitrile derivatives were synthesized under photochemical conditions. The antitumor activities of the synthesized compounds were evaluated on three different human cancer cell lines representing prostate cancer cell line DU145, Dwivedi (DWD) cancer cell lines, and breast cancer cell line MCF7. All the screened compounds possessed moderate anticancer activity, and out of all the screened compounds, 5-{1[2-(4-chloro-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2b) and 5-{1[2-(4-methoxy-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2d) exhibited marked antitumor activity against used cell lines. Additionally, barbituric acid derivatives were selective to inhibit cell line DWD and breast cancer cell lines. PMID:27118996

  3. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    PubMed

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  4. Active role of fatty acid amino acid conjugates in nitrogen metabolidm by Spodoptera litura larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)- L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses as well as...

  5. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  6. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  7. Ethacrynic acid inhibitable Ca2+ and Mg2+-activated membrane adenosine triphosphatase in rat mast cells.

    PubMed Central

    Magro, A M

    1977-01-01

    A crude plasma membrane fraction from the homogenate of purified rat mast cells demonstrates a high degree of Ca2+-dependent and Mg2+-dependent adenosine triphosphatase (ATPase) activity. The microsomal and mitochondrial fractions show negligible amounts of the Ca2+ and Mg2+-activated ATPases. The broad ATPase inhibitor, ethacrynic acid, effectively blocks the mast cell ATPase activity while ouabain demonstrates little inhibitory effect. Correspondingly, ethacrynic acid inhibits histamine release from antigen-challenged mast cells while ouabain does not. Both ATPase inhibition and histamine release inhibition by ethacrynic acid require the presence of the olefinic bond in the ethacrynic acid molecule. PMID:75076

  8. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian.

    PubMed

    Wang, Yong; Sun, Yang; Zhang, Ying; Zhang, Xing; Feng, Juntao

    2016-01-01

    Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration) values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP) content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici. PMID:27294911

  9. gamma-Aminobutyric acid uptake inhibition and anticonvulsant activity of nipecotic acid esters.

    PubMed

    Crider, A M; Wood, J D; Tschappat, K D; Hinko, C N; Seibert, K

    1984-11-01

    n-Alkyl esters of nipecotic acid were prepared by Fischer esterification, and the esters were evaluated against bicuculline-induced seizures in mice. Evaluation of the alkyl esters for inhibition of gamma-aminobutyric acid uptake into mouse whole brain mini-slices revealed that the order of potency was proportional to chain length. The octyl ester inhibited gamma-aminobutyric acid and beta-alanine uptakes by apparently nonspecific mechanisms. A variety of phenyl esters of nipecotic acid were also synthesized utilizing either dicyclohexylcarbodiimide or 1,1'-carbonyldiimidazole as the condensing agent. Most of the phenyl esters were potent inhibitors of gamma-aminobutyric acid uptake. The uptake inhibition appeared to involve specific and nonspecific (detergent-like) mechanisms. The m-nitrophenyl and p-nitrophenyl esters were particularly potent against bicuculline-induced seizures in mice. PMID:6520765

  10. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  11. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  12. Exploration of the antiplatelet activity profile of betulinic acid on human platelets

    PubMed Central

    Tzakos, Andreas G.; Kontogianni, Vassiliki G.; Tsoumani, Maria; Kyriakou, Eleni; Hwa, John; Rodrigues, Francisco A.; Tselepis, Alexandros D.

    2013-01-01

    Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including anti-retroviral, antibacterial, antimalarial and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (Adenosine Diphosphate, Thrombin Receptor Activator Peptide-14 and Arachidonic Acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR derived structure of betulinic acid and prostacyclin agonists (PGI2) and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that reserves further investigation. PMID:22720759

  13. Exploration of the antiplatelet activity profile of betulinic acid on human platelets.

    PubMed

    Tzakos, Andreas G; Kontogianni, Vassiliki G; Tsoumani, Maria; Kyriakou, Eleni; Hwa, John; Rodrigues, Francisco A; Tselepis, Alexandros D

    2012-07-18

    Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation. PMID:22720759

  14. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  15. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  16. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  17. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  18. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  19. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Synthesis, Structure-Activity Relationship, and Mechanistic Investigation of Lithocholic Acid Amphiphiles for Colon Cancer Therapy

    PubMed Central

    Bhargava, Priyanshu; Singh, Ashima; Motiani, Rajender K.; Shyam, Radhey; Sreekanth, Vedagopuram; Sengupta, Sagar; Bajaj, Avinash

    2014-01-01

    We report a structure-activity relationship of lithocholic acid amphiphiles for their anticancer activities against colon cancer. We synthesized ten cationic amphiphiles differing in nature of cationic charged head groups using lithocholic acid. We observed that anticancer activities of these amphiphiles against colon cancer cell lines are contingent on nature of charged head group. Lithocholic acid based amphiphile possessing piperidine head group (LCA-PIP1) is ~10 times more cytotoxic as compared to its precursor. Biochemical studies revealed that enhanced activity of LCA-PIP1 as compared to lithocholic acid is due to greater activation of apoptosis.LCA-PIP1 induces sub G0 arrest and causes cleavage of caspases. A single dose of lithocholic acid-piperidine derivative is enough to reduce the tumor burden by 75% in tumor xenograft model. PMID:25685308

  1. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  2. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  3. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells.

    PubMed Central

    Kim, D; Sladek, C D; Aguado-Velasco, C; Mathiasen, J R

    1995-01-01

    1. The presence and properties of K+ channels activated by arachidonic acid were studied in neuronal cells cultured from the mesencephalic and hypothalamic areas of rat brain. 2. Arachidonic acid produced a concentration-dependent (5-50 microM) and reversible activation of whole-cell currents. 3. In excised membrane patches, arachidonic acid applied to the cytoplasmic or extracellular side of the membrane caused opening of three types of channels whose current-voltage relationships were slightly outwardly rectifying, inwardly rectifying and linear, and whose single channel slope conductances at +60 mV were 143, 45 and 52 pS, respectively. 4. All three currents were K+ selective and blocked by 2 mM Ba2+ but not by other K+ channel blockers such as tetraethylammonium chloride, 4-aminopyridine and quinidine. The outwardly and inwardly rectifying currents were slightly voltage dependent with higher channel activity at more depolarized potentials. 5. Arachidonic acid activated the K+ channels in cells treated with cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and nordihydroguaiaretic acid), indicating that arachidonic acid itself can directly activate the channels. Alcohol and methyl ester derivatives of arachidonic acid failed to activate the K+ channels, indicating that the charged carboxyl group is important for activation. 6. Certain unsaturated fatty acids (linoleic, linolenic and docosahexaenoic acids), but not saturated fatty acids (myristic, palmitic, stearic acids), also reversibly activated all three types of K+ channel. 7. All three K+ channels were activated by pressure applied to the membrane (i.e. channels were stretch sensitive) with a half-maximal pressure of approximately 18 mmHg. The K+ channels were not blocked by 100 microM GdCl3. 8. A decrease in intracellular pH (over the range 5.6-7.2) caused a reversible, pH-dependent increase in channel activity whether the channel was initially activated by arachidonic acid or stretch. 9. Glutamate

  4. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  5. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells.

    PubMed

    Ogawa, N; Satsu, H; Watanabe, H; Fukaya, M; Tsukamoto, Y; Miyamoto, Y; Shimizu, M

    2000-03-01

    To understand how blood glucose level is lowered by oral administration of vinegar, we examined effects of acetic acid on glucose transport and disaccharidase activity in Caco-2 cells. Cells were cultured for 15 d in a medium containing 5 mmol/L of acetic acid. This chronic treatment did not affect cell growth or viability, and furthermore, apoptotic cell death was not observed. Glucose transport, evaluated with a nonmetabolizable substrate, 3-O-methyl glucose, also was not affected. However, the increase of sucrase activity observed in control cells (no acetic acid) was significantly suppressed by acetic acid (P < 0.01). Acetic acid suppressed sucrase activity in concentration- and time-dependent manners. Similar treatments (5 mmol/L and 15 d) with other organic acids such as citric, succinic, L-maric, L-lactic, L-tartaric and itaconic acids, did not suppress the increase in sucrase activity. Acetic acid treatment (5 mmol/L and 15 d) significantly decreased the activities of disaccharidases (sucrase, maltase, trehalase and lactase) and angiotensin-I-converting enzyme, whereas the activities of other hydrolases (alkaline phosphatase, aminopeptidase-N, dipeptidylpeptidase-IV and gamma-glutamyltranspeptidase) were not affected. To understand mechanisms underlying the suppression of disaccharidase activity by acetic acid, Northern and Western analyses of the sucrase-isomaltase complex were performed. Acetic acid did not affect the de novo synthesis of this complex at either the transcriptional or translational levels. The antihyperglycemic effect of acetic acid may be partially due to the suppression of disaccharidase activity. This suppression seems to occur during the post-translational processing. PMID:10702577

  6. Ribonucleic acid polymerase activities in Jerusalem-artichoke tissue

    PubMed Central

    Gore, John R.; Ingle, John

    1974-01-01

    1. Artichoke tuber tissue contained RNA polymerase activity bound to the chromatin and in the supernatant after chromatin sedimentation. 2. The activity in the supernatant, the soluble polymerase, was fractionated into polymerases I and II by DEAE-cellulose chromatography, and the properties of each activity were determined. 3. The proportions of chromatin-bound and soluble activities varied with growth of the tissue, and there was a correlation between chromatin-bound activity and RNA accumulation. 4. The properties of the solubilized chromatin activity were compared with those of the soluble activity, and the relationship between these two activities is discussed. PMID:4464848

  7. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.

    PubMed

    Erkan, Naciye; Ayranci, Guler; Ayranci, Erol

    2008-09-01

    Antioxidant activities of three pure compounds: carnosic acid, rosmarinic acid and sesamol, as well as two plant extracts: rosemary extract and blackseed essential oil, were examined by applying DPPH and ABTS(+) radical-scavenging assays and the ferric thiocyanate test. All three test methods proved that rosemary extract had a higher antioxidant activity than blackseed essential oil. The order of antioxidant activity of pure compounds showed variations in different tests. This was attributed to structural factors of individual compounds. Phenolic contents of blackseed essential oil and rosemary extract were also determined. Rosemary extract was found to have a higher phenolic content than blackseed essential oil. This fact was utilised in explaining the higher antioxidant activity of rosemary extract. PMID:26050168

  8. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid.

    PubMed

    Lee, Kwang Hee; Piao, Hai Lan; Kim, Ho-Youn; Choi, Sang Mi; Jiang, Fan; Hartung, Wolfram; Hwang, Ildoo; Kwak, June M; Lee, In-Jung; Hwang, Inhwan

    2006-09-22

    Abscisic acid (ABA) is a phytohormone critical for plant growth, development, and adaptation to various stress conditions. Plants have to adjust ABA levels constantly to respond to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning ABA levels remain elusive. Here we report that AtBG1, a beta-glucosidase, hydrolyzes glucose-conjugated, biologically inactive ABA to produce active ABA. Loss of AtBG1 causes defective stomatal movement, early germination, abiotic stress-sensitive phenotypes, and lower ABA levels, whereas plants with ectopic AtBG1 accumulate higher ABA levels and display enhanced tolerance to abiotic stress. Dehydration rapidly induces polymerization of AtBG1, resulting in a 4-fold increase in enzymatic activity. Furthermore, diurnal increases in ABA levels are attributable to polymerization-mediated AtBG1 activation. We propose that the activation of inactive ABA pools by polymerized AtBG1 is a mechanism by which plants rapidly adjust ABA levels and respond to changing environmental cues. PMID:16990135

  9. New analogues of 13-hydroxyocatdecadienoic acid and 12-hydroxyeicosatetraenoic acid block human blood platelet aggregation and cyclooxygenase-1 activity

    PubMed Central

    2012-01-01

    Background Thromboxane A2 is derived from arachidonic acid through the action of cyclooxygenases and thromboxane synthase. It is mainly formed in blood platelets upon activation and plays an important role in aggregation. Aspirin is effective in reducing the incidence of complications following acute coronary syndrome and stroke. The anti-thrombotic effect of aspirin is obtained through the irreversible inhibition of cyclooxygenases. Analogues of 12-hydroxyeicosatetraenoic acid and 13-hydroxyocatdecadienoic acid were shown previously to modulate platelet activation and to block thromboxane receptors. Results and discussion We synthesized 10 compounds based on the structures of analogues of 12-hydroxyeicosatetraenoic acid and 13-hydroxyocatdecadienoic acid and evaluated their effect on platelet aggregation triggered by arachidonic acid. The structure activity relationship was evaluated. Five compounds showed a significant inhibition of platelet aggregation and highlighted the importance of the lipidic hydrophobic hydrocarbon chain and the phenol group. Their IC50 ranged from 7.5 ± 0.8 to 14.2 ± 5.7 μM (Mean ± S.E.M.). All five compounds decreased platelet aggregation and thromboxane synthesis in response to collagen whereas no modification of platelet aggregation in response to thromboxane receptor agonist, U46619, was observed. Using COS-7 cells overexpressing human cyclooxygenase-1, we showed that these compounds are specific inhibitors of cyclooxygenase-1 with IC50 ranging from 1.3 to 12 μM. Docking observation of human recombinant cyclooxygenase-1 supported a role of the phenol group in the fitting of cyclooxygenase-1, most likely related to hydrogen bonding with the Tyr 355 of cyclooxygenase-1. Conclusions In conclusion, the compounds we synthesized at first based on the structures of analogues of 12 lipoxygenase metabolites showed a role of the phenol group in the anti-platelet and anti-cyclooxygenase-1 activities. These compounds mediate their

  10. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  11. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change. PMID:27035483

  12. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    PubMed

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  13. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  14. Tripyrrolidinophosphoric acid triamide as an activator in samarium diiodide reductions.

    PubMed

    McDonald, Chriss E; Ramsey, Jeremy D; Sampsell, David G; Butler, Julie A; Cecchini, Michael R

    2010-11-19

    The electrochemical and spectrophotometric characterization of the complex formed from samarium diiodide and 4 equiv of tripyrrolidinophosphoric acid triamide (TPPA) is presented. Kinetic studies indicate that the SmI(2)/TPPA complex possesses reactivity greater than the complex formed between samarium diiodide and 4 equiv of HMPA. Examples of the use of SmI(2)/TPPA in synthesis are presented. PMID:20979412

  15. TREATOGENIC ACTIVITY OF TRICHOLORACETIC ACID IN THE RATE

    EPA Science Inventory

    Trichloroacetic acid (TCA) is a by-product of the chlorine disinfection of water containing natural organic material. t is detectable in finished drinking water at levels comparable to the trihalomethanes (930-160 ug/L). CA is also formed in vivo after ingestion of hypochelorite ...

  16. Anticancer activity of branched-chain derivatives of oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of novel branched-chain derivatives (methyl, n-butyl, phenyl) of methyl oleate were produced by bromination in the allylic position and subsequent treatment with organocuprate reagents. These compounds and their free acid counterparts were tested in vitro for their antiproliferative activi...

  17. Experiments on the origins of optical activity. [in amino acids

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Flores, J. J.

    1975-01-01

    An investigation was conducted concerning the asymmetric adsorption of phenylalanine enantiomers by kaolin. No preferential adsorption of either phenylalanine enantiomer could be detected and there was no resolution of the racemic phenylalanine by kaolin. The attempted asymmetric polymerization of aspartic acid by kaolin is also discussed along with a strontium-90 bremsstrahlung radiolysis of leucine.

  18. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  19. Amylase activity of Aspergillus strains--producers of organic acids.

    PubMed

    Tsekova, K; Dentchev, D; Vicheva, A; Dekovska, M

    1993-01-01

    The ability of fungi from genus Aspergillus (producers of organic acids) to synthesize amylase enzymes (alpha-amylase and glucoamylase) was investigated. The productivity of the strains on Czapek-Dox agar and in liquid Czapec-Dox media with 3% soluble starch as a carbon source was established. PMID:8285132

  20. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity.

    PubMed

    Fujioka, Kazutoshi; Shibamoto, Takayuki

    2006-08-01

    The antioxidant activities of a commercial brewed coffee were investigated by measuring malonaldehyde (MA) formation from oxidized cod liver oil using a gas chromatographic method (MA-GC assay) and a thiobarbituric acid method (TBA assay). The highest antioxidant activity obtained by the MA-GC assay was from regular whole brewed coffee (97.8%) at a level of 20%, and the highest antioxidant activity obtained by the TBA assay was from decaffeinated whole brewed coffee (96.6%) at a level of 5%. Among 31 chemicals identified in a dichloromethane extract, guaiacol, ethylguaiacol, and vinylguaiacol exhibited antioxidant activities, which were comparable to that of alpha-tocopherol. Among nine chlorogenic acids (three caffeoylquinic acids, three feruloylquinic acids, and three dicaffeoylquinic acids) identified, 5-caffeoylquinic acid contained the greatest amount both in regular (883.5 microg/mL) and in decaffeinated (1032.6 microg/mL) coffees; it exhibited 24.5% activity by the MA-GC assay and 45.3% activity by the TBA assay at a level of 10 microg/mL. Caffeic and ferulic acids showed moderate antioxidant activities in both assays. PMID:16881716

  1. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.

    PubMed

    Valix, M; Cheung, W H; McKay, G

    2004-08-01

    Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification. PMID:15212915

  2. Folic acid reverses uric acid crystal-induced surface OAT1 internalization by inhibiting RhoA activity in uric acid nephropathy

    PubMed Central

    WU, XINLIN; LIU, JIANXIANG; ZHANG, JIANQING; LIU, HENG; YAN, MIANSHENG; LIANG, BIRONG; XIE, HONGBO; ZHANG, SHIJUN; SUN, BAOGUO; ZHOU, HOUMING

    2016-01-01

    To investigate how organic anion transporter (OAT)-1 is involved in uric acid nephropathy (UAN), a rat model for UAN was established and the serum uric acid, blood urea nitrogen and serum creatinine levels were all measured, and observed to be increased. It was additionally identified that in UAN rats the surface OAT1 expression levels were reduced. By treating HEK cells with monosodium urate (MSU) crystals, it was observed that the cells exhibited a reduction in OAT1 levels. Furthermore, MSU crystals were observed to recruit Ras homolog family member A (RhoA), a small guanosine triphosphatase, to the membrane and activate it. Following RhoA activation, the OAT1 internalization rate was identified to be increased. The dominant-negative RhoA N19 mutation was able to block MSU-induced OAT1 internalization, indicating that the process was RhoA-dependent. Finally, the results indicated that folic acid, a daily nutritional supplement, was capable of rescuing MSU-induced nephropathy and OAT1 internalization. These observations indicated that uric acid crystals were able to reduce the OAT1 membrane distribution through activating RhoA, and that folic acid was capable of preventing MSU-induced OAT1 relocation by inhibiting the RhoA signaling pathway. PMID:26846716

  3. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    PubMed

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  4. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons.

    PubMed

    Ghosh, Pranab Kumar

    2009-11-15

    Fresh activated carbon (AC) and waste activated carbon (WAC) were pretreated by heating with mineral acids (sulfuric acid and nitric acid) at high temperature to prepare several grades of adsorbents to evaluate their performance on Cr(VI) removal from aqueous phase. Effects of temperature, agitation speed and pH were tested, and optimum conditions were evaluated. Kinetic study was performed under optimum conditions with several grades of modified adsorbents to know the rates of adsorption. Batch adsorption equilibrium data followed both, Freuindlich and Langmuir isotherms. Maximum adsorption capacity (q(max)) of the selected adsorbents treated with sulfuric acid (MWAC 1) and nitric acid (MWAC 2), calculated from Langmuir isotherm are 7.485 and 10.929 mg/g, respectively. Nitric acid treated adsorbent (MWAC 2) was used for column study to determine the constants of bed depth service time (BDST) model for adsorption column design. PMID:19553008

  5. Peroxisome proliferators and fatty acids negatively regulate liver X receptor-mediated activity and sterol biosynthesis.

    PubMed

    Johnson, T E; Ledwith, B J

    2001-04-01

    Peroxisome proliferators (PPs) are potent tumor promoters in rodents. The mechanism of hepatocarcinogenesis requires the nuclear receptor peroxisome proliferator activated receptor-alpha (PPARalpha), but might also involve the PPARalpha independent alteration of signaling pathways that regulate cell growth. Here, we studied the effects of PPs on the mevalonate pathway, a critical pathway that controls cell proliferation. Liver X receptors (LXRs) are nuclear receptors that act as sterol sensors in the mevalonate pathway. In gene reporter assays in COS-7 cells, the basal activity of the LXR responsive reporter gene (LXRE-luc) was suppressed by 10 microM lovastatin and zaragozic acid A, suggesting that this activity was attributed to the activation of native LXRs, by endogenously produced mevalonate products. The potent PP and rodent tumor promoter, pirinixic acid (WY-14643) also inhibited LXR-mediated transcription in a dose related manner (approximate IC(50) of 100 microM). As did several other PPs including ciprofibric acid and mono-ethylhexylphthalate. Polyunsaturated and medium to long chain fatty acids at 100 microM were also potent inhibitors; the arachidonic acid analogue eicosatetraynoic acid being the most active (approximate IC(50) of 10 microM). Of the PPs and fatty acids tested, there was a strong correlation between the ability of these agents to suppress de novo sterol synthesis in a rat hepatoma cell line, H4IIEC3, and inhibit LXR-mediated transcription in COS-7 cells, but a discordance between these endpoints and PPARalpha activation and fatty acid acyl-CoA oxidase induction. Taken together, these results suggest that PPs and fatty acids negatively regulate the mevalonate pathway through a mechanism that is not entirely dependent on PPARalpha activation. Because of the importance of the mevalonate pathway in regulating cell proliferation, the modulation of this pathway by PPs and fatty acids might contribute to their actions on cell growth

  6. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity

    PubMed Central

    2010-01-01

    Background fatty acids are considered to be effective components to promote wound healing and Lucilia sericata larvae are applied clinically to treat intractable wounds. We aimed to investigat the effect of fatty acid extracts from dried Lucilia sericata larvae on murine cutaneuous wound healing as well as angiogenesis. Results On day 7 and 10 after murine acute excision wounds creation, the percent wound contraction of fatty acid extracts group was higher than that of vaseline group. On day 3, 7 and 10 after wounds creation, the wound healing quality of fatty acid extracts group was better than that of vaseline group on terms of granulation formation and collagen organization. On day 3 after wounds creation, the micro vessel density and vascular endothelial growth factor expression of fatty acid extracts group were higher than that of vaseline group. Component analysis of the fatty acid extracts by gas chromatography-mass spectrometry showed there were 10 kinds of fatty acids in total and the ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid (PUFA) was: 20.57%:60.32%:19.11%. Conclusions Fatty acid extracts from dried Lucilia sericata larvae, four fifths of which are unsaturated fatty acids, can promote murine cutaneous wound healing probably resulting from the powerful angiogenic activity of the extracts. PMID:20211009

  7. Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex*

    PubMed Central

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E.; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K.; Puigserver, Pere

    2013-01-01

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation. PMID:23329830

  8. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L.) Nash and Its Antioxidant and Antimicrobial Activity

    PubMed Central

    Prajna, Jha; Richa, Jindal; Dipjyoti, Chakraborty

    2013-01-01

    Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents). Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level). The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains. PMID:26555971

  9. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter. PMID:26348620

  10. Gene Activation in Eukaryotes: Are Nuclear Acidic Proteins the Cause or the Effect?

    PubMed Central

    Pederson, Thoru

    1974-01-01

    Nuclear acidic proteins have been implicated in the positive control of gene transcription in eukaryotes. This hypothesis was examined in greater detail by analysis of these proteins during experimental gene activation by a technique for fractionating nuclei into chromatin and the ribonucleoprotein particles that contain heterogeneous nuclear RNA. When synthesis of rat-liver heterogeneous nuclear RNA was stimulated by administration of hydrocortisone, there was a parallel increase in the labeling of acidic proteins in ribonucleoprotein particles. However, there was no detectable effect on the labeling of either acidic chromatin proteins or histones. Thus, the nuclear acidic proteins that respond to the hormone are concerned with a post-transcriptional event, namely the assembly and processing of ribonucleoprotein particles that contain heterogeneous RNA, rather than with direct gene activation. Increases in synthesis of “chromatin” acidic proteins during gene activation observed by others may reflect the presence of these ribonucleoprotein particles in crude chromatin preparations. Images PMID:4522777

  11. Nicotinic Acid Activates the Capsaicin Receptor TRPV1 – A Potential Mechanism for Cutaneous Flushing

    PubMed Central

    Ma, Linlin; Lee, Bo Hyun; Mao, Rongrong; Cai, Anping; Jia, Yunfang; Clifton, Heather; Schaefer, Saul; Xu, Lin; Zheng, Jie

    2014-01-01

    Objective Nicotinic acid (a.k.a. niacin or vitamin B3), widely used to treat dyslipidemias, represents an effective and safe means to reduce the risk of mortality from cardiovascular disease. Nonetheless, a substantial fraction of patients discontinue treatment due to a strong side effect of cutaneous vasodilation, commonly termed flushing. In the present study we tested the hypothesis that nicotinic acid causes flushing partially by activating the capsaicin receptor TRPV1, a polymodal cellular sensor that mediates the flushing response upon consumption of spicy food. Approach and Results We observed that the nicotinic acid-induced increase in blood flow was substantially reduced in Trpv1−/− knockout mice, indicating involvement of the channel in flushing response. Using exogenously expressed TRPV1, we confirmed that nicotinic acid at sub-millimolar to millimolar concentrations directly and potently activates TRPV1 from the intracellular side. Binding of nicotinic acid to TRPV1 lowers its activation threshold for heat, causing channel opening at physiological temperatures. Activation of TRPV1 by voltage or ligands (capsaicin and 2-APB) is also potentiated by nicotinic acid. We further demonstrated that nicotinic acid does not compete directly with capsaicin but may activate TRPV1 through the 2-APB activation pathway. Using live-cell fluorescence imaging, we observed that nicotinic acid can quickly enter the cell through a transporter-mediated pathway to activate TRPV1. Conclusions Direct activation of TRPV1 by nicotinic acid may lead to cutaneous vasodilation that contributes to flushing, suggesting a potential novel pathway to inhibit flushing and improve compliance. PMID:24675661

  12. Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of N(2)-acyl isonicotinic acid hydrazide derivatives.

    PubMed

    Judge, Vikramjeet; Narasimhan, Balasubramanian; Ahuja, Munish; Sriram, Dharmarajan; Yogeeswari, Perumal; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan

    2013-02-01

    A series of N(2)-acyl isonicotinic acid hydrazides (1-17) was synthesized and tested for its in vitro antimycobacterial activity against Mycobacterium tuberculosis and the results indicated that the compound, isonicotinic acid N'- tetradecanoyl-hydrazide (12) was more active than the reference compound isoniazid. The results of antimicrobial activity of the synthesized compounds against S. aureus, B. subtilis, E. coli, C. albicans and A. niger indicated that compounds with dichloro, hydroxyl, tri-iodo and N(2)-tetradecanoyl substituent were the most active ones. The antiviral activity studies depicted that none of the tested compounds were active against DNA or RNA viruses. The multi-target QSAR model was found to be effective in describing the antimicrobial activity of N(2)-acyl isonicotinic acid hydrazides. PMID:22762163

  13. p21 induction plays a dual role in anti-cancer activity of ursolic acid.

    PubMed

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong; Hu, Hongbo

    2016-03-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  14. Natural Bile Acids and Synthetic Analogues Modulate Large Conductance Ca2+-activated K+ (BKCa) Channel Activity in Smooth Muscle Cells

    PubMed Central

    Dopico, Alejandro M.; Walsh, John V.; Singer, Joshua J.

    2002-01-01

    Bile acids have been reported to produce relaxation of smooth muscle both in vitro and in vivo. The cellular mechanisms underlying bile acid–induced relaxation are largely unknown. Here we demonstrate, using patch-clamp techniques, that natural bile acids and synthetic analogues reversibly increase BKCa channel activity in rabbit mesenteric artery smooth muscle cells. In excised inside-out patches bile acid–induced increases in channel activity are characterized by a parallel leftward shift in the activity-voltage relationship. This increase in BKCa channel activity is not due to Ca2+-dependent mechanism(s) or changes in freely diffusible messengers, but to a direct action of the bile acid on the channel protein itself or some closely associated component in the cell membrane. For naturally occurring bile acids, the magnitude of bile acid–induced increase in BKCa channel activity is inversely related to the number of hydroxyl groups in the bile acid molecule. By using synthetic analogues, we demonstrate that such increase in activity is not affected by several chemical modifications in the lateral chain of the molecule, but is markedly favored by polar groups in the side of the steroid rings opposite to the side where the methyl groups are located, which stresses the importance of the planar polarity of the molecule. Bile acid–induced increases in BKCa channel activity are also observed in smooth muscle cells freshly dissociated from rabbit main pulmonary artery and gallbladder, raising the possibility that a direct activation of BKCa channels by these planar steroids is a widespread phenomenon in many smooth muscle cell types. Bile acid concentrations that increase BKCa channel activity in mesenteric artery smooth muscle cells are found in the systemic circulation under a variety of human pathophysiological conditions, and their ability to enhance BKCa channel activity may explain their relaxing effect on smooth muscle. PMID:11865021

  15. EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...

  16. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  17. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits

    PubMed Central

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the β-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 μg Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies. PMID:20548930

  18. Relationship between the electrochemical activity of Raney nickel and the rate of hydrogenation of maleic acid

    SciTech Connect

    Pervii, E.N.; Sofronkov, A.N.; Fedyshina, N.M.

    1986-02-10

    The purpose of this investigation was to determine the conditions in which a direct correlation exists between the rate of hydrogenation of maleic acid and the electrochemical activity of catalysts of hydrogen ionization. The rate of maleic acid hydrogenation in presence of Raney nickel catalyst was studied by a combination of volumetric and potentiometric methods.

  19. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  20. Evaluation of Perfluoroalkyl Acid Activity Using Primary Mouse and Human Hepatocytes.

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) in the environment. Using a transient transfection assay developed in COS-1 cells, our group h...

  1. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases.

    PubMed Central

    Ullrich, M; Bender, C L

    1994-01-01

    Coronamic acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine, functions as an intermediate in the biosynthesis of coronatine, a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. The DNA required for CMA biosynthesis (6.9 kb) was sequenced, revealing three distinct open reading frames (ORFs) which share a common orientation for transcription. The deduced amino acid sequence of a 2.7-kb ORF designated cmaA contained six core sequences and two conserved motifs which are present in a variety of amino acid-activating enzymes, including nonribosomal peptide synthetases. Furthermore, CmaA contained a spatial arrangement of histidine, aspartate, and arginine residues which are conserved in the ferrous active site of some nonheme iron(II) enzymes which catalyze oxidative cyclizations. The deduced amino acid sequence of a 1.2-kb ORF designated cmaT was related to thioesterases of both procaryotic and eucaryotic origins. These data suggest that CMA assembly is similar to the thiotemplate mechanism of nonribosomal peptide synthesis. No significant similarities between a 0.9-kb ORF designated cmaU and other database entries were found. The start sites of two transcripts required for CMA biosynthesis were identified in the present study. pRG960sd, a vector containing a promoterless glucuronidase gene, was used to localize and study the promoter regions upstream of the two transcripts. Data obtained in the present study indicate that CMA biosynthesis is regulated at the transcriptional level by temperature. Images PMID:8002582

  2. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  3. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery. PMID:23611786

  4. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    PubMed

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita. PMID:27197670

  5. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  6. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  7. Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities.

    PubMed

    Abbas, Samir Y; El-Sharief, Marwa A M Sh; Basyouni, Wahid M; Fakhr, Issa M I; El-Gammal, Eman W

    2013-06-01

    New series of thiourea derivatives incorporating a hippuric acid moiety have been synthesized through the reaction of 4-hippuric acid isothiocyanate with various nitrogen nucleophiles such as aliphatic amines, aromatic amines, sulfa drugs, aminopyrazoles, phenylhydrazine and hydrazides. The synthesized compounds were tested against bacterial and fungal strains. Most of compounds, such as 2-(4-(3-(3-bromophenyl)thioureido)benzamido)acetic acid and 2-(4-(3-(4-(N-pyrimidin-2-ylsulfamoyl)phenyl)thioureido)benzamido)acetic acid, showed significant antibacterial and antifungal activities. These compounds comprise a new class of promising broad-spectrum antibacterial and antifungal agents. PMID:23644194

  8. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.

    PubMed

    Morita, Masashi; Kawamichi, Misato; Shimura, Yusuke; Kawaguchi, Kosuke; Watanabe, Shiro; Imanaka, Tsuneo

    2015-12-01

    The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin. PMID:26108493

  9. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-01-01

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils. PMID:27104513

  10. Phytogrowth-inhibitory activities of 2-thiophenecarboxylic acid and its related compounds.

    PubMed

    Inamori, Y; Muro, C; Funakoshi, Y; Usami, Y; Tsujibo, H; Numata, A

    1994-01-01

    2-Thiophenecarboxylic acid (I) exhibited growth-inhibitory activity in five kinds of plants. In particular, I strongly inhibited the growth of the roots of Lactuca sativa L. var. longifolia LAM and Echinochloa utilis OHWI et YABUNO, even at the low concentration of 5.0 x 10(-3) M. Furthermore, all of the I-related compounds (II-V and VII-X) except for VI, showed more or less obvious inhibitory activity on the seeds of Sesamum indicum L. Compounds VII-X, in which the carboxyl group of I was replaced by acetic acid, propionic acid, butyric acid and acrylic acid, and exhibited more potent phytogrowth-inhibitory activity than I. Among these compounds, 2-thiophenebutyric acid (IX) showed the strongest activity. Esterification of the carboxyl group in I increased the inhibitory activity relative to that of I, while amidation and reduction of this group markedly decreased its inhibitory activity. The radicles of the plants treated with each of the compounds except for VI showed negative geotropism, even though germination occurred. PMID:8148810

  11. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    PubMed

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound. PMID:26812105

  12. Requirement of glucose for mycolic acid biosynthetic activity localized in the cell wall of Bacterionema matruchotii.

    PubMed

    Shimakata, T; Tsubokura, K; Kusaka, T

    1986-06-01

    When the localization of mycolic acid biosynthetic activity was examined with Bacterionema matruchotii cells disrupted by the ultrasonic vibration method, activity was detected only in the cell wall fraction, not in the inner membrane nor in the 78,000g supernatant. Either the supernatant or sugar was absolutely required for the incorporation of [14C]palmitate into mycolic acids. Among sugars examined, glucose was most effective, with maltose being second. Unexpectedly, trehalose was inert. As to substrate, the present system utilized free palmitic acid rather than palmitoyl-CoA. The reaction products from palmitate and glucose were glucose mycolate and trehalose monomycolate, in which the label from [14C]palmitate or [14C]glucose was incorporated. Glucose palmitate was also formed. Addition of trehalose resulted in a shift from glucose mycolate to trehalose monomycolate. These data clearly indicate that sugars play an important role in the synthesis of mycolic acids from free fatty acids. PMID:3717946

  13. Antimicrobial Activity of 8-Quinolinols, Salicylic Acids, Hydroxynaphthoic Acids, and Salts of Selected Quinolinols with Selected Hydroxy-Acids

    PubMed Central

    Gershon, Herman; Parmegiani, Raulo

    1962-01-01

    Seventy-seven compounds were screened by the disc-plate method against strains of five bacteria and five fungi. A new constant was proposed to describe the antimicrobial activity of a compound in a defined system of organisms. This constant includes not only the inhibitory level of activity of the material but also the number of organisms inhibited. This constant, the antimicrobial spectrum index, was compared with the antimicrobial index of Albert. PMID:13898066

  14. Characterization of the bactericidal activity of the natural diterpene kaurenoic acid.

    PubMed

    Wilkens, Marcela; Alarcón, Carolina; Urzúa, Alejandro; Mendoza, Leonora

    2002-05-01

    Kaurenoic acid is a diterpene with selective antibacterial activity against Gram-positive bacteria. The compound is bacteriolytic for Bacillus cereus. This activity was only partially affected by the composition and pH of the culture medium. Loss of the ability to retain the Gram stain and morphological alterations were produced in B. cereus cells exposed to kaurenoic acid. On the other hand, LPS mutants of Salmonella typhi were resistant to the compound, but spheroplasts of Escherichia coli became more sensitive to kaurenoic acid. PMID:12058325

  15. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    PubMed

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  16. Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.

    PubMed

    Zhu, Fengxian; Xu, Zhongming; Yonekura, Lina; Yang, Ronghua; Tamura, Hirotoshi

    2015-01-01

    Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and rosmarinic acid propyl ester exhibited the greatest β-hexosaminidase release suppression (IC50, 23.7 μM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness. PMID:25686361

  17. Improved Detection of Polygalacturonase Activity due to Mucor piriformis with a Modified Dinitrosalicylic Acid Reagent.

    PubMed

    Wang, G; Michailides, T J; Bostock, R M

    1997-02-01

    ABSTRACT An assay for determination of galacturonic acid with 3,5-dinitrosalicylic acid was developed that substantially extends the linear range of detection compared to a previously published method with this reagent. In the improved assay, galacturonic acid was detected with a reagent containing 44 mM 3,5-dinitrosalicylic acid, 4 mM sodium sulfite, and 375 mM sodium hydroxide. The absorbance of the solution after reaction with galacturonic acid was determined at 575 nm and was linear at concentrations of galacturonic acid up to 50 mumol, with a lower limit of detection at ~400 nmol. The assay with the improved reagent could be performed in wavelength ranges from 550 to 575 nm, with higher sensitivity at the shorter wavelengths. The new reagent was used in routine assays of polygalacturonase activity in culture filtrates of the important postharvest fungal pathogen Mucor piriformis. PMID:18945136

  18. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    PubMed

    Clementi, Emily A; Wilhelm, Kristina R; Schleucher, Jürgen; Morozova-Roche, Ludmilla A; Hakansson, Anders P

    2013-01-01

    HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize and/or present the

  19. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    PubMed

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. PMID:26692250

  20. Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I

    PubMed Central

    Abdelhady, Hosam G.; Allen, Stephanie; Davies, Martyn C.; Roberts, Clive J.; Tendler, Saul J. B.; Williams, Philip M.

    2003-01-01

    The need to protect DNA from in vivo degradation is one of the basic tenets of therapeutic gene delivery and a standard test for any proposed delivery vector. The currently employed in vitro tests, however, presently provide no direct link between the molecular structure of the vector complexes and their success in this role, thus hindering the rational design of successful gene delivery agents. Here we apply atomic force microscopy (AFM) in liquid to visualise at the molecular scale and in real time, the effect of DNase I on generation 4 polyamidoamine dendrimers (G4) complexed with DNA. These complexes are revealed to be dynamic in nature showing a degree of mobility, in some cases revealing the addition and loss of dendrimers to individual complexes. The formation of the G4–DNA complexes is observed to provide a degree of protection to the DNA. This protection is related to the structural morphology of the formed complex, which is itself shown to be dependent on the dendrimer loading and the time allowed for complex formation. PMID:12853616

  1. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6.

    PubMed

    Kleinjan, D A; Seawright, A; Schedl, A; Quinlan, R A; Danes, S; van Heyningen, V

    2001-09-15

    The transcription factor PAX6 plays a critical, evolutionarily conserved role in eye, brain and olfactory development. Homozygous loss of PAX6 function affects all expressing tissues and is neonatally lethal; heterozygous null mutations cause aniridia in humans and the Small eye (Sey) phenotype in mice. Several upstream and intragenic PAX6 control elements have been defined, generally through transgenesis. However, aniridia cases with chromosomal rearrangements far downstream of an intact PAX6 gene suggested a requirement for additional cis-acting control for correct gene expression. The likely location of such elements is pinpointed through YAC transgenic studies. A 420 kb yeast artificial chromosome (YAC) clone, extending well beyond the most distant patient breakpoint, was previously shown to rescue homozygous Small eye lethality and correct the heterozygous eye phenotype. We now show that a 310 kb YAC clone, terminating just 5' of the breakpoint, fails to influence the Sey phenotypes. Using evolutionary sequence comparison, DNaseI hypersensitivity analysis and transgenic reporter studies, we have identified a region, >150 kb distal to the major PAX6 promoter P1, containing regulatory elements. Components of this downstream regulatory region drive reporter expression in distinct partial PAX6 patterns, indicating that the functional PAX6 gene domain extends far beyond the transcription unit. PMID:11590122

  2. Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites

    SciTech Connect

    Postic, C.; Niswender, K.D.; Shelton, K.D.; Pettepher, C.C.; Granner, D.K.; Magnuson, M.A.

    1995-10-10

    We cloned and characterized an 83-kb fragment of mouse genomic DNA containing the entire glucokinase (GK) gene. The 11 exons of the gene span a total distance of 49 kb, with exons 1{beta} and 1L being separated by 35 kb. A total of 25,266 bp of DNA sequence information was determined: from {approximately}-9.2 to {approximately}+15 kb (24,195 bp), relative to the hepatocyte transcription start site, and from -335 to -736 bp (1071 bp), relative to the transcription start site in {beta} cells. These sequences revealed that mouse GK is >94% identical to rat and human GK. Mouse hepatic GK mRNA is regulated by fasting and refeeding, as also occurs in the rat. Alignment of the upstream and downstream promoter regions of the mouse, rat, and human genes revealed several evolutionarily conserved regions that may contribute to transcriptional regulation. However, fusion gene studies in transgenic mice indicate that the conserved regions near the transcription start site in hepatocytes are themselves not sufficient for position-independent expression in liver. Analysis of the chromatin structure of a 48-kb region of the mouse gene using DNase I revealed eight liver-specific hypersensitive sites whose locations ranged from 0.1 to 36 kb upstream of the liver transcription start site. The availability of a single, contiguous DNA fragment containing the entire mouse GK gene should allow further studies of cell-specific expression of GK to be performed. 46 refs., 8 figs.

  3. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  4. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity.

    PubMed

    Tao, Li; Wang, Sheng; Zhao, Yang; Sheng, Xiaobo; Wang, Aiyun; Zheng, Shizhong; Lu, Yin

    2014-09-25

    Integrated research of herbs and formulas characterized by functions of promoting blood circulation and removing blood stasis is one of the most active fields in traditional Chinese medicine. This paper strives to demonstrate the roles of a homologous series of phenolcarboxylic acids from these medicinal herbs in cancer treatment via targeting cyclooxygenase-2 (COX-2), a well-recognized mediator in tumorigenesis. We selected thirteen typical phenolcarboxylic acids (benzoic acid derivatives, cinnamic acid derivatives and their dehydration-condensation products), and found gallic acid, caffeic acid, danshensu, rosmarinic acid and salvianolic acid B showed 50% inhibitory effects on hCOX-2 activity and A549 cells proliferation. 2D-quantitative method was introduced to describe the potential structural features that contributed to certain bioactivities. We also found these compounds underwent responsible hydrogen bonding to Arg120 and Ser353 in COX-2 active site residues. We further extensively focused on danshensu [d-(+)-β-(3,4-dihydoxy-phenylalanine)] or DSS, which exerted COX-2 dependent anticancer manner. Both genetic and pharmacological inhibition of COX-2 could enhance the ability of DSS inhibiting A549 cells growth. Additionally, COX-2/PGE2/ERK signaling axis was essential for the anticancer effect of DSS. Furthermore, combined treatment with DSS and celecoxib could produce stronger anticancer effects in experimental lung metastasis of A549 cells in vivo. All these findings indicated that phenolcarboxylic acids might possess anticancer effects through jointly targeting COX-2 activity in cancer cells and provided strong evidence in cancer prevention and therapy for the herbs characterized by blood-activating and stasis-resolving functions in clinic. PMID:24916702

  5. Synthesis, Evaluation of Anticancer Activity and QSAR Study of Heterocyclic Esters of Caffeic Acid

    PubMed Central

    Hajmohamad Ebrahim Ketabforoosh, Shima; Amini, Mohsen; Vosooghi, Mohsen; Shafiee, Abbas; Azizi, Ebrahim; Kobarfard, Farzad

    2013-01-01

    Caffeic acid phenethyl ester (CAPE) suppresses the growth of transformed cells such as human breast cancer cells, hepatocarcinoma , myeloid leukemia, colorectal cancer cells, fibrosarcoma, glioma and melanoma. A group of heterocyclic esters of caffeic acid was synthesized using Mitsunobu reaction and the esters were subjected to further structural modification by electrooxidation of the catechol ring of caffeic acid esters in the presence of sodium benzenesulfinate and sodium toluensulfinate as nucleophiles. Both heterocyclic esters of caffeic acid and their arylsulfonyl derivatives were evaluated for their cytotoxic activity against HeLa, SK-OV-3, and HT-29 cancer cell lines. HeLa cells showed the highest sensitivity to the compounds and heterocyclic esters with no substituent on catechol ring showed better activity compared to their substituted counterparts. QSAR studies reemphasized the importance of molecular shape of the compounds for their cytotoxic activity. PMID:24523750

  6. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  7. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity.

    PubMed Central

    Choe, B K; Dong, M K; Walz, D; Gleason, S; Rose, N R

    1982-01-01

    By limited proteolysis with mouse submaxillaris protease, human prostatic acid phosphatase (EC 3.1.3.2) was cleaved into three fragments, Sp1, Sp2, and Sp3, which individually had no enzymatic activity. One of the fragments, Sp3, regained enzymatic activity after interaction with rabbit antibody to prostatic acid phosphatase. The Sp3 fragment was purified and characterized as to its molecular weight, amino acid composition, and carbohydrate content. The Sp3 fragment behaved like the parent molecule in L(+)-tartrate affinity and in trapping of a phosphoryl intermediate. The same Sp3 fragment also bears the most prominent antigenic determinants. This evidence suggest that Sp3 is the enzymatically active domain of prostatic acid phosphatase. Images PMID:6193513

  8. Epicuticular Wax Accumulation and Fatty Acid Elongation Activities Are Induced during Leaf Development of Leeks1

    PubMed Central

    Rhee, Yoon; Hlousek-Radojcic, Alenka; Ponsamuel, Jayakumar; Liu, Dehua; Post-Beittenmiller, Dusty

    1998-01-01

    Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies. PMID:9501123

  9. The effects of nutritional polyunsaturated fatty acids on locomotor activity in spontaneously hypertensive rats.

    PubMed

    Hauser, Joachim; Makulska-Gertruda, Ewelina; Reissmann, Andreas; Sontag, Thomas-A; Tucha, Oliver; Lange, Klaus W

    2014-06-01

    The present study investigated the effects of nutritional omega-3 polyunsaturated fatty acids on locomotor activity in spontaneously hypertensive rats (SHRs), which are used as an animal model of attention-deficit/hyperactivity disorder (ADHD). For 6 weeks, two groups of randomly assigned SHRs received food either enriched with or deficient in omega-3 fatty acids (based on the American Institute of Nutrition-93 G/AIN93G). Using an open field, locomotor activity was subsequently assessed for 6 days. A marked difference in locomotor activity as assessed by the distance travelled in the open field was found between the two groups of rats. In comparison with rats fed with omega-3 fatty acid-enriched food, the animals on the omega-3 fatty acid-deficient diet showed a significantly higher locomotor activity. The present findings demonstrated that nutritional enrichment with omega-3 fatty acids was associated with reduced motor activity in an established animal model of ADHD and support the notion that omega-3 polyunsaturated fatty acids may play a role in the pathophysiology of ADHD. PMID:24415401

  10. Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens.

    PubMed

    Castillo-Juárez, Israel; Rivero-Cruz, Fausto; Celis, Heliodoro; Romero, Irma

    2007-10-01

    Amphipterygium adstringens (Schltdl.) Standl. (Anacardiaceae) is widely used in traditional Mexican medicine for the treatment of gastritis and ulcers. In this work, we studied the anti-Helicobacter pylori activity of its bark, this Gram-negative bacterium is considered the major etiological agent of chronic active gastritis and peptic ulcer disease, and it is linked to gastric carcinoma. From a bio-guided assay of the fractions obtained form a continuous Soxhlet extraction of the bark, we identified that petroleum ether fraction had significant antimicrobial activity against Helicobacter pylori. From this fraction, we isolated an anacardic acids mixture and three known triterpenes: masticadienonic acid; 3alpha-hydroxymasticadienonic acid; 3-epi-oleanolic; as well as the sterol beta-sitosterol. Only the anacardic acids mixture exhibits a potent dose-dependent antibacterial activity (MIC=10 microg/ml in broth cultures). It is enriched in saturated alkyl phenolic acids (C15:0, C16:0, C17:0 C19:0) which represents a novel source of these compounds with potent anti-Helicobacter pylori activity. The promising use of anacardic acids and Amphipterygium adstringens bark in the development of an integral treatment of Helicobacter pylori diseases is discussed. PMID:17768020

  11. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    PubMed

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes. PMID:27414751

  12. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  13. 9-Oxo-10(E),12(Z),15(Z)-Octadecatrienoic Acid Activates Peroxisome Proliferator-Activated Receptor α in Hepatocytes.

    PubMed

    Takahashi, Haruya; Kamakari, Kosuke; Goto, Tsuyoshi; Hara, Hideyuki; Mohri, Shinsuke; Suzuki, Hideyuki; Shibata, Daisuke; Nakata, Rieko; Inoue, Hiroyasu; Takahashi, Nobuyuki; Kawada, Teruo

    2015-11-01

    The peroxisome proliferator-activated receptor (PPAR)α is mainly expressed in the liver and plays an important role in the regulation of lipid metabolism. It has been reported that PPARα activation enhances fatty acid oxidation and reduces fat storage. Therefore, PPARα agonists are used to treat dyslipidemia. In the present study, we found that 9-oxo-10(E),12(Z),15(Z)-octadecatrienoic acid (9-oxo-OTA), which is a α-linolenic acid (ALA) derivative, is present in tomato (Solanum lycopersicum) extract. We showed that 9-oxo-OTA activated PPARα and induced the mRNA expression of PPARα target genes in murine primary hepatocytes. These effects promoted fatty acid uptake and the secretion of β-hydroxybutyrate, which is one of the endogenous ketone bodies. We also demonstrated that these effects of 9-oxo-OTA were not observed in PPARα-knockout (KO) primary hepatocytes. To our knowledge, this is the first study to report that 9-oxo-OTA promotes fatty acid metabolism via PPARα activation and discuss its potential as a valuable food-derived compound for use in the management of dyslipidemia. PMID:26387026

  14. Dynamic changes during acid-induced activation of influenza hemagglutinin

    PubMed Central

    Garcia, Natalie K.; Guttman, Miklos; Ebner, Jamie L.; Lee, Kelly K.

    2015-01-01

    SUMMARY Influenza hemagglutinin (HA) mediates virus attachment to host cells and fusion of the viral and endosomal membranes during entry. While high-resolution structures are available for the pre-fusion HA ectodomain and the post-fusion HA2 subunit, the sequence of conformational changes during HA activation has eluded structural characterization. Here we apply hydrogen-deuterium exchange with mass spectrometry to examine changes in structural dynamics of the HA ectodomain at various stages of activation, as well as to compare the soluble ectodomain with intact HA on virions. At pH conditions approaching activation (pH 6.0–5.5) HA exhibits increased dynamics at the fusion peptide and neighboring regions, while the interface between receptor-binding subunits (HA1) becomes stabilized. In contrast to many activation models, these data suggest that HA responds to endosomal acidification by releasing the fusion peptide prior to HA1 uncaging and the spring-loaded refolding of HA2. This staged process may facilitate efficient HA-mediated fusion. PMID:25773144

  15. Understanding Fatty Acid Metabolism through an Active Learning Approach

    ERIC Educational Resources Information Center

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  16. [Conjugated linolenic acids (CLnA, super CLA)--natural sources and biological activity].

    PubMed

    Białek, Agnieszka; Teryks, Marta; Tokarz, Andrzej

    2014-01-01

    Polyunsaturated fatty acids (PUFA) have a wide range of biological activity. Among them conjugated fatty acids are of great interest. Conjugated linoleic acids (CLA), which exert a multidirectional health-benefiting influence, and conjugated linolenic acids (CLnA, super CLA) are examples of this group of fatty acids. CLnA are a group of positional and geometric isomers of octadecatrienoic acid (C18:3), which possess double bonds at positions 9, 11, 13 or 8, 10, 12 of their chain. Some vegetable oils are rich sources of CLnA, e.g. bitter melon oil (from Momordica charantia seeds) and pomegranate oil (from Punica granatum seeds). The aim of this paper was to present information concerning natural sources and health-promoting activities of conjugated linolenic acids. The presented data reveal that conjugated linolenic acids may be very useful in prevention and treatment of many diseases, especially diabetes, arteriosclerosis , obesity and cancers (mammary, prostate and colon cancer). Among many potential mechanisms of their action, the fact that some CLnA are converted by oxidoreductases into CLA is very important. It seems to be very reasonable to conduct research concerning the possibility of CLnA use in prevention of many diseases. PMID:25380206

  17. All-trans retinoic acid modulates mitogen-activated protein kinase pathway activation in human scleral fibroblasts through retinoic acid receptor beta

    PubMed Central

    Huo, Lijun; Cui, Dongmei; Yang, Xiao; Gao, Zhenya; Trier, Klaus

    2013-01-01

    Purpose All-trans retinoic acid (ATRA) is known to inhibit the proliferation of human scleral fibroblasts (HSFs) and to modulate the scleral intercellular matrix composition, and may therefore serve as a mediator for controlling eye growth. Cell proliferation is regulated by the mitogen-activated protein kinase (MAPK) pathway. The aim of the current study was to investigate whether changed activation of the MAPK pathway could be involved in the response of HSFs exposed to ATRA. Methods HSFs were cultured in Dulbecco Modified Eagle's Medium/F12 (DMEM/F12) and exposed to 1 μmol/l ATRA for 10 min, 30 min, 1 h, 8 h, or 24 h. The activation of extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK) in HSFs was assessed with western blot analysis and immunocytofluorescence. Results After exposure to ATRA for 24 h, the HSFs appeared shrunken and thinner than the control cells. The intercellular spaces were wider, and the HSFs appeared less numerous than in the control culture. Western blot showed decreased activation of ERK 1/2 in the HSFs from 30 min (p=0.01) to 24 h (p<0.01) after the start of exposure to ATRA, and increased activation of the JNK protein from 10 to 30 min (p<0.01) after the start of exposure to ATRA. Indirect immunofluorescence confirmed changes in activation of ERK 1/2 and JNK in HSFs exposed to ATRA. No change in activation of p38 in HSFs was observed after exposure to ATRA. Pretreatment of the HSFs with LE135, an antagonist of retinoic acid receptor beta (RARβ), abolished the ATRA-induced changes inactivation of ERK 1/2 and JNK. Conclusions ATRA inhibits HSF proliferation by a mechanism associated with modulation of ERK 1/2 and JNK activation and depends on stimulation of retinoic acid receptor beta. PMID:23946634

  18. Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development.

    PubMed

    Butsat, Sunan; Weerapreeyakul, Natthida; Siriamornpun, Sirithon

    2009-06-10

    Soluble and bound phenolic acids were isolated from Thai rice husk samples at five growth stages during grain development, and their antioxidant activities were evaluated. The results showed that ferulic acid was the major soluble phenolic acid in husk at all stages, and its concentration decreased steadily during grain development. The ratio of ferulic to p-coumaric acid was approximately 2:1 at all stages. The most abundant bound phenolic acid in all extracts was p-coumaric acid, followed by ferulic acid along with traces of syringic, vanilic, and p-hydroxybenzoic acids. Most of the antioxidant activities of soluble and bound phenolic acids in husk extracts were found at flowering stage, and there were high correlations of antioxidant activity to levels of soluble ferulic, gallic, and p-coumaric acids. PMID:19432451

  19. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  20. Screening of Immune-Active Lactic Acid Bacteria

    PubMed Central

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  1. Screening of Immune-Active Lactic Acid Bacteria.

    PubMed

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung; Lee, Ju-Woon

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  2. A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma gondii

    PubMed Central

    Gaskell, Elizabeth A.; Smith, Judith E.; Pinney, John W.; Westhead, Dave R.; McConkey, Glenn A.

    2009-01-01

    The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces l-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to l-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s) of these bi-functional enzymes during host infection are discussed. PMID:19277211

  3. Antitumor effect of sonodynamically activated pyrrolidine tris-acid fullerene

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Nishi, Koji; Fujimori, Junya; Fukai, Toshio; Yumita, Nagahiko; Ikeda, Toshihiko; Chen, Fu-shin; Momose, Yasunori; Umemura, Shin-ichiro

    2016-07-01

    In this study, the sonodynamically induced antitumor effect of pyrrolidine tris-acid fullerene (PTF) was investigated. Sonodynamically induced antitumor effects of PTF by focused ultrasound were investigated using isolated sarcoma-180 cells and mice bearing ectopically-implanted colon 26 carcinoma. Cell damage induced by ultrasonic exposure was enhanced by 5-fold in the presence of 80 µM PTF. The combined treatment of ultrasound and PTF suppressed the growth of the implanted colon 26 carcinoma. Ultrasonically induced 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4oxoTEMPO) production in the presence and absence of PTF was assessed, and it was shown that 80 µM PTF enhanced 4oxoTEMPO production as measured by ESR spectroscopy. Histidine, a reactive oxygen scavenger, significantly reduced cell damage and 4oxoTEMPO generation caused by ultrasonic exposure in the presence of PTF. These results suggest that singlet oxygen is likely to be involved in the ultrasonically induced cell damage enhanced by PTF.

  4. Antimicrobial Activity of Ferulic Acid Against Cronobacter sakazakii and Possible Mechanism of Action.

    PubMed

    Shi, Chao; Zhang, Xiaorong; Sun, Yi; Yang, Miaochun; Song, Kaikuo; Zheng, Zhiwei; Chen, Yifei; Liu, Xin; Jia, Zhenyu; Dong, Rui; Cui, Lu; Xia, Xiaodong

    2016-04-01

    Cronobacter sakazakii is an opportunistic pathogen transmitted by food that affects mainly newborns, infants, and immune-compromised adults. In this study, the antibacterial activity of ferulic acid was tested against C. sakazakii strains. Minimum inhibitory concentration of ferulic acid against C. sakazakii strains was determined using the agar dilution method. Changes in intracellular pH, membrane potential and intracellular ATP concentration were measured to elucidate the possible antibacterial mechanism. Moreover, SYTO 9 nucleic acid staining was used to assess the effect of ferulic acid on bacterial membrane integrity. Cell morphology changes were observed under a field emission scanning electron microscope. The minimum inhibitory concentrations of ferulic acid against C. sakazakii strains ranged from 2.5 to 5.0 mg/mL. Addition of ferulic acid exerted an immediate and sustained inhibition of C. sakazakii proliferation. Ferulic acid affected the membrane integrity of C. sakazakii, as evidenced by intracellular ATP concentration decrease. Moreover, reduction of intracellular pH and cell membrane hyperpolarization were detected in C. sakazakii after exposure to ferulic acid. Reduction of green fluorescence indicated the injury of cell membrane. Electronic microscopy confirmed that cell membrane of C. sakazakii was damaged by ferulic acid. Our results demonstrate that ferulic acid has moderate antimicrobial activity against C. sakazakii. It exerts its antimicrobial action partly through causing cell membrane dysfunction and changes in cellular morphology. Considering its antimicrobial properties, together with its well-known nutritional functions, ferulic acid has potential to be developed as a supplement in infant formula or other foods to control C. sakazakii. PMID:26919471

  5. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro

    PubMed Central

    Lü, Jian-Ming; Yan, Shaoyu; Jamaluddin, Saha; Weakley, Sarah M.; Liang, Zhengdong; Siwak, Edward B.; Yao, Qizhi; Chen, Changyi

    2012-01-01

    Summary Background Several HIV protease mutations, which are resistant to clinical HIV protease inhibitors (PIs), have been identified. There is a great need for second-generation PIs with different chemical structures and/or with an alternative mode of inhibition. Ginkgolic acid is a natural herbal substance and a major component of the lipid fraction in the nutshells of the Ginkgo biloba tree. The objective of this study was to determine whether ginkgolic acid could inhibit HIV protease activity in a cell free system and HIV infection in human cells. Material/Methods Purified ginkgolic acid and recombinant HIV-1 HXB2 KIIA protease were used for the HIV protease activity assay. Human peripheral blood mononuclear cells (PBMCs) were used for HIV infection (HIV-1SF162 virus), determined by a p24gag ELISA. Cytotoxicity was also determined. Results Ginkgolic acid (31.2 μg/ml) inhibited HIV protease activity by 60%, compared with the negative control, and the effect was concentration-dependent. In addition, ginkgolic acid treatment (50 and 100 μg/ml) effectively inhibited the HIV infection at day 7 in a concentration-dependent manner. Ginkgolic acid at a concentration of up to 150 μg/ml demonstrated very limited cytotoxicity. Conclusions Ginkgolic acid effectively inhibits HIV protease activity in a cell free system and HIV infection in PBMCs without significant cytotoxicity. Ginkgolic acid may inhibit HIV protease through different mechanisms than current FDA-approved HIV PI drugs. These properties of ginkgolic acid make it a promising therapy for HIV infection, especially as the clinical problem of viral resistance to HIV PIs continues to grow. PMID:22847190

  6. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  7. A novel approach for reliable activity determination of ascorbic acid depending myrosinases.

    PubMed

    Kleinwächter, Maik; Selmar, Dirk

    2004-06-30

    Up to now, a wide array of methods for the determination of myrosinase activity has been described. These vary from the simple photometric estimation to highly sophisticated assays using radioactively labelled substrates. However, ascorbic acid--an effective activator of myrosinases--interferes with most of these enzyme tests. Unfortunately, in the past, such interferences were disregarded in many scientific examinations of myrosinases. Whereas such failings have less effects when the activation of myrosinases is not very distinctive, they are quite relevant in all cases where myrosinases are completely inactive in the absence of ascorbic acid. In this paper, the current methods for myrosinase determination are reviewed critically with special emphasis on putative interferences with ascorbic acid. Thereafter, an alternative and interference-free HPLC-based quantification method of the enzymatically produced glucose is presented. Due to the benzoylation of glucose, it becomes possible to quantify even those exiguous glucose concentrations, which are indispensable for correct determination of kinetic enzyme data in the presence of ascorbic acid. Using this new method, the activity of Tropaeolum majus myrosinase towards glucotropaeolin was analyzed. This enzyme shows a distinctive activation by ascorbic acid with maximal activation at a concentration of about 2 mM. PMID:15165756

  8. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids.

    PubMed

    Reddy, Yasa Sathyam; Kaki, Shiva Shanker; Rao, Bala Bhaskara; Jain, Nishant; Vijayalakshmi, Penumarthy

    2016-01-01

    The present study describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenyl esters of alpha-linolenic acid (ALA), valproic acid (VA), butyric acid (BA) and 2-ethylhexanoic acid (2-EHA). These esters were chemically synthesized by the esterification of fatty acids with 2,6-diisopropylphenol and 2,4-diisopropylphenol (propofol). The structure of new conjugates viz. propofol-(alpha-linolenic acid) (2,6P-ALA and 2,4P-ALA), propofol-valproic acid (2,6P-VA and 2,4P-VA), propofol-butyric acid (2,6P-BA and 2,4P-BA) and propofol-(2-ethylhexanoic acid) (2,6P2-EHA and 2,4P-2-EHA) were characterized by FT-IR, NMR ((1)H, (13)C) and mass spectral data. The synthesized conjugates having more lipophilic character were tested for antiproliferative in vitro studies on A549, MDA-MB-231, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. All the conjugates showed specific growth inhibition on studied cancer cell lines. Among the synthesized esters, the conjugates synthesized from BA, VA and 2-EHA exhibited prominent growth inhibition against A549, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. The preliminary results suggest that the entire novel conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro. PMID:26666272

  9. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge.

    PubMed

    Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu

    2015-04-21

    Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA. PMID:25825920

  10. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.

    PubMed

    Araujo, César L; Quintero, Ileana B; Kipar, Anja; Herrala, Annakaisa M; Pulkka, Anitta E; Saarinen, Lilli; Hautaniemi, Sampsa; Vihko, Pirkko

    2014-06-01

    We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds. PMID:24717577

  11. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    PubMed

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. PMID:23448265

  12. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this study was…

  13. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5'AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    PubMed

    Tsuda, Satoshi; Egawa, Tatsuro; Ma, Xiao; Oshima, Rieko; Kurogi, Eriko; Hayashi, Tatsuya

    2012-11-01

    Chlorogenic acid is an ester of caffeic and quinic acids, and is one of the most widely consumed polyphenols because it is abundant in foods, especially coffee. We explored whether chlorogenic acid and its metabolite, caffeic acid, act directly on skeletal muscle to stimulate 5'-adenosine monophosphate-activated protein kinase (AMPK). Incubation of rat epitrochlearis muscles with Krebs buffer containing caffeic acid (≥0.1 mM, ≥30 min) but not chlorogenic acid increased the phosphorylation of AMPKα Thr(172), an essential step for kinase activation, and acetyl CoA carboxylase Ser(79), a downstream target of AMPK, in a dose- and time-dependent manner. Analysis of isoform-specific AMPK activity revealed that AMPKα2 activity increased significantly, whereas AMPKα1 activity did not change. This enzyme activation was associated with a reduction in phosphocreatine content and an increased rate of 3-O-methyl-d-glucose transport activity in the absence of insulin. These results suggest that caffeic acid but not chlorogenic acid acutely stimulates skeletal muscle AMPK activity and insulin-independent glucose transport with a reduction of the intracellular energy status. PMID:22227267

  14. Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid 1

    PubMed Central

    Bostock, Richard M.; Yamamoto, Hiroyuki; Choi, Doil; Ricker, Karin E.; Ward, Bernard L.

    1992-01-01

    The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response. Images Figure 4 Figure 7 PMID

  15. The ex vivo antiplatelet activation potential of fruit phenolic metabolite hippuric acid.

    PubMed

    Santhakumar, Abishek Bommannan; Stanley, Roger; Singh, Indu

    2015-08-01

    Polyphenol-rich fruit and vegetable intake has been associated with reduction in platelet hyperactivity, a significant contributor to thrombus formation. This study was undertaken to investigate the possible role of hippuric acid, a predominant metabolite of plant cyclic polyols, phenolic acids and polyphenols, in reduction of platelet activation-related thrombogenesis. Fasting blood samples were collected from 13 healthy subjects to analyse the effect of varying concentrations of hippuric acid (100 μM, 200 μM, 500 μM, 1 mM and 2 mM) on activation-dependant platelet surface-marker expression. Procaspase activating compound-1 (PAC-1) and P-selectin/CD62P monoclonal antibodies were used to evaluate platelet activation-related conformational changes and α-granule release respectively using flow cytometry. Platelets were stimulated ex vivo via the P2Y1/P2Y12- adenosine diphosphate (ADP) pathway of platelet activation. Hippuric acid at a concentration of 1 mM and 2 mM significantly reduced P-selectin/CD62P expression (p = 0.03 and p < 0.001 respectively) induced by ADP. Hippuric acid at 2 mM concentration also inhibited PAC-1 activation-dependant antibody expression (p = 0.03). High ex vivo concentrations of hippuric acid can therefore significantly reduce P-selectin and PAC-1 expression thus reducing platelet activation and clotting potential. However, although up to 11 mM of hippuric acid can be excreted in the urine per day following consumption of fruit, hippuric acid is actively excreted with a recorded Cmax for hippuric acid in human plasma at 250-300 μM. This is lower than the blood concentration of 1-2 mM shown to be bioactive in this research. The contribution of hippuric acid to the protective effects of fruit and vegetable intake against vascular disorders by the pathways measured is therefore low but could be synergistic with lowered doses of antiplatelet drugs and help reduce risk of thrombosis in current antiplatelet drug sensitive populations. PMID

  16. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  17. Synthesis of amphiphilic seleninic acid derivatives with considerable activity against cellular membranes and certain pathogenic microbes.

    PubMed

    Du, Peng; Viswanathan, Uma M; Xu, Zhanjie; Ebrahimnejad, Hadi; Hanf, Benjamin; Burkholz, Torsten; Schneider, Marc; Bernhardt, Ingolf; Kirsch, Gilbert; Jacob, Claus

    2014-03-30

    Selenium compounds play a major role in Biology, where they are often associated with pronounced antioxidant activity or toxicity. Whilst most selenium compounds are not necessarily hazardous, their often selective cytotoxicity is interesting from a biochemical and pharmaceutical perspective. We have synthesized a series of amphiphilic molecules which combine a hydrophilic seleninic acid head group - which at the same time serves as thiol-specific warhead - with a hydrophobic tail. These molecules possess a surface activity similar to the one of SDS, yet their biological activity seems to exceed by far the one of a simple surfactant (e.g. SDS) or seleninic acid (e.g. phenyl seleninic acid). Such compounds effectively haemolyse Red Blood Cells and exhibit pronounced activity against Saccharomyces cerevisiae. From a chemical perspective, the seleninic warheads are likely to attack crucial cysteine proteins of the cellular thiolstat. PMID:24491370

  18. Depletion of arachidonic acid from GH3 cells. Effects on inositol phospholipid turnover and cellular activation.

    PubMed Central

    Dudley, D T; Macfarlane, D E; Spector, A A

    1987-01-01

    We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C. Images Fig. 4. PMID:3120699

  19. Neutrophil Elastase Enhances Sputum Solubilization in Cystic Fibrosis Patients Receiving DNase Therapy

    PubMed Central

    Papayannopoulos, Venizelos; Staab, Doris; Zychlinsky, Arturo

    2011-01-01

    Cystic fibrosis patients suffer from chronic lung infection and inflammation due to the secretion of viscous sputum. Sputum viscosity is caused by extracellular DNA, some of which originates from the release of neutrophil extracellular traps (NETs). During NET formation neutrophil elastase (NE) partially processes histones to decondense chromatin. NE is abundant in CF sputum and is thought to contribute to tissue damage. Exogenous nucleases are a palliative treatment in CF as they promote sputum solubilization. We show that in a process reminiscent of NET formation, NE enhances sputum solubilization by cleaving histones to enhance the access of exogenous nucleases to DNA. In addition, we find that in Cf sputum NE is predominantly bound to DNA, which is known to downregulate its proteolytic activity and may restrict host tissue damage. The beneficial role of NE in CF sputum solubilization may have important implications for the development of CF therapies targeting NE. PMID:22174830

  20. Effect alteration of methamphetamine by amino acids or their salts on ambulatory activity in mice.

    PubMed

    Kuribara, H; Tadokoro, S

    1983-02-01

    Effect alterations of methamphetamine by pretreatment of amino acids or their salts on ambulatory activity in mice were investigated to confirm a fact that certain amino acids, particularly monosodium L-glutamate, are added to methamphetamine by the street users, and that the amino acids augment the effect of methamphetamine. The ambulatory activity of mouse was measured by a tilting-type round activity cage of 25 cm in diameter. The amino acids or their salts tested were monosodium L-glutamate, monosodium L-aspartate, gamma-amino-butyric acid, L-alanine, L-lysine hydrochloride and L-arginine hydrochloride. A single administration of each chemical at doses of 1 and 2 g/kg i.p. did not induce a marked change in the ambulatory activity in mice. Methamphetamine 2 mg/kg s.c. induced an increase in the ambulatory activity with a peak at 40 min after the administration, and the increased ambulatory activity persisted for 3 hr. The ambulation-increasing effect of methamphetamine was augmented by the pretreatment of monosodium L-glutamate and monosodium L-aspartate at 30 min before the methamphetamine administration, while attenuated by the pretreatment of L-lysine hydrochloride and L-arginine hydrochloride in a dose-dependent manner. Gamma-aminobutyric acid and L-alanine did not affect the effect of methamphetamine. Similar augmentation and attenuation in the ambulation-increasing effect of methamphetamine were induced by the pretreatment of sodium bicarbonate 0.9 g/kg i.p. (urinary alkalizer) and ammonium chloride 0.07 g/kg i.p. (urinary acidifier), respectively. The urinary pH level was elevated by the administration of monosodium L-glutamate, monosodium L-aspartate and sodium bicarbonate, and decreased by L-lysine hydrochloride, L-arginine hydrochloride and ammonium chloride. Gamma-aminobutyric acid and L-alanine did not elicit a marked change in the urinary pH level. The present experiment confirms the fact in human that monosodium L-glutamate augments the effect of

  1. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  2. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-06-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%.

  3. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    PubMed Central

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  4. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  5. Pattern of 24 hour intragastric acidity in active duodenal ulcer disease and in healthy controls.

    PubMed Central

    Merki, H S; Fimmel, C J; Walt, R P; Harre, K; Röhmel, J; Witzel, L

    1988-01-01

    Twenty four hour intragastric acidity was measured by continuous recording using intragastric combined glass electrodes in 46 duodenal ulcer patients within 48 hours of endoscopic confirmation of active ulceration. Acidity during predefined time periods was compared with that measured in 40 healthy controls without gastrointestinal disease: it was significantly higher in duodenal ulcer patients at all times, but 25% of ulcer patients had median 24 hour acidity within the interquartile range of the normal group. During the evening (18,00 to 22,00 h) ulcer patients had considerable acidity with a median of 39.8 (63.1-31.6) mmol/l (interquartile range) compared with 5.6 (22.3-0.4) mmol/l of controls. It is suggested that antisecretory treatment be directed to decrease this period of unbuffered acidity, as well as during the night, which is presently considered of prime importance. PMID:3209116

  6. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon.

    PubMed

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  7. The amino acid sequence of monal pheasant lysozyme and its activity.

    PubMed

    Araki, T; Matsumoto, T; Torikata, T

    1998-10-01

    The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly). PMID:9836434

  8. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity. PMID:24325390

  9. Inhibition of lysophospholipase D activity by unsaturated lysophosphatidic acids or seed extracts containing 1-linoleoyl and 1-oleoyl lysophosphatidic acid.

    PubMed

    Liu, Xi-Wen; Sok, Dai-Eun; Yook, Hong-Sun; Sohn, Cheon-Bae; Chung, Young-Jin; Kim, Mee Ree

    2007-10-17

    Lysophospholipase D (lysoPLD), generating lipid mediator lysophosphatidic acid (LPA) from lysophosphatidyclcholine (LPC), is known to be inhibited by lysophosphatidic acids. Meanwhile, some plant lipids are known to contain lysophospholipids as minor components. Therefore, it is interesting to test whether edible seed samples, rich in phospholipids, may contain lysophospholipids, which express a strong inhibition of lysoPLD activity. First, the structural importance of fatty acyl group in LPAs was examined by determining the inhibitory effect of various LPAs on bovine lysoPLD activity. The most potent in the inhibition of lysoPLD activity was linoleoyl-LPA ( K i, 0.21 microM), followed by arachidonoyl-LPA ( K i, 0.55 microM), oleoyl-LPA ( K i, 1.2 microM), and palmitoyl-LPA ( K i, 1.4 microM), based on the fluoresecent assay. The same order of inhibitory potency among LPA analogs with different acyl chains was also found in the spectrophotometric assay. Subsequently, the extracts of 12 edible seeds were screened for the inhibition of lysoPLD activity using both spectrophotometric and fluorescent assays. Among seed extracts tested, the extract from soybean seed, sesame seed, or sunflower seed (30 mg seed weight/mL) was found to exhibit a potent inhibition (>80%) of lysoPLD activity. In further study employing ESI-MS/MS analysis, major LPA components in seed extracts were identified to be 1-linoleoyl LPA, 1-oleoyl LPA, and 1-palmitoyl LPA with 1-linoleoyl LPA being more predominant. Thus, the potent inhibition of lysoPLD activity by seed extracts might be ascribed to the presence of LPA with linoleoyl group rather than other acyl chains. PMID:17887800

  10. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. PMID:20701974

  11. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists. PMID:25832022

  12. Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism.

    PubMed

    Khanduja, Krishan Lal; Avti, Pramod Kumar; Kumar, Surender; Mittal, Nidhi; Sohi, Kiranjit Kaur; Pathak, Chander Mohan

    2006-02-01

    Polyphenols have been shown to induce apoptosis in a variety of tumor cells including leukemia both in vitro and in vivo. However, their action on normal human peripheral blood mononuclear cells (PBMCs) during oxidative stress remains to be explored. In this study, we have evaluated the anti-apoptotic and radical scavenging activities of dietary phenolics, namely caffeic acid (CA), ellagic acid (EA) and ferulic acid (FA). H2O2-induced apoptosis in normal human PBMCs was assayed by phosphotidylserine externalization, nucleosomal damage and DNA fragmentation. Incubation of PBMCs with 5 mM H2O2 led to increased Annexin-V binding to externalized phosphatidyl serine (PS), an event of pre-apoptotic stage of the cell. Peripheral blood mononuclear cells pretreated with phenolics could resist H2O2-induced apoptotic damage. Caffeic acid (60 and 120 microM) and EA (100 and 200 microM) caused no change in externalization of PS, whereas FA (100 and 200 microM) increased externalization of PS in PBMCs treated with H2O2. The effects of phenolics were abolished to a large extent by culturing the PBMCs for 24 h after washing the phenolics from the medium. Inhibitory activities of these phenolics on lipid peroxidation were in the order of EAactivities of EA, CA and FA were found to be 31.2+/-1.36, 50+/-1.86 and 73.0+/-1.58 microM respectively. Although, the phenolics significantly inhibited DNA damage and lipid peroxidation, they could not alter the Bcl-2 expression in PBMCs. In conclusion, the anti-apoptotic effect of EA, CA and FA in PBMCs seems to be through the Bcl-2 independent mechanism. PMID:16459021

  13. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  14. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts.

    PubMed

    Hamase, Kenji; Konno, Ryuichi; Morikawa, Akiko; Zaitsu, Kiyoshi

    2005-09-01

    The determination of small amounts of D-amino acids in mammalian tissues is still a challenging theme in the separation sciences. In this review, various gas-chromatographic and high-performance liquid chromatographic methods are discussed including highly selective and sensitive column-switching procedures. Based on these methods, the distributions of D-aspartic acid, D-serine, D-alanine, D-leucine and D-proline have been clarified in the mouse brain. As the regulation mechanisms of D-amino acid amounts in mammals, we focused on the D-amino-acid oxidase, which catalyzes the degradation of D-amino acids. Using the mutant mouse strain lacking D-amino-acid oxidase activity, the effects of the enzymatic activity on the amounts and distributions of various D-amino acids have been investigated. PMID:16141519

  15. Buffering effects of calcium salts in kimchi: lowering acidity, elevating lactic acid bacterial population and dextransucrase activity.

    PubMed

    Chae, Seo Eun; Moon, Jin Seok; Jung, Jee Yun; Kim, Ji-Sun; Eom, Hyun-Ju; Kim, So-Young; Yoon, Hyang Sik; Han, Nam Soo

    2009-12-01

    This study investigates the buffering effects of calcium salts in kimchi on total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added in dongchimi-kimchi, a watery-radish kimchi, and their effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts. PMID:20075632

  16. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. PMID:27085899

  17. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  18. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  19. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture

    SciTech Connect

    Hangarter, R.P.; Peterson, M.D.; Good, N.E.

    1980-05-01

    The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-L-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetlyglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-L-alanine and indoleacetylglycine. The other conjugates inhibit shoot formatin weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-L-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.

  20. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  1. Neuroprotective Activity of Thioctic Acid in Central Nervous System Lesions Consequent to Peripheral Nerve Injury

    PubMed Central

    Ghelardini, Carla; Nwankwo, Innocent E.; Pacini, Alessandra

    2013-01-01

    Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies. PMID:24527432

  2. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  3. Activation of stratospheric chlorine by reactions in liquid sulphuric acid

    SciTech Connect

    Cox, R.A.; MacKenzie, A.R. ); Mueller, R.H.; Peter, Th.; Crutzen, P.J. )

    1994-06-22

    The authors discuss activation mechanisms for chlorine compounds in the stratosphere, based on laboratory measurements for the solubility and reaction rates of HOCl and HCl in H[sub 2]SO[sub 4] solutions, as found on aerosols in the stratosphere. Their interest is in the impact of the large increase in aerosol loading in the stratosphere in the winter on 1991-92 due to the Mt. Pinatubo eruption. While laboratory data is not available for the temperature range close to 190 K, they argue that should the solubility and hydrolysis rates be high enough, this excess aerosol density could have contributed a significant additional amount of reactive chlorine to the stratosphere.

  4. Antioxidant activity and physicochemical properties of an acidic polysaccharide from Morinda officinalis.

    PubMed

    Zhang, Hualin; Li, Jun; Xia, Jingmin; Lin, Sanqing

    2013-07-01

    An acidic polysaccharide APMO was isolated from Morinda officinalis by alkaline solvent extraction followed by fractionation treatments. Its antioxidant activities were evaluated by various methods in vitro, APMO presented excellent capability in scavenging DPPH radicals, chelating ferrous ions and inhibiting hemolysis of rats erythrocyte induced by H2O2, which was stronger than those of Vc at high concentration. Moreover, APMO displayed moderate reducing power. Physicochemical characteristics of APMO were observed by a combination of chemical and instrumental analysis. APMO predominantly consisted of galacturonic acid, arabinose and galactose. Galacturonic acid was assigned to be 1→4 glycosyl linkage in the skeleton of APMO. PMID:23511058

  5. Preparation of certain derivatives of ursolic acid and their antimicrobial activity

    SciTech Connect

    Zaletova, N.I.; Shchavlinskii, A.N.; Tolkachev, O.N.; Vichkanova, S.A.; Fateeva, T.V.; Krutikova, N.M.; Yartseva, I.V.; Klyuev, N.A.

    1987-03-01

    The authors studied the industrial wastes from the production of an antitumorigenic preparation rosevin, in which about 18% of ursolic acid was found. They obtained several oxygen-substituted derivatives of ursolic acid by oxidation with chromic acid and KMnO/sub 4/ in different media to study their biological activity. The structure of the compounds obtained was confirmed by the data of IR and PMR spectra and also by the data of molecular mass spectroscopy with ionization of the molecules under an electron impact.

  6. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes.

    PubMed

    Studer, Elaine; Zhou, Xiqiao; Zhao, Renping; Wang, Yun; Takabe, Kazuaki; Nagahashi, Masayuki; Pandak, William M; Dent, Paul; Spiegel, Sarah; Shi, Ruihua; Xu, Weiren; Liu, Xuyuan; Bohdan, Pat; Zhang, Luyong; Zhou, Huiping; Hylemon, Phillip B

    2012-01-01

    Bile acids have been shown to be important regulatory molecules for cells in the liver and gastrointestinal tract. They can activate various cell signaling pathways including extracellular regulated kinase (ERK)1/2 and protein kinase B (AKT) as well as the G-protein-coupled receptor (GPCR) membrane-type bile acid receptor (TGR5/M-BAR). Activation of the ERK1/2 and AKT signaling pathways by conjugated bile acids has been reported to be sensitive to pertussis toxin (PTX) and dominant-negative Gα(i) in primary rodent hepatocytes. However, the GPCRs responsible for activation of these pathways have not been identified. Screening GPCRs in the lipid-activated phylogenetic family (expressed in HEK293 cells) identified sphingosine-1-phosphate receptor 2 (S1P(2) ) as being activated by taurocholate (TCA). TCA, taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid (TUDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and S1P-induced activation of ERK1/2 and AKT were significantly inhibited by JTE-013, a S1P(2) antagonist, in primary rat hepatocytes. JTE-013 significantly inhibited hepatic ERK1/2 and AKT activation as well as short heterodimeric partner (SHP) mRNA induction by TCA in the chronic bile fistula rat. Knockdown of the expression of S1P(2) by a recombinant lentivirus encoding S1P(2) shRNA markedly inhibited the activation of ERK1/2 and AKT by TCA and S1P in rat primary hepatocytes. Primary hepatocytes prepared from S1P(2) knock out (S1P(2) (-/-) ) mice were significantly blunted in the activation of the ERK1/2 and AKT pathways by TCA. Structural modeling of the S1P receptors indicated that only S1P(2) can accommodate TCA binding. In summary, all these data support the hypothesis that conjugated bile acids activate the ERK1/2 and AKT signaling pathways primarily through S1P(2) in primary rodent hepatocytes. PMID:21932398

  7. Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer.

    PubMed

    Kitamura, Takuya; Srivastava, Jaya; DiGiovanni, John; Kiguchi, Kaoru

    2015-06-01

    Although very few studies have addressed the molecular and cellular mechanisms underlying the development of biliary tract cancer (BTC), several lines of evidence suggest a role for the erbB receptor family. Overexpression and activation of erbB2 has been reported in a significant percentage of human BTC. Further, we previously reported that overexpression of erbB2 basal epithelial cells of the biliary tract (BK5.erbB2 mouse) led to the development of BTC. However, the mechanisms by which erbB2 overexpression led to the spontaneous development of tumors specifically in the biliary tract are not completely understood. The goals of the current study were to (1) determine whether a cooperative relationship between bile acid exposure and erbB2 activation exists during biliary tract carcinogenesis and (2) to characterize the mechanism(s) underlying bile acid-mediated biliary tract carcinogenesis in cells with activated erbB2. In this study, we demonstrated that the secondary conjugated bile acid, taurochenodeoxycholic acid (TCDC), increased proliferation of primary cultured gallbladder epithelial cells from BK5.erbB2 mice and human BTC cells. TCDC treatment activated EGFR/erbB2 and downstream signaling molecules in both primary cultured cells and human BTC cells. TCDC also increased the expression of epidermal growth factor receptor (EGFR) ligands and TACE activity in human BTC cells. Inhibition of src activation led to attenuation of bile-induced upregulation of TACE activity as well as signaling through the EGFR/erbB2, suggesting that during the development of BTC erbB2 overexpression/activation accelerates the bile acid-induced signaling cascade: bile acid → src → TACE → EGFR/erbB2 → downstream signaling. We also provide direct evidence that bile acids possess tumor promoting capacity in epithelial cells overexpressing erbB2 using the two-stage skin carcinogenesis model. Collectively these findings suggest cooperative roles for bile acid and

  8. Redox control of retinoic acid receptor activity: a novel mechanism for retinoic acid resistance in melanoma cells.

    PubMed

    Demary, K; Wong, L; Liou, J S; Faller, D V; Spanjaard, R A

    2001-06-01

    Retinoic acid (RA) slows growth and induces differentiation of tumor cells through activation of RA receptors (RARs). However, melanoma cell lines display highly variable responsiveness to RA, which is a poorly understood phenomenon. By using Northern and Western blot analyses, we show that RA-resistant A375 and RA-responsive S91 melanoma cells express comparable levels of major components of RAR-signaling pathways. However, A375 cells have substantially higher intracellular reactive oxygen species (ROS) levels than S91 cells. Lowering ROS levels in A375 cells through hypoxic culture conditions restores RAR-dependent trans-activity, which could be further enhanced by addition of the antioxidant N-acetyl-cysteine. Hypoxia also enhances RAR activity in the moderately RA-responsive C32 cells, which have intermediate ROS levels. Conversely, increasing oxidative stress in highly RA-responsive S91 and B16 cells, which have low ROS levels, by treatment with H(2)O(2) impairs RAR activity. Consistent with these observations, RA more potently inhibited the proliferation of hypoxic A375 cells than that of normoxic cells. Oxidative states diminish, whereas reducing conditions enhance, DNA binding of retinoid X receptor/RAR heterodimers in vitro, providing a molecular basis for the observed inverse correlation between RAR activity and ROS levels. The redox state of melanoma cells provides a novel, epigenetic control mechanism of RAR activity and RA resistance. PMID:11356710

  9. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation

    PubMed Central

    Denoble, Anna E.; Huffman, Kim M.; Stabler, Thomas V.; Kelly, Susan J.; Hershfield, Michael S.; McDaniel, Gary E.; Coleman, R. Edward; Kraus, Virginia B.

    2011-01-01

    Uric acid (UA) is known to activate the NLRP3 (Nacht, leucine-rich repeat and pyrin domain containing protein 3) inflammasome. When activated, the NLRP3 (also known as NALP3) inflammasome leads to the production of IL-18 and IL-1β. In this cohort of subjects with knee osteoarthritis (OA), synovial fluid uric acid was strongly correlated with synovial fluid IL-18 and IL-1β. Synovial fluid uric acid and IL-18 were strongly and positively associated with OA severity as measured by both radiograph and bone scintigraphy, and synovial fluid IL-1β was associated with OA severity but only by radiograph. Furthermore, synovial fluid IL-18 was associated with a 3-y change in OA severity, on the basis of the radiograph. We conclude that synovial fluid uric acid is a marker of knee OA severity. The correlation of synovial fluid uric acid with the two cytokines (IL-18 and IL-1β) known to be produced by uric acid-activated inflammasomes and the association of synovial fluid IL-18 with OA progression, lend strong support to the potential involvement of the innate immune system in OA pathology and OA progression. PMID:21245324

  10. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  11. Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus.

    PubMed

    Balakrishnan, Gayathri; Agrawal, Renu

    2014-12-01

    Probiotics are the class of beneficial microorganisms that have positive influence on the health when ingested in adequate amounts. Probiotic fermented milk is one of the dairy products that is prepared by using probiotic lactic acid bacteria. The study comprised preparation of fermented milk from various sources such as cow, goat and camel. Pediococcus pentosaceus which is a native laboratory isolate from cheese was utilized for the product formation. Changes in functional properties in the fermented milks obtained from three different species were evaluated. Antioxidant activity determined by DPPH assay showed activity in probiotic fermented milk obtained from all the products being highest in goat milk (93 %) followed by product from camel milk (86 %) and then product from cow milk (79 %). The composition of beneficial fatty acids such as stearic acid, oleic acid and linoleic acid were higher in fermented milk than the unfermented ones. Results suggested that probiotic bacteria are able to utilize the nutrients in goat and camel milk more efficiently compared to cow milk. Increase in antioxidant activity and fatty acid profile of fermented milks enhances the therapeutic value of the products. PMID:25477694

  12. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  13. Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity.

    PubMed

    Chandregowda, Venkateshappa; Kush, Anil; Reddy, Goukanapalli Chandrasekara

    2009-06-01

    Several benzamide derivatives were synthesized from anacardic acid (1a) which was the product of hydrogenation of the naturally occurring anacardic acid mixture (1a-d), a major constituent of cashew nut shell liquid. Anacardic acid (1a) was first alkylated followed by hydrolysis of the ester to obtain synthones namely, 2-ethoxy-6-pentadecylbenzoic acid (5) and 2-isopropoxy-6-pentadecylbenzoic acid (6). These salicylic acid derivatives were then coupled with a variety of anilines to obtain novel benzamide compounds (7-39). Cytotoxic effect of these synthesized compounds was tested on HeLa cell line of wild type with relatively high expression of p300 and on HCT-15, which is p300 negative. Of all the compounds, 2-isopropoxy-6-pentadecyl-N-pyridin-4-ylbenzamide (27), 2-ethoxy-N-(3-nitrophenyl)-6-pentadecylbenzamide (22) and 2-ethoxy-6-pentadecyl-N-pyridin-4-ylbenzamide (10) were found to be more potent with the respective IC(50) values 11.02 microM, 13.55 microM, 15.29 microM on HeLa cell line. Their activities are comparable with garcinol which is a cell permeable histone acetyltransferase (HAT) inhibitor and 10 fold more active than p300 HAT activators so far reported. PMID:19246131

  14. Effect of mycolic acid on surface activity of binary surfactant lipid monolayers.

    PubMed

    Chimote, G; Banerjee, R

    2008-12-15

    In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis. PMID:18848703

  15. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  16. Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant-parasitic nematodes.

    PubMed

    Kimura, Yasuo; Tani, Satoko; Hayashi, Asami; Ohtani, Kouhei; Fujioka, Shozo; Kawano, Tsuyoshi; Shimada, Atsumi

    2007-01-01

    A nematicide, 5-hydroxymethyl-2-furoic acid (1), was isolated from cultures of the fungus Aspergillus sp. and its structure was identified by spectroscopic analysis. Compound 1 showed effective nematicidal activities against the pine wood nematode Bursaphelenchus xylophilus and the free-living nematode Caenorhabditis elegans without inhibitory activity against plant growth, but 1 did not show any effective nematicidal activity against Pratylenchus penetrans. PMID:17542490

  17. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  18. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan.

    PubMed

    Liu, Jun; Lu, Jian-feng; Kan, Juan; Tang, Ying-qing; Jin, Chang-hai

    2013-11-01

    In this study, three phenolic acids including gallic acid (GA), caffeic acid (CA) and ferulic acid (FA) were grafted onto N,O-carboxymethyl chitosan (NOCC) by a free radical mediated grafting method. The grafted copolymers obtained were all water-soluble samples. UV-vis absorption peaks of the grafted copolymers shifted toward longer wavelengths. FT-IR spectroscopy of the grafted copolymers exhibited additional phenolic characteristics of the aromatic ring CC stretching within 1450-1650 cm(-1). NMR spectroscopy of the grafted copolymers showed new peaks at 6.2-7.6 ppm assigned to the phenyl protons of phenolic acids. These results all confirmed the successful grafting of three phenolic acids to NOCC. The conjugation probably occurred at amine of NOCC and carboxyl groups of phenolic acids. The grafted copolymers exhibited decreased crystallinity as compared to NOCC and chitosan. Moreover, antioxidant activity in vitro assays showed that the antioxidant property decreased in the order of GA-g-NOCC>CA-g-NOCC>FA-g-NOCC>NOCC>chitosan. Our results suggested the potential of phenolic acids grafted NOCC for the development of effective antioxidant agents. PMID:23994782

  19. Characterization of phytochemicals and antioxidant activities of red radish brines during lactic acid fermentation.

    PubMed

    Jing, Pu; Song, Li-Hua; Shen, Shan-Qi; Zhao, Shu-Juan; Pang, Jie; Qian, Bing-Jun

    2014-01-01

    Red radish (Raphanus L.) pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5-19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15-30 µg/mL). 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2-92.2 µg/mL, whereas the total phenolic content was 206-220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants. PMID:25004074

  20. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    PubMed

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. PMID:26706515

  1. Antimicrobial activity of acid-hydrolyzed Citrus unshiu peel extract in milk.

    PubMed

    Min, Keun Young; Kim, Hyun Jung; Lee, Kyoung Ah; Kim, Kee-Tae; Paik, Hyun-Dong

    2014-01-01

    Citrus fruit (Citrus unshiu) peels were extracted with hot water and then acid-hydrolyzed using hydrochloric acid. Antimicrobial activities of acid-hydrolyzed Citrus unshiu peel extract were evaluated against pathogenic bacteria, including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. Antilisterial effect was also determined by adding extracts at 1, 2, and 4% to whole, low-fat, and skim milk. The cell numbers of B. cereus, Staph. aureus, and L. monocytogenes cultures treated with acid-hydrolyzed extract for 12h at 35°C were reduced from about 8log cfu/mL to <1log cfu/mL. Bacillus cereus was more sensitive to acid-hydrolyzed Citrus unshiu peel extract than were the other bacteria. The addition of 4% acid-hydrolyzed Citrus unshiu extracts to all types of milk inhibited the growth of L. monocytogenes within 1d of storage at 4°C. The results indicated that Citrus unshiu peel extracts, after acid hydrolysis, effectively inhibited the growth of pathogenic bacteria. These findings indicate that acid hydrolysis of Citrus unshiu peel facilitates its use as a natural antimicrobial agent for food products. PMID:24534507

  2. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  3. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    PubMed

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. PMID:26559141

  4. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  5. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects. PMID:25841994

  6. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  7. A Surprising Mechanistic “Switch” in Lewis Acid Activation: A Bifunctional, Asymmetric Approach to α-Hydroxy Acid Derivatives

    PubMed Central

    Abraham, Ciby J.; Paull, Daniel H.; Bekele, Tefsit; Scerba, Michael T.; Dudding, Travis; Lectka, Thomas

    2009-01-01

    We report a detailed synthetic and mechanistic study of an unusual bifunctional, sequential hetero-Diels–Alder/ring-opening reaction in which chiral, metal complexed ketene enolates react with o-quinones to afford highly enantioenriched, α-hydroxylated carbonyl derivatives in excellent yield. A number of Lewis acids were screened in tandem with cinchona alkaloid derivatives; surprisingly, trans-(Ph3P)2PdCl2 was found to afford the most dramatic increase in yield and rate of reaction. A series of Lewis acid binding motifs were explored through molecular modeling, as well as IR, UV and NMR spectroscopy. Our observations document a fundamental mechanistic “switch” – namely the formation of a tandem Lewis base/Lewis acid activated metal enolate in preference to a metal-coordinated quinone species (as observed in other reactions of o-quinone derivatives). This new method was applied to the syntheses of several pharmaceutical targets, each of which was obtained in high yield and enantioselectivity. PMID:19053448

  8. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ

    PubMed Central

    Ma, Liang; Wang, Taijin; Shi, Min; Ye, Haoyu

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-mediated transcription factor playing key roles in glucose and lipid homeostasis, and PPARγ ligands possess therapeutic potential in these as well as other areas. In this study, a series of phenylthiazole acids have been synthesized and evaluated for agonistic activity by a convenient fluorescence polarization-based PPARγ ligand screening assay. Compound 4t, as a potential PPARγ agonist with half maximal effective concentration (EC50) 0.75±0.20 μM, exhibited in vitro potency comparable with a 0.83±0.14 μM of the positive control rosiglitazone. Molecular docking and molecular dynamics simulations indicated that phenylthiazole acid 4t interacted with the amino acid residues of the active site of the PPARγ complex in a stable manner, consistent with the result of the in vitro ligand assay. PMID:27313447

  9. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis).

    PubMed

    Srihongthong, Saowaluck; Pakdeesuwan, Anawat; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-08-01

    Hemoglobin, α-chain, β-chain and fragmented hemoglobin of Crocodylus siamensis demonstrated both antibacterial and antioxidant activities. Antibacterial and antioxidant properties of the hemoglobin did not depend on the heme structure but could result from the compositions of amino acid residues and structures present in their primary structure. Furthermore, thirteen purified active peptides were obtained by RP-HPLC analyses, corresponding to fragments in the α-globin chain and the β-globin chain which are mostly located at the N-terminal and C-terminal parts. These active peptides operate on the bacterial cell membrane. The globin chains of Crocodylus siamensis showed similar amino acids to the sequences of Crocodylus niloticus. The novel amino acid substitutions of α-chain and β-chain are not associated with the heme binding site or the bicarbonate ion binding site, but could be important through their interactions with membranes of bacteria. PMID:22648692

  10. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives.

    PubMed

    Valderrama, Jaime A; Delgado, Virginia; Sepúlveda, Sandra; Benites, Julio; Theoduloz, Cristina; Buc Calderon, Pedro; Muccioli, Giulio G

    2016-01-01

    A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24). PMID:27617997

  11. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2010-02-15

    We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as the anode catalyst for direct formic acid fuel cells (DFAFCs). PtAu alloy nanopaticles are synthesized by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then the nanoparticles are deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal PtAu alloy formation with an average diameter of 4.6 nm. PtAu/C exhibits 8 times higher catalytic activity toward formic acid oxidation than Pt/C. The enhanced activity of PtAu/C catalyst is attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid by avoiding poison CO.

  12. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    PubMed

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2. PMID:26982722

  13. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    PubMed Central

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs. PMID:27057092

  14. Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds.

    PubMed

    Tiengo, Andréa; Motta, Eliana Maria Pettirossi; Netto, Flavia Maria

    2011-11-01

    Cardiovascular diseases are currently the greatest cause of mortality in the world, and dislipidemia is appearing as one of the most important risk factors. The binding of bile acids (BAs) has been hypothesized as a possible mechanism by which dietary fibers lower blood cholesterol levels. Besides the fibers, other components in the amaranth seeds may be related to this hypocholesterolemic effect. The objective of the present study was to evaluate the BA binding capacity of some products obtained from defatted amaranth flour (DAF) and from the amaranth protein concentrate (APC). The alkaline residue, rich in fibers (8.6%), presented the lowest binding activity for the BAs tested, with the exception of glycocholic acid. The DAF showed intermediary binding activity for all the BAs tested, although similar to that of the APC for deoxycholic acid, and to that of the amaranth protein hydrolysate (APH) for taurocholic acid. The DAF and APC showed binding activity for secondary bile acids toxic to the intestinal mucus. From the results, amaranth products were shown to have the ability to bind BAs, but it was not possible to affirm whether the main component responsible for this activity was the proteins, fibers or eventually some other non-evaluated component. PMID:21901402

  15. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  16. Synthesis and antioxidant activity of polyhydroxylated trans-restricted 2-arylcinnamic acids.

    PubMed

    Miliovsky, Mitko; Svinyarov, Ivan; Prokopova, Elena; Batovska, Daniela; Stoyanov, Simeon; Bogdanov, Milen G

    2015-01-01

    A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a-p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds' structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon-carbon double bond. The antioxidant activity of compounds 3a-p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●), hydroxyl (OH●) and superoxide (O2●▬) radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed. PMID:25648597

  17. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  18. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  19. Copper-catalyzed intermolecular trifluoromethylarylation of alkenes: mutual activation of arylboronic acid and CF3+ reagent.

    PubMed

    Wang, Fei; Wang, Dinghai; Mu, Xin; Chen, Pinhong; Liu, Guosheng

    2014-07-23

    A novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF3(+) reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C-C bond is derived from reductive elimination of the aryl(alkyl)Cu(III) intermediate. PMID:24983408

  20. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata

    PubMed Central

    2011-01-01

    Background Boswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia. Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin. β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer. These molecules are also associated with potent antimicrobial activities. The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE) and biofilm susceptibility assay. The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays. Results AKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested. It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE) of 4.8 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure. Conclusions This study supported the potential use of AKBA in treating S. aureus infections. AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents. PMID:21406118

  1. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). PMID:27100009

  2. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids.

    PubMed

    Ali, Abbas; Cantrell, Charles L; Bernier, Ulrich R; Duke, Stephen O; Schneider, John C; Agramonte, Natasha M; Khan, Ikhlas

    2012-11-01

    In this study we evaluated the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti (L), yellow fever mosquito (Diptera: Culicidae) using the K & Dbioassay module system. Saturated (C6:0 to C16:0 and C18:0) and unsaturated fatty acids (C11:1 to C14:1, C16:1, C18:1, and C18:2) showed biting deterrence index (BDI) values significantly greater than ethanol, the negative control. Among the saturated fatty acids, mid chain length acids (C10:0 to C13:0) showed higher biting deterrence than short (C6:0 to C9:0) and long chain length acids (C14:0 to C18:0), except for C8:0 and C16:0 that were more active than the other short and long chain acids. The BDI values of mid chain length acids (C10:0 to C13:0) were not significantly less than N, N-diethyl-meta-toluamide (DEET), the positive control. Among the unsaturated fatty acids, C11:1 showed the highest activity (BDI = 1.05) and C18:2 had the lowest activity (BDI = 0.7). In C11:1, C12:1, and C14:1 BDI values were not significantly less than DEET. After the preliminary observations, residual activity bioassays were performed on C11:0, C12:0, C11:1, and C12:1 over a 24-h period. All the fatty acids (C11:0, C12:0, C11:1, and C12:1) and DEET showed significantly higher activity at all test intervals than the solvent control. At treatment and 1-h posttreatment, all fatty acids showed proportion not biting (PNB) values not significantly less than DEET. At 3-, 6-, and 12-h posttreatment, all fatty acids showed PNB values significantly greater than DEET. At 24-h posttreatment, only the PNB value for C12:0 was significantly higher than DEET. The dose-responses of C12:0 and DEET were determined at concentrations of 5-25 nmol/cm2. As in the residual activity bioassays, the PNB values for C12:0 and DEET at 25 nmol/cm(2) were not significantly different. However, at lower concentrations, the PNB values for C12:0 were significantly greater than DEET. These results clearly indicate that mid

  3. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation.

    PubMed

    Ribeiro, Alison; Pontis, Silvia; Mengatto, Luisa; Armirotti, Andrea; Chiurchiù, Valerio; Capurro, Valeria; Fiasella, Annalisa; Nuzzi, Andrea; Romeo, Elisa; Moreno-Sanz, Guillermo; Maccarrone, Mauro; Reggiani, Angelo; Tarzia, Giorgio; Mor, Marco; Bertozzi, Fabio; Bandiera, Tiziano; Piomelli, Daniele

    2015-08-21

    Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of β-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs. PMID:25874594

  4. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. PMID:26463741

  5. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects. PMID:22615395

  6. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  7. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells.

    PubMed

    Antonietta Ajmone-Cat, Maria; Lavinia Salvatori, Maria; De Simone, Roberta; Mancini, Melissa; Biagioni, Stefano; Bernardo, Antonietta; Cacci, Emanuele; Minghetti, Luisa

    2012-03-01

    The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain. PMID:22057807

  8. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  9. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  10. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome. PMID:27374289

  11. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  12. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    PubMed Central

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L. J.

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD. PMID:26483636

  13. Syntheses and antifolate activity of 5-methyl-5-deaza analogues of aminopterin, methotrexate, folic acid, and N10-methylfolic acid.

    PubMed

    Piper, J R; McCaleb, G S; Montgomery, J A; Kisliuk, R L; Gaumont, Y; Sirotnak, F M

    1986-06-01

    Evidence indicating that modifications at the 5- and 10-positions of classical folic acid antimetabolites lead to compounds with favorable differential membrane transport in tumor vs. normal proliferative tissue prompted an investigation of 5-alkyl-5-deaza analogues. 2-Amino-4-methyl-3,5-pyridinedicarbonitrile, prepared by hydrogenolysis of its known 6-chloro precursor, was treated with guanidine to give 2,4-diamino-5-methylpyrido[2,3-d]pyrimidine-6-carbonitrile which was converted via the corresponding aldehyde and hydroxymethyl compound to 6-(bromomethyl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine. Reductive condensation of the nitrile 8 with diethyl N-(4-amino-benzoyl)-L-glutamate followed by ester hydrolysis gave 5-methyl-5-deazaaminopterin. Treatment of 12 with formaldehyde and Na(CN)BH3 afforded 5-methyl-5-deazamethotrexate, which was also prepared from 15 and dimethyl N-[(4-methylamino)benzoyl]-L-glutamate followed by ester hydrolysis. 5-Methyl-10-ethyl-5-deazaaminopterin was similarly prepared from 15. Biological evaluation of the 5-methyl-5-deaza analogues together with previously reported 5-deazaaminopterin and 5-deazamethotrexate for inhibition of dihydrofolate reductase (DHFR) isolated from L1210 cells and for their effect on cell growth inhibition, transport characteristics, and net accumulation of polyglutamate forms in L1210 cells revealed the analogues to have essentially the same properties as the appropriate parent compound, aminopterin or methotrexate (MTX), except that 20 and 21 were approximately 10 times more growth inhibitory than MTX. In in vivo tests against P388/0 and P388/MTX leukemia in mice, the analogues showed activity comparable to that of MTX, with the more potent 20 producing the same response in the P388/0 test as MTX but at one-fourth the dose; none showed activity against P388/MTX. Hydrolytic deamination of 12 and 20 produced 5-methyl-5-deazafolic acid and 5,10-dimethyl-5-deazafolic acid, respectively. In bacterial studies on

  14. D-pantethine has vitamin activity equivalent to d-pantothenic acids for recovering from a deficiency of D-pantothenic acid in rats.

    PubMed

    Shibata, Katsumi; Kaneko, Mayu; Fukuwatari, Tsutomu

    2013-01-01

    D-Pantethine is a compound in which two molecules of D-pantetheine bind through an S-S linkage. D-Pantethine is available from commercial sources as well as from D-pantothenic acid. We investigated if D-pantethine has the same vitamin activity as D-pantothenic acid by comparing the recovery from a deficiency of D-pantothenic acid in rats. D-Pantothenic acid-deficient rats were developed by weaning rats on a diet lacking D-pantothenic acid for 47 d. At that time, the urinary excretion of D-pantothenic acid was almost zero, and the body weight extremely low, compared with the control (p<0.05); the contents of free D-pantothenic acid were also significantly reduced in comparison with those of controls (p<0.05). D-Pantothenic acid-deficient rats were administered a diet containing D-pantothenic acid or D-pantethine for 7 d. D-Pantethine and D-pantothenic acid contents of the diets were equimolar in forms of D-pantothenic acid. We compared various parameters concerning nutritional status between rats fed D-pantothenic acid- and D-pantethine-containing diets. The recoveries of body weight, tissue weights, and tissue concentrations of free D-pantothenic acid, dephospho-CoA, CoA, and acetyl-CoA were identical between rats fed diets containing D-pantothenic acid and D-pantethine. Thus, the biological efficiency for recovering from a deficiency of D-pantothenic acid in rats was equivalent between D-pantothenic acid and D-pantethine. PMID:23727638

  15. Substitution of the phosphonic acid and hydroxamic acid functionalities of the DXR inhibitor FR900098: an attempt to improve the activity against Mycobacterium tuberculosis.

    PubMed

    Andaloussi, Mounir; Lindh, Martin; Björkelid, Christofer; Suresh, Surisetti; Wieckowska, Anna; Iyer, Harini; Karlén, Anders; Larhed, Mats

    2011-09-15

    Two series of FR900098/fosmidomycin analogs were synthesized and evaluated for MtDXR inhibition and Mycobacterium tuberculosis whole-cell activity. The design rationale of these compounds involved the exchange of either the phosphonic acid or the hydroxamic acid part for alternative acidic and metal-coordinating functionalities. The best inhibitors provided IC(50) values in the micromolar range, with a best value of 41 μM. PMID:21824775

  16. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    SciTech Connect

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  17. Arctigenic acid, the key substance responsible for the hypoglycemic activity of Fructus Arctii.

    PubMed

    Xu, Zhaohui; Gu, Chenchen; Wang, Kai; Ju, Jiaxing; Wang, Haiying; Ruan, Kefeng; Feng, Yi

    2015-01-15

    We have reported the antidiabetic activity of the total lignans from Fructus arctii (TLFA) against alloxan-induced diabetes in mice and rats. In this study, arctigenic acid was found to be the main metabolite in rat plasma detected by UPLC/MS and HPLC/MS/MS after oral administration of TLFA. For the first time, its hypoglycemic activity and acute oral toxicity were evaluated in Goto-Kakizaki (GK) rats, a spontaneous type 2 diabetic animal model, and ICR mice respectively. GK rats were orally given arctigenic acid (50 mg/kg) twice daily before each meal for 12 weeks. The treatment reduced the elevated plasma glucose, glycosylated hemoglobin and showed significant improvement in glucose tolerance in glucose fed hyperglycemic GK rats. We found that the hypoglycemic effect of arctigenic acid was partly due to the stimulation on insulin secretion, whereas the body weight was not affected by arctigenic acid administration in GK rats. Meanwhile, there was no observable acute toxicity of arctigenic acid treatment at the dosage of 280 mg/kg body weight daily in the acute 14-day toxicity study in mice. This study demonstrates that arctigenic acid may be the main metabolite in the rat serum after oral administration of TLFA, which showed significant hypoglycemic effect in GK rats, and low acute toxicity in ICR mice. The result prompts us that arctigenic acid is the key substance responsible for Fructus Arctii antidiabetic activity and it has a great potential to be further developed as a novel therapeutic agent for diabetes in humans. PMID:25636881

  18. [Molluscacide activity of a mixture of 6-n-alkyl salicylic acids (anacardic acid) and 2 of its complexes with copper (II) and lead (II)].

    PubMed

    Mendes, N M; de Oliveira, A B; Guimarães, J E; Pereira, J P; Katz, N

    1990-01-01

    The molluscicide activity of hexanic extract from Anacardium occidentale L. (cashew) nut shell, of copper (II) complex, of lead (II) complex and anacardic acid has been compared in the laboratory in an attempt to obtain better stability than anacardic acid. This was obtained from the hexanic extract of the cashew nut shell by precipitation with lead (II) hydroxide or cupric sulfate plus sodium hydroxide or (II) cupric hydroxide followed by treatment of lead (II) complex with a diluted solution of sulfuric acid. Ten products of the mixture obtained were tested on adults snails of Biomphalaria glabrata at 1 to 10 ppm. The most active products were copper (II) complex, obtained by cupric sulfate plus sodium hydroxide, and anacardic acid (sodium hydroxide) which presented activity at 4 ppm. The anacardic acid's lead content was above the limits accepted by the United States standards. PMID:2133588

  19. Production of anti-Gordonia amarae mycolic acid polyclonal antibody for detection of mycolic acid-containing bacteria in activated sludge foam.

    PubMed

    Iwahori, K; Miyata, N; Takata, N; Morisada, S; Mochizuki, T

    2001-01-01

    Mycolic acid-containing actinomycetes (mycolata) are considered the causative agents of foaming of activated sludge and scum formation in activated sludge treatment plants. In this study, the production of anti-Gordonia amarae mycolic acid polyclonal antibodies was investigated. Rabbits were immunized with a conjugate of keyhole limpet hemocyanin and mycolic acids of G. amarae, which contained 48 to 56 carbon atoms (average, 52.0). Enzyme-linked immunosorbent assay (ELISA) demonstrated that the polyclonal antibodies could recognize cells of G. amarae ranging from 0.1 to 10 microg. The antibodies also reacted with other tested mycolata strains belonging to the genera Nocardia, Rhodococcus, Dietzia, Mycobacterium and Tsukamurella. However, reactivities against other gram-positive and gram-negative bacteria not containing mycolic acid were negligible or much lower. The results indicate that the anti-G. amarae mycolic acid antibodies show a reactivity selective for a group of mycolata involved in the foaming of activated sludge. PMID:16233121

  20. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity.

    PubMed

    Lamberth, Clemens

    2016-04-01

    Several naturally occurring amino acid derivatives display significant activities against weeds, fungi and insects: some of them have been even commercialized and are applied as crop protection agents. The 53 most important amino acid natural products with such efficacy are presented in this review together with their natural source, mode of action and biological activity. The diversity of the manifold bacterial, fungal and plantal sources of these compounds is impressive as well as their completely different structural scaffolds, ranging from cyclopeptides via unique non-proteinogenic amino acids to peptidyl nucleosides, the broad range of target enzymes from several different biochemical pathways, which they inhibit and also the plethora of different weeds, fungi and insects they are able to control. PMID:26801938

  1. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway.

    PubMed

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  2. [The influence of docosahexaenoic acid moiety on cytotoxic activity of 1,2,4-thiadiazole derivatives].

    PubMed

    Akimov, M G; Gretskaia, N M; Karnoukhova, V A; Serkov, I V; Proshin, A N; Shtratnikova, V Iu; Bezuglov, V V

    2014-01-01

    Among 3-(2-aminopropyl)-1,2,4-thiadiazole derivatives contatining substitution-ready secondary amino group and exhibiting cytotoxic towards rat C 6 glioma cells three compounds with LD 50 values ranged from 6 to 48 мM were chosen. For these compounds amides with docosahexaenoic acid were synthetised and their cytotoxic activity was studied. It was shown that, although docosahexaenoic acid itself was not toxic for C 6 glioma cells, its addition to the amino derivatives of 1,2,4-thiadiazole increased or decreased resultant cytotoxicity. The effect depended on the structure of 1,2,4-thiadiazole substituents. The obtained data show that the acylation of cytotoxic compounds with docosahexaenoic acid does not necessarily lead to the increase of their activity, but sometimes can inactivate a compound. This fact should be taken into account, especially in the case of anti-cancer drug development. PMID:25249531

  3. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds.

    PubMed

    Hacıbekiroğlu, Işil; Yılmaz, Pelin Köseoğlu; Haşimi, Nesrin; Kılınç, Ersin; Tolan, Veysel; Kolak, Ufuk

    2015-01-01

    This study reports in vitro anticholinesterase, antioxidant and antimicrobial effects of the n-hexane, dichloromethane, ethanol and ethanol-water extracts prepared from Pistacia terebinthus L. fruits and Pistacia khinjuk Stocks seeds as well as their total phenolic and flavonoid contents, and fatty acid compositions. Ethanol and ethanol-water extracts of both species exhibited higher anticholinesterase activity than galanthamine. Among ABTS, DPPH and CUPRAC assays, the highest antioxidant capacity of the extracts was found in the last one. P. terebinthus ethanol extract being rich in flavonoid content showed the best cupric reducing effect. All extracts possessed no antimicrobial activity. The main fatty acid in P. terebinthus fruits (52.52%) and P. khinjuk seeds (59.44%) was found to be oleic acid. Our results indicate that P. terebinthus fruits and P. khinjuk seeds could be a good source of anticholinesterase compounds, and could be phytochemically investigated. PMID:25115646

  4. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway

    PubMed Central

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial